KR100628797B1 - Active cathode material comprising the lithium-containing composite oxide - Google Patents

Active cathode material comprising the lithium-containing composite oxide Download PDF

Info

Publication number
KR100628797B1
KR100628797B1 KR1020057015678A KR20057015678A KR100628797B1 KR 100628797 B1 KR100628797 B1 KR 100628797B1 KR 1020057015678 A KR1020057015678 A KR 1020057015678A KR 20057015678 A KR20057015678 A KR 20057015678A KR 100628797 B1 KR100628797 B1 KR 100628797B1
Authority
KR
South Korea
Prior art keywords
lithium
active material
positive electrode
composite oxide
containing composite
Prior art date
Application number
KR1020057015678A
Other languages
Korean (ko)
Other versions
KR20050096191A (en
Inventor
아츠시 우에다
가즈타카 우치토미
시게오 아오야마
Original Assignee
히다치 막셀 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 히다치 막셀 가부시키가이샤 filed Critical 히다치 막셀 가부시키가이샤
Publication of KR20050096191A publication Critical patent/KR20050096191A/en
Application granted granted Critical
Publication of KR100628797B1 publication Critical patent/KR100628797B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0072Mixed oxides or hydroxides containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/50Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [MnO2]n-, e.g. Li(CoxMn1-x)O2, Li(MyCoxMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/20Two-dimensional structures
    • C01P2002/22Two-dimensional structures layered hydroxide-type, e.g. of the hydrotalcite-type
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/164Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

일반식 Li1+x+αNi(1-x-y+δ)/2Mn(1-x-y-δ)/2MyO2[단, 0≤x≤0.05, -0.05≤x+α≤0.05, 0≤y≤0.4이며, -0.1≤δ≤0.1(단, 0≤y≤0.2일 때) 또는 -0.24≤δ≤0.24(단, 0.2<y≤0.4일 때)로서, M은 Ti, Cr, Fe, Co, Cu, Zn, Al, Ge 및 Sn으로 이루어지는 그룹 중에서 선택된 1종 이상의 원소]로 나타내는 조성을 가짐으로써, 층상 결정 구조가 안정화되며, 고밀도로, 충방전 가역성이 뛰어난 고용량의 리튬 함유 복합 산화물을 제공하며, 그것을 양극에 이용함으로써 내구성이 뛰어난 고용량 비수 2차 전지를 실현한다.General formula Li 1 + x + α Ni (1-x-y + δ) / 2 Mn (1-xy-δ) / 2 M y O 2 , where 0 ≦ x ≦ 0.05 and −0.05 ≦ x + α ≦ 0.05, 0 ≦ y ≦ 0.4, and −0.1 ≦ δ ≦ 0.1 (where 0 ≦ y ≦ 0.2) or −0.24 ≦ δ ≦ 0.24 (where 0.2 <y ≦ 0.4), where M is Ti, By having a composition represented by at least one element selected from the group consisting of Cr, Fe, Co, Cu, Zn, Al, Ge, and Sn], the layered crystal structure is stabilized, and has a high density of high capacity lithium containing excellent charge and discharge reversibility. By providing a composite oxide and using it for the positive electrode, a high capacity nonaqueous secondary battery having excellent durability is realized.

비수 2차 전지, 양극 활물질 Non-aqueous secondary battery, positive electrode active material

Description

리튬 함유 복합 산화물을 포함하는 양극 활물질{Active cathode material comprising the lithium-containing composite oxide}Active cathode material comprising the lithium-containing composite oxide

도 1은 본 발명의 실시예 1에서 합성한 리튬 함유 복합 산화물의 X선 회절 패턴을 도시하는 도면이다. 1 is a diagram showing an X-ray diffraction pattern of a lithium-containing composite oxide synthesized in Example 1 of the present invention.

도 2는 본 발명의 실시예 8에서 합성한 리튬 함유 복합 산화물의 X선 회절 패턴을 도시하는 도면이다.2 is a diagram showing an X-ray diffraction pattern of a lithium-containing composite oxide synthesized in Example 8 of the present invention.

도 3은 본 발명의 실시예 9에서 합성한 리튬 함유 복합 산화물의 X선 회절 패턴을 도시하는 도면이다.3 is a diagram showing an X-ray diffraction pattern of a lithium-containing composite oxide synthesized in Example 9 of the present invention.

도 4는 본 발명의 비교예 4에서 합성한 리튬 함유 복합 산화물의 X선 회절 패턴을 도시하는 도면이다.4 is a diagram showing an X-ray diffraction pattern of a lithium-containing composite oxide synthesized in Comparative Example 4 of the present invention.

도 5는 본 발명의 비교예 5에서 합성한 리튬 함유 복합 산화물의 X선 회절 패턴을 도시하는 도면이다.5 is a diagram showing an X-ray diffraction pattern of a lithium-containing composite oxide synthesized in Comparative Example 5 of the present invention.

도 6은 본 발명의 실시예 1, 실시예 6, 실시예 8, 비교예 1 및 비교예 2에서 합성한 리튬 함유 복합 산화물을 양극으로 이용한 전지의 양극 방전 곡선을 도시하는 도면이다. 6 is a diagram showing a positive electrode discharge curve of a battery using the lithium-containing composite oxide synthesized in Examples 1, 6, 8, Comparative Example 1 and Comparative Example 2 of the present invention as a positive electrode.

본 발명은 비수 2차 전지의 양극 재료 등에 이용할 수 있는 리튬 함유 복합 산화물 및 이것을 이용한 비수 2차 전지, 및 그 제조 방법에 관한 것이다.The present invention relates to a lithium-containing composite oxide that can be used for the positive electrode material of a nonaqueous secondary battery, a nonaqueous secondary battery using the same, and a method of manufacturing the same.

최근, 휴대 전화나 노트형 퍼스널 컴퓨터 등의 휴대용 전자 기기의 발달이나, 전기 자동차의 실용화 등에 수반하여, 소형 경량이며 또한 고용량의 2차 전지가 필요하게 되었다. 현재, 이 요구에 따른 고용량 2차 전지로서는 LiCoO2를 양극에 이용하며, 탄소계 재료를 음극에 이용한 리튬 2차 전지로 대표되는 비수 2차 전지가 상품화되고 있다. 상기 리튬 2차 전지는 에너지 밀도가 높고, 소형, 경량화를 도모할 수 있다는 점에서, 휴대용 전자 기기의 전원으로서 주목되고 있다.In recent years, with the development of portable electronic devices such as mobile phones and notebook personal computers, the practical use of electric vehicles, and the like, small size, light weight and high capacity secondary batteries are required. At present, a nonaqueous secondary battery represented by a lithium secondary battery using LiCoO 2 as a positive electrode and a carbon-based material as a negative electrode is commercialized as a high capacity secondary battery according to this demand. The lithium secondary battery has attracted attention as a power source for portable electronic devices in view of its high energy density, compactness, and weight reduction.

이 리튬 2차 전지의 양극 재료로서 사용되고 있는 LiCoO2는 제조가 용이하며, 또한 취급이 용이한 점에서, 바람직한 활성물질로서 다양하게 이용되고 있다. 그렇지만, LiCoO2는 희소 금속인 Co를 원료로 하여 제조되기 때문에, 앞으로 자원 부족이 심각해진다고 예상된다. 또, 코발트 자체의 가격도 높고, 가격 변동도 크기 때문에, 저가로 공급이 안정한 양극 재료의 개발이 요망된다.LiCoO 2, which is used as a positive electrode material of this lithium secondary battery, is easy to manufacture and easy to handle, and thus is widely used as a preferable active material. However, since LiCoO 2 is manufactured from Co, which is a rare metal, as a raw material, resource shortage is expected to become serious in the future. Moreover, since the price of cobalt itself is high and price fluctuations are large, development of the anode material which is stable in supply at low cost is desired.

이 때문에, 리튬 2차 전지용 양극 재료로서는 LiCoO2 대신에, 리튬망간 산화물계 재료가 유망시되고 있다. 그 중에서도 스피넬형 구조의 리튬망간 산화물인 Li2Mn4O9, Li4Mn5O12, LiMn2O4 등이 주목되고 있으며, 특히 LiMn2O4가 Li에 대하여 4V 부근의 전압 영역에서 충방전이 가능하기 때문에, 왕성히 연구가 행하여지고 있다(일본국 특개평 6-76824호 공보, 일본국 특개평 7-73883호 공보, 일본국 특개평 7-230802호 공보, 일본국 특개평 7-245106호 공보 등).
또, 매우 넓은 조성범위의 화합물을 비수 2차 전지의 양극재료로하여 이용하고 있는 것도, 특허 제3064655호 공보, 특개평9-199127호 공보, 특개평10-69910호 공보, 특개 2000-294242호 공보 등에 개시되어 있다.
For this reason, as the lithium secondary battery positive electrode material in place of LiCoO 2, a lithium manganese oxide-based material is promising. Among them, spinel-type lithium manganese oxides Li 2 Mn 4 O 9 , Li 4 Mn 5 O 12 , LiMn 2 O 4, and the like have been noted, in particular, LiMn 2 O 4 is charged to Li in the voltage region near 4V. Since discharge is possible, research is vigorously performed (Japanese Patent Laid-Open Publication No. 6-76824, Japanese Patent Laid-Open Publication No. 7-73883, Japanese Patent Laid-Open Publication No. 7-230802, Japanese Patent Laid-Open Publication No. 7-245106). Publications, etc.).
In addition, using a compound having a very wide composition range as a cathode material of a nonaqueous secondary battery is also disclosed in Japanese Patent Nos. 3064655, 9-199127, 10-69910, and 2000-294242. And the like.

그런데, LiCoO2의 이론 방전 용량은 274mAh/g이지만, 큰 폭의 충방전을 행하면 LiCoO2가 상변화를 일으켜 사이클 수명에 영향을 주기 때문에, 실제의 리튬 2차 전지에 있어서의 실용적인 방전 용량은 125∼140mAh/g인 범위가 된다.By the way, although LiCoO 2 has a theoretical discharge capacity of 274 mAh / g, since a large charge and discharge causes LiCoO 2 to cause a phase change and affect the cycle life, the practical discharge capacity of the actual lithium secondary battery is 125. It becomes the range which is -140mAh / g.

이에 대하여, LiMn2O4의 이론 방전 용량은 148mAh/g이지만, 이 LiMn2O4도 LiCoO2와 마찬가지로 충방전 중에 상변화를 일으키며, 또, 음극 활성물질에 탄소계 재료를 사용한 경우에는, 탄소계 재료의 불가역 용량이 크기 때문에, 실제로 전지로 한 경우에 사용할 수 있는 방전 용량은 90∼105mAh/g 정도로 감소해 버린다. 이것으로부터 명백한 바와 같이, LiMn2O4를 양극 활성물질로서 사용하는 경우에는, LiCoO2를 양극 활성물질로서 사용하는 경우보다도 전지 용량을 크게 할 수 없다.In contrast, although the theoretical discharge capacity of LiMn 2 O 4 is 148 mAh / g, this LiMn 2 O 4 also causes a phase change during charge and discharge similarly to LiCoO 2, and when carbon-based materials are used for the negative electrode active material, Since the irreversible capacity of the system material is large, the discharge capacity that can be used when the battery is actually used decreases to about 90 to 105 mAh / g. As is apparent from this, when LiMn 2 O 4 is used as the positive electrode active material, the battery capacity cannot be made larger than when LiCoO 2 is used as the positive electrode active material.

또, LiCoO2의 진밀도가 4.9∼5.1g/㎤인 것에 대하여, LiMn2O4의 진밀도는 4.0∼4.2g/㎤으로 상당히 낮은 값으로, 양극 활성물질로서의 충전성을 고려하면, 용량면에서 한층 더 불리해지는 것이 된다.In addition, while the true density of LiCoO 2 is 4.9 to 5.1 g / cm 3, the true density of LiMn 2 O 4 is 4.0 to 4.2 g / cm 3, which is a considerably low value. It becomes more disadvantage in.

또한, LiMn2O4를 양극 활성물질로서 이용한 리튬 2차 전지에서는 충방전 중에서의 LiMn2O4 자체 구조가 불안정하기 때문에, 사이클 특성이 LiCoO2계 전지보다도 나쁘다는 문제도 있다.In addition, in a lithium secondary battery using LiMn 2 O 4 as a positive electrode active material, LiMn 2 O 4 itself structure during charging and discharging is unstable, so that the cycle characteristics are worse than that of LiCoO 2 based batteries.

이와 같은 문제를 해결하기 위해, LiMn2O4와는 다른 구조를 갖는 LiMnO2 등의 층상 리튬망간 산화물을 양극 재료로 하는 검토도 행하여지고 있다. 그런데, 본 발명자들은 이 산화물에 관해서 상세한 검토를 행한 결과, 화합물의 조성, 특히 Li 및 Mn 이외에 산화물을 구성하는 원소의 유무와 그 종류나 양비, 그 산화물이 형성되기까지의 과정 등에 의해, 그 구조나 특성 등의 물성이 현저히 변화하는 것을 발견하였다.To solve this problem, LiMn 2 O 4 is also different from that review is performed to a layered lithium-manganese oxide of LiMnO 2 or the like having a different structure as a cathode material. However, the present inventors have conducted detailed studies on the oxide, and as a result, the structure thereof is determined by the composition of the compound, in particular, the presence or absence of elements constituting the oxide other than Li and Mn, the type and amount thereof, and the process until the oxide is formed. It was found that physical properties such as properties and properties were remarkably changed.

예를 들면, 스피넬형 리튬망간 산화물(LiMn2O4)의 조성이 변동하여, Mn의 평균 원자가가 3가에 접근한 경우, 상기 산화물의 결정 구조에 변형이 발생하여 입방정의 스피넬 구조로부터 정방정으로 상변화를 일으켜, LiMnO2가 형성된다. 이 입방정으로부터 정방정으로의 상변화는 리튬에 대하여 3V 부근의 전위 영역에서의 충방전에 수반하여 발생하기 때문에, 4V 가까운 전압에서 충방전되는 상기 리튬 2차 전지와 동일한 사용법은 안 된다.For example, when the composition of the spinel-type lithium manganese oxide (LiMn 2 O 4 ) fluctuates, and the average valence of Mn approaches trivalent, deformation occurs in the crystal structure of the oxide, and the tetragonal crystal is removed from the cubic spinel structure. Phase changes to form LiMnO 2 . Since the phase change from the cubic crystal to the tetragonal occurs with charge and discharge in the potential region near 3V with respect to lithium, the same usage as that of the lithium secondary battery charged and discharged at a voltage near 4V should not be used.

또, Li와 Mn의 구성 몰비(Li/Mn)를 1로 한 경우에는, 3가의 Mn에 의한 야안-텔러(Jahn-Teller) 효과 때문에, LiMnO2의 결정 구조는 사방정계를 나타낸다.In the case where the constituent molar ratio (Li / Mn) of Li and Mn is 1, the crystal structure of LiMnO 2 exhibits a tetragonal system because of the Jahn-Teller effect due to trivalent Mn.

이 화합물(LiMnO2)은 Li 양비가 0∼1.0인 범위에서 전기 화학적으로 충방전이 가능하며, 이론상은 약 285mAh/g의 방전 용량이 된다. 그렇지만, 초기 충전시에 4가의 Mn 비율이 증가함에 따라서, 스피넬형 구조로 상전이가 일어나기 때문에, 초기 충방전 곡선과 2회째 이후의 충방전 곡선이 다른 형상을 나타내는 것뿐만 아니라, 3.5V 이상의 전압에서 방전을 종지한 경우의 방전 용량은 이론치 보다도 상 당히 감소한다. 또한, 충방전에서 Mn의 이동을 수반하는 구조 변화를 발생시키기 때문에, 사이클 내구성이 열악하고, 또 급속 충방전을 할 수 없는 등의 문제를 안고 있다.This compound (LiMnO 2 ) can be charged and discharged electrochemically in a Li ratio of 0 to 1.0, and theoretically has a discharge capacity of about 285 mAh / g. However, as the tetravalent Mn ratio increases at the time of initial charge, since the phase transition occurs in the spinel structure, the initial charge and discharge curves and the second and subsequent charge and discharge curves not only show different shapes, but also at voltages of 3.5 V or more. The discharge capacity at the end of discharge is significantly reduced from the theoretical value. In addition, since the structural change accompanying the movement of Mn occurs during charge and discharge, there are problems such as poor cycle durability and inability to perform rapid charge and discharge.

따라서, LiMnO2 등의 층상 리튬망간 산화물을 실용화하기 위해서는 결정 구조의 안정화와, 충방전에서의 가역성의 향상에 의한 고용량화, 충방전 사이클에서의 내구성을 필두로 하는 과제를 해결할 필요가 있었다.Therefore, in order to put practical use of layered lithium manganese oxides such as LiMnO 2 , it has been necessary to solve the problems of stabilizing the crystal structure, increasing the capacity by improving the reversibility in charge and discharge, and durability in the charge and discharge cycle.

본 발명은 상기 종래의 문제를 해결하도록 예의 연구를 거듭한 결과 이루어진 것으로, 구조가 안정하며, 충방전 가역성 및 충방전 사이클에 대한 내구성이 뛰어나며, 체적당 에너지 밀도가 높은 리튬 함유 복합 산화물을 양극활물질로서 제공하는 것, 또한, 이 양극활물질을 이용한 양극 및 비수 2차 전지를 제공하는 것을 특징으로 하는 것이다. The present invention is made as a result of repeated studies to solve the above-mentioned conventional problems, the structure is stable, excellent charge and discharge reversibility and durability for the charge and discharge cycle, a lithium-containing composite oxide with a high energy density per volume cathode active material The present invention provides a positive electrode and a nonaqueous secondary battery using the positive electrode active material.

즉, 본 발명에 의해 제공되는 제1의 양극활물질은, 층상의 결정구조를 갖는 리튬함유 복합산화물을 포함하는 양극 활물질로서, 상기 리튬함유 복합산화물이, 일반식 Li1+x+αNi(1-x-y+δ)/2Mn(1-x-y-δ)/2 MyO2 [단, 0≤x≤0.05, -0.05≤x+α≤0.05 이고, M은 Ti, Cr, Fe, Co, Cu, Zn, Al, Ge 및 Sn으로 이루어지는 그룹 중에서 선택된 1종 이상의 원소이고, y는 0<y≤0.4 이다.]로 나타내는 조성을 갖고,
1) y가 0<y≤0.2인 경우에는, δ가 -0.1≤δ≤0.1이고,
2) y가 0.2<y≤0.4인 경우에는, 원소 M으로서 적어도 Co를 포함하고, δ가 -0.24≤δ≤0.24이고,
상기 리튬함유 복합산화물의 Mn의 평균 원자가가, 3.3 ~ 4가인 것을 특징으로 하는 것이다.
That is, the first positive electrode active material provided by the present invention is a positive electrode active material containing a lithium-containing composite oxide having a layered crystal structure, wherein the lithium-containing composite oxide is represented by the general formula Li 1 + x + α Ni (1 -x-y + δ) / 2 Mn (1-xy-δ) / 2 M y O 2 [where 0 ≦ x ≦ 0.05, −0.05 ≦ x + α ≦ 0.05, and M is Ti, Cr, Fe, At least one element selected from the group consisting of Co, Cu, Zn, Al, Ge, and Sn, and y has a composition represented by 0 <y ≦ 0.4.
1) when y is 0 <y≤0.2, δ is -0.1≤δ≤0.1,
2) when y is 0.2 <y≤0.4, at least Co is included as the element M, and δ is -0.24≤δ≤0.24,
The average valence of Mn of the lithium-containing composite oxide is 3.3 to tetravalent.

