JPH07245106A - Manufacture of lixmn2o4 for lithium secondary battery and application thereof to nonaqueous battery - Google Patents
Manufacture of lixmn2o4 for lithium secondary battery and application thereof to nonaqueous batteryInfo
- Publication number
- JPH07245106A JPH07245106A JP6071234A JP7123494A JPH07245106A JP H07245106 A JPH07245106 A JP H07245106A JP 6071234 A JP6071234 A JP 6071234A JP 7123494 A JP7123494 A JP 7123494A JP H07245106 A JPH07245106 A JP H07245106A
- Authority
- JP
- Japan
- Prior art keywords
- limn
- lithium
- surface area
- specific surface
- manganese dioxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
【産業上の利用分野】本発明は、金属リチウムあるいは
リチウムカーボン(リチウム−グラファイト)などのイ
ンターカレーション化合物を負極活物質とするリチウム
二次電池において、正極活物質として使用するスピネル
構造のLiMn2O4に関する。
【0003】
【従来の技術および問題点】4ボルト系高エネルギー密
度型のリチウム二次電池用正極活物質としてはLiNi
O2の他、LiCoO2、LiMn2O4が使用可能で
ある。LiCoO2を正極活物質とする電池は既に市販
されている。しかしコバルトは資源量が少なく且つ高価
であるため、電池の普及に伴う大量生産には向かない。
資源量や価格の面から考えるとマンガン化合物が有望な
正極材料である。原料として使用可能な二酸化マンガン
は現在乾電池材料として大量に生産されている。従来、
結晶性のスピネル型LiMn2O4は炭酸リチウムとM
n2O3(Hunter;J. SolidState
Chem.,39 142(1981))の反応や炭
酸リチウムと炭酸マンガンを加熱(Thackeray
ら, Mat.Res.Bull.,19,179(1
984)など)して合成されていた。炭酸リチウムとM
n2O3を900℃、24時間焼成して得られるスピネ
ルLiMn2O4の比表面積は0.1m2/g以下であ
る。この試料は0.01Cの放電速度でも80mAH/
gの容量しかない。またサイクルとともに容量が低下す
る欠点がある。放電速度を0.3Cとすると容量は30
mAH/gまで低下する。この試料を粉砕し比表面積を
0.4m2/gあるいは1.3m2/gとした試料を
0.01Cで充電し、種々の放電速度で放電した場合の
放電容量を表1に示す。
この結果より高い電流密度での放電では比表面積が放電
容量を決定する重要な因子であることを示している。し
かし、空気中低温焼成で生成する比表面積の大きい非晶
質歪スピネル構造のLiMn2O4は4V級電池として
は放電容量が小さい。しかし、この点の改良が可能なら
ば、4V級電池の正極活物質として使用可能となる。大
電流を取り出せる4V級リチウム二次電池用LiMn2
O4の具現すべき性質はスピネル構造で、かつ比表面積
が大きいことである。前述したようにLiMn2O4の
比表面積は機械的な粉砕により粒子を微細化することに
よっても可能であるが製造プロセスが増えコストが高く
なることおよび電極作製にあたって多量の導電剤および
結着剤が必要となり体積当たりの放電容量が低下するた
め機械的粉砕は抜本的解決手段とはならない。前述した
700−900℃の一段階の熱処理でLiMn2O4を
製造する従来のプロセスではMn2O3を用いるかある
いは炭酸マンガン用いた場合は中間生成物としてMn2
O3を生成する。2つの方法によると初期の焼成過程で
Mn2O3が生成し、そのMn2O3が炭酸リチウムと
反応して、最終的にスピネル構造のLiMn2O4が生
成する。図1に示すようにMn2O3は650℃の低温
での熱処理でも焼結反応が進行し、24時間の熱処理で
比表面積は原料Mn2O3の1/10以下に低下する。
従って従来の方法では反応中間体のMn2O3とLi2
CO3が反応しLiMn2O4を生成する前にMn2O
3の焼結が進行し、比表面積が低下する。比表面積が小
さくなると高電流密度での放電容量が低下するのみなら
ず、サイクル特性も劣化する欠点がある。
【0004】
【発明が解決しようとする課題】本発明は、かかる従来
技術の課題に鑑みなされたもので、既に申請中の受付番
号29305501980の研究を進めた結果得られた
ものである。リチウム二次電池正極活物質に比表面積の
大きな結晶性スピネル構造のLiMn2O4や放電曲線
が平坦となるLixMn2O4を用いることにより高い
放電速度での放電容量を向上させることとサイクル特性
を向上させることおよび800℃以下で大容量のスピネ
ル構造のLixMn2O4(1.04<x<1.2)の
合成を目的とする。
【0005】
【問題点を解決するための手段】前述したようにMn2
O3を経由してLiMn2O4を製造する方法では、L
iMn2O4が生成する前に反応中間体であるMn2O
3の焼結が進行し、比表面積の小さいLiMn2O4が
生成する。二酸化マンガンを550℃以上に加熱すると
Mn2O3が生成するので550℃未満で二酸化マンガ
ンとリチウム塩を反応させ非晶質歪スピネル構造のLi
Mn2O4を製造する。650−750℃での再度の加
熱処理により非晶質歪スピネル構造のLiMn2O4か
ら結晶性のスピネル構造のLiMn2O4に変化する。
この構造変化は比表面積の低下を伴うが、結晶性スピネ
ル構造のLiMn2O4が一旦生成すると図2に示した
ように750℃以下ではこの物質の焼結反応は遅い。そ
れ故700℃での熱処理により比表面積の低下を抑制す
ることができる。リチウム塩には固液反応で反応が進行
する硝酸リチウムや水酸化リチウムが適切である。ま
た、溶融した硝酸リチウムを二酸化マンガン細孔内に浸
透させるため250−300℃で保持する。この時非晶
質LiyMnO2(y=0.33)が生成する。この
後、350℃以上で焼成するとスピネル構造のLixM
n2O4が生成する。高比表面積スピネルLiMn2O
4を製造するうえで重要なことはMn2O3を生成させ
ないことにある。この為260−500℃で非晶質Li
yMnO2(Y=0.33) や歪スピネル構造のLi
Mn2O4などのリチウム含有MnO2を生成させスピ
ネルLiMn2O4を生成させるプロセスが望ましい。
【0006】結晶性スピネルLiMn2O4は充放電時
に構造変化があり、サイクルの増加に伴い結晶格子の膨
張収縮により活物質粒子の破壊、微細化し、サイクル特
性が低下する。この結晶構造変化を最小にする方法を見
いだした。実施例2のLi/Mn原子比0.5のスピネ
ルLiMn2O4の金属リチウムを負極とした場合の充
放電曲線は図2(7)に示すように3.95V付近と
4.1V付近に二段の電圧平坦部を有する。3.8−
4.05Vまでは、結晶構造が変化することなく膨張収
縮する均一固相反応領域であり、4.05−4.2Vま
では二つの結晶層が共存する二相反応領域である。Li
/Mn原子比を実施例3に示すように0.56とすると
充放電電圧は単調に増減し、二段の平坦な部分が消滅
し、平坦な曲線となる。この曲線の形状は従来のスピネ
ルLiMn2O4とは明らかにことなる。このLixM
n2O4(x=1.12)とLiMn2O4のX線回折
図(FeKα線使用)では、とも2θ=23.3−2
3.8、45.8−46.2、56.0−56.5゜に
スピネルのLiMn2O4に特徴的なピークを有する
(図3(9))。ピークの線幅に着目すると放電曲線が
平坦となるものでは45.8−46.2゜((311)
回折線)、56.0−56.5°((400)回折線)
が広くなり、(311)回折線幅は0.5°以上を示
す。即ち、x=1.12にすることにより、サイクル特
性のすぐれた新規なLixMn2O4を見いだした。
【0007】MnO2とLiNO3からLiMn2O4
を生成するためには二酸化マンガンからの酸素の放出に
伴う還元過程が不可欠である。約20%の酸素が存在す
る空気中での焼成では還元反応は進行しにくい。窒素ガ
ス下での焼成では酸素が強制的に放出され、この還元過
程がスムーズに進行する。それ故、低温でのスピネル構
造のLiMn2O4の生成も可能となり、焼結反応も抑
制されるため比表面積も大きくなる。実施例4に示す4
60℃、48時間焼成段階での試料の充放電曲線を図4
に示した。この試料は図3(10)に示すようにピーク
位置はスピネル構造と一致する、ピーク幅は比較的狭い
が、ピーク強度では若干劣り結晶の発達度は高温焼成物
よりも劣る。しかし、空気中460℃、96時間焼成し
た歪スピネル構造の化合物(図3(11))よりもピー
ク強度が高く、ピーク幅が狭く500℃前後の低温での
焼成により高容量のLiMn2O4やLixMn2O4
の製造が可能となる。実施例5に示すように窒素気流下
750℃で24時間焼成して得られるLiMn2O4は
充電容量130mAH/gを示し、放電時の容量も11
5mAH/g以上を示す。窒素ガス下の焼成により、サ
イクル特性のすぐれた高性能LiMn2O4の製造が可
能となった。
【0008】
【発明の効果】本法で製造したLiMn2O4は図面5
に示すように1Cの放電速度で130mAH/g以上の
放電容量を有し、表2に示すようにサイクル特性もすぐ
れ、大電流を必要とする機器に使用するリチウム二次電
池用正極活物質として有用である。
【0009】
【実施例】
【実施例1】化学合成二酸化マンガン(Sedema社
Faradizer M,国際共通サンプル No.