또, 본 발명에 의해 제공되는 제2의 양극활물질은, 층상의 결정구조를 갖는 리튬함유 복합산화물을 포함하는 양극 활물질로서, 상기 리튬함유 복합산화물이, 일반식 Li1+x+αNi(1-x-y+δ)/2Mn(1-x-y-δ)/2 MyO2 [단, 0≤x≤0.05, -0.05≤x+α≤0.05 이고, M은 Ti, Cr, Fe, Co, Cu, Zn, Al, Ge 및 Sn으로 이루어지는 그룹 중에서 선택된 1종 이상의 원소이고, y는 0≤y≤0.4 이다.]로 나타내는 조성을 갖고,
1) y가 0≤y≤0.2인 경우에는, δ가 -0.1≤δ≤0.1이고,
2) y가 0.2<y≤0.4인 경우에는, 원소 M으로서 적어도 Co를 포함하고, δ가 -0.24≤δ≤0.24 이고,
상기 리튬함유 복합산화물과는 다른 활물질로서, 리튬함유 코발트산화물을 더욱 포함하는 것을 특징으로 하는 것이다.
In addition, the second positive electrode active material provided by the present invention is a positive electrode active material containing a lithium-containing composite oxide having a layered crystal structure, wherein the lithium-containing composite oxide is represented by the general formula Li 1 + x + α Ni (1). -x-y + δ) / 2 Mn (1-xy-δ) / 2 M y O 2 [where 0 ≦ x ≦ 0.05, −0.05 ≦ x + α ≦ 0.05, and M is Ti, Cr, Fe, At least one element selected from the group consisting of Co, Cu, Zn, Al, Ge, and Sn, and y is 0 ≦ y ≦ 0.4.
1) when y is 0≤y≤0.2, δ is -0.1≤δ≤0.1,
2) when y is 0.2 <y≤0.4, at least Co is included as the element M, and δ is -0.24≤δ≤0.24,
The active material different from the lithium-containing composite oxide is characterized by further comprising a lithium-containing cobalt oxide.

또, 본 발명에 의해 제공되는 제3의 양극활물질은, 층상의 결정구조를 갖는 리튬함유 복합산화물을 포함하는 양극활물질로서, 상기 리튬함유 복합산화물이, 일반식 Li1+x+αNi(1-x-y+δ)/2Mn(1-x-y-δ)/2 MyO2 [단, 0≤x≤0.05, -0.05≤x+α≤0.05 이고, M은 Ti, Cr, Fe, Co, Cu, Zn, Al, Ge 및 Sn으로 이루어지는 그룹 중에서 선택되고, 적어도 Co를 포함하는 1종 이상의 원소이고, y 및 δ는, 각각, 0<y≤0.4, -0.1≤δ≤0.1이다.]로 나타내는 조성을 갖고, CuKα선을 이용한 X선 회절측정에 있어서, 회절각 2θ가 18°부근에서 존재하는 (003) 회절피크와 44°부근에 존재하는 (104) 회절피크의 적산강도를 각각 I18 및 I44로 한 때에,
1) y가 0<y≤0.2인 경우에는, 상기 적산강도의 비 I44/I18이 0.9 < I44/I18 ≤1.2 인 것을 특징으로 하고,
2) y가 0.2<y≤0.4인 경우에는, 상기 적산강도의 비 I44/I18이 0.7≤ I44/I18 ≤1 인 것을 특징으로 한다.
또, 본 발명은 상기 양극활물질을 포함하는 양극 및 비수2차전지도 제공하는 것이다.
The third positive electrode active material provided by the present invention is a positive electrode active material containing a lithium-containing composite oxide having a layered crystal structure, wherein the lithium-containing composite oxide is represented by the general formula Li 1 + x + α Ni (1). -x-y + δ) / 2 Mn (1-xy-δ) / 2 M y O 2 [where 0 ≦ x ≦ 0.05, −0.05 ≦ x + α ≦ 0.05, and M is Ti, Cr, Fe, It is selected from the group which consists of Co, Cu, Zn, Al, Ge, and Sn, and is at least 1 type of element containing Co, y and delta are 0 <y <0.4, -0.1 <= delta <= 0.1, respectively. In the X-ray diffraction measurement using CuKα rays having a composition represented by], the integration intensity of the (003) diffraction peak at which the diffraction angle 2θ is around 18 ° and the (104) diffraction peak at around 44 °, respectively, is I. At 18 and I 44 ,
1) When y is 0 <y≤0.2, the cumulative intensity ratio I 44 / I 18 is 0.9 <I 44 / I 18 ≤1.2,
2) When y is 0.2 <y≤0.4, the cumulative intensity ratio I 44 / I 18 is 0.7 ≦ I 44 / I 18 ≦ 1.
The present invention also provides a positive electrode and a nonaqueous secondary battery including the positive electrode active material.

[실시예] EXAMPLE

이하, 발명의 실시 형태에 의해, 본 발명을 보다 구체적으로 설명한다. 본 발명의 양극활물질에 포함되는 리튬함유 복합산화물은, 층상의 결정구조를 갖는 리튬함유 복합산화물로서, 일반식 Li1+x+αNi(1-x-y+δ)/2Mn(1-x-y-δ)/2MyO2[단, 0≤x≤0.05, -0.05≤x+α≤0.05, 0≤y≤0.4, -0.1≤δ≤0.1 이고, M은 Ti, Cr, Fe, Co, Cu, Zn, Al, Ge 및 Sn으로 이루어지는 그룹 중에서 선택된 1종 이상의 원소]로 나타내며, 적어도 Ni와 Mn을 구성 원소로서 함유하며, 또한, Ni와 Mn의 양비가 1:1로 되는 조성을 중심으로 한 극히 한정된 조성 범위의 복합 산화물이다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated more concretely by embodiment of this invention. The lithium-containing composite oxide contained in the cathode active material of the present invention is a lithium-containing composite oxide having a layered crystal structure, and is represented by the general formula Li 1 + x + α Ni (1-x-y + δ) / 2 Mn (1- xy-δ) / 2 M y O 2 [where 0 ≦ x ≦ 0.05, −0.05 ≦ x + α ≦ 0.05, 0 ≦ y ≦ 0.4, −0.1 ≦ δ ≦ 0.1, and M is Ti, Cr, Fe, At least one element selected from the group consisting of Co, Cu, Zn, Al, Ge, and Sn], containing at least Ni and Mn as constituent elements, and focusing on a composition in which the ratio of Ni and Mn is 1: 1. It is a complex oxide of the extremely limited composition range.

본 발명에 있어서, 리튬 함유 복합 산화물로서, 상기와 같은 한정된 조성 범위만이 선택되는 것은 이하의 이유에 의한다. 즉, 리튬망간 산화물에서는 상술한 바와 같이, 3가 Mn의 비율이 많아지면, 야안-텔러 효과 때문에 결정 구조에 변형이 생겨서 충방전의 전위가 저하한다는 문제가 발생한다. 그 때문에, Mn 원자가를 4가에 가까운 값으로 할 필요가 있지만, 4가 Mn의 비율이 증가함에 따라, 스피넬형 구조로도 상전이가 일어나기 쉬워지기 때문에, 결정 구조의 안정화를 실현하는 것이 필요해진다.In the present invention, only the limited composition range as described above is selected as the lithium-containing composite oxide for the following reasons. That is, in the lithium manganese oxide, as described above, when the ratio of trivalent Mn increases, a problem arises in that the crystal structure is deformed due to the Yaan-Teller effect and the potential of charge and discharge decreases. For this reason, the Mn valence needs to be set to a value close to tetravalent. However, as the ratio of tetravalent Mn increases, phase transition also occurs easily in the spinel structure, and therefore, stabilization of the crystal structure is necessary.

본 발명자들은 상기 과제에 대하여는 LiMnO2에 Li를 과잉으로 함유시켜서 Mn의 평균 원자가를 크게 하던가, LiMnO2의 Mn을, 층상 리튬 함유 복합 산화물을 안정하게 구성할 수 있는 원소, 예를 들면 Co나 Ni 등으로 치환하는 것이 유효하다고 추정하여, Li의 양비, 치환 원소의 종류 및 그 양비, 리튬함유 복합산화물을 합성하는 때의 조건에 관해서 상세히 검토하였다.The inventors have hadeonga by containing Li in LiMnO 2 with respect to the above-mentioned problems with excessive increase the average valence of Mn, LiMnO, for which the Mn of 2, can be stably constituting the layered lithium-containing complex oxide element, for example Co or Ni It was assumed that the substitution was effective, and the like, and the amount ratio of Li, the type of substitution element and the amount ratio thereof, and the conditions for synthesizing the lithium-containing composite oxide were examined in detail.

그 결과, Ni와 Mn의 양비가 1/2:1/2, 즉 1:1이 되는 LiNi1/2Mn1/2O2의 일반식으로 나타내는 조성을 기본으로 하여, Ni 및 Mn이 각각 x/2씩 Li로 치환되며, Ni와 Mn의 양비가 1/2:1/2로부터 각각 δ/2 및 -δ/2 만큼 어긋나, Li의 양비가 α만큼 폭을 가지며, 또한, Ni 및 Mn이 각각 y/2씩 원소 M(단, M은 Ti, Cr, Fe, Co, Cu, Zn, Al, Ge 및 Sn으로 이루어지는 그룹 중에서 선택된 1종 이상의 원소)으로 치환된 조성, 즉, 일반식 Li1+x+αNi(1-x-y+δ)/2Mn(1-x-y-δ)/2MyO2[단, 0≤x≤0.05, -0.05≤x+α≤0.05, 0≤y≤0.4, -0.1≤δ≤0.1 이고, M은 Ti, Cr, Fe, Co, Cu, Zn, Al, Ge 및 Sn으로 이루어지는 그룹 중에서 선택된 1종 이상의 원소]로 나타내는 조성 범위에 있어서, 적절한 합성조건의 하에서는, 층상 결정 구조가 안정화되어, 4V 부근의 전위 영역에서의 충방전 가역성이나 충방전 사이클에 대한 내구성이 뛰어난 리튬 함유 복합 산화물이 얻어지는 것을 알 수 있었다.
특히, y>0인 경우, 즉, 원소 M으로서, 적어도 Co를 포함하는 1종 이상의 원소가 첨가된 경우에, 보다 뛰어난 특성을 가지는 리튬 함유 복합 산화물이 되는 것을 알 수 있었다.
As a result, based on the composition represented by the general formula of LiNi 1/2 Mn 1/2 O 2 where the ratio of Ni and Mn is 1/2: 1/2, that is, 1: 1, Ni and Mn are each x / Mn. 2 is replaced with Li, and the ratio of Ni and Mn is shifted from 1/2: 1/2 by δ / 2 and -δ / 2, respectively, and the ratio of Li is as wide as α, and Ni and Mn are respectively composition substituted by y / 2, where M is at least one element selected from the group consisting of Ti, Cr, Fe, Co, Cu, Zn, Al, Ge, and Sn, that is, the general formula Li 1+ x + α Ni (1-x-y + δ) / 2 Mn (1-xy-δ) / 2 M y O 2 , where 0 ≦ x ≦ 0.05, −0.05 ≦ x + α ≦ 0.05, 0 ≦ y ≤ 0.4, -0.1 ≤ δ ≤ 0.1, and M is one or more elements selected from the group consisting of Ti, Cr, Fe, Co, Cu, Zn, Al, Ge, and Sn; Under the following conditions, the layered crystal structure is stabilized and excellent in charge / discharge reversibility in the potential region near 4V and durability against charge / discharge cycles. The lithium-containing complex oxide was found to be obtained.
In particular, it was found that when y> 0, that is, when at least one element containing Co is added as the element M, a lithium-containing composite oxide having more excellent characteristics is obtained.

이것은 리튬 함유 복합 산화물 중의 Mn의 평균 원자가가 4가 근방의 값(대략 3.3∼4가)을 취하는 것에 의해, 충방전에서의 Li의 도프(dope) 및 탈도프 시에, 결정 중의 Mn 이동이 억제되고, 결정구조의 안정화가 실현되는 것 등에 의한 것이라고 생각된다.
또한, 본 발명에 있어서는 Mn 원자가로서, X선 흡수 분광(XAS)에 의해 측정한 값을 이용하였다.
This is because the average valence of Mn in the lithium-containing composite oxide assumes a value near tetravalent (approximately 3.3 to tetravalent), thereby suppressing Mn movement in the crystal during doping and dedoping of Li during charge and discharge. This is considered to be due to the stabilization of the crystal structure.
In addition, in this invention, the value measured by X-ray absorption spectroscopy (XAS) was used as Mn valence.

또, 상술한 바와 같이, 층상 구조를 안정하게 가지며, 충방전 가역성이나 충방전 사이클에 대한 내구성이 뛰어난 적어도 Ni 및 Mn을 구성 요소로서 함유하는 리튬 함유 복합 산화물에 대하여, CuKα선을 이용한 X선 회절 측정을 행하면, 회절각 2θ가 18° 부근 및 44° 부근에는 LiNiO2의 (003) 및 (104) 회절 피크에 상당하는 회절 피크가 각각 1개씩 존재하며, 또한, 63°∼66° 인 범위에는 (108) 및 (110) 회절 피크에 상당하는 2개의 회절 피크가 존재하는 등, 그 회절 패턴은 LiNiO2와 동일한 특징을 가지는 단일상의 복합 산화물인 것을 알 수 있다.As described above, X-ray diffraction using CuKα rays for lithium-containing composite oxides having a layered structure stably and excellent in charge / discharge reversibility and excellent durability against charge / discharge cycles, as a component. When the measurement is performed, one diffraction peak corresponding to the (003) and (104) diffraction peaks of LiNiO 2 exists in the diffraction angle 2θ around 18 ° and around 44 °, respectively, and in the range of 63 ° to 66 °. It can be seen that the diffraction pattern is a single phase complex oxide having the same characteristics as LiNiO 2 , such as two diffraction peaks corresponding to the (108) and (110) diffraction peaks.

또한, 회절 패턴을 상세히 검토한 결과, 상기 18° 부근 및 44° 부근의 회절 피크의 면적, 즉 적산강도(積算 强度)를 각각 I18 및 I44로 한 때에, 그 비 I44/I18이 0.9<I44/I18≤1.2(단, 0≤y≤0.2일 때), 또는 0.7≤I44/I18≤1(단, 0.2<y≤0.4일 때)로, 또한, 상기 63°∼66°인 범위에 있는 2개의 회절 피크의 회절각(2θ)의 차(θa)가 0.3°≤θa≤0.6°(단, 0≤y≤0.2일 때), 또는 0.55°≤θa≤0.75°(단, 0.2<y≤0.4일 때)라는 특징을 가지는 것을 알 수 있었다.Further, as a result of examining the diffraction pattern in detail, when the area of the diffraction peaks near 18 ° and 44 °, that is, the integration intensity is set to I 18 and I 44 , respectively, the ratio I 44 / I 18 is 0.9 <I 44 / I 18 ≤ 1.2 (where 0≤y≤0.2), or 0.7≤I 44 / I 18 ≤1 (where 0.2 <y≤0.4), and 63 ° to The difference θa of the diffraction angles 2θ of two diffraction peaks in the range of 66 ° is 0.3 ° ≦ θa ≦ 0.6 ° (where 0 ≦ y ≦ 0.2), or 0.55 ° ≦ θa ≦ 0.75 ° ( However, it can be seen that it has a characteristic (when 0.2 <y ≤ 0.4).

이와 같은 리튬 함유 복합 산화물의 충방전 곡선은 스피넬형 구조를 가지는 LiMn2O4와 마찬가지로, 4V 부근의 전압 영역에서의 충방전이 가능으로, 종래의 양극 활성물질인 LiCoO2의 대체로서 사용하는 것이 가능해진다.Likewise, with such a lithium-containing LiMn 2 O 4 the charge and discharge curve of a composite oxide having a spinel structure, as can be charged and discharged in a voltage region in the vicinity of 4V, it is used as a replacement for a conventional positive electrode active material LiCoO 2 It becomes possible.

또한, 상기 조성을 가지는 리튬 함유 복합 산화물은 진밀도가 4.55∼4.95g/㎤로 큰 값이 되며, 높은 체적 에너지 밀도를 가지는 재료가 되는 것을 알 수 있었다. Mn을 일정 범위로 함유하는 리튬 함유 복합 산화물의 진밀도는 그 조성에 의해 크게 변화하지만, 상기 좁은 조성 범위에 있어서 구조가 안정화되며, 단일상이 형성되기 쉬워지기 때문에, LiCoO2의 진밀도에 가까운 큰 값이 되는 것으로 추정된다. 특히, 화학량론비에 가까운 조성일 때에 큰 값이 되며, -0.015≤x+α≤0.015에 있어서, 대략 4.7g/㎤ 이상의 고밀도 복합 산화물이 되는 것을 알 수 있었다.In addition, it was found that the lithium-containing composite oxide having the above composition had a high density of 4.55 to 4.95 g / cm 3, and became a material having a high volumetric energy density. Since the true density of the lithium-containing complex oxide containing Mn in a predetermined range can vary substantially depending on the composition, but the structure is stabilized in a narrow composition range, a single phase is likely to form, close to the true density of LiCoO 2 It is assumed to be a large value. In particular, when the composition is close to the stoichiometric ratio, it becomes a large value, and it is found that at -0.015 ≦ x + α ≦ 0.015, it becomes a high density composite oxide of about 4.7 g / cm 3 or more.

또, 상술한 바와 같이, 본 발명의 리튬 함유 복합 산화물은 LiNi1/2Mn1/2O2와 같이, Ni와 Mn이 1:1로 되는 조성을 기본으로 하고 있지만, 재차로 상세히 조성 검토를 행한 바, Ni, Mn 및 M의 양비가 1:1:1로 되는 조성, 즉 일반식 LiNi1/3Mn1/3M1/3O2로 나타내며 y=1/3이 되는 조성 근방에 있어서, 특히 뛰어난 특성을 가지는 리튬 함유 복합 산화물이 얻어지는 것을 알 수 있었다.As described above, the lithium-containing composite oxide of the present invention is based on a composition in which Ni and Mn are 1: 1, such as LiNi 1/2 Mn 1/2 O 2 , but the composition is examined in detail again. Bar, in the vicinity of the composition where the ratio of Ni, Mn and M is 1: 1: 1, that is, represented by the general formula LiNi 1/3 Mn 1/3 M 1/3 O 2 , and y = 1/3 , It turned out that the lithium containing composite oxide which has especially outstanding characteristic is obtained.

상기 일반식 Li1+x+αNi(1-x-y+δ)/2Mn(1-x-y-δ)/2MyO2[단, M은 Ti, Cr, Fe, Co, Cu, Zn, Al, Ge 및 Sn으로 이루어지는 그룹 중에서 선택된 1종 이상의 원소)에 있어서, Ni와 Mn의 양비의 어긋남(δ/2)은 작은 값밖에 허용되지 않지만, 0.2<y≤0.4의 조성 범위에서는 결정 구조의 안정성이 보다 높아져, 단일상이 형성되기 쉬워지기 때문에, Ni와 Mn의 양비의 어긋남이 크게 되어도 좋다. 이 때문에, 상기 일반식에 있어서, 0≤y≤0.2일 때에는 δ가 취하는 범위는 -0.1≤δ≤0.1로 좁은 것에 대하여, 0.2<y≤0.4일 때에는, δ의 범위는 -0.1≤δ≤0.1 뿐만 아니라, -0.24≤δ≤0.24로 넓게 되는 것도 가능하다. General Formula Li 1 + x + α Ni (1-x-y + δ) / 2 Mn (1-xy-δ) / 2 M y O 2 [wherein M is Ti, Cr, Fe, Co, Cu, In the case of at least one element selected from the group consisting of Zn, Al, Ge, and Sn), the deviation (δ / 2) of the ratio between Ni and Mn is only small, but is determined in a composition range of 0.2 <y≤0.4. Since the stability of the structure is higher and a single phase is more likely to be formed, the deviation of the ratio between Ni and Mn may be increased. For this reason, in the above general formula, the range taken by δ when 0 ≦ y ≦ 0.2 is narrow to −0.1 ≦ δ ≦ 0.1, whereas when 0.2 <y ≦ 0.4, the range of δ is −0.1 ≦ δ ≦ 0.1 In addition, it is possible to be widened to -0.24≤δ≤0.24.

또한, 0.2<y≤0.4의 조성 범위에 있어서는 0≤y≤0.2의 조성 범위의 화합물보다도 진밀도가 크게 되기 때문에, 보다 고용량화에 적합한 재료인 것도 명백하게 되었다. 즉, 화학량론 조성의 화합물에서는 0.2<y≤0.4의 조성 범위에 있어서 그 진밀도는 대략 4.75∼4.95g/㎤인 것에 대하여, 0≤y≤0.2의 조성 범위에 있어서 그 진밀도는 대략 4.55∼4.74g/㎤이다. Moreover, since the true density becomes larger than the compound of the composition range of 0 <= y <= 0.2 in the composition range of 0.2 <y <= 0.4, it also became clear that it was a material suitable for higher capacity | capacitance. That is, in the composition range of 0.2 <y≤0.4 in the compound of stoichiometric composition, the true density is about 4.75-4.95g / cm <3>, The true density in the composition range of 0 <y <= 0.2 is about 4.55 ~ 4.74 g / cm 3.