12)8.69gと硝酸リチウム3.438gを粉砕混
合する。270℃で3時間保持した後、400℃、48
時間空気雰囲気下で予備焼成し、非晶質の歪スピネル構
造のLiMn2O4を得る。これを再び700℃で12
0時間焼成し、結晶性のスピネル構造のLiMn2O4
とする。700℃、120時間焼成して得たスピネルL
iMn2O4(3.2m2/g) と導電性バインダー
(アセチレンブラックとポリ四フッ化エチレンの複合
体:20Wt%) から成る合剤を正極とし、金属リチ
ウムを負極として0.2Cの速度(5時間)で充電した
後、種々の速度(0.2−5C)で放電した場合の放電
曲線を示した。電解液にはLiAsF6を溶解したエチ
レンカーボネート−プロピレンカーボネートの混合液を
用いた。充放電電圧範囲は4.5−3.0Vとした。図
4に示すように1Cの高い放電速度でも容量は130m
AH/g以上あり、分極も100mV以下と小さい。
【実施例2】電解二酸化マンガン(国際共通サンプルN
o.17)3.00gと硝酸リチウム1.19gを粉砕
混合し、270℃で5時間保持する。この試料を460
℃、116時間空気中で焼成し、歪スピネル構造のLi
Mn2O4(5m2/g)を得る。さらに650℃、5
0時間空気中で焼成して、結晶性スピネル構造のLiM
n2O4を得る。この試料の(311)回折線幅は0.
43゜であった。この試料の放電曲線は図2(7)に示
すように3.95V付近と4.1V付近に二段の電圧平
坦部を有する曲線となる。充放電電流密度は0.3Cと
し、電解液にはLiPF6を溶解したプロピレンカーボ
ネート−ジエチルカーボネート混合液を用いた。
【0010】
【実施例3】電解二酸化マンガン(国際共通サンプルN
o.17)3.00gと硝酸リチウム1.32gを粉砕
混合し、270℃で5時間保持する。460℃、96時
間空気中で焼成したのち、さらに空気中48時間、65
0℃で焼成し、XRD的には結晶性スピネル構造のLi
xMn2O4(x=1.12)を得る。この化合物の充
放電曲線は図2(5)に示すように二段の平坦部が消失
し、一段の平坦な曲線となり、従来の結晶性スピネル構
造のLiMn2O4の充放電曲線とは異なる。このた
め、サイクル特性は格段に向上する。本化合物は放電曲
線からみて新規な電池活物質と考えられる。また、(3
11)回折線幅は0.56゜であった。
【実施例4】電解二酸化マンガン(国際共通サンプルN
o.17)3.00gと硝酸リチウム1.32gを粉砕
混合し、アルミナルツボ中270℃で5時間保持する。
460℃、48時間窒素気流で焼成した。この試料を、
さらに窒素気流下650℃で24焼成した。この化合物
の充放電曲線は図2(6)に示すようにS字曲線とな
り、容量も実施例3よりも10%大きい値を示した。即
ち、窒素気流下で焼成することにより平坦な放電曲線を
示すスピネル構造のLixMn2O4が生成しやすくな
る。なお、(311)回折線幅は0.51゜であった。
Li/Mnの原子比を多くしてもこの化合物は得やすく
なるが、この比が大きくなると容量が低下する。
【実施例5】電解二酸化マンガン(国際共通サンプルN
o.17)3.00gと硝酸リチウム1.19gを粉砕
混合し、アルミナルツボ中260℃で12時間保持す
る。750℃、24時間窒素気流で焼成した。
【0011】Description: FIELD OF THE INVENTION The present invention relates to a lithium secondary battery using an intercalation compound such as metallic lithium or lithium carbon (lithium-graphite) as a negative electrode active material, and as a positive electrode active material. It relates to the spinel structure LiMn 2 O 4 used. 2. Description of the Related Art LiNi is used as a positive electrode active material for a 4-volt high energy density type lithium secondary battery.
Other than O 2 , LiCoO 2 and LiMn 2 O 4 can be used. Batteries using LiCoO 2 as the positive electrode active material are already on the market. However, since cobalt has a small amount of resources and is expensive, it is not suitable for mass production with the spread of batteries.
Manganese compounds are promising cathode materials in terms of resource amount and price. Manganese dioxide, which can be used as a raw material, is currently produced in large quantities as a dry battery material. Conventionally,
Crystalline spinel type LiMn 2 O 4 contains lithium carbonate and M
n 2 O 3 (Hunter; J. SolidState
Chem. , 39 142 (1981)) or heating lithium carbonate and manganese carbonate (Tackeray
Et al., Mat. Res. Bull. , 19 , 179 (1
984) and the like). Lithium carbonate and M
The specific surface area of spinel LiMn 2 O 4 obtained by firing n 2 O 3 at 900 ° C. for 24 hours is 0.1 m 2 / g or less. This sample has a discharge rate of 0.01C and is 80 mAH /
There is only g capacity. Further, there is a drawback that the capacity decreases with the cycle. If the discharge rate is 0.3C, the capacity is 30
It decreases to mAH / g. Table 1 shows the discharge capacities when the sample was crushed to have a specific surface area of 0.4 m 2 / g or 1.3 m 2 / g and charged at 0.01 C and discharged at various discharge rates. This result shows that the specific surface area is an important factor for determining the discharge capacity in the discharge at a higher current density. However, LiMn 2 O 4 having an amorphous strain spinel structure having a large specific surface area generated by low temperature firing in air has a small discharge capacity as a 4V class battery. However, if this point can be improved, it can be used as a positive electrode active material for a 4V class battery. LiMn 2 for 4V class lithium secondary battery capable of extracting large current
O 4 should have a spinel structure and a large specific surface area. As described above, the specific surface area of LiMn 2 O 4 can also be obtained by refining the particles by mechanical pulverization, but the manufacturing process increases and the cost increases, and a large amount of the conductive agent and the binder are used for manufacturing the electrode. However, mechanical pulverization is not a drastic solution because the discharge capacity per unit volume is reduced. In the conventional process of producing LiMn 2 O 4 by the above-described one-step heat treatment at 700 to 900 ° C., Mn 2 O 3 is used, or when manganese carbonate is used, Mn 2 is used as an intermediate product.