여기서, y의 상한치를 0.4로 한 것은 y>0.4의 조성, 즉 원소 M에서의 치환양이 0.4 보다 많게 되면, 목적으로 하는 복합 산화물 중에, 화합물의 안정성을 손상시키는 이상(異相)이 형성되기 쉬워지기 때문이다. Here, the upper limit of y is 0.4, where the composition of y> 0.4, that is, when the amount of substitution in element M is more than 0.4, abnormalities that impair the stability of the compound are easily formed in the target complex oxide. For losing.

그런데, 상기 리튬 함유 복합 산화물은 단순히 Li 화합물, Mn 화합물 및 Ni 화합물 등을 혼합하여 소성하는 것만으로는, 그 단일상을 얻는 것은 상당히 곤란하다.By the way, the lithium-containing composite oxide is quite difficult to obtain the single phase simply by mixing and firing a Li compound, a Mn compound, a Ni compound and the like.

삭제delete

이것은 Ni 및 Mn 등의 고체 중에서의 확산 속도가 느리기 때문에, 합성 반응에 있어서 이들을 균일하게 확산시키는 것이 곤란함으로, 생성한 산화물 중에 상기 원소가 균일하게 분포하지 않는 것이 원인이라고 추정된다.Since the diffusion rate in solids such as Ni and Mn is low, it is difficult to uniformly diffuse them in the synthesis reaction, and it is presumed that the reason is that the elements are not uniformly distributed in the produced oxide.

그래서, 본 발명자들은 상기 산화물을 합성하는 방법에 관해서도 상세히 검토를 거듭한 결과, 적어도 Ni 및 Mn을 구성 원소로서 함유하는 복합 화합물과, Li 화합물을 소성함으로써, 본 발명의 리튬 함유 복합 산화물의 단일상을 비교적 용이하게 합성할 수 있다는 식견을 얻었다. 즉, 미리 Ni 및 Mn 등의 구성 원소의 복합 화합물을 합성하여 두며, 이들을 Li 화합물과 함께 소성함으로써, 산화물 형성 반응에 있어서 상기 금속 원소가 균일하게 분포하여, 단일상 형성이 용이화되는 것이다. 물론, 본 발명의 리튬 함유 복합 산화물의 합성 방법은 상기 방법에 한정되는 것은 아니지만, 어떤 합성 과정을 통과하는가에 따라, 생성하는 복합 산화물의 물성, 즉 구조 안정성이나 충방전 가역성, 진밀도 등이 크게 변화하는 것으로 추정된다. Therefore, the inventors of the present invention have also studied in detail the method for synthesizing the oxide, and as a result, by firing a composite compound containing at least Ni and Mn as constituent elements and a Li compound, the single phase of the lithium-containing composite oxide of the present invention is fired. The knowledge that can be synthesized relatively easily was obtained. That is, composite compounds of constituent elements such as Ni and Mn are synthesized in advance, and by firing them together with Li compounds, the metal elements are uniformly distributed in the oxide formation reaction, thereby facilitating single phase formation. Of course, the method of synthesizing the lithium-containing composite oxide of the present invention is not limited to the above method, but the physical properties of the resulting composite oxide, ie, structural stability, charge / discharge reversibility, and true density, are greatly increased depending on which synthetic process is passed. It is estimated to change.

여기서, 적어도 Ni 및 Mn을 구성 원소로서 함유하는 복합 화합물로서는, 예를 들면, 적어도 Ni 및 Mn을 함유하는 공침 화합물, 수열(水熱) 합성된 화합물, 기계적 합성된 화합물 및 이들을 열처리하여 얻어지는 화합물 등을 이용하면 된다. Ni0.5Mn0.5(OH)2, NiMn2O4, Ni0.5Mn0.5OOH 등, Ni와 Mn의 산화물 또는 수산화물을 바람직하게 이용할 수 있다. 또한, 구성 원소로서 M(M은 Ti, Cr, Fe, Co, Cu, Zn, Al, Ge 및 Sn으로 이루어지는 그룹 중에서 선택된 1종 이상의 원소)을 함유하는 리튬 함유 복합 산화물을 합성하는 경우에는 적어도 Ni 및 Mn을 함유하는 복합 화합물과, Li 화합물과, M을 함유하는 화합물을 혼합하여 소성함으로써 목적의 산화물을 얻을 수 있지만, 가능하다면, Ni 및 Mn 또한 M이 함유된 복합 화합물을 처음부터 이용하는 것이 바람직하다. 또, 상기 복합 화합물에서의 Ni, Mn 및 M의 양비는 목적으로 하는 리튬 함유 복합 산화물의 조성에 따라서 적절히 선택하면 된다. Here, as a composite compound containing at least Ni and Mn as a constituent element, for example, a coprecipitation compound containing at least Ni and Mn, a hydrothermally synthesized compound, a mechanically synthesized compound, a compound obtained by heat-treating them, etc. You can use An oxide or hydroxide of Ni and Mn can be preferably used, such as Ni 0.5 Mn 0.5 (OH) 2 , NiMn 2 O 4 , Ni 0.5 Mn 0.5 OOH. In addition, when synthesizing a lithium-containing composite oxide containing M (M is at least one element selected from the group consisting of Ti, Cr, Fe, Co, Cu, Zn, Al, Ge, and Sn) as a constituent element, at least Ni And the desired oxide can be obtained by mixing and baking a composite compound containing Mn, a Li compound, and a compound containing M, but if possible, it is preferable to use a composite compound containing Ni and Mn and M from the beginning. Do. Moreover, what is necessary is just to select suitably the ratio of Ni, Mn, and M in the said composite compound according to the composition of the lithium containing composite oxide made into the objective.

또, 상기 Li 화합물로서는 여러 가지 리튬염을 이용할 수 있으며, 예를 들면, 수산화리튬 일수화물, 질산리튬, 탄산리튬, 아세트산리튬, 브롬화리튬, 염화리튬, 시트르산리튬, 불화리튬, 요오드화리튬, 락산리튬, 옥살산리튬, 인산리튬, 피루브산리튬, 황산리튬, 산화리튬 등을 들 수 있으며, 이들 중에서도, 탄산가스, 질소산화물, 황산화물 등의 환경에 악영향을 미치는 가스가 발생하지 않는 점에서 수산화리튬 일수화물이 가장 바람직하게 이용된다.In addition, various lithium salts may be used as the Li compound, and examples thereof include lithium hydroxide monohydrate, lithium nitrate, lithium carbonate, lithium acetate, lithium bromide, lithium chloride, lithium citrate, lithium fluoride, lithium iodide, and lithium lactate. And lithium oxalate, lithium phosphate, lithium pyruvate, lithium sulfate, lithium oxide, and the like, and among these, lithium hydroxide monohydrate in that no gas adversely affects the environment such as carbon dioxide, nitrogen oxides and sulfur oxides. Is most preferably used.

상기의 적어도 Ni 및 Mn을 구성 원소로서 함유하는 복합 화합물과, Li 화합물은 거의 목적으로 하는 리튬 함유 복합 산화물의 조성에 따른 비율로 혼합되며, 예를 들면, 상기 혼합물을, 산소를 함유하는 분위기 중에서 대략 700∼1100℃에서 1∼24시간 소성함으로써, 본 발명의 리튬 함유 복합 산화물을 합성할 수 있다.The composite compound containing at least Ni and Mn as constituent elements and the Li compound are mixed at a ratio almost in accordance with the composition of the desired lithium-containing composite oxide, and the mixture is, for example, in an atmosphere containing oxygen. By baking at about 700 to 1100 degreeC for 1 to 24 hours, the lithium containing composite oxide of this invention can be synthesize | combined.

상기 소성에 있어서의 가열 처리로서는 단숨에 소정 온도까지 승온하기보다는 일단 소성 온도보다도 낮은 온도(대략 250∼850℃)까지 가열하며, 그 온도에서 유지함으로써 예비 가열을 행하며, 또한 소성 온도로 승온하여 반응을 진행시키는 것이 바람직하다. 이것은 본 발명의 리튬 함유 복합 산화물의 생성 과정에 있어서는 Li 화합물과 적어도 Ni 및 Mn을 구성 요소로서 함유하는 복합 화합물과의 반응이 단계적으로 발생하며, 중간 생성물을 경유하여 최종적으로 리튬 함유 복합 산화물이 생성한다고 추정되기 때문이다. 즉, 단숨에 소성 온도까지 승온하는 경우에는 Li 화합물과 적어도 Ni 및 Mn을 구성 원소로서 함유하는 복합 화합물이 부분적으로 최종 단계까지 반응하여, 그것에 의해 생성한 리튬 함유 복합 산화물이 미반응물의 반응을 방해하거나, 조성의 균일성이 손상된다는 문제가 생기는 일이 있다. 또, 반응 공정에 요하는 시간을 단축하여, 균질한 리튬 함유 복합 산화물을 얻기 위해서도, 단계적으로 가열을 행하는 것이 유효하다. 이 예비 가열 시간은 특별히 제한되는 것은 아니지만, 통상, 0.5∼30 시간 정도로 행하면 된다.As the heat treatment in the calcination, the temperature is heated to a temperature lower than the calcination temperature (approximately 250 to 850 ° C.), rather than being heated up to a predetermined temperature at a time, preheating is performed by holding at that temperature, and the temperature is raised to the calcination temperature to react It is preferable to proceed. In the process of producing the lithium-containing composite oxide of the present invention, the reaction between the Li compound and the composite compound containing at least Ni and Mn as components occurs in stages, and finally, the lithium-containing composite oxide is produced via the intermediate product. This is because it is estimated. In other words, when the temperature is raised to the firing temperature in a short time, the Li compound and the composite compound containing at least Ni and Mn as constituent elements partially react to the final stage, and the lithium-containing composite oxide produced thereby interferes with the reaction of the unreacted material. The problem that the uniformity of a composition is impaired may arise. Moreover, in order to shorten the time required for the reaction step and to obtain a homogeneous lithium-containing composite oxide, it is effective to perform heating stepwise. Although this preheating time in particular is not restrict | limited, Usually, what is necessary is just to carry out about 0.5 to 30 hours.

또, 상기 Li 화합물과 적어도 Ni 및 Mn을 구성 원소로서 함유하는 복합 화합물의 혼합물을 소성하는 공정에서는 건식 혼합된 혼합물을 그대로 이용해도 되지만, 혼합물을 에탄올 등의 용매로 분산하여 슬러리 형상으로 하며, 유성형 볼 밀 (ball mill) 등으로 30∼60분 정도 혼합하며, 이것을 건조시킨 것을 이용함으로써, 합성되는 리튬 함유 복합 산화물의 균질성이 더욱 높아지기 때문에 바람직하다. In the step of calcining the mixture of the Li compound and the complex compound containing at least Ni and Mn as constituent elements, the dry mixed mixture may be used as it is, but the mixture is dispersed in a solvent such as ethanol to form a slurry, It is preferable to mix about 30 to 60 minutes in a ball mill or the like, and to use the dried material to further increase the homogeneity of the lithium-containing composite oxide to be synthesized.

상기 가열 처리의 분위기로서는 산소를 함유하는 분위기, 즉 공기 중이나, 아르곤, 헬륨, 질소 등의 불활성 가스와 산소 가스의 혼합 분위기 중, 또는 산소 가스 중에서 행하면 된다. 분위기 중의 산소 비율은 체적비로 10% 이상으로 하는 것이 바람직하다.The atmosphere of the heat treatment may be performed in an atmosphere containing oxygen, that is, in air, in a mixed atmosphere of inert gas such as argon, helium, nitrogen, and oxygen gas, or in oxygen gas. It is preferable to make oxygen ratio in atmosphere into 10% or more by volume ratio.

상기 가스 유량으로서는 상기 혼합물 100g당 1d㎥/분 이상으로 하는 것이 바람직하며, 1∼5d㎥/분이 보다 바람직하다. 가스 유량이 적은 경우, 즉 가스 유속이 늦은 경우에는 반응이 불균일하게 진행하여, Mn2O3나 Li2MnO3 등의 불순물이 생성하기 쉬워진다.As said gas flow rate, it is preferable to set it as 1 dm <3> / min or more per 100g of said mixtures, and 1-5 dm <3> / min is more preferable. When the gas flow rate is small, that is, when the gas flow rate is low, the reaction proceeds unevenly, and impurities such as Mn 2 O 3 and Li 2 MnO 3 are easily generated.

이상 상술한 바와 같은 방법에 의해 얻어지는 본 발명의 리튬 함유 복합 산화물을 양극 활성물질로서 이용함으로써, 예를 들면 이하와 같이 하여 비수 2차 전지가 제작된다.By using the lithium-containing composite oxide of the present invention obtained by the method described above as a positive electrode active material, a nonaqueous secondary battery is produced as follows, for example.

양극은 상기 리튬 함유 복합 산화물에 필요하면, 비늘 형상 흑연, 아세틸렌 블랙 등의 전도 조제와, 폴리테트라플루오로에틸렌, 폴리비닐리덴플루오라이드 등의 바인더를 가하여 혼합한 양극 합제를 그대로 이용하던가, 또는 집전체로서의 작용을 겸하는 기체(基體)에 도포 또는 함침시켜, 기체와 일체화하여 이용한다. 기체로서는, 예를 들면 알루미늄, 스테인리스강, 티타늄, 구리 등의 금속망, 펀칭메탈, 익스팬드메탈, 폼메탈(foam metal), 금속박 등을 이용할 수 있다.If necessary for the lithium-containing composite oxide, the positive electrode mixture used by mixing conductive additives such as scale graphite and acetylene black with a binder such as polytetrafluoroethylene and polyvinylidene fluoride is used as it is, or It is applied to or impregnated with a base which also serves as a whole, and is used in combination with the base. As the substrate, for example, a metal network such as aluminum, stainless steel, titanium, copper, punching metal, expanded metal, foam metal, metal foil, or the like can be used.

또한, 양극 활성물질로서는 상기 리튬 함유 복합 산화물만을 이용해도 되지만, 상기 리튬함유 복합산화물 이외의 다른 활물질을 포함하고 있어도 좋고, 다른 활성물질과 혼합하던가, 또는 다른 활성물질과의 복합체로서 이용할 수 있다. 예를 들면, 상기 리튬 함유 복합 산화물은 LiCoO2와 같은 리튬 함유 코발트 산화물과 비교하여 전자 전도성이 떨어지기 때문에, 대전류 방전이나 방전 말기에서의 전압 강하가 크게 된다는 문제가 발생하기 쉽다. 그러나, 전자 전도성이 뛰어난 리튬 함유 코발트 산화물을 혼합하여 이용함으로써, 상기 전압 강하가 억제되며, 방전 특성을 향상시킬 수 있다. 이 리튬 함유 코발트 산화물로서는 LiCoO2 이외, Co의 일부를 다른 원소, 예를 들면 Ni로 치환한 LiCo1-tNitO2 등의 화합물도 이용할 수 있다. 이 경우, 리튬 함유 코발트 산화물의 비율을 지나치게 많게 하면, 고온 저장 특성 등의 내구성이 저하하기 쉬워지게 되지만, 리튬함유 코발트 산화물의 비율을, 질량 비율로 활성물질 전체의 50% 이하로 하는 것에 의해, 고온저장특성의 저하를 방지하는 것이 가능하다. In addition, although only the said lithium containing composite oxide may be used as a positive electrode active material, other active materials other than the said lithium containing composite oxide may be included, It can be mixed with another active material, or can be used as a composite with another active material. For example, the lithium-containing composite oxide is less likely to have electronic conductivity compared to lithium-containing cobalt oxide such as LiCoO 2, and thus, a problem that large voltage discharge or voltage drop at the end of discharge tends to occur. However, by mixing and using lithium containing cobalt oxide excellent in electronic conductivity, the said voltage drop can be suppressed and a discharge characteristic can be improved. As this lithium-containing cobalt oxide, compounds other than LiCoO 2 may be used, such as LiCo 1-t Ni t O 2 , in which a part of Co is substituted with another element, for example, Ni. In this case, when the proportion of the lithium-containing cobalt oxide is too large, durability such as high temperature storage characteristics tends to decrease, but the proportion of the lithium-containing cobalt oxide is set to 50% or less of the entire active material in terms of mass ratio. It is possible to prevent the deterioration of the high temperature storage characteristics.

또, 상기 양극과 대향시키는 음극 활성물질로서는 통상은 리튬 또는 리튬 함유 화합물이 이용되지만, 이 리튬 함유 화합물로서는 Li-Al 합금, Li-Pb 합금, Li-In 합금, Li-Ga 합금 등의 리튬 합금이나, Si, Sn, Mg-Si 합금 등, 리튬과 합금을 형성하는 것이 가능한 원소, 또는 이들 원소를 주체로서 함유하는 합금을 들 수 있다. 또한, Sn 산화물, Si 산화물 등의 산화물계 재료 이외, 흑연이나, 섬유 형상 탄소 등의 탄소질 재료, 리튬 함유 복합 질화물 등을 이용할 수 있다. 또, 상기 다수의 재료를 복합화한 것을 이용해도 된다. 탄소질 재료와 Si의 복합체 등도 바람직하게 이용된다. 또한, 음극 제작에 관해서도, 상기 양극인 경우와 동일한 방법을 이용할 수 있다.As the negative electrode active material facing the positive electrode, lithium or a lithium-containing compound is usually used, but as the lithium-containing compound, a lithium alloy such as a Li-Al alloy, a Li-Pb alloy, a Li-In alloy, or a Li-Ga alloy And an element capable of forming an alloy with lithium, such as Si, Sn, and Mg-Si alloys, or an alloy containing these elements as a main agent. Moreover, carbonaceous materials, such as graphite, fibrous carbon, lithium containing composite nitride, etc. can be used other than oxide type materials, such as Sn oxide and Si oxide. Moreover, you may use what compounded the said many material. Composites of carbonaceous materials and Si are also preferably used. In addition, also in the case of cathode production, the same method as that of the said anode can be used.

상기 양극과 음극에서의 활성물질의 비율로서는 음극 활성물질의 종류에 따라서도 다르지만, 일반적으로는 (양극 활성물질의 질량)/(음극 활성물질의 질량)=1.5∼3.5로 함으로써, 상기 리튬 함유 복합 산화물의 특성을 잘 이용할 수 있다. 단, 음극 활성물질로서, 리튬과 합금을 형성하는 것이 가능한 원소, 이들 원소를 주체로서 함유하는 합금, 리튬 함유 복합 질화물, 또는 이들 재료와 탄소질 재료 등 다른 구성 요소와의 복합체를 이용하는 경우에는 상기 비율에서는 음극의 용량이 너무 크게 되기 때문에, (양극 활성물질의 질량)/(음극 활성물질의 질량)=4∼7로 하는 것이 바람직하다.Although the ratio of the active material in the positive electrode and the negative electrode varies depending on the type of the negative electrode active material, in general, the lithium-containing composite is obtained by setting (mass of the positive electrode active material) / (mass of the negative electrode active material) = 1.5 to 3.5. The characteristics of the oxide can be used well. However, in the case of using a composite material with other components such as an element capable of forming an alloy with lithium, an alloy containing these elements as a main body, a lithium-containing composite nitride, or a carbonaceous material as the negative electrode active material, Since the capacity of the negative electrode becomes too large in the ratio, it is preferable to set (mass of the positive electrode active material) / (mass of the negative electrode active material) = 4 to 7.

본 발명의 비수 2차 전지에서의 비수 전해질로서는, 유기 용매에 전해질을 용해시킨 유기 용매계 액상 전해질, 즉 전해액이나, 상기 전해액을 폴리머 중에 유지시킨 폴리머 전해질 등을 이용할 수 있다. 그 전해액 또는 폴리머 전해질에 함유되는 유기 용매는 특별히 한정되는 것은 아니지만, 부하 특성의 점에서는 쇄상 에스테르를 함유하고 있는 것이 바람직하다. 그와 같은 쇄상 에스테르로서는, 예를 들면 디메틸카보네이트, 디에틸카보네이트, 에틸메틸카보네이트로 대표되는 쇄상 카보네이트나, 아세트산에틸, 프로피온산메틸 등의 유기 용매를 들 수 있다. 이들 쇄상 에스테르는 단독으로도 또는 2종 이상을 혼합하여 이용해도 되며, 특히 저온 특성의 개선을 위해서는 상기 쇄상 에스테르가 전체 유기 용매 중의 50 체적% 이상을 차지하는 것이 바람직하며, 특히 쇄상 에스테르가 전체 유기 용매 중의 65 체적% 이상을 차지하는 것이 보다 바람직하다.As the nonaqueous electrolyte in the nonaqueous secondary battery of the present invention, an organic solvent-based liquid electrolyte in which an electrolyte is dissolved in an organic solvent, that is, an electrolyte or a polymer electrolyte in which the electrolyte is held in a polymer can be used. Although the organic solvent contained in this electrolyte solution or a polymer electrolyte is not specifically limited, It is preferable to contain chain ester from a load characteristic point. As such a linear ester, organic solvents, such as linear carbonate represented by dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate, ethyl acetate, methyl propionate, are mentioned, for example. These chain esters may be used alone or in combination of two or more thereof. Particularly, in order to improve low temperature properties, the chain esters preferably occupy at least 50% by volume in the total organic solvent, and in particular, the chain esters may be used as the total organic solvent. It is more preferable to occupy 65 volume% or more in the inside.

단, 유기 용매로서는 상기 쇄상 에스테르만으로 구성하기보다도, 방전 용량의 향상을 도모하기 위해서 상기 쇄상 에스테르에 유도율이 높은(유도율:30이상) 에스테르를 혼합하여 이용하는 것이 바람직하다. 이와 같은 에스테르의 구체예로서는, 환상구조의 에스테르가 바람직하고, 예를 들면 에틸렌카보네이트, 프로필렌카보네이트, 부틸렌카보네이트, 비닐렌카보네이트로 대표되는 환상의 카보네이트나, γ-부티로락톤, 에틸렌글리콜설파이드 등을 들 수 있으며, 특히 에틸렌카보네이트, 프로필렌카보네이트 등의 환상구조의 카보네이트가 보다 바람직하다.However, as an organic solvent, in order to improve the discharge capacity, it is preferable to mix and use the ester with high induction rate (induction ratio: 30 or more) in order to improve the discharge capacity. As a specific example of such ester, cyclic ester is preferable, For example, cyclic carbonate represented by ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, (gamma) -butyrolactone, ethylene glycol sulfide, etc. are mentioned. These are mentioned, Especially cyclic carbonates, such as ethylene carbonate and a propylene carbonate, are more preferable.

그와 같은 유전율이 높은 에스테르는 방전 용량의 점에서, 전체 유기 용매 중 10 체적% 이상, 특히 20 체적% 이상 함유되는 것이 바람직하다. 또, 부하 특성의 점에서는 40 체적% 이하가 바람직하며, 30 체적% 이하가 보다 바람직하다.It is preferable that such a high dielectric constant ester contain at least 10% by volume, in particular at least 20% by volume, of the total organic solvent. Moreover, 40 volume% or less is preferable at the point of a load characteristic, and 30 volume% or less is more preferable.

또, 상기 유전율이 높은 에스테르 이외에 병용 가능한 용매로서는, 예를 들면 1,2-디메톡시에탄, 1,3-디옥솔란, 테트라히드로퓨란, 2-메틸-테트라히드로퓨란, 디에틸에테르 등을 들 수 있다. 그 외, 아민이미드계 유기 용매나, 황 함유 또는 불소계 함유 유기 용매 등도 이용할 수 있다. Moreover, as a solvent which can be used together other than the said high dielectric constant ester, 1, 2- dimethoxyethane, 1, 3- dioxolane, tetrahydrofuran, 2-methyl- tetrahydrofuran, diethyl ether, etc. are mentioned, for example. have. In addition, an amineimide organic solvent, a sulfur containing or a fluorine-containing organic solvent can also be used.

유기 용매에 용해시키는 용해질로서는, 예를 들면 LiClO4, LiPF6, LiBF4, LiAsF6, LiSbF6, LiCF3SO3, LiC4F9SO3, LiCF3CO2, Li2C2F4(SO3)2, LiN(CF3SO2)2, LiC(CF3SO2)3, LiCnF2n+1SO3(n≥2) 등이 단독으로 또는 2종 이상 혼합하여 이용된다. 그 중에서도, 양호한 충방전 특성을 얻을 수 있는 LiPF6나 LiC4F9SO3 등이 바람직하게 이용된다. 전해액 중에서의 전해질 농도는 특별히 한정되는 것은 아니지만, 0.3∼1.7mol/d㎥, 특히 0.4∼1.5mol/d㎥ 정도가 바람직하다.As a soluble solubility in an organic solvent, for example, LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 ( SO 3 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiCnF 2n + 1 SO 3 (n ≧ 2) and the like are used alone or in combination of two or more thereof. Especially, LiPF 6 , LiC 4 F 9 SO 3, etc. which can obtain favorable charge / discharge characteristics are used preferably. Although the electrolyte concentration in electrolyte solution is not specifically limited, 0.3-1.7 mol / dm <3>, especially about 0.4-1.5 mol / dm <3> is preferable.

또, 전지의 안정성이나 저장 특성을 향상시키기 위해서, 비수 전해액에 방향족 화합물을 함유시켜도 된다. 방향족 화합물로서는 시클로헥실벤젠이나 tert-부틸벤젠 등의 알킬기를 가지는 벤젠류, 비페닐, 또는 플루오로벤젠류가 바람직하게 이용된다.Moreover, in order to improve the stability and storage characteristic of a battery, you may contain an aromatic compound in a nonaqueous electrolyte. As an aromatic compound, benzene, biphenyl, or fluorobenzene which have alkyl groups, such as cyclohexylbenzene and tert- butylbenzene, is used preferably.

세퍼레이터로서는 강도가 충분하며 게다가 전해액을 많이 유지할 수 있는 것이 좋으며, 그와 같은 관점에서 5∼50㎛ 두께로, 폴리프로필렌제, 폴리에틸렌제, 프로필렌과 에틸렌의 공중합체 등의 폴리올레핀제 미공성 필름이나 부직포 등이 바람직하게 이용된다. 특히, 5∼20㎛로 얇은 세퍼레이터를 이용한 경우에는 충방전 사이클이나 고온 저장 등에 있어서 전지 특성이 열화하기 쉬워지지만, 본 발명의 리튬 함유 복합 산화물은 안정성이 뛰어나기 때문에, 이와 같은 얇은 세퍼레이터를 이용해도 안정하게 전지를 기능시킬 수 있다.It is good that the separator has sufficient strength and can hold a large amount of electrolyte solution. In view of such a separator, a polyolefin microporous film or nonwoven fabric, such as polypropylene, polyethylene, copolymer of propylene and ethylene, has a thickness of 5 to 50 µm. Etc. are preferably used. In particular, in the case of using a thin separator with a thickness of 5 to 20 µm, battery characteristics tend to deteriorate during charge and discharge cycles, high temperature storage, and the like. However, the lithium-containing composite oxide of the present invention is excellent in stability. The battery can be functioned stably.

다음에, 본 발명의 실시예에 관해서 설명한다. 단, 본 발명은 이들 실시예만에 한정되는 것은 아니다.Next, examples of the present invention will be described. However, this invention is not limited only to these Examples.

<실시예 1> <Example 1>

반응 용기 내에 수산화나트륨 첨가에 의해 pH를 약 12로 조정한 암모니아수를 준비하며, 이를 강하게 교반하면서, 이 중에 황산니켈 및 질산망간을 각각 1mol/d㎥씩 함유하는 혼합 수용액, 및 25 질량%의 암모니아수를 각각 46㎤/분 및 3.3㎤/분의 비율로 정량 펌프를 이용하여 적하하여, Ni와 Mn의 공침 화합물을 생성시킨다. 이 때, 반응액 온도는 50℃로 유지하며, 또, 반응액 pH가 약 12 부근에 유지되도록 3.2mol/d㎥ 농도의 수산화나트륨 수용액의 적하도 동시에 행하였다. 또한, 반응시에, 반응액 분위기가 불활성 분위기가 되도록 질소 가스를 1d㎥/분 비율로 퍼징하면서 반응시켰다.Ammonia water adjusted to pH of about 12 was prepared by adding sodium hydroxide into the reaction vessel, and while stirring it vigorously, a mixed aqueous solution containing 1 mol / dm 3 of nickel sulfate and manganese nitrate, respectively, and 25 mass% ammonia water Is added dropwise using a metering pump at a rate of 46 cm 3 / min and 3.3 cm 3 / min to produce co-precipitation compounds of Ni and Mn, respectively. At this time, the reaction solution temperature was maintained at 50 ° C, and the dropwise addition of an aqueous sodium hydroxide solution at a concentration of 3.2 mol / dm 3 was simultaneously performed so that the reaction solution pH was maintained at about 12. At the time of reaction, the reaction was carried out while purging nitrogen gas at a rate of 1 dm 3 / min so that the reaction liquid atmosphere became an inert atmosphere.

얻어진 생성물을 수세, 여과 및 건조시켜, Ni와 Mn을 1:1의 비율로 함유하는 수산화물로 하며, 이 수산화물 0.2mol과 0.198mol의 LiOH ·H2O를 칭량하여, 그 혼합물을 에탄올로 분산하여 슬러리 형상으로 한 후, 유성형 볼 밀로 40분간 혼합하며, 실온에서 건조시켜 혼합물을 제조하였다. 이어서, 그 혼합물을 알루미나제 도가니에 넣어, 1d㎥/분의 공기 기류 중에서 800℃까지 가열하여, 그 온도에서 2시간 유지함으로써 예비 가열을 행하며, 재차로 1000℃로 승온하여 12시간 소성함으로써 리튬 함유 복합 산화물을 합성하였다. 제조한 화합물은 유발에서 분쇄하여 분체로서 데시케이터 속에 보존하였다. The resulting product was washed with water, filtered and dried to form a hydroxide containing Ni and Mn in a ratio of 1: 1. 0.2 mol of this hydroxide and 0.198 mol of LiOH.H 2 O were weighed, and the mixture was dispersed with ethanol. After the slurry was in shape, the mixture was mixed with a planetary ball mill for 40 minutes and dried at room temperature to prepare a mixture. Subsequently, the mixture is placed in a crucible made of alumina, heated to 800 ° C. in an air stream of 1 dm 3 / min, preheated by holding at that temperature for 2 hours, and again heated to 1000 ° C. and calcined for 12 hours. Composite oxides were synthesized. The prepared compound was ground in a mortar and preserved in a desiccator as powder.

상기 산화물의 분체에 관해서, 원자 흡광 분석 장치로 조성을 측정한 바, Li0.99Ni0.5Mn0.5O2로 나타내는 조성인 것을 알 수 있었다. 또, 상기 화합물의 상태 분석을 행하기 위해, 리츠메이칸대학 SR센터의 초전도 소형 방사 광원 "오로라"(스미토모 전공제)의 BL4 빔포트를 이용하여, Mn의 X선 흡수 분광(XAS)를 행하였다. 얻어진 데이터 분석은 문헌[Journal of the Electrochemical Society, 146 p2799-2809(1999)]에 기초하며, 해석 소프트 "REX"(리가쿠 전기제)를 이용하여 행하였다. 또, 상기 화합물의 Mn 원자가를 결정하기 위해서, 표준 샘플로서 MnO2 및 LiNi0.5Mn1.5O4(어느 쪽도 평균 원자가가 4가인 Mn을 가지는 화합물로서의 표준 샘플), LiMn2O4(평균 원자가가 3.5가인 Mn을 가지는 화합물로서의 표준 샘플), LiMnO2 및 Mn2O3(어느 쪽도 평균 원자가가 3가인 Mn을 가지는 화합물로서의 표준 샘플) 및 MnO(평균 원자가가 2가인 Mn을 가지는 화합물로서의 표준 샘플)을 이용하였다. 각 표준 샘플의 Mn의 K 흡수단 위치와 Mn 원자가와의 관계를 나타내는 회귀 직선을 구하여, 상기 화합물의 Mn의 K 흡수단 위치가 MnO2 및 LiNi0.5Mn1.5O4의 K 흡수단 위치와 거의 같았다는 것으로부터, 상기 화합물의 Mn의 평균 원자가는 4가로 구해졌다.With respect to the powder of the oxide, the composition was measured by an atomic absorption spectrometer, and it was found that the composition was represented by Li 0.99 Ni 0.5 Mn 0.5 O 2 . In addition, Mn X-ray absorption spectroscopy (XAS) is performed using BL4 beamport of superconducting small emission light source "Aurora" (Sumitomo Electric Co., Ltd.) of Ritsumeikan University SR Center. It was. The obtained data analysis was based on the Journal of the Electrochemical Society, 146 p2799-2809 (1999), and was performed using analysis software "REX" (manufactured by Rigaku Electric Co., Ltd.). In addition, in order to determine the Mn valence of the compound, MnO 2 and LiNi 0.5 Mn 1.5 O 4 (both standard samples as compounds having Mn having an average valence of 4) as standard samples, and LiMn 2 O 4 (average valence values) Standard Samples as Compounds with Mn at 3.5 Val), LiMnO 2 and Mn 2 O 3 (Standard Samples as Compounds with Mn at Average Valence) and MnO (Standard Samples as Compounds with Mn at Average Valence) ) Was used. A regression line showing the relationship between the K absorption end position of Mn and the Mn valence of each standard sample was obtained, and the K absorption end position of Mn of the compound was almost the same as the K absorption end position of MnO 2 and LiNi 0.5 Mn 1.5 O 4 . From the above, the average valence of Mn of the compound was determined to be tetravalent.

Ni에 관해서는 3가 이상의 Ni를 가지는 표준 샘플로서 적당한 화합물을 손에 넣을 수 없었기 때문에, 그 원자가를 정확히 구할 수 없었지만, 평균 원자가가 2가인 Ni를 가지는 화합물인 NiO 및 LiNi0.5Mn1.5O4와 K 흡수단 위치가 거의 같았던 것으로부터, 상기 화합물의 Ni의 평균 원자가는 2가로 구해졌다. Since Ni could not obtain a proper compound as a standard sample having trivalent or higher Ni as Ni, NiO and LiNi 0.5 Mn 1.5 O 4 , which are compounds having Ni with an average valence, Since the K absorption end positions were almost the same, the average valence of Ni of the compound was determined to be divalent.

<실시예 2><Example 2>

실시예 1과 마찬가지로 하여 합성한 Ni과 Mn을 1:1 비율로 함유하는 수산화물 0.198mol과, 0.202mol의 LiOH ·H2O를 칭량하여, 이하 실시예 1과 마찬가지로 하여 Li1.01Ni0.495Mn0.495O2로 나타내는 리튬 함유 복합 산화물을 합성하였다.0.198 mol of hydroxide containing Ni and Mn synthesized in the same manner as in Example 1 and 0.202 mol of LiOH.H 2 O were weighed and then Li 1.01 Ni 0.495 Mn 0.495 O was prepared in the same manner as in Example 1. The lithium containing composite oxide represented by 2 was synthesize | combined.

<실시예 3><Example 3>

실시예 1과 마찬가지로 하여 합성한 Ni와 Mn을 1:1 비율로 함유하는 수산화물 0.196mol과, 0.204mol의 LiOH ·H2O를 칭량하여, 이하 실시예 1과 마찬가지로 하여 Li1.02Ni0.49Mn0.49O2로 나타내는 리튬 함유 복합 산화물을 합성하였다.0.196 mol of hydroxide containing Ni and Mn synthesized in the same manner as in Example 1 and 0.204 mol of LiOH.H 2 O were weighed, and in the same manner as in Example 1 below, Li 1.02 Ni 0.49 Mn 0.49 O The lithium containing composite oxide represented by 2 was synthesize | combined.

<실시예 4><Example 4>

실시예 1과 마찬가지로 하여 합성한 Ni와 Mn을 1:1 비율로 함유하는 수산화물 0.194mol과, 0.206mol의 LiOH ·H2O를 칭량하여, 이하 실시예 1과 마찬가지로 하여 Li1.03Ni0.485Mn0.485O2로 나타내는 리튬 함유 복합 산화물을 합성하였다.0.194 mol of hydroxide containing Ni and Mn synthesized in the same manner as in Example 1 and 0.206 mol of LiOH.H 2 O were weighed and then Li 1.03 Ni 0.485 Mn 0.485 O was prepared in the same manner as in Example 1. The lithium containing composite oxide represented by 2 was synthesize | combined.

<실시예 5>Example 5

실시예 1과 마찬가지로 하여 합성한 Ni와 Mn을 1:1 비율로 함유하는 수산화물 0.192mol과, 0.208mol의 LiOH ·H2O를 칭량하여, 이하 실시예 1과 마찬가지로 하여 Li1.04Ni0.48Mn0.48O2로 나타내는 리튬 함유 복합 산화물을 합성하였다.0.192 mol of hydroxide containing Ni and Mn synthesized in the same manner as in Example 1 and 0.208 mol of LiOH.H 2 O were weighed and then Li 1.04 Ni 0.48 Mn 0.48 O in the same manner as in Example 1 below. The lithium containing composite oxide represented by 2 was synthesize | combined.

<실시예 6><Example 6>

실시예 1과 마찬가지로 하여 합성한 Ni와 Mn을 1:1 비율로 함유하는 수산화물 0.19mol과, 0.21mol의 LiOH ·H2O를 칭량하여, 이하 실시예 1과 마찬가지로 하여 Li1.05Ni0.475Mn0.475O2로 나타내는 리튬 함유 복합 산화물을 합성하였다.0.19 mol of hydroxide containing Ni and Mn synthesized in the same manner as in Example 1 and 0.21 mol of LiOH.H 2 O were weighed, and in the same manner as in Example 1, Li 1.05 Ni 0.475 Mn 0.475 O The lithium containing composite oxide represented by 2 was synthesize | combined.

<실시예 7><Example 7>

황산니켈, 질산망간 및 황산코발트를 각각 0.9mol/d㎥, 0.9mol/d㎥ 및 0.2mol/d㎥ 비율로 함유하는 혼합 수용액을 적하한 것 이외는 실시예 1과 마찬가지로 하여, Ni, Mn 및 Co를 4.5:4.5:1 비율로 함유하는 수산화물을 얻었다. 이하 실시예 1과 마찬가지로 하여 Li0.99Ni0.45Mn0.45Co0.1O2로 나타내는 리튬 함유 복합 산화물을 합성하였다.Ni, Mn, and Ni were mixed in the same manner as in Example 1 except that a mixed aqueous solution containing nickel sulfate, manganese nitrate, and cobalt sulfate at 0.9 mol / dm 3, 0.9 mol / dm 3, and 0.2 mol / dm 3, respectively, was added dropwise. The hydroxide containing Co in 4.5: 4.5: 1 ratio was obtained. In the same manner as in Example 1 below, a lithium-containing composite oxide represented by Li 0.99 Ni 0.45 Mn 0.45 Co 0.1 O 2 was synthesized.

<실시예 8><Example 8>

황산니켈, 질산망간 및 황산코발트를 각각 0.75mol/d㎥, 0.75mol/d㎥ 및 0.5mol/d㎥ 비율로 함유하는 혼합 수용액을 적하한 것 이외는 실시예 1과 마찬가지로 하여 Li0.99Ni0.375Mn0.375Co0.25O2로 나타내는 리튬 함유 복합 산화물을 합성하였다.Li 0.99 Ni 0.375 Mn in the same manner as in Example 1 except that a mixed aqueous solution containing nickel sulfate, manganese nitrate, and cobalt sulfate in a ratio of 0.75 mol / dm 3, 0.75 mol / dm 3, and 0.5 mol / dm 3, respectively, was added dropwise. A lithium-containing composite oxide represented by 0.375 Co 0.25 O 2 was synthesized.

<실시예 9>Example 9

황산니켈, 질산망간 및 황산코발트를 각각 0.67mol/d㎥, 0.66mol/d㎥ 및 0.66mol/d㎥ 비율로 함유하는 혼합 수용액을 적하한 것 이외는 실시예 1과 마찬가지로 하여 Li0.99Ni0.34Mn0.33Co0.33O2로 나타내는 리튬 함유 복합 산화물을 합성하였다.Li 0.99 Ni 0.34 Mn in the same manner as in Example 1 except that a mixed aqueous solution containing nickel sulfate, manganese nitrate, and cobalt sulfate in a ratio of 0.67 mol / dm 3, 0.66 mol / dm 3, and 0.66 mol / dm 3, respectively, was added dropwise. A lithium-containing composite oxide represented by 0.33 Co 0.33 O 2 was synthesized.