Generates O 3 . According to two methods when the Mn 2 O 3 generated at the initial sintering process, the Mn 2 O 3 reacts with lithium carbonate, finally LiMn 2 O 4 having a spinel structure is formed. As shown in FIG. 1, Mn 2 O 3 undergoes a sintering reaction even by heat treatment at a low temperature of 650 ° C., and the specific surface area is reduced to 1/10 or less of the raw material Mn 2 O 3 by heat treatment for 24 hours.
Therefore, according to the conventional method, Mn 2 O 3 and Li 2 which are reaction intermediates are used.
Before CO 3 reacts to form LiMn 2 O 4 , Mn 2 O
The sintering of No. 3 progresses and the specific surface area decreases. When the specific surface area becomes small, not only the discharge capacity at high current density decreases but also the cycle characteristics deteriorate. The present invention has been made in view of the above problems of the prior art, and was obtained as a result of proceeding with the research of acceptance number 29305501980, which has already been applied for. Use of LiMn 2 O 4 having a crystalline spinel structure having a large specific surface area or LixMn 2 O 4 having a flat discharge curve as a positive electrode active material for a lithium secondary battery to improve discharge capacity at high discharge rate and cycle characteristics. And to synthesize a large-capacity spinel-structured LixMn 2 O 4 (1.04 <x <1.2) at 800 ° C. or lower. Means for Solving the Problems As described above, Mn 2
In the method of producing LiMn 2 O 4 via O 3 , L
Before the formation of iMn 2 O 4 , the reaction intermediate Mn 2 O
3 progresses, and LiMn 2 O 4 having a small specific surface area is generated. When manganese dioxide is heated to 550 ° C. or higher, Mn 2 O 3 is produced. Therefore, manganese dioxide and a lithium salt are reacted at a temperature lower than 550 ° C.
Manufacture Mn 2 O 4 . By heat treatment again at 650 to 750 ° C., LiMn 2 O 4 having an amorphous strain spinel structure is changed to LiMn 2 O 4 having a crystalline spinel structure.
This structural change is accompanied by a decrease in specific surface area, but once LiMn 2 O 4 having a crystalline spinel structure is formed, the sintering reaction of this substance is slow at 750 ° C. or lower as shown in FIG. Therefore, the heat treatment at 700 ° C. can suppress the decrease in the specific surface area. Lithium nitrate and lithium hydroxide, which undergo a solid-liquid reaction, are suitable for the lithium salt. Further, the molten lithium nitrate is kept at 250 to 300 ° C. in order to penetrate into the manganese dioxide pores. At this time, amorphous Li y MnO 2 (y = 0.33) is generated. After that, if baked at 350 ° C. or higher, LixM having a spinel structure
n 2 O 4 is produced. High specific surface area spinel LiMn 2 O
What is important in producing No. 4 is that Mn 2 O 3 is not formed. Therefore, amorphous Li at 260-500 ° C
y MnO 2 (Y = 0.33) or Li having a strained spinel structure
A process that produces lithium-containing MnO 2 such as Mn 2 O 4 and spinel LiMn 2 O 4 is desirable. The crystalline spinel LiMn 2 O 4 undergoes a structural change during charge and discharge, and as the cycle increases, the expansion and contraction of the crystal lattice causes the active material particles to break down and become finer, degrading the cycle characteristics. We have found a way to minimize this crystal structure change. As shown in FIG. 2 (7), the charge and discharge curves when the metallic lithium of spinel LiMn 2 O 4 having an Li / Mn atomic ratio of 0.5 of Example 2 was used as the negative electrode were around 3.95 V and around 4.1 V. It has a two-stage voltage flat portion. 3.8-
Up to 4.05 V is a uniform solid-phase reaction region in which the crystal structure expands and contracts without changing, and up to 4.0-4.2 V is a two-phase reaction region in which two crystal layers coexist. Li
When the / Mn atomic ratio is set to 0.56 as shown in Example 3, the charging / discharging voltage monotonously increases and decreases, and the two-stage flat portions disappear, resulting in a flat curve. The shape of this curve is clearly different from the conventional spinel LiMn 2 O 4 . This LixM
In the X-ray diffraction diagram (using FeKα line) of n 2 O 4 (x = 1.12) and LiMn 2 O 4 , both 2θ = 23.3-2.