<실시예 10><Example 10>

황산니켈, 질산망간 및 황산코발트를 각각 0.6mol/d㎥, 0.6mol/d㎥ 및 0.8mol/d㎥ 비율로 함유하는 혼합 수용액을 적하한 것 이외는 실시예 1과 마찬가지로 하여 Li0.99Ni0.3Mn0.3Co0.4O2로 나타내는 리튬 함유 복합 산화물을 합성하였다.Li 0.99 Ni 0.3 Mn in the same manner as in Example 1 except that a mixed aqueous solution containing nickel sulfate, manganese nitrate, and cobalt sulfate in a ratio of 0.6 mol / dm 3, 0.6 mol / dm 3, and 0.8 mol / dm 3, respectively, was added dropwise. A lithium-containing composite oxide represented by 0.3 Co 0.4 O 2 was synthesized.

<비교예 1>Comparative Example 1

0.2mol의 LiOH ·H2O와 0.2mol의 MnOOH를 칭량하여, 유성형 볼 밀로 30분간 혼합하여 혼합물로 하며, 이것을 알루미나제 도가니에 넣어 1d㎥/분의 질소 기류 중에서 450℃로 10시간 소성하여, LiMnO2로 나타내는 사방정 리튬망간 산화물을 합성하였다.0.2 mol of LiOH.H 2 O and 0.2 mol of MnOOH are weighed and mixed in a planetary ball mill for 30 minutes to prepare a mixture, which is then calcined at 450 ° C. for 10 hours in a 1 m 3 / min nitrogen stream, A tetragonal lithium manganese oxide represented by LiMnO 2 was synthesized.

<비교예 2>Comparative Example 2

실시예 1과 마찬가지로 하여 합성한 Ni와 Mn을 1:1 비율로 함유하는 수산화 물 0.18mol과, 0.22mol의 LiOH ·H2O를 칭량하여, 이하 실시예 1과 마찬가지로 하여 Li1.1Ni0.45Mn0.45O2로 나타내는 리튬 함유 복합 산화물을 합성하였다.0.18 mol of hydroxide containing Ni and Mn synthesized in the same manner as in Example 1 and 0.22 mol of LiOH.H 2 O were weighed, and in the same manner as in Example 1 below, Li 1.1 Ni 0.45 Mn 0.45 A lithium-containing composite oxide represented by O 2 was synthesized.

<비교예 3>Comparative Example 3

황산니켈, 질산망간 및 황산코발트를 각각 0.5mol/d㎥, 0.5mol/d㎥ 및 1mol/d㎥ 비율로 함유하는 혼합 수용액을 적하한 것 이외는 실시예 1과 마찬가지로 하여 Li0.99Ni0.25Mn0.25Co0.5O2로 나타내는 리튬 함유 복합 산화물을 합성하였다.Li 0.99 Ni 0.25 Mn 0.25 in the same manner as in Example 1 except that a mixed aqueous solution containing nickel sulfate, manganese nitrate, and cobalt sulfate in a ratio of 0.5 mol / dm 3, 0.5 mol / dm 3, and 1 mol / dm 3, respectively, was added dropwise. A lithium-containing composite oxide represented by Co 0.5 O 2 was synthesized.

<비교예 4><Comparative Example 4>

황산니켈, 질산망간 및 황산코발트를 각각 0.4mol/d㎥, 0.4mol/d㎥ 및 1.2mol/d㎥ 비율로 함유하는 혼합 수용액을 적하한 것 이외는 실시예 1과 마찬가지로 하여 Li0.99Ni0.2Mn0.2Co0.6O2로 나타내는 리튬 함유 복합 산화물을 합성하였다.Li 0.99 Ni 0.2 Mn in the same manner as in Example 1 except that a mixed aqueous solution containing nickel sulfate, manganese nitrate, and cobalt sulfate at 0.4 mol / dm 3, 0.4 mol / dm 3, and 1.2 mol / dm 3, respectively, was added dropwise. A lithium-containing composite oxide represented by 0.2 Co 0.6 O 2 was synthesized.

<비교예 5>Comparative Example 5

황산니켈 및 질산망간을 각각 0.5mol/d㎥ 및 1.5mol/d㎥ 비율로 함유하는 혼합 수용액을 적하한 것 이외는 실시예 1과 마찬가지로 하여 Li0.99Ni0.25Mn0.75O2로 나타내는 리튬 함유 복합 산화물을 합성하였다.A lithium-containing composite oxide represented by Li 0.99 Ni 0.25 Mn 0.75 O 2 in the same manner as in Example 1 except that a mixed aqueous solution containing nickel sulfate and manganese nitrate was respectively added at a rate of 0.5 mol / dm 3 and 1.5 mol / dm 3 . Was synthesized.

<비교예 6>Comparative Example 6

실시예 7에서의 황산니켈과 질산망간의 비율을 각각 1.2mol/d㎥, 0.6mol/d㎥로 한 것 이외는 실시예 7과 마찬가지로 하여 Li0.99Ni0.6Mn0.3Co0.1O2로 나타내는 리튬 함유 복합 산화물을 합성하였다. 즉, 비교예 6의 리튬 함유 복합 산화물은 실시예 7과는 Ni와 Mn의 양비만이 다른 것이다.Lithium-containing represented by Li 0.99 Ni 0.6 Mn 0.3 Co 0.1 O 2 in the same manner as in Example 7 except that the ratio of nickel sulfate and manganese nitrate in Example 7 was set to 1.2 mol / dm 3 and 0.6 mol / dm 3, respectively. Composite oxides were synthesized. That is, the lithium-containing composite oxide of Comparative Example 6 is different from Example 7 only in the ratio of Ni and Mn.

<참고예><Reference Example>

0.2mol의 LiOH ·H2O와 0.1mol의 Ni(OH)2와, 0.1mol의 MnOOH를 칭량하여, 유성형 볼 밀로 30분간 혼합하여 혼합물로 하며, 이것을 알루미나제 도가니에 넣어, 800℃의 공기 중에서 10시간 소성하여, LiNi0.5Mn0.5O2의 조성으로 나타내는 리튬 함유 복합 산화물을 합성하였다.0.2 mol of LiOHH 2 O, 0.1 mol of Ni (OH) 2 and 0.1 mol of MnOOH are weighed and mixed in a planetary ball mill for 30 minutes to obtain a mixture, which is placed in alumina crucible and air at 800 ° C. for 10 hours to firing, to synthesize the lithium-containing complex oxide represented by the composition of LiNi 0.5 Mn 0.5 O 2.

합성한 상기 실시예 1∼10, 비교예 1∼6 및 참고예의 각 리튬 함유 복합 산화물의 일람을 표 1에 나타냈다.Table 1 shows a list of each of the lithium-containing composite oxides of the above Examples 1 to 10, Comparative Examples 1 to 6, and Reference Examples.

<표 1>TABLE 1

Figure 112005046732236-pat00001
Figure 112005046732236-pat00001

상기 본 발명의 실시예 1∼10, 비교예 1∼6 및 참고예의 리튬 함유 복합 산화물에 관해서, CuKα선에 의한 X선 회절 측정을 행하였다.The X-ray diffraction measurement by CuKα ray was performed about the lithium-containing composite oxides of Examples 1 to 10, Comparative Examples 1 to 6, and Reference Examples of the present invention.

본 발명의 실시예 1∼10, 비교예 2∼6 및 참고예의 리튬 함유 복합 산화물은 층상 구조를 가지는 LiNiO2와 유사한 X선 회절 패턴을 나타냈지만, 비교예 3∼5 및 참고예의 X선 회절 패턴에는 이상의 생성을 나타내는 피크도 확인되었다. 또, 비교예 1의 X선 회절 패턴은 LiNiO2와는 다른 사방정 패턴이였다. 본 발명의 실시예 1∼10, 비교예 2 및 비교예 6에 관해서는 이상의 생성에 기인하는 피크가 확인되지 못했던 것, 즉, 회절각 2θ가 18° 부근 및 44° 부근에 존재하는 회절 피크가 각각 1개씩 있으며, 63°∼66°인 범위에 존재하는 회절 피크가 2개였던 것으로부터, 얻어진 산화물은 LiNiO2와 유사한 구조를 가지는 리튬 함유 복합 산화물의 단일상인 것이 확인되었다. 또한, 63°∼66°인 범위 내에 존재하는 회절 피크에는 Cu의 Kα1 선에 의한 피크에 인접하여, Kα2 선에 의한 피크도 확인되었지만, 본 발명에 있어서는 63°∼66°인 범위 내에 존재하는 회절 피크로서는 상기 Kα1 선에 의한 피크만을 고려한다.Although the lithium-containing composite oxides of Examples 1 to 10, Comparative Examples 2 to 6, and Reference Examples of the present invention exhibited an X-ray diffraction pattern similar to LiNiO 2 having a layered structure, the X-ray diffraction patterns of Comparative Examples 3 to 5 and Reference Examples The peak which shows the generation | occurrence | production of the above was also confirmed. In addition, the X-ray diffraction pattern of Comparative Example 1 was a tetragonal pattern different from LiNiO 2 . In Examples 1 to 10, Comparative Example 2, and Comparative Example 6 of the present invention, peaks resulting from the above generation were not found, that is, the diffraction peaks at which the diffraction angle 2θ is around 18 ° and around 44 ° It was confirmed that the oxide obtained was a single phase of a lithium-containing composite oxide having a structure similar to LiNiO 2 because each had one and two diffraction peaks existing in the range of 63 ° to 66 °. In addition, although diffraction peaks existing within the range of 63 ° to 66 ° were found to be adjacent to the peak by the Kα 1 line of Cu, the peak by the Kα 2 line was also confirmed. As a diffraction peak to be considered, only the peak by the above Kα 1 line is considered.

상기 중, 실시예 1, 실시예 8, 실시예 9, 비교예 4 및 비교예 5의 X선 회절 패턴을 도 1∼도 5로 하여 예시하였다.Among the above, the X-ray diffraction patterns of Example 1, Example 8, Example 9, Comparative Example 4, and Comparative Example 5 were illustrated as Figs.

또, 18°부근 및 44°부근의 회절 피크의 적산 강도 I18 및 I44의 비(I44/I18)와, 63°∼66°인 범위에 존재하는 2개의 회절 피크의 회절각 차(θa)에 관해서 측정한 값을 표 2에 나타냈다. 또한, 비교예 1의 리튬 함유 복합 산화물은 본 발명의 것과는 결정 구조가 상이하며, 또 비교예 3∼5 및 참고예의 리튬 함유 복합 산화물에서는 이상의 생성에 의해, 63°∼66°인 범위에는 3개 이상의 회절 피크가 존재하고 있었기 때문에, 표 2에는 이들 화합물의 데이터를 기재하고 있지 않다. In addition, the ratio (I 44 / I 18 ) of the integration intensity I 18 and I 44 of the diffraction peaks near 18 ° and around 44 ° and the diffraction angle difference between the two diffraction peaks existing in the range of 63 ° to 66 ° ( The value measured about (theta) a) is shown in Table 2. In addition, the lithium containing composite oxide of the comparative example 1 differs in crystal structure from the thing of this invention, and in the lithium containing composite oxide of the comparative examples 3-5 and the reference example, three pieces exist in the range which is 63 degrees-66 degrees by the above generation. Since the above diffraction peaks existed, Table 2 does not describe the data of these compounds.

<표 2>TABLE 2

Figure 112005046732236-pat00002
Figure 112005046732236-pat00002

0≤y≤0.2인 실시예 1∼7의 리튬 함유 복합 산화물에서는 적산 강도비 I44/I18 은 0.9∼1.2인 범위에 있으며, 또한, 회절각 차(θa)는 0.3°∼0.6°인 범위에 있었다. 또, 0.2<y≤0.4인 실시예 8∼10에서는 I44/I18 은 0.7∼1인 범위에서, θa는 0.55°∼0.75°인 범위에 있었다. 한편, 조성이 본 발명의 범위로부터 어긋난 비교예 2 및 비교예 6에서는 I44/I18 또는 θa의 어느 하나가 상기 범위를 일탈하고 있으며, 비교예 3∼5 및 참고예에서는 상술한 바와 같이, 63°∼66°인 범위에 3개 이상의 회절 피크가 존재하고 있었다.In the lithium-containing composite oxides of Examples 1 to 7 in which 0 ≦ y ≦ 0.2, the integrated intensity ratio I 44 / I 18 is in the range of 0.9 to 1.2, and the diffraction angle difference θa is in the range of 0.3 ° to 0.6 °. Was in. Further, in the 0.2 <y≤0.4 in the Example 8~10 I 44 / I 18 is 0.7 to 1 range, θa was in a range of 0.55 ° ~0.75 °. On the other hand, in Comparative Example 2 and Comparative Example 6 whose composition is out of the range of the present invention, either one of I 44 / I 18 or θa deviates from the above range, and in Comparative Examples 3 to 5 and Reference Example, as described above, Three or more diffraction peaks existed in the range of 63 ° to 66 °.

다음에, 본 발명의 실시예 1∼10, 비교예 1∼6 및 참고예의 리튬 함유 복합 산화물에 관해서, 진밀도 측정 장치를 이용하여 진밀도를 측정하였다. 그 결과를 표 3에 나타내었다. 또한, 측정 오차는 최대로 ±0.03g/㎤이었다.Next, about the lithium containing composite oxide of Examples 1-10, Comparative Examples 1-6, and a reference example of this invention, the true density was measured using the true density measuring apparatus. The results are shown in Table 3. In addition, the measurement error was at most ± 0.03 g / cm 3.

<표 3>TABLE 3

Figure 112005046732236-pat00003
Figure 112005046732236-pat00003

본 발명의 실시예 1∼10의 리튬 함유 복합 산화물에서는 진밀도는 4.57∼4.82g/㎤로 되며, 특히, 거의 화학량론 조성, 즉 -0.015<x+α≤0.015인 실시예 1, 실시예 2 및 실시예 7∼10에 있어서, 진밀도는 4.7g/㎤ 이상의 큰 값이 되었다. 그 중에서도, 원소 M에서의 치환량 y를 0.2<y≤0.4로 한 실시예 8∼10에서는 4.76 g/㎤ 이상의 가장 큰 값을 얻을 수 있었다.In the lithium-containing composite oxides of Examples 1 to 10 of the present invention, the true density is 4.57 to 4.82 g / cm 3, and in particular, Examples 1 and 2 having a nearly stoichiometric composition, that is, -0.015 <x + α ≦ 0.015 And Examples 7 to 10, the true density became a large value of 4.7 g / cm 3 or more. In particular, in Examples 8 to 10 in which the substitution amount y in the element M was 0.2 <y≤0.4, the largest value of 4.76 g / cm 3 or more was obtained.

한편, 종래의 사방정의 복합 산화물인 비교예 1이나, 화학량론 조성으로부터 큰 폭으로 어긋난 조성의 비교예 2는 4.5g/㎤ 이하의 작은 값으로, Ni와 Mn 비율이 본 발명의 범위 밖인 비교예 5 및 비교예 6에서는 거의 화학량론 조성임에도 불구하고, 본 발명의 상기 실시예 1, 실시예 2 및 실시예 7∼10과 비교하여 진밀도가 저하하였다. 또한, 참고예의 리튬 함유 복합 산화물도 이상의 생성 또는 미반응물의 잔존 등에 의해 균질성이 떨어지기 때문에, 실시예 1의 리튬 함유 복합 산화물보다도 진밀도가 저하하였다.On the other hand, Comparative Example 1, which is a conventional tetragonal composite oxide, or Comparative Example 2, in which the composition is largely deviated from the stoichiometric composition, have a small value of 4.5 g / cm 3 or less, and the Ni and Mn ratios are outside the scope of the present invention. In Example 5 and Comparative Example 6, despite the almost stoichiometric composition, the true density was lower than that in Examples 1, 2 and 7 to 10 of the present invention. In addition, since the homogeneity was inferior due to the above-mentioned generation or the remaining of the unreacted substance, the lithium-containing composite oxide of the reference example also had a lower true density than the lithium-containing composite oxide of Example 1.

여기서, 비교예 3 및 비교예 4의 리튬 함유 복합 산화물의 진밀도는 본 발명의 실시예의 것보다 높게 되어 있지만, 이것은 진밀도가 약 5.1g/㎤인 LiCoO2가 이상으로서 생성하였기 때문으로, 단일상으로서 표 3에 나타내는 진밀도의 복합 산화물이 얻어진 것은 아니다.Here, the true density of the lithium-containing composite oxides of Comparative Example 3 and Comparative Example 4 is higher than that of the examples of the present invention, but this is because LiCoO 2 having a true density of about 5.1 g / cm 3 or more is produced as above. As a matter of fact, the composite oxide of the true density shown in Table 3 was not obtained.

다음에, 본 발명의 실시예 1∼10 및 비교예 1∼2의 리튬 함유 복합 산화물에 관해서, 이하에 나타내는 방법으로 방전 용량을 측정하였다.Next, the discharge capacity of the lithium-containing composite oxides of Examples 1 to 10 and Comparative Examples 1 and 2 of the present invention was measured by the method shown below.

바인더로서의 폴리비닐리덴플루오라이드 20 질량부에, N-메틸-2-피롤리돈을 250 질량부를 가하여, 60℃로 가열하여 폴리비닐리덴플루오라이드를 N-메틸-2-피롤리돈에 용해시켜, 바인더 용액을 조제하였다. 이 바인더 용액에 상기 리튬 함유 복합 산화물을 양극 활성물질로서 450 질량부를 가하며, 또한 전도 조제로서 카본블랙 5 질량부와 흑연 25 질량부를 가하며, 교반하여 슬러리 형상의 도료를 조제하였다. 이 도료를 두께 20㎛의 알루미늄박 양면에 균일하게 도포하여, 건조한 후, 롤러 프레스기로 가압 성형하며, 이어서 재단하여, 평균 두께가 190㎛로 가로 483 ㎜, 세로 54㎜의 띠상 양극을 제작하였다.To 20 parts by mass of polyvinylidene fluoride as a binder, 250 parts by mass of N-methyl-2-pyrrolidone was added and heated to 60 ° C to dissolve polyvinylidene fluoride in N-methyl-2-pyrrolidone. And binder solution were prepared. 450 mass parts of said lithium containing complex oxides were added to this binder solution as a positive electrode active material, 5 mass parts of carbon black and 25 mass parts of graphite were added as a conductive support agent, and it stirred, and prepared the slurry-like coating material. This coating material was uniformly coated on both sides of an aluminum foil having a thickness of 20 µm, dried, and then press-molded with a roller press, followed by cutting to produce a strip-shaped anode having an average thickness of 190 µm and a width of 483 mm and a length of 54 mm.

상기와 같이 하여 제작한 양극과, 리튬박으로 이루어지는 음극을 이용하며, 각 전극 사이에 두께 25㎛의 미공성 폴리에틸렌 필름으로 이루어지는 세퍼레이터를 배치하며, 에틸렌카보네이트와 에틸메틸카보네이트의 체적비 1:3의 혼합 용매에 LiPF6를 1.0mol/d㎥의 농도로 용해시킨 비수용액을 전해액으로서 이용하며, 리튬의 참조 전극을 배치하여, 양극의 방전 용량 평가용 전지를 조립하였다.A separator made of a microporous polyethylene film having a thickness of 25 μm is disposed between the electrodes using a positive electrode prepared as described above and a negative electrode made of lithium foil, and a volume ratio of ethylene carbonate and ethyl methyl carbonate is 1: 3 mixed. A nonaqueous solution in which LiPF 6 was dissolved in a solvent at a concentration of 1.0 mol / dm 3 was used as an electrolyte, and a reference electrode of lithium was placed to assemble a battery for evaluating the discharge capacity of the positive electrode.

양극의 면적에 대한 전류 밀도를 0.2mA/㎠로 하여, 상기 전지를 4.3V까지 충전하며, 같은 전류 밀도에서 3.1V까지 방전시켜서 방전 용량을 측정하였다. 측정된 방전 용량을 양극 활성물질의 단위 질량당(mAh/g) 및 단위 체적당(mAh/㎤)으로 환산한 값으로서 표 4에 나타냈다. 또한, 실시예 1, 실시예 6, 실시예 8, 비교예 1 및 비교예 2의 리튬 함유 복합 산화물을 이용한 전지의 양극 방전 곡선을 도 6에 도시하였다.The battery was charged to 4.3 V with a current density of 0.2 mA / cm 2 for the area of the positive electrode, and discharged to 3.1 V at the same current density to measure the discharge capacity. The measured discharge capacity is shown in Table 4 as values converted per unit mass (mAh / g) and per unit volume (mAh / cm 3) of the positive electrode active material. In addition, the positive electrode discharge curve of the battery using the lithium containing composite oxide of Example 1, Example 6, Example 8, Comparative Example 1, and Comparative Example 2 is shown in FIG.