It has characteristic peaks of LiMn 2 O 4 of spinel at 3.8, 45.8-46.2, and 56.0-56.5 ° (FIG. 3 (9)). Focusing on the line width of the peak, if the discharge curve is flat, it is 45.8-46.2 ° ((311)
Diffraction line), 56.0-56.5 ° ((400) diffraction line)
Becomes wider, and the (311) diffraction line width shows 0.5 ° or more. That is, by setting x = 1.12, a new LixMn 2 O 4 having excellent cycle characteristics was found. From MnO 2 and LiNO 3 to LiMn 2 O 4
The reduction process accompanying the release of oxygen from manganese dioxide is indispensable for the production of methane. The reduction reaction is difficult to proceed by firing in air in which about 20% oxygen is present. When firing under nitrogen gas, oxygen is forcibly released, and this reduction process proceeds smoothly. Therefore, it becomes possible to generate LiMn 2 O 4 having a spinel structure at a low temperature, and the sintering reaction is suppressed, so that the specific surface area becomes large. 4 shown in Example 4
FIG. 4 shows the charge / discharge curve of the sample at the firing stage of 60 ° C. for 48 hours.
It was shown to. As shown in FIG. 3 (10), the peak position of this sample coincides with the spinel structure, and the peak width is relatively narrow, but the peak strength is slightly inferior and the degree of crystal growth is inferior to that of the high temperature fired product. However, the peak intensity is higher and the peak width is narrower than that of the compound having a strained spinel structure (FIG. 3 (11)) which is fired in air at 460 ° C. for 96 hours, and high capacity LiMn 2 O 4 is fired at a low temperature around 500 ° C. And LixMn 2 O 4
Can be manufactured. As shown in Example 5, LiMn 2 O 4 obtained by firing at 750 ° C. for 24 hours in a nitrogen stream has a charge capacity of 130 mAH / g and a discharge capacity of 11 as well.
It shows 5 mAH / g or more. By firing under nitrogen gas, it became possible to produce high performance LiMn 2 O 4 with excellent cycle characteristics. The LiMn 2 O 4 produced by this method is shown in FIG.
As shown in Table 2, it has a discharge capacity of 130 mAH / g or more at a discharge rate of 1 C, has excellent cycle characteristics as shown in Table 2, and is used as a positive electrode active material for a lithium secondary battery used in equipment requiring a large current. It is useful. EXAMPLES Example 1 Chemically Synthesized Manganese Dioxide (Fardizer M, Sedema, International Common Sample No.
12) 8.69 g and lithium nitrate 3.438 g are ground and mixed. After holding at 270 ° C for 3 hours, 400 ° C, 48
Preliminary firing is performed in an air atmosphere for an hour to obtain amorphous LiMn 2 O 4 having a strained spinel structure. This again at 700 ℃ 12
LiMn 2 O 4 having a crystalline spinel structure after firing for 0 hours
And Spinel L obtained by firing at 700 ° C for 120 hours
A mixture composed of iMn 2 O 4 (3.2 m 2 / g) and a conductive binder (composite of acetylene black and polytetrafluoroethylene: 20 Wt%) was used as a positive electrode, and lithium metal was used as a negative electrode at a rate of 0.2 C. The discharge curves when charging at (5 hours) and then discharging at various rates (0.2-5C) are shown. As the electrolytic solution, a mixed solution of ethylene carbonate-propylene carbonate in which LiAsF 6 was dissolved was used. The charge / discharge voltage range was 4.5-3.0V. As shown in Fig. 4, the capacity is 130m even at a high discharge rate of 1C.
AH / g or more, and polarization is as small as 100 mV or less. [Example 2] Electrolytic manganese dioxide (International common sample N
o. 17) 3.00 g and 1.19 g of lithium nitrate are pulverized and mixed, and kept at 270 ° C. for 5 hours. 460 this sample
Li of the strained spinel structure after firing in air at 116 ° C for 116 hours
Mn 2 O 4 (5 m 2 / g) is obtained. Further 650 ° C, 5
LiM with crystalline spinel structure after firing in air for 0 hours
obtain n 2 O 4. The (311) diffraction line width of this sample is 0.
It was 43 °. The discharge curve of this sample is a curve having two voltage flat portions near 3.95 V and 4.1 V as shown in FIG. The charge / discharge current density was 0.3 C, and a propylene carbonate-diethyl carbonate mixed solution in which LiPF 6 was dissolved was used as the electrolytic solution. Example 3 Electrolytic Manganese Dioxide (International Common Sample N
o. 17) 3.00 g and 1.32 g of lithium nitrate are pulverized and mixed, and kept at 270 ° C. for 5 hours. After baking in air at 460 ° C for 96 hours, it is further baked in air for 48 hours for 65 hours.