<표 4>TABLE 4

Figure 112005046732236-pat00004
Figure 112005046732236-pat00004

본 발명의 실시예 1∼10의 리튬 함유 복합 산화물은 3.5V 이상의 높은 방전 전위에서의 작동이 가능하고, 136∼153mAh/g으로 큰 방전 용량을 나타냈지만, 비교예 1, 2에서는 130mAh/g 이하의 방전 용량이며, 또, 본 발명의 리튬 함유 복합 산화물 쪽이 진밀도가 크므로, 단위 체적당 방전 용량으로 환산하면 그 차는 보다 현저해졌다.The lithium-containing composite oxides of Examples 1 to 10 of the present invention were capable of operating at a high discharge potential of 3.5 V or more and exhibited a large discharge capacity at 136 to 153 mAh / g, but in Comparative Examples 1 and 2, 130 mAh / g or less In addition, since the lithium-containing composite oxide of the present invention had a higher true density, the difference became more remarkable in terms of the discharge capacity per unit volume.

또한, 상기 리튬 함유 복합 산화물의 비수 2차 전지로서의 특성을 평가하기 위해, 이하의 구성으로 비수 2차 전지를 제작하였다.Moreover, in order to evaluate the characteristic as the nonaqueous secondary battery of the said lithium containing composite oxide, the nonaqueous secondary battery was produced with the following structures.

<실시예 11><Example 11>

양극 활성물질로서 실시예 1 및 실시예 9의 리튬 함유 복합 산화물을 각각 단독으로 이용하여 비수 2차 전지를 제작하였다. 양극은 양극 활성물질 92 질량부, 인조 흑연 4.5 질량부, 카본블랙 0.5 질량부, 폴리비닐리덴플루오라이드 3 질 량부를 혼합하여 제작한 페이스트를 알루미늄박 기재 상에 도포하여, 건조 후에 가압 성형함으로써 얻었다.A nonaqueous secondary battery was fabricated using the lithium-containing composite oxides of Example 1 and Example 9 alone as positive electrode active materials. The positive electrode was obtained by applying a paste prepared by mixing 92 parts by mass of a positive electrode active material, 4.5 parts by mass of artificial graphite, 0.5 parts by mass of carbon black, and 3 parts by mass of polyvinylidene fluoride onto an aluminum foil base material, followed by pressure molding after drying. .

음극은 천연 흑연 92 질량부, 저결정성 카본 3 질량부, 폴리비닐리덴플루오라이드 5 질량부를 혼합하여 제작한 페이스트를 동박 기재 상에 도포하여, 건조 후에 가압 성형함으로써 얻었다.The negative electrode was obtained by applying a paste prepared by mixing 92 parts by mass of natural graphite, 3 parts by mass of low crystalline carbon, and 5 parts by mass of polyvinylidene fluoride on a copper foil base material, followed by pressure molding after drying.

상기 양극 및 음극을 두께가 16㎛의 미공성 폴리에틸렌 필름으로 이루어지는 세퍼레이터를 통하여 둘러싸며, 전해액으로서, 에틸렌카보네이트와 에틸메틸카보네이트의 체적비 1:2의 혼합 용매에 LiPF6을 1.2mol/d㎥ 농도로 용해시킨 것을 이용하여, 600mAh 용량의 원통형 비수 2차 전지를 제작하였다. 또한, 양극 활성물질과 음극 활성물질의 질량 비율[(양극 활성물질의 질량)/(음극 활성물질의 질량)]은 1.9로 하였다.The positive electrode and the negative electrode were surrounded by a separator made of a microporous polyethylene film having a thickness of 16 μm, and LiPF 6 was 1.2 mol / dm 3 in a mixed solvent having a volume ratio of 1: 2 of ethylene carbonate and ethyl methyl carbonate as an electrolyte. Using the dissolved material, a cylindrical nonaqueous secondary battery having a capacity of 600 mAh was produced. In addition, the mass ratio [(mass of positive electrode active material) / (mass of negative electrode active material)] of the positive electrode active material and the negative electrode active material was 1.9.

<실시예 12><Example 12>

양극 활성물질로서 실시예 1의 리튬 함유 복합 산화물을 70 질량%, LiCoO2를 30 질량% 비율로 혼합하여 이용한 것 이외는 실시예 11과 마찬가지의 구성으로 비수 2차 전지를 제작하였다.A nonaqueous secondary battery was produced in the same manner as in Example 11, except that 70 mass% of the lithium-containing composite oxide of Example 1 and 30 mass% of LiCoO 2 were mixed and used as the positive electrode active material.

<비교예 7>Comparative Example 7

양극 활성물질로서, 비교예 6의 리튬 함유 복합 산화물, 시판의 비수 2차 전지에 사용되고 있는 LiCoO2 및 LiNi0.8Co0.2O2를 각각 단독으로 이용한 것 이외는 실시예 11과 마찬가지의 구성으로 비수 2차 전지를 제작하였다.As the positive electrode active material, nonaqueous 2 was prepared in the same manner as in Example 11 except that LiCoO 2 and LiNi 0.8 Co 0.2 O 2 used in the lithium-containing composite oxide of Comparative Example 6 and a commercially available nonaqueous secondary battery were used alone. A secondary battery was produced.

상기 실시예 11, 실시예 12 및 비교예 7의 비수 2차 전지에 관해서, 사이클 특성 및 고온 저장 특성을 평가하였다. 사이클 특성은 1C(600mA)의 전류치에서 충방전을 행한 때의 사이클 초기의 방전 용량에 대한 100 사이클 후의 방전 용량 비율[용량 유지율(%)]로 평가하였다. 고온 저장 특성은 전지를 60℃에서 20일간 유지하는 저장 시험을 행한 때의 저장 전후에서의 방전 용량의 변화, 즉, 1C의 전류치로 충방전을 행한 때의 방전 용량을 저장 전후에서 비교하여, 저장 전의 방전 용량에 대한 저장 후의 방전 용량 비율[용량 유지율(%)]로 평가하였다. 이들 특성 평가의 결과를 표 5에 나타냈었다.The cycle characteristics and the high temperature storage characteristics of the nonaqueous secondary batteries of Example 11, Example 12, and Comparative Example 7 were evaluated. The cycle characteristics were evaluated by the discharge capacity ratio (capacity retention rate (%)) after 100 cycles to the discharge capacity at the beginning of the cycle when charging and discharging was performed at a current value of 1 C (600 mA). The high temperature storage characteristics are compared with the changes in the discharge capacity before and after the storage when the storage test is performed for 20 days at 60 ° C, that is, the discharge capacity when the battery is charged and discharged at a current value of 1 C, before and after storage. It evaluated by the discharge capacity ratio (capacity retention (%)) after storage with respect to the previous discharge capacity. Table 5 shows the results of these property evaluations.

<표5><Table 5>

Figure 112005046732236-pat00005
Figure 112005046732236-pat00005

본 발명의 리튬 함유 복합 산화물을 양극 활성물질로서 이용한 실시예 11 및 실시예 12의 비수 2차 전지는 두께가 16㎛로 얇은 세퍼레이터를 이용했음에도 불구하고, 사이클 특성 및 고온 저장 특성이 뛰어났지만, 본 발명의 범위 밖의 조성인 비교예 6이나 시판의 비수 2차 전지에서 이용되고 있는 LiCoO2 또는 LiNi0.8Co0.2O2만을 양극활물질로서 이용한 비교예 7의 비수 2차 전지는 사이클 특성 및 고온 저장 특성이 본 발명의 것보다 떨어졌다. 즉, 양극활물질로서, 종래의 활물질과 함께 본 발명의 리튬복합산화물을 이용하는 것에 의해, 비수2차전지의 사이클 특성 및 고온저장성의 향상을 도모하는 것이 가능하였다. Although the nonaqueous secondary batteries of Examples 11 and 12, which used the lithium-containing composite oxide of the present invention as the positive electrode active material, had excellent cycle characteristics and high temperature storage characteristics despite the use of a thin separator having a thickness of 16 µm, The nonaqueous secondary battery of Comparative Example 6, which uses only LiCoO 2 or LiNi 0.8 Co 0.2 O 2 as a cathode active material, which is used in Comparative Example 6 or a commercially available nonaqueous secondary battery having a composition outside the scope of the invention, has cycle characteristics and high temperature storage characteristics. It is inferior to that of the present invention. That is, by using the lithium composite oxide of the present invention together with a conventional active material as the cathode active material, it was possible to improve the cycle characteristics and the high temperature storage property of the nonaqueous secondary battery.

또, 실시예 11과 실시예 12의 전지를 2C(1200mA)에서 방전시켜, 대전류 방전에서의 특성을 조사한 바, 실시예 11의 전지의 방전 용량이 525mAh이었던 것에 대하여, 실시예 12의 전지에서는 573mAh로 특성의 현저한 향상이 확인되었다. 이것은 리튬 함유 코발트 산화물을 본 발명의 리튬 함유 복합 산화물에 혼합하여 이용함에 의한 것이다.In addition, when the batteries of Example 11 and Example 12 were discharged at 2C (1200 mA) and the characteristics of the large current discharge were examined, the discharge capacity of the battery of Example 11 was 525 mAh, whereas the battery of Example 12 was 573 mAh. Significant improvement in furnace characteristics was confirmed. This is by mixing lithium containing cobalt oxide with the lithium containing composite oxide of this invention.

<실시예 13>Example 13

또한, 음극 활성물질로서, Si와 탄소질 재료를 복합화한 재료를 이용하여 비수 2차 전지를 제작하였다. Si 분말과 인조 흑연을 유성 볼 밀로 혼합하여 복합화하여, 얻어진 복합체를 체로 쳐서 음극 활성물질로 하였다. 양극 활성물질로서, 실시예 1의 리튬 함유 복합 산화물을 이용하며, 이외는 실시예 11과 마찬가지의 구성으로 비수 2차 전지를 제작하였다. 단, 양극 활성물질과 음극 활성물질의 질량 비율은 6.6으로 하였다. 이 전지에서는 음극 활성물질로서 고용량 재료를 이용함으로써, 양극 활성물질의 질량 비율을 높일 수 있었기 때문에, 실시예 11과 동일 사이즈로 방전 용량을 약 7% 크게 할 수 있었다.As a negative electrode active material, a nonaqueous secondary battery was produced using a material obtained by complexing Si and a carbonaceous material. Si powder and artificial graphite were mixed in a planetary ball mill and compounded, and the obtained composite was sieved to obtain a negative electrode active material. As the positive electrode active material, a lithium-containing composite oxide of Example 1 was used, except that a nonaqueous secondary battery was produced in the same manner as in Example 11. However, the mass ratio of the positive electrode active material to the negative electrode active material was 6.6. In this battery, the mass ratio of the positive electrode active material could be increased by using a high capacity material as the negative electrode active material. Thus, the discharge capacity could be increased by about 7% in the same size as in Example 11.

상기 비수 2차 전지에 관해서, 2C 방전에서의 방전 용량을 측정한 바, 605mAh로 되며, 대전류 방전에서도 뛰어난 특성을 가지는 전지를 실현할 수 있었다. 이것은, 양극 활성물질의 질량 비율을 높임으로써, 방전시의 양극 활성물질에 대한 부하가 경감되어, 전압 강하가 감소한 때문이라 추정된다.With regard to the nonaqueous secondary battery, the discharge capacity at 2C discharge was measured, resulting in a battery having 605 mAh and excellent characteristics even at a large current discharge. This is presumably because by increasing the mass ratio of the positive electrode active material, the load on the positive electrode active material at the time of discharge is reduced and the voltage drop is reduced.

이상 설명한 바와 같이, 본 발명에서는 일반식 Li1+x+αNi(1-x-y+δ)/2Mn(1-x-y-δ )/2MyO2[단, 0≤x≤0.05, -0.05≤x+α≤0.05, 0≤y≤0.4이며, -0.1≤δ≤0.1(단, 0≤y≤0.2일 때) 또는 -0.24≤δ≤0.24(단, 0.2<y≤0.4일 때)로서, M은 Ti, Cr, Fe, Co, Cu, Zn, Al, Ge 및 Sn으로 이루어지는 그룹 중에서 선택된 1종 이상의 원소]로 나타내는 조성을 가짐으로써, 결정 구조의 안정성이 높으며, 충방전 가역성이 양호하며, 고밀도의 리튬 함유 복합 산화물을 제공할 수 있다.As described above, in the present invention, the general formula Li 1 + x + α Ni (1-x-y + δ) / 2 Mn (1-xy-δ ) / 2M y O 2 [where 0 ≦ x ≦ 0.05, -0.05≤x + α≤0.05, 0≤y≤0.4, -0.1≤δ≤0.1 (where 0≤y≤0.2) or -0.24≤δ≤0.24 (where 0.2 <y≤0.4 ), M has a composition represented by at least one element selected from the group consisting of Ti, Cr, Fe, Co, Cu, Zn, Al, Ge, and Sn], whereby the stability of the crystal structure is high and the charge and discharge reversibility is good. It is possible to provide a high density lithium-containing composite oxide.

또한, 상기 리튬 함유 복합 산화물을 양극 활성물질로서 이용함으로써, 고용량으로 내구성이 뛰어난 비수 2차 전지를 제공할 수 있다. 상기 리튬 함유 복합 산화물은 자원적으로 풍부하며 값싼 Mn을 주요한 구성 원소의 1개로 하고 있기 때문에, 대량 생산에도 적합하며, 또 비용 저감에도 공헌할 수 있는 것이다.In addition, by using the lithium-containing composite oxide as the positive electrode active material, it is possible to provide a nonaqueous secondary battery having high durability and high capacity. Since the lithium-containing composite oxide is resource-rich and inexpensive Mn is one of the main constituent elements, the lithium-containing composite oxide is suitable for mass production and can contribute to cost reduction.

Claims (32)

층상의 결정구조를 갖는 리튬 함유 복합 산화물을 포함하는 양극 활물질로서, 상기 리튬 함유 복합 산화물이 일반식 Li1+x+αNi(1-x-y+δ)/2Mn(1-x-y-δ)/2MyO2 [단, 0 ≤x ≤0.05, -0.05 ≤x+α≤ 0.05이며, M은 Ti, Cr, Fe, Co, Cu, Zn, Al, Ge 및 Sn으로 이루어지는 그룹으로부터 선택되는 1종 이상의 원소이고, y 및 δ는, 각각 0 < y ≤0.2 이고, - 0.1 ≤δ≤0.1 이다]로 표시되는 조성을 갖고, 상기 Mn의 평균 원자가가 3.3 ~ 4가인 것을 특징으로 하는 양극 활물질.A positive electrode active material containing a lithium-containing composite oxide having a layered crystal structure, wherein the lithium-containing composite oxide is represented by the general formula Li 1 + x + α Ni (1-x-y + δ) / 2 Mn (1-xy-δ ) / 2 M y O 2 [where 0 ≦ x ≦ 0.05, −0.05 ≦ x + α ≦ 0.05, and M is selected from the group consisting of Ti, Cr, Fe, Co, Cu, Zn, Al, Ge, and Sn And y and δ each have a composition represented by 0 <y ≦ 0.2 and −0.1 ≦ δ ≦ 0.1], and the average valence of Mn is 3.3 to tetravalent. . 제1항에 있어서, 상기 리튬 함유 복합 산화물에 포함되는 Ni와 Mn의 몰비가 1:1인 양극 활물질.The positive electrode active material according to claim 1, wherein a molar ratio of Ni and Mn in the lithium-containing composite oxide is 1: 1. 제1항 또는 제2항에 있어서, 상기 리튬 함유 복합 산화물의 진밀도가 4.55 ~ 4.95 g/㎤ 인 것을 특징으로 하는 양극 활물질. The positive electrode active material according to claim 1 or 2, wherein the lithium-containing composite oxide has a true density of 4.55 to 4.95 g / cm 3. 층상의 결정구조를 갖는 리튬 함유 복합 산화물을 포함하는 양극 활물질로서, 상기 리튬 함유 복합 산화물이 일반식 Li1+x+αNi(1-x-y+δ)/2Mn(1-x-y-δ)/2MyO2 [단, 0 ≤x ≤0.05, -0.05 ≤x+α≤0.05이며, M은 Ti, Cr, Fe, Co, Cu, Zn, Al, Ge 및 Sn으로 이루어지는 그룹으로부터 선택되며, 적어도 Co를 포함하는 1종 이상의 원소이고, y 및 δ는, 각각 0.2< y ≤0.4 이고, - 0.24 ≤δ≤ 0.24 이다]로 표시되는 조성을 갖고, 상기 Mn의 평균 원자가가 3.3 ~ 4가인 것을 특징으로 하는 양극 활물질.A positive electrode active material containing a lithium-containing composite oxide having a layered crystal structure, wherein the lithium-containing composite oxide is represented by the general formula Li 1 + x + α Ni (1-x-y + δ) / 2 Mn (1-xy-δ ) / 2 M y O 2 [where 0 ≦ x ≦ 0.05, −0.05 ≦ x + α ≦ 0.05, and M is selected from the group consisting of Ti, Cr, Fe, Co, Cu, Zn, Al, Ge, and Sn At least one element containing Co, and y and δ are each represented by 0.2 <y ≦ 0.4 and −0.24 ≦ δ ≦ 0.24, and the average valence of Mn is 3.3 to tetravalent. A positive electrode active material, characterized in that. 제4항에 있어서, 상기 리튬 함유 복합 산화물에 포함되는 Ni와 Mn과 원소 M 의 몰비가 1:1:1인 양극 활물질. The positive electrode active material according to claim 4, wherein a molar ratio of Ni, Mn, and element M contained in the lithium-containing composite oxide is 1: 1: 1. 제1항, 제2항, 제4항 또는 제5항에 있어서, 상기 리튬 함유 복합 산화물과 상이한 다른 활물질을 더욱 포함하는 것을 특징으로 하는 양극 활물질. The cathode active material according to claim 1, 2, 4 or 5, further comprising another active material different from the lithium-containing composite oxide. 제6항에 있어서, 상기 다른 활물질로서 리튬 함유 코발트 산화물을 포함하는 것을 특징으로 하는 양극 활물질. The cathode active material according to claim 6, wherein the other active material contains lithium-containing cobalt oxide. 제1항, 제2항, 제4항 또는 제5항에 있어서, 상기 리튬 함유 복합 산화물에 포함되는 Mn의 평균 원자가가 4가인 것을 특징으로 하는 양극 활물질. The cathode active material according to claim 1, 2, 4 or 5, wherein the average valence of Mn contained in the lithium-containing composite oxide is tetravalent. 제1항, 제2항, 제4항 또는 제5항에 있어서, 상기 리튬 함유 복합 산화물에 포함되는 Ni의 평균 원자가가 2가인 것을 특징으로 하는 양극 활물질. The positive electrode active material according to claim 1, 2, 4 or 5, wherein the average valence of Ni contained in the lithium-containing composite oxide is divalent. 층상의 결정구조를 갖는 리튬 함유 복합 산화물을 포함하는 양극 활물질로서, 상기 리튬 함유 복합 산화물이, 일반식 Li1+x+αNi(1-x-y+δ)/2Mn(1-x-y-δ)/2MyO2[단, 0 ≤x ≤0.05, -0.05 ≤x+α≤0.05이고, M은 Ti, Cr, Fe, Co, Cu, Zn, Al, Ge 및 Sn으로 이루어지는 그룹으로부터 선택되며, 적어도 Co를 포함하는 1종 이상의 원소이고, y 및 δ는 각각 0.2 < y ≤ 0.4 이고, - 0.24 ≤δ≤ 0.24 이다]로 표시되는 조성을 가지며, 상기 리튬 함유 복합 산화물과 상이한 활물질로서, 리튬 함유 코발트 산화물을 더욱 포함하는 것을 특징으로 하는 양극 활물질.A positive electrode active material comprising a lithium-containing composite oxide having a layered crystal structure, wherein the lithium-containing composite oxide is represented by the general formula Li 1 + x + α Ni (1-x-y + δ) / 2 Mn (1-xy- δ) / 2 M y O 2 [where 0 ≦ x ≦ 0.05, −0.05 ≦ x + α ≦ 0.05, and M is selected from the group consisting of Ti, Cr, Fe, Co, Cu, Zn, Al, Ge and Sn Selected from at least one element containing Co, y and δ are each 0.2 <y ≤ 0.4, and-0.24 ≤ δ ≤ 0.24; and as an active material different from the lithium-containing composite oxide, A cathode active material further comprising lithium-containing cobalt oxide. 제10항에 있어서, 상기 리튬 함유 복합 산화물이 Li1+αNi1/3Mn1/3CO1/3O2 [단, -0.05 ≤α≤0.05] 인 것을 특징으로 하는 양극 활물질. The cathode active material according to claim 10, wherein the lithium-containing composite oxide is Li 1 + α Ni 1/3 Mn 1/3 CO 1/3 O 2 , wherein −0.05 ≦ α ≦ 0.05]. 제10항 또는 제11항에 있어서, 상기 리튬 함유 코발트 산화물의 비율이 양극 활물질 전체의 50 질량% 이하인 양극 활물질.The positive electrode active material according to claim 10 or 11, wherein the proportion of the lithium-containing cobalt oxide is 50% by mass or less of the entire positive electrode active material. 제1항, 제2항, 제4항 또는 제5항에 기재된 양극 활물질을 포함하는 양극. The positive electrode containing the positive electrode active material of Claim 1, 2, 4, or 5. 제6항 기재의 양극 활물질을 포함하는 양극. The positive electrode containing the positive electrode active material of Claim 6. 제10항 또는 제11항 기재의 양극 활물질을 포함하는 양극. The positive electrode containing the positive electrode active material of Claim 10 or 11. 층상의 결정구조를 갖는 리튬 함유 복합 산화물을 포함하는 양극 활물질로서, 상기 리튬 함유 복합 산화물이, 일반식 Li1+x+αNi(1-x-y+δ)/2Mn(1-x-y-δ)/2MyO2[단, 0 ≤x ≤0.05, -0.05 ≤x+α≤0.05이고, M은 Ti, Cr, Fe, Co, Cu, Zn, Al, Ge 및 Sn으로 이루어지는 그룹으로부터 선택되는 1종 이상의 원소이고, y 및 δ는 각각 0 ≤y≤ 0.2 이고, - 0.1 ≤δ≤ 0.1 이다]로 표시되는 조성을 가지며, 상기 리튬 함유 복합 산화물과 상이한 활물질로서, 리튬 함유 코발트 산화물을 더욱 포함하는 것을 특징으로 하는 양극 활물질.A positive electrode active material comprising a lithium-containing composite oxide having a layered crystal structure, wherein the lithium-containing composite oxide is represented by the general formula Li 1 + x + α Ni (1-x-y + δ) / 2 Mn (1-xy- δ) / 2 M y O 2 [where 0 ≦ x ≦ 0.05, −0.05 ≦ x + α ≦ 0.05, and M is selected from the group consisting of Ti, Cr, Fe, Co, Cu, Zn, Al, Ge and Sn At least one element selected, each of y and δ being 0 ≦ y ≦ 0.2, and −0.1 ≦ δ ≦ 0.1], and further comprising a lithium-containing cobalt oxide as an active material different from the lithium-containing composite oxide. A positive electrode active material comprising a. 제16항에 있어서, 상기 리튬 함유 복합 산화물에 포함되는 Ni와 Mn의 몰비가 1:1인 양극 활물질.The positive electrode active material according to claim 16, wherein a molar ratio of Ni and Mn in the lithium-containing composite oxide is 1: 1. 제16항에 있어서, 상기 리튬 함유 복합 산화물에 포함되는 원소 M이, Co를 포함하는 양극 활물질. The positive electrode active material of Claim 16 in which the element M contained in the said lithium containing composite oxide contains Co. 제16항, 제17항 또는 제18항의 기재의 양극 활물질을 포함하는 양극. The positive electrode containing the positive electrode active material of Claim 16, 17, or 18. 층상의 결정구조를 갖는 리튬 함유 복합 산화물을 포함하는 양극 활물질로서, 상기 리튬 함유 복합 산화물이, 일반식 Li1+x+αNi(1-x-y+δ)/2Mn(1-x-y-δ)/2MyO2[단, 0 ≤ x ≤0.05, -0.05 ≤x+α≤0.05이고, M은 Ti, Cr, Fe, Co, Cu, Zn, Al, Ge 및 Sn으로 이루어지는 그룹으로부터 선택되며, 적어도 Co를 포함하는 1종 이상의 원소이고, y 및 δ는 각각 0 < y≤ 0.2 이고, - 0.1 ≤δ≤ 0.1 이다]로 표시되는 조성을 가지며, CuKα 선을 이용한 X선 회절 측정에 있어서, 회절각 2θ가 18°부근에 존재하는 (003) 회절피크와 44°부근에 존재하는 (104) 회절피크의 적산강도를, 각각, I18과 I44로 한 때에, 이의 비율 I44/I18이, 0.9 < I44/I18 ≤ 1.2인 것을 특징으로 하는 양극 활물질. A positive electrode active material comprising a lithium-containing composite oxide having a layered crystal structure, wherein the lithium-containing composite oxide is represented by the general formula Li 1 + x + α Ni (1-x-y + δ) / 2 Mn (1-xy- δ) / 2 M y O 2 [where 0 ≦ x ≦ 0.05, −0.05 ≦ x + α ≦ 0.05, and M is selected from the group consisting of Ti, Cr, Fe, Co, Cu, Zn, Al, Ge and Sn At least one element containing at least Co, and y and δ are each represented by 0 <y ≦ 0.2 and −0.1 ≦ δ ≦ 0.1], and in X-ray diffraction measurement using CuKα rays, When the integrated intensities of the (003) diffraction peaks in which the diffraction angle 2θ is around 18 ° and the (104) diffraction peaks near 44 ° are set to I 18 and I 44 , the ratio thereof is I 44 / I 18 is 0.9 <I 44 / I 18 ≦ 1.2. 제20항에 있어서, 상기 리튬 함유 복합 산화물에 포함되는 Ni와 Mn의 몰비가 1:1인 양극 활물질. The positive electrode active material according to claim 20, wherein a molar ratio of Ni and Mn in the lithium-containing composite oxide is 1: 1. 제20항에 있어서, 상기 리튬 함유 복합 산화물과 상이한 다른 활물질을 더욱 포함하는 양극 활물질.The positive electrode active material according to claim 20, further comprising another active material different from the lithium-containing composite oxide. 제22항에 있어서, 상기 다른 활물질로서 리튬 함유 코발트 산화물을 포함하는 양극 활물질. 23. The cathode active material according to claim 22, wherein said other active material contains lithium-containing cobalt oxide. 제20항, 제21항, 제22항 또는 제23항의 기재의 양극 활물질을 포함하는 양극. The positive electrode containing the positive electrode active material of Claim 20, 21, 22, or 23. 층상의 결정구조를 갖는 리튬 함유 복합 산화물을 포함하는 양극 활물질로서, 상기 리튬 함유 복합 산화물이, 일반식 Li1+x+αNi(1-x-y+δ)/2Mn(1-x-y-δ)/2MyO2[단, 0 ≤ x ≤0.05, -0.05 ≤x+α≤ 0.05이고, M은 Ti, Cr, Fe, Co, Cu, Zn, Al, Ge 및 Sn으로 이루어지는 그룹으로부터 선택되며, 적어도 Co를 포함하는 1종 이상의 원소이고, y 및 δ는 각각 0.2 < y≤ 0.4 이고, - 0.1 ≤δ≤ 0.1 이다]로 표시되는 조성을 가지며, CuKα선을 이용한 X선 회절 측정에 있어서, 회절각 2θ가 18°부근에 존재하는 (003) 회절피크와 44°부근에 존재하는 (104) 회절피크의 적산강도를, 각각, I18 과 I44로 한 때에, 이의 비율 I44/I18이, 0.7 ≤ I44/I18 ≤ 1 인 것을 특징으로 하는 양극 활물질. A positive electrode active material comprising a lithium-containing composite oxide having a layered crystal structure, wherein the lithium-containing composite oxide is represented by the general formula Li 1 + x + α Ni (1-x-y + δ) / 2 Mn (1-xy- δ) / 2 M y O 2 [where 0 ≦ x ≦ 0.05, −0.05 ≦ x + α ≦ 0.05, and M is selected from the group consisting of Ti, Cr, Fe, Co, Cu, Zn, Al, Ge and Sn At least one element containing at least Co, and y and δ are each represented by 0.2 <y ≦ 0.4 and −0.1 ≦ δ ≦ 0.1], and in X-ray diffraction measurement using CuKα rays, When the integrated intensities of the (003) diffraction peaks in which the diffraction angle 2θ is around 18 ° and the (104) diffraction peaks near 44 ° are set to I 18 and I 44 , the ratio thereof is I 44 / I 18 is 0.7 ≦ I 44 / I 18 ≦ 1. 제25항에 있어서, 상기 리튬 함유 복합 산화물에 포함되는 Ni와 Mn의 몰비율이 1:1 인 양극 활물질. The positive electrode active material according to claim 25, wherein the molar ratio of Ni and Mn contained in the lithium-containing composite oxide is 1: 1. 제26항에 있어서, 상기 리튬 함유 복합 산화물에 포함되는 Ni와 Mn와 원소 M의 몰비율이 1:1:1 인 양극 활물질. 27. The cathode active material according to claim 26, wherein the molar ratio of Ni, Mn, and element M contained in the lithium-containing composite oxide is 1: 1: 1. 제25항에 있어서, 상기 리튬 함유 복합 산화물과 상이한 다른 활물질을 더욱 포함하는 양극 활물질. 27. The cathode active material according to claim 25, further comprising another active material different from the lithium-containing composite oxide. 제28항에 있어서, 상기 다른 활물질로서 리튬 함유 코발트 산화물을 포함하는 양극 활물질.29. The cathode active material according to claim 28, wherein said other active material contains lithium-containing cobalt oxide. 제25항, 제26항, 제27항, 제28항 또는 제29항의 기재의 양극 활물질을 포함하는 양극. A positive electrode comprising the positive electrode active material according to claim 25, 26, 27, 28, or 29. 제24항 기재의 양극, 음극 및 비수 전해질을 구비하는 비수 2차 전지. A nonaqueous secondary battery comprising the positive electrode, the negative electrode and the nonaqueous electrolyte according to claim 24. 제30항 기재의 양극, 음극, 비수 전해질을 구비하는 비수 2차 전지.A nonaqueous secondary battery comprising the positive electrode, the negative electrode, and the nonaqueous electrolyte according to claim 30.
KR1020057015678A 2000-11-16 2001-11-14 Active cathode material comprising the lithium-containing composite oxide KR100628797B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000350307 2000-11-16
JPJP-P-2000-00350307 2000-11-16
JP2001282767 2001-09-18
JPJP-P-2001-00282767 2001-09-18

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020027009058A Division KR100632979B1 (en) 2000-11-16 2001-11-14 Lithium-containing composite oxide and nonaqueous secondary cell using the same, and method for manufacturing the same

Publications (2)

Publication Number Publication Date
KR20050096191A KR20050096191A (en) 2005-10-05
KR100628797B1 true KR100628797B1 (en) 2006-09-26

Family

ID=26604126

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020057015678A KR100628797B1 (en) 2000-11-16 2001-11-14 Active cathode material comprising the lithium-containing composite oxide
KR1020027009058A KR100632979B1 (en) 2000-11-16 2001-11-14 Lithium-containing composite oxide and nonaqueous secondary cell using the same, and method for manufacturing the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020027009058A KR100632979B1 (en) 2000-11-16 2001-11-14 Lithium-containing composite oxide and nonaqueous secondary cell using the same, and method for manufacturing the same

Country Status (7)

Country Link
US (3) US7351500B2 (en)
EP (1) EP1295851A4 (en)
JP (1) JP4137635B2 (en)
KR (2) KR100628797B1 (en)
CN (3) CN1741308B (en)
AU (1) AU2002214289A1 (en)
WO (1) WO2002040404A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101127554B1 (en) 2011-07-20 2012-03-23 한화케미칼 주식회사 Single phase lithium-deficient multi-component transition metal oxides having a layered crystal structure and a method of producing the same
KR101360798B1 (en) 2011-12-27 2014-02-12 한화케미칼 주식회사 Single Phase Lithium-deficient Multi-component Transition Metal Oxides Having a Layered Crystal Structure and a Method of Producing the Same