It was fired at 0 ° C. and XRD was crystalline spinel structure Li.
xMn 2 O 4 (x = 1.12) is obtained. As shown in FIG. 2 (5), the charge / discharge curve of this compound is a flat curve with two flat portions disappearing, which is different from the charge / discharge curve of LiMn 2 O 4 having a conventional crystalline spinel structure. . Therefore, the cycle characteristics are significantly improved. This compound is considered to be a novel battery active material in view of the discharge curve. Also, (3
11) The diffraction line width was 0.56 °. Example 4 Electrolytic Manganese Dioxide (International Common Sample N
o. 17) 3.00 g and 1.32 g of lithium nitrate are pulverized and mixed, and kept in an alumina crucible at 270 ° C. for 5 hours.
It was baked at 460 ° C. for 48 hours in a nitrogen stream. This sample
Further, it was baked at 650 ° C. for 24 times in a nitrogen stream. The charge / discharge curve of this compound was an S-shaped curve as shown in FIG. 2 (6), and the capacity was 10% larger than that of Example 3. That is, by firing in a nitrogen stream, LixMn 2 O 4 having a spinel structure showing a flat discharge curve is easily generated. The (311) diffraction line width was 0.51 °.
This compound is easily obtained even if the atomic ratio of Li / Mn is increased, but the capacity decreases when the ratio is increased. [Example 5] Electrolytic manganese dioxide (International common sample N
o. 17) 3.00 g and 1.19 g of lithium nitrate are pulverized and mixed, and kept in an alumina crucible at 260 ° C. for 12 hours. It was baked at 750 ° C. for 24 hours in a nitrogen stream. [0011]
【図面の簡単な説明】
【図1】 Mn2O3とLiMn2O4の焼結温度と比
表面積の関係
【図2】 窒素気流下および空気中で合成した種々のL
ixMn2O4の放電曲線。
【図3】 窒素気流下および空気中で合成した種々のL
ixMn2O4のXRD図
【図4】 窒素気流下、460℃焼成により得られたL
ixMn2O4の放電曲線。
【図5】 本法により合成したLiMn2O4の放電曲
線。
【符号の説明】
1 LiMn2O4:650℃熱処理
2 LiMn2O4:750℃熱処理
3 Mn2O3 :650℃熱処理
4 Mn2O3 :750℃熱処理
5 スピネルLixMn2O4
6 窒素気流下で合成したスピネルLixMn2O4
7 結晶性スピネルLiMn2O4
8 結晶性スピネルLiMn2O4
9 スピネルLixMn2O4
10 窒素気流下で460℃で合成したスピネルLix
Mn2O4
11 空気中450℃、96時間焼成により得られたス
ピネルLiMn2O4BRIEF DESCRIPTION OF THE DRAWINGS [FIG. 1] Relationship between sintering temperature and specific surface area of Mn 2 O 3 and LiMn 2 O 4 [FIG. 2] Various L synthesized under nitrogen stream and in air
Discharge curve of ixMn 2 O 4 . FIG. 3 Various L synthesized under nitrogen stream and in air
XRD diagram of ixMn 2 O 4 [FIG. 4] L obtained by firing at 460 ° C. under a nitrogen stream
Discharge curve of ixMn 2 O 4 . FIG. 5 is a discharge curve of LiMn 2 O 4 synthesized by this method. [Explanation of Codes] 1 LiMn 2 O 4 : 650 ° C. heat treatment 2 LiMn 2 O 4 : 750 ° C. heat treatment 3 Mn 2 O 3 : 650 ° C. heat treatment 4 Mn 2 O 3 : 750 ° C. heat treatment 5 spinel LixMn 2 O 4 6 nitrogen stream Spinel LixMn 2 O 4 7 crystalline spinel LiMn 2 O 4 8 crystalline spinel LiMn 2 O 4 9 spinel LixMn 2 O 4 10 spinel Lix synthesized under nitrogen flow at 460 ° C.
Mn 2 O 4 11 450 ℃ in air, spinel LiMn 2 O4 obtained by firing 96 hours
Claims (1)
ンを250−470℃で焼成しリチウム含有二酸化マン
ガンを合成した後、500−800℃で焼成する二段階
焼成法を特色とする結晶性LiMn2O4の製造方法。
硝酸リチウムの代わりに水酸化リチウムを用いてもよ
い。 2.比表面積2m2/g以上の結晶性LiMn2O4の
製造方法。 3.硝酸リチウムと電解あるいは化学合成二酸化マンガ
ンを窒素ガス気流下、300−800℃の温度範囲で焼
成して得られるLiMn2O4の製造方法。 4.スピネル構造のLixMn2O4でxの値が1.0
4−1.2の範囲の化合物。 5.スピネル構造のLixMn2O4でFeKαもちい
て測定したXRDの2θ=46゜のピーク((311)
面回折線)の半値幅が0.5゜以上の化合物。 6.前述のLiMn2O4を正極活物質とするリチウム
二次電池およびカーボンなどインターカレーション化合
物を負極とするロッキングチェアー型リチウムイオン電
池用正極。 【0002】[Claims] 1. Method for producing crystalline LiMn 2 O 4 characterized by a two-step firing method in which lithium nitrate and electrolytically or chemically synthesized manganese dioxide are calcined at 250-470 ° C. to synthesize lithium-containing manganese dioxide, and then calcined at 500-800 ° C. .
Lithium hydroxide may be used instead of lithium nitrate. 2. A method for producing crystalline LiMn 2 O 4 having a specific surface area of 2 m 2 / g or more. 3. A method for producing LiMn 2 O 4 obtained by firing lithium nitrate and electrolytically or chemically synthesized manganese dioxide in a temperature range of 300 to 800 ° C. under a nitrogen gas stream. 4. The value of x is 1.0 in Li x Mn 2 O 4 having a spinel structure.
Compounds in the range 4-1.2. 5. Peak of 2θ = 46 ° of XRD measured using FeKα with Li x Mn 2 O 4 having a spinel structure ((311)
A compound having a half-width of the surface diffraction line of 0.5 ° or more. 6. A lithium secondary battery using LiMn 2 O 4 as a positive electrode active material and a positive electrode for a rocking chair type lithium ion battery having a negative electrode of an intercalation compound such as carbon. [0002]
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6071234A JPH07245106A (en) | 1994-03-02 | 1994-03-02 | Manufacture of lixmn2o4 for lithium secondary battery and application thereof to nonaqueous battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6071234A JPH07245106A (en) | 1994-03-02 | 1994-03-02 | Manufacture of lixmn2o4 for lithium secondary battery and application thereof to nonaqueous battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07245106A true JPH07245106A (en) | 1995-09-19 |
Family
ID=13454809
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6071234A Pending JPH07245106A (en) | 1994-03-02 | 1994-03-02 | Manufacture of lixmn2o4 for lithium secondary battery and application thereof to nonaqueous battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07245106A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11102703A (en) * | 1997-09-26 | 1999-04-13 | Asahi Chem Ind Co Ltd | Nonaqueous secondary battery |
WO2001036334A1 (en) * | 1999-11-15 | 2001-05-25 | Mitsubishi Chemical Corporation | Lithium-manganese composite oxide, positive electrode material for lithium secondary cell, positive electrode and lithium secondary cell, and method for preparing lithium-manganese composite oxide |
KR20010056566A (en) * | 1999-12-15 | 2001-07-04 | 성재갑 | Method for preparing lithium manganese oxide for lithium cell and battery |
JP2001266874A (en) * | 2000-03-16 | 2001-09-28 | Toho Titanium Co Ltd | Lithium ion secondary battery |
KR100323280B1 (en) * | 1996-06-27 | 2002-07-02 | 혼조 이치로 | Process for producing lithium manganese oxide with spinel structure |
KR100450212B1 (en) * | 1997-06-10 | 2004-11-26 | 삼성에스디아이 주식회사 | METHOD FOR PREPARING LiMn2O4 POWDER FOR LITHIUM ION BATTERIES IN UNIFORM PHASE TO PROVIDE HIGH INITIAL BATTERY CAPACITY |
EP1487038A2 (en) * | 2003-06-11 | 2004-12-15 | Hitachi, Ltd. | Positive electrode material, its manufacturing method and lithium batteries |
US7341805B2 (en) | 2000-11-16 | 2008-03-11 | Hitachi Maxell, Ltd. | Lithium-containing complex oxide, non-aqueous secondary battery using the lithium-containing complex oxide, and method for producing the lithium-containing complex oxide |
CN103721750A (en) * | 2014-01-09 | 2014-04-16 | 深圳市三顺中科新材料有限公司 | Catalyst for preparing long-pipe-diameter carbon nano tubes and preparation method of catalyst |
-
1994
- 1994-03-02 JP JP6071234A patent/JPH07245106A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100323280B1 (en) * | 1996-06-27 | 2002-07-02 | 혼조 이치로 | Process for producing lithium manganese oxide with spinel structure |
KR100450212B1 (en) * | 1997-06-10 | 2004-11-26 | 삼성에스디아이 주식회사 | METHOD FOR PREPARING LiMn2O4 POWDER FOR LITHIUM ION BATTERIES IN UNIFORM PHASE TO PROVIDE HIGH INITIAL BATTERY CAPACITY |
JPH11102703A (en) * | 1997-09-26 | 1999-04-13 | Asahi Chem Ind Co Ltd | Nonaqueous secondary battery |
WO2001036334A1 (en) * | 1999-11-15 | 2001-05-25 | Mitsubishi Chemical Corporation | Lithium-manganese composite oxide, positive electrode material for lithium secondary cell, positive electrode and lithium secondary cell, and method for preparing lithium-manganese composite oxide |
US6692665B2 (en) | 1999-11-15 | 2004-02-17 | Mitsubishi Chemical Corporation | Lithium managanese oxide, cathode material for lithium secondary battery, cathode, lithium secondary battery and process for manufacturing lithium manganese oxide |
KR20010056566A (en) * | 1999-12-15 | 2001-07-04 | 성재갑 | Method for preparing lithium manganese oxide for lithium cell and battery |
JP2001266874A (en) * | 2000-03-16 | 2001-09-28 | Toho Titanium Co Ltd | Lithium ion secondary battery |