Families Citing this family (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4080337B2 (en) 2001-03-22 2008-04-23 松下電器産業株式会社 Positive electrode active material and non-aqueous electrolyte secondary battery including the same
EP1391950B1 (en) * 2001-04-20 2010-08-25 GS Yuasa Corporation Anode active matter and production method therefor, non- aqueous electrolyte secondary battery-use anode, and non-aqueous electrolyte secondary battery
US6964828B2 (en) 2001-04-27 2005-11-15 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
JP5050302B2 (en) * 2001-06-13 2012-10-17 三菱化学株式会社 Layered lithium nickel manganese composite oxide
JP4872164B2 (en) * 2001-06-13 2012-02-08 三菱化学株式会社 Layered lithium nickel manganese composite oxide
JP4510331B2 (en) 2001-06-27 2010-07-21 パナソニック株式会社 Nonaqueous electrolyte secondary battery
US20030108793A1 (en) * 2001-08-07 2003-06-12 3M Innovative Properties Company Cathode compositions for lithium ion batteries
JP3827545B2 (en) 2001-09-13 2006-09-27 松下電器産業株式会社 Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery
JP4836371B2 (en) 2001-09-13 2011-12-14 パナソニック株式会社 Positive electrode active material and non-aqueous electrolyte secondary battery including the same
US8658125B2 (en) * 2001-10-25 2014-02-25 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP4981508B2 (en) * 2001-10-25 2012-07-25 パナソニック株式会社 Positive electrode active material and non-aqueous electrolyte secondary battery including the same
JP2003146662A (en) * 2001-11-13 2003-05-21 Nikki Chemcal Co Ltd Lithium-nickel-manganese complex oxide, method for manufacturing the same and use of the same
US7393476B2 (en) * 2001-11-22 2008-07-01 Gs Yuasa Corporation Positive electrode active material for lithium secondary cell and lithium secondary cell
US9391325B2 (en) 2002-03-01 2016-07-12 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
JP4197237B2 (en) 2002-03-01 2008-12-17 パナソニック株式会社 Method for producing positive electrode active material
EP1357616B1 (en) 2002-03-25 2012-11-28 Sumitomo Chemical Company, Limited Positive electrode active material for non-aqueous secondary battery
WO2003081698A1 (en) 2002-03-27 2003-10-02 Yuasa Corporation Active substance of positive electrode and nonaqueous electrolyte battery containing the same
KR100463189B1 (en) * 2002-07-15 2004-12-23 삼성에스디아이 주식회사 A lithium secondary battery and a method for preparing the same
JP4594605B2 (en) * 2002-08-05 2010-12-08 パナソニック株式会社 Positive electrode active material and non-aqueous electrolyte secondary battery including the same
US8241790B2 (en) 2002-08-05 2012-08-14 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP2004158352A (en) * 2002-11-07 2004-06-03 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
US7316862B2 (en) 2002-11-21 2008-01-08 Hitachi Maxell, Ltd. Active material for electrode and non-aqueous secondary battery using the same
US20040121234A1 (en) * 2002-12-23 2004-06-24 3M Innovative Properties Company Cathode composition for rechargeable lithium battery
JP4986381B2 (en) * 2003-01-17 2012-07-25 三洋電機株式会社 Nonaqueous electrolyte secondary battery
US20070072086A1 (en) * 2003-05-15 2007-03-29 Yuasa Corporation Nonaqueous electrolyte cell
JP4604460B2 (en) * 2003-05-16 2011-01-05 パナソニック株式会社 Nonaqueous electrolyte secondary battery and battery charge / discharge system
CN1799157B (en) * 2003-06-03 2010-05-05 株式会社杰士汤浅 Nonaqueous electrolyte cell
US7687102B2 (en) * 2003-10-23 2010-03-30 Medtronic, Inc. Methods and apparatus for producing carbon cathodes
JP4554911B2 (en) * 2003-11-07 2010-09-29 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP3795886B2 (en) * 2003-11-20 2006-07-12 Tdk株式会社 Lithium ion secondary battery charging method, charging device and power supply device
US7211237B2 (en) * 2003-11-26 2007-05-01 3M Innovative Properties Company Solid state synthesis of lithium ion battery cathode material
US7238450B2 (en) * 2003-12-23 2007-07-03 Tronox Llc High voltage laminar cathode materials for lithium rechargeable batteries, and process for making the same
JP4100341B2 (en) 2003-12-26 2008-06-11 新神戸電機株式会社 Positive electrode material for lithium secondary battery and lithium secondary battery using the same
JP2006196250A (en) * 2005-01-12 2006-07-27 Sanyo Electric Co Ltd Lithium secondary battery
CN100544106C (en) * 2004-05-28 2009-09-23 株式会社Lg化学 The charging cut-ff voltage surpasses the lithium secondary battery of 4.35V
KR101170172B1 (en) * 2004-07-15 2012-07-31 파나소닉 주식회사 Process of preparing coatings for positive electrode materials for lithium secondary batteries and positive electrodes for lithium secondary batteries
JP5095098B2 (en) * 2004-11-19 2012-12-12 パナソニック株式会社 Nonaqueous electrolyte secondary battery
CN100502137C (en) * 2004-11-19 2009-06-17 松下电器产业株式会社 Nonaqueous electrolyte secondary battery
JP2006222072A (en) 2005-01-14 2006-08-24 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
US20080032196A1 (en) 2005-04-13 2008-02-07 Lg Chem, Ltd. Method of preparing material for lithium secondary battery of high performance
US7648693B2 (en) 2005-04-13 2010-01-19 Lg Chem, Ltd. Ni-based lithium transition metal oxide
US20070298512A1 (en) 2005-04-13 2007-12-27 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US20070292761A1 (en) 2005-04-13 2007-12-20 Lg Chem, Ltd. Material for lithium secondary battery of high performance
JP4995444B2 (en) * 2005-08-05 2012-08-08 株式会社豊田中央研究所 Lithium ion secondary battery
CN100527480C (en) * 2005-10-27 2009-08-12 比亚迪股份有限公司 Preparation method of plus plate material Li-Ni-Mn-Co-O of lithium ion battery
CN100466364C (en) * 2005-12-15 2009-03-04 中国电子科技集团公司第十八研究所 Safety lithium-ion battery
KR20080108222A (en) 2006-04-07 2008-12-12 미쓰비시 가가꾸 가부시키가이샤 Lithium transition metal-based compound powder for positive electrode material in lithium rechargeable battery, method for manufacturing the powder, spray dried product of the powder, firing precursor of the powder, and positive electrode for lithium rechargeable battery and lithium rechargeable battery using the powder
CN101300696A (en) * 2006-05-10 2008-11-05 株式会社Lg化学 Material for lithium secondary battery of high performance
WO2008039808A2 (en) 2006-09-25 2008-04-03 Board Of Regents, The University Of Texas System Cation-substituted spinel oxide and oxyfluoride cathodes for lithium ion batteries
EP2071650A4 (en) 2007-03-30 2013-04-03 Panasonic Corp Active material for non-aqueous electrolyte secondary battery and manufacturing therefor
US8962195B2 (en) 2007-09-04 2015-02-24 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder, method for manufacturing the same, spray-dried substance serving as firing precursor thereof, and lithium secondary battery positive electrode and lithium secondary battery using the same
KR100939516B1 (en) * 2007-11-29 2010-02-03 한국지질자원연구원 Lithium-manganese oxides and method for preparing the same, and lithium adsorbent using the same
CN101933180B (en) * 2008-02-04 2013-11-20 住友化学株式会社 Composite metal oxide and sodium rechargeable battery
KR101126826B1 (en) * 2008-06-30 2012-03-23 삼성에스디아이 주식회사 Secondary battery
US9099738B2 (en) * 2008-11-03 2015-08-04 Basvah Llc Lithium secondary batteries with positive electrode compositions and their methods of manufacturing
EP2359426B1 (en) 2008-11-07 2015-07-08 EaglePicher Technologies, LLC Non-aqueous cell having amorphous or semi-crystalline copper manganese oxide cathode material
US20100154206A1 (en) * 2008-12-19 2010-06-24 Conocophillips Company Process for making composite lithium powders for batteries
US8663825B2 (en) 2009-03-05 2014-03-04 Eaglepicher Technologies, Llc End of life indication system and method for non-aqueous cell having amorphous or semi-crystalline copper manganese oxide cathode material
EP2409348B1 (en) * 2009-03-18 2015-07-01 EaglePicher Technologies, LLC Non-aqueous electrochemical cell having a mixture of at least three cathode materials therein
EP2417656B1 (en) * 2009-04-06 2018-03-21 Eaglepicher Technologies, Llc Thermal battery cathode materials and batteries including same
US8394520B2 (en) * 2009-04-06 2013-03-12 Eaglepicher Technologies, Llc Thermal battery electrolyte materials, electrode-electrolyte composites, and batteries including same
WO2010116839A1 (en) 2009-04-10 2010-10-14 日立マクセル株式会社 Electrode active material, method for producing same, electrode for nonaqueous secondary battery, and nonaqueous secondary battery
CN101630736B (en) * 2009-08-17 2011-11-02 深圳市天骄科技开发有限公司 Improvement method of cycle performance of lithium battery tertiary cathode material
EP2477270B1 (en) * 2009-09-18 2014-01-29 Panasonic Corporation Method for charging/discharging positive electrode active material in a lithium secondary battery, charging/discharging system provided with lithium secondary battery and vehicle, electronic device, battery module, battery pack
US20120280435A1 (en) * 2009-11-02 2012-11-08 Basvah, Llc Active materials for lithium-ion batteries
JP5474597B2 (en) * 2010-02-16 2014-04-16 三洋電機株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP5534595B2 (en) * 2010-04-19 2014-07-02 日立マクセル株式会社 Positive electrode for lithium secondary battery and lithium secondary battery
US8652674B2 (en) 2010-06-24 2014-02-18 Eaglepicher Technologies, Llc Thermal battery cathode materials containing nickel disulfide and batteries including same
PL2399869T3 (en) 2010-06-25 2015-11-30 Evonik Degussa Gmbh Mixed oxide powder containing the elements lithium, manganese, nickel and cobalt and method for producing same
US9825294B2 (en) 2010-09-08 2017-11-21 Sk Innovation Co., Ltd. Positive electrode active material for lithium secondary battery and method for preparing the same
KR101432628B1 (en) * 2010-09-30 2014-08-22 에스케이이노베이션 주식회사 Positive active material for rechargeable, method of preparing same, and rechargeable lithium battery comprising same
CN102054986B (en) * 2010-11-16 2013-04-10 中国科学院宁波材料技术与工程研究所 Ultrahigh-capacity lithium ion battery anode material prepared by microwave method and preparation method thereof
JP2012178267A (en) 2011-02-25 2012-09-13 Hitachi Vehicle Energy Ltd Lithium ion secondary battery
JP4915488B1 (en) * 2011-03-28 2012-04-11 住友金属鉱山株式会社 Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
DE102011089810A1 (en) 2011-12-23 2013-06-27 Evonik Industries Ag Mixed oxide containing the elements lithium, nickel, cobalt and manganese and process for their preparation
US20150030911A1 (en) * 2012-03-15 2015-01-29 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
CN103050682A (en) * 2012-12-24 2013-04-17 北京理工大学 Sodium ion battery electrode material and preparation method thereof
US10522822B2 (en) 2013-02-01 2019-12-31 Emd Acquisition Llc Lithium manganese oxide compositions
CN109599531B (en) 2013-03-12 2020-08-11 苹果公司 High voltage, high volumetric energy density lithium ion batteries using advanced cathode materials
US10086351B2 (en) 2013-05-06 2018-10-02 Llang-Yuh Chen Multi-stage process for producing a material of a battery cell
EP3020083B1 (en) 2013-07-09 2020-04-29 Dow Global Technologies LLC Mixed positive active material comprising lithium metal oxide and lithium metal phosphate
EP2918545B1 (en) 2013-07-26 2016-11-23 LG Chem, Ltd. Polycrystalline lithium manganese oxide particles, method for preparing same, and anode active material containing polycrystalline lithium manganese oxide particles
US9905850B2 (en) 2013-07-26 2018-02-27 Lg Chem, Ltd. Polycrystalline lithium manganese oxide particles, preparation method thereof, and cathode active material including the same
US9905851B2 (en) 2013-07-26 2018-02-27 Lg Chem, Ltd. Cathode active material and method of preparing the same
US9525173B2 (en) 2013-10-10 2016-12-20 Mitsui Mining & Smelting Co., Ltd. Method for manufacturing over-lithiated layered lithium metal composite oxide
CA2927350A1 (en) 2013-10-24 2015-04-30 Dow Global Technologies Llc Improved lithium metal oxide cathode materials and method to make them
CN104600273B (en) * 2013-10-30 2018-10-26 国联汽车动力电池研究院有限责任公司 A kind of phosphorous anode material for lithium-ion batteries and preparation method thereof
EP3154909B1 (en) 2014-05-27 2022-08-10 Jiangsu Hengtron Nanotech Co., Ltd. Improved lithium metal oxide cathode materials and method to make them
JP6570843B2 (en) * 2014-07-31 2019-09-04 株式会社東芝 Nonaqueous electrolyte battery and battery pack
US9716265B2 (en) 2014-08-01 2017-07-25 Apple Inc. High-density precursor for manufacture of composite metal oxide cathodes for Li-ion batteries
KR102486755B1 (en) 2014-12-18 2023-01-11 지앙수 헹트론 나노테크 컴퍼니 리미티드 Lithium ion battery having improved thermal stability
US10153486B2 (en) * 2015-03-31 2018-12-11 Denso Corporation Positive electrode material, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2016192314A (en) * 2015-03-31 2016-11-10 株式会社デンソー Positive electrode material, nonaqueous electrolyte secondary battery positive electrode and nonaqueous electrolyte secondary battery
JP2016192310A (en) * 2015-03-31 2016-11-10 株式会社デンソー Positive electrode material, nonaqueous electrolyte secondary battery positive electrode and nonaqueous electrolyte secondary battery
JP6394978B2 (en) * 2015-03-31 2018-09-26 株式会社デンソー Positive electrode material, positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US10297821B2 (en) 2015-09-30 2019-05-21 Apple Inc. Cathode-active materials, their precursors, and methods of forming
US10164256B2 (en) 2016-03-14 2018-12-25 Apple Inc. Cathode active materials for lithium-ion batteries
US10297823B2 (en) 2016-09-20 2019-05-21 Apple Inc. Cathode active materials having improved particle morphologies
CN109715562B (en) 2016-09-21 2022-03-11 苹果公司 Surface stable cathode material for lithium ion battery and synthesis method thereof
KR102484406B1 (en) 2016-11-01 2023-01-02 삼성에스디아이 주식회사 Negative electrode for rechargeable lithium battery, and rechargeable lithium battery including same
KR102417267B1 (en) * 2016-11-02 2022-07-04 삼성에스디아이 주식회사 Rechargeable lithium battery
CN110214390A (en) * 2017-03-06 2019-09-06 松下知识产权经营株式会社 Positive active material and battery
KR102417774B1 (en) 2018-04-20 2022-07-05 삼성에스디아이 주식회사 Negative electrode for rechargeable lithium battery, and rechargeable lithium battery including same
KR102417773B1 (en) 2018-04-27 2022-07-05 삼성에스디아이 주식회사 Negative electrode for rechargeable lithium battery, and rechargeable lithium battery including same
CN108878892B (en) * 2018-06-29 2019-04-30 宁德时代新能源科技股份有限公司 Positive pole piece and battery
US11695108B2 (en) 2018-08-02 2023-07-04 Apple Inc. Oxide mixture and complex oxide coatings for cathode materials
US11749799B2 (en) 2018-08-17 2023-09-05 Apple Inc. Coatings for cathode active materials
US11673112B2 (en) 2020-06-28 2023-06-13 eJoule, Inc. System and process with assisted gas flow inside a reaction chamber
US11121354B2 (en) 2019-06-28 2021-09-14 eJoule, Inc. System with power jet modules and method thereof
US11376559B2 (en) 2019-06-28 2022-07-05 eJoule, Inc. Processing system and method for producing a particulate material
US11757096B2 (en) 2019-08-21 2023-09-12 Apple Inc. Aluminum-doped lithium cobalt manganese oxide batteries
CN112447965B (en) * 2019-09-02 2022-01-11 宁德时代新能源科技股份有限公司 Positive electrode active material, positive electrode plate and lithium ion secondary battery
US11862806B2 (en) 2020-06-03 2024-01-02 Zhuhai Cosmx Battery Co., Ltd. Button cell and electronic device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223122A (en) * 1999-01-29 2000-08-11 Sanyo Electric Co Ltd Positive electrode active material for lithium secondary battery and its manufacture, positive electrode for lithium secondary battery using the positive electrode active material and its manufacture, and lithium secondary battery using the positive electrode and its manufacture

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2000873C (en) * 1988-10-21 1999-12-14 Shigeru Oishi Cell having current cutoff valve
JP3049727B2 (en) 1989-04-25 2000-06-05 ソニー株式会社 Non-aqueous electrolyte secondary battery
US5256504A (en) * 1991-09-13 1993-10-26 Matsushita Electric Industrial Co., Ltd. Monaqueous electrolyte secondary batteries
JP3244314B2 (en) * 1991-11-13 2002-01-07 三洋電機株式会社 Non-aqueous battery
JPH05299092A (en) * 1992-01-17 1993-11-12 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic lithium secondary battery and manufacture thereof
US5393622A (en) * 1992-02-07 1995-02-28 Matsushita Electric Industrial Co., Ltd. Process for production of positive electrode active material
JP3429328B2 (en) * 1992-07-21 2003-07-22 日立マクセル株式会社 Lithium secondary battery and method of manufacturing the same
JPH0676824A (en) 1992-08-27 1994-03-18 Nippondenso Co Ltd Manufacture of nonaqueous electrolyte secondary battery
CN1059757C (en) * 1993-07-10 2000-12-20 北京大学 Secondary battery with lithium ion aqueous solution
JPH0773883A (en) 1993-08-31 1995-03-17 Haibaru:Kk Secondary battery
DE69409352T2 (en) * 1993-12-24 1998-07-23 Sharp Kk Non-aqueous secondary battery, active material for positive electrode and process for its manufacture
JP3373069B2 (en) 1993-12-24 2003-02-04 シャープ株式会社 Non-aqueous secondary battery and method for producing positive electrode active material thereof
US5429890A (en) * 1994-02-09 1995-07-04 Valence Technology, Inc. Cathode-active material blends of Lix Mn2 O4
JPH07245106A (en) 1994-03-02 1995-09-19 Masayuki Yoshio Manufacture of lixmn2o4 for lithium secondary battery and application thereof to nonaqueous battery
JP3550783B2 (en) 1994-05-16 2004-08-04 東ソー株式会社 Lithium-containing transition metal composite oxide, method for producing the same, and use thereof
US5707756A (en) * 1994-11-29 1998-01-13 Fuji Photo Film Co., Ltd. Non-aqueous secondary battery
US5626635A (en) * 1994-12-16 1997-05-06 Matsushita Electric Industrial Co., Ltd. Processes for making positive active material for lithium secondary batteries and secondary batteries therefor
JPH08315860A (en) * 1995-05-23 1996-11-29 Fuji Photo Film Co Ltd Nonaqueous electrolyte secondary battery
JP3130813B2 (en) 1995-11-24 2001-01-31 富士化学工業株式会社 Lithium nickel composite oxide, method for producing the same, and positive electrode active material for secondary battery
DE69620154T2 (en) * 1995-11-24 2002-10-02 Fuji Chem Ind Co Ltd LITHIUM-NICKEL COMPOSITE OXIDE, METHOD FOR THE PRODUCTION THEREOF AND POSITIVE ACTIVE MATERIAL FOR SECONDARY BATTERY
US5718989A (en) * 1995-12-29 1998-02-17 Japan Storage Battery Co., Ltd. Positive electrode active material for lithium secondary battery
JP3897387B2 (en) * 1995-12-29 2007-03-22 株式会社ジーエス・ユアサコーポレーション Method for producing positive electrode active material for lithium secondary battery
JP3613869B2 (en) 1996-01-19 2005-01-26 松下電器産業株式会社 Non-aqueous electrolyte battery
TW363940B (en) * 1996-08-12 1999-07-11 Toda Kogyo Corp A lithium-nickle-cobalt compound oxide, process thereof and anode active substance for storage battery
JPH10172570A (en) 1996-12-16 1998-06-26 Aichi Steel Works Ltd Lithium secondary battery and its positive electrode active material
JP3281829B2 (en) * 1997-01-16 2002-05-13 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JP3561607B2 (en) 1997-05-08 2004-09-02 三洋電機株式会社 Non-aqueous electrolyte secondary battery and method for producing positive electrode material
DE69819395T2 (en) 1997-04-15 2004-09-09 Sanyo Electric Co., Ltd., Moriguchi Positive electrode material for use of the non-aqueous electrolyte-containing battery and method of manufacturing the same and the non-aqueous electrolyte-containing battery
JPH10289731A (en) 1997-04-15 1998-10-27 Sanyo Electric Co Ltd Nonaqueous electrolytic battery
JP4061668B2 (en) 1997-04-21 2008-03-19 宇部興産株式会社 Lithium ion non-aqueous electrolyte secondary battery
JPH10316431A (en) * 1997-05-14 1998-12-02 Fuji Chem Ind Co Ltd Lithium-nickel complex oxide and its production, and active substance of cathod for lithium secondary battery
DE19849343A1 (en) * 1997-10-30 1999-06-02 Samsung Display Devices Co Ltd Composite lithium-nickel-cobalt oxide used as positive active material in a secondary lithium ion cell
JPH11219726A (en) * 1998-02-02 1999-08-10 Mitsubishi Chemical Corp Lithium secondary battery
JPH11250890A (en) 1998-02-27 1999-09-17 Toray Ind Inc Porous polymer film for battery separator
JP3524762B2 (en) * 1998-03-19 2004-05-10 三洋電機株式会社 Lithium secondary battery
JPH11307094A (en) * 1998-04-20 1999-11-05 Chuo Denki Kogyo Co Ltd Lithium secondary battery positive electrode active material and lithium secondary battery
JPH11354156A (en) * 1998-06-05 1999-12-24 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2000200607A (en) 1998-07-13 2000-07-18 Ngk Insulators Ltd Lithium secondary battery
JP3142522B2 (en) * 1998-07-13 2001-03-07 日本碍子株式会社 Lithium secondary battery
JP2000133262A (en) 1998-10-21 2000-05-12 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2000173666A (en) 1998-12-10 2000-06-23 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP3600051B2 (en) * 1998-12-25 2004-12-08 三洋電機株式会社 Lithium secondary battery
JP2000251894A (en) 1998-12-29 2000-09-14 Hitachi Maxell Ltd Nonaqueous secondary battery, and usage thereof
JP2000203947A (en) 1999-01-11 2000-07-25 Matsushita Electric Ind Co Ltd Firing apparatus for lithium-metal multicomponent oxide and firing method of the same
KR100510862B1 (en) 1999-02-03 2005-08-26 제일모직주식회사 Method for preparing cathode active materials for the secondary lithium ion battery
JP2000260432A (en) * 1999-03-09 2000-09-22 Mitsubishi Electric Corp Positive electrode active material, manufacture thereof, and lithium ion secondary battery using it
JP4318002B2 (en) 1999-04-09 2009-08-19 Agcセイミケミカル株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP3890185B2 (en) * 2000-07-27 2007-03-07 松下電器産業株式会社 Positive electrode active material and non-aqueous electrolyte secondary battery including the same
US6660432B2 (en) * 2000-09-14 2003-12-09 Ilion Technology Corporation Lithiated oxide materials and methods of manufacture
US20020053663A1 (en) * 2000-11-06 2002-05-09 Tanaka Chemical Corporation High density cobalt-manganese coprecipitated nickel hydroxide and process for its production
JP4080337B2 (en) * 2001-03-22 2008-04-23 松下電器産業株式会社 Positive electrode active material and non-aqueous electrolyte secondary battery including the same
US6964828B2 (en) * 2001-04-27 2005-11-15 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
JP3873717B2 (en) 2001-11-09 2007-01-24 ソニー株式会社 Positive electrode material and battery using the same
US6964818B1 (en) * 2003-04-16 2005-11-15 General Electric Company Thermal protection of an article by a protective coating having a mixture of quasicrystalline and non-quasicrystalline phases

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223122A (en) * 1999-01-29 2000-08-11 Sanyo Electric Co Ltd Positive electrode active material for lithium secondary battery and its manufacture, positive electrode for lithium secondary battery using the positive electrode active material and its manufacture, and lithium secondary battery using the positive electrode and its manufacture

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101127554B1 (en) 2011-07-20 2012-03-23 한화케미칼 주식회사 Single phase lithium-deficient multi-component transition metal oxides having a layered crystal structure and a method of producing the same
WO2013012192A2 (en) * 2011-07-20 2013-01-24 Hanwha Chemical Corporation Single-phase lithium-deficient lithium multicomponent transition metal oxide having a layered crystal structure and a method for producing the same
WO2013012192A3 (en) * 2011-07-20 2013-03-28 Hanwha Chemical Corporation Single-phase lithium-deficient lithium multicomponent transition metal oxide having a layered crystal structure and a method for producing the same
KR101360798B1 (en) 2011-12-27 2014-02-12 한화케미칼 주식회사 Single Phase Lithium-deficient Multi-component Transition Metal Oxides Having a Layered Crystal Structure and a Method of Producing the Same

Also Published As

Publication number Publication date
US20080121841A1 (en) 2008-05-29
KR20050096191A (en) 2005-10-05
US7351500B2 (en) 2008-04-01
CN101887972A (en) 2010-11-17
US7341805B2 (en) 2008-03-11
JP4137635B2 (en) 2008-08-20
US20030082452A1 (en) 2003-05-01
WO2002040404A1 (en) 2002-05-23
AU2002214289A1 (en) 2002-05-27
JPWO2002040404A1 (en) 2004-03-25
US20050260496A1 (en) 2005-11-24
EP1295851A1 (en) 2003-03-26
CN1418174A (en) 2003-05-14
KR20020092936A (en) 2002-12-12
CN1741308A (en) 2006-03-01
CN100400425C (en) 2008-07-09
KR100632979B1 (en) 2006-10-11
US8801960B2 (en) 2014-08-12
EP1295851A4 (en) 2008-08-20
CN101887972B (en) 2012-07-04
CN1741308B (en) 2012-06-27

Similar Documents

Publication Publication Date Title
KR100628797B1 (en) Active cathode material comprising the lithium-containing composite oxide
JP4086654B2 (en) Lithium-containing composite oxide, method for producing the same, and non-aqueous secondary battery
EP1130663B1 (en) Positive electrode material for battery and nonaqueous electrolyte secondary battery
JP4813453B2 (en) Lithium-containing composite oxide and non-aqueous secondary battery
EP1142834A1 (en) Lithium-manganese composite oxide, positive electrode material for lithium secondary cell, positive electrode and lithium secondary cell, and method for preparing lithium-manganese composite oxide
KR100280998B1 (en) Cathode Active Material for Lithium Secondary Battery
JP2002110167A (en) Lithium oxide material and method for manufacturing the same
JP2008120679A5 (en)
EP1207574A1 (en) Positive active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery comprising same
JPH08217452A (en) Needle manganese complex oxide, production and use thereof
JP4458232B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP4028738B2 (en) Positive electrode active material for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery
JP3769052B2 (en) Method for producing tin-added lithium nickelate for active material of lithium secondary battery positive electrode
KR100560537B1 (en) Negative active material for non-aqueous electrolyte battery, method of preparing same, and non-aqueous electrolyte battery
KR101083860B1 (en) Cathode Material, Method of Manufacturing the Same, and Battery Using the Same
US20230249983A1 (en) Li-rich transition metal oxides material
JP3746099B2 (en) Cathode active material for lithium battery and method for producing the same
JP2002184404A (en) Positive electrode material and nonaqueous electrolyte battery
JPH06163046A (en) Manufacture of positive electrode active material for nonaqueous electrolyte battery
KR19990052170A (en) Lithium-cobalt-manganese oxide (LICOXMN2-XO4) of cathode material of 5V class lithium secondary battery and its manufacturing method
JPH11250912A (en) Lithium secondary battery using lithium-x-manganese oxide(luxxmn2-xo4) as cathode material and manufacture of lithium-x-manganese oxide
JP2002097022A (en) New lithium manganese compound oxide and lithium secondary cell

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120907

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20130903

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140901

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150820

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160818

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170823

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180904

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20190829

Year of fee payment: 14