US7341805B2 (en) | 2000-11-16 | 2008-03-11 | Hitachi Maxell, Ltd. | Lithium-containing complex oxide, non-aqueous secondary battery using the lithium-containing complex oxide, and method for producing the lithium-containing complex oxide |
EP1487038A2 (en) * | 2003-06-11 | 2004-12-15 | Hitachi, Ltd. | Positive electrode material, its manufacturing method and lithium batteries |
US7604898B2 (en) | 2003-06-11 | 2009-10-20 | Hitachi, Ltd. | Positive electrode material, its manufacturing method and lithium secondary battery |
EP1487038A3 (en) * | 2003-06-11 | 2010-02-17 | Hitachi, Ltd. | Positive electrode material, its manufacturing method and lithium batteries |
EP2237347A2 (en) | 2003-06-11 | 2010-10-06 | Hitachi, Ltd. | Positive electrode material, its manufacturing method and lithium batteries |
EP2237347A3 (en) * | 2003-06-11 | 2011-03-02 | Hitachi, Ltd. | Positive electrode material, its manufacturing method and lithium batteries |
US7910246B2 (en) | 2003-06-11 | 2011-03-22 | Hitachi, Ltd. | Positive electrode material, its manufacturing method and lithium secondary battery |
US8097363B2 (en) | 2003-06-11 | 2012-01-17 | Hitachi, Ltd. | Positive electrode material, its manufacturing method and lithium secondary battery |
CN103721750A (en) * | 2014-01-09 | 2014-04-16 | 深圳市三顺中科新材料有限公司 | Catalyst for preparing long-pipe-diameter carbon nano tubes and preparation method of catalyst |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3222022B2 (en) | Method for producing lithium secondary battery and negative electrode active material | |
US5700598A (en) | Method for preparing mixed amorphous vanadium oxides and their use as electrodes in reachargeable lithium cells | |
JP3653409B2 (en) | Positive electrode active material for lithium secondary battery and manufacturing method thereof, positive electrode for lithium secondary battery using the positive electrode active material and manufacturing method thereof, lithium secondary battery using the positive electrode and manufacturing method thereof | |
JP3362564B2 (en) | Non-aqueous electrolyte secondary battery, and its positive electrode active material and method for producing positive electrode plate | |
TWI452758B (en) | Cathode material of lithium ion battery, method for making the same, and lithium ion battery using the same | |
KR20150028849A (en) | Doped nickelate compounds | |
JP3611190B2 (en) | Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery | |
JPH1167209A (en) | Lithium secondary battery | |
JP7271848B2 (en) | Method for producing positive electrode active material for lithium ion secondary battery | |
JP2003068305A (en) | Negative material for secondary lithium battery and its manufacturing method | |
JP3446639B2 (en) | Method for producing positive electrode active material for lithium secondary battery and lithium secondary battery | |
JP3653210B2 (en) | Method for producing spinel manganese oxide for lithium secondary battery | |
JPH07245106A (en) | Manufacture of lixmn2o4 for lithium secondary battery and application thereof to nonaqueous battery | |
JPH11149926A (en) | Lithium manganese oxide fine powder, production lithium manganese fine powder, and lithium ion secondary battery employing positive electrode containing lithium manganese fine powder as active material | |
JPH10255804A (en) | Lithium secondary battery | |
JP3021229B2 (en) | Method for producing LiMn2O4 having crystalline spinel structure and positive electrode for secondary battery using the same as active material | |
KR100307165B1 (en) | Positive active material composition for lithium secondary battery and lithium secondary battery comprising the same | |
JP2001122626A (en) | Lithium-manganese multi-component oxide, method for manufacturing the same, lithium secondary battery positive electrode active material and lithium secondary battery | |
JP6975435B2 (en) | Non-aqueous electrolyte secondary battery Negative electrode manufacturing method | |
JP4062165B2 (en) | Method for producing positive electrode active material for lithium ion secondary battery | |
JPH10125324A (en) | Manufacture of nonaqueous electrolyte secondary battery and positive active material thereof | |
JP3655737B2 (en) | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery | |
JPH11111286A (en) | Manufacture of positive electrode material for lithium secondary battery | |
JP2004002066A (en) | Cobalt oxide particle powder, its preparation process, nonaqueous electrolyte secondary battery, cathode active material for this and its manufacturing process | |
KR100237311B1 (en) | Method of manufacturing cathode active mass and made thereby |