JP3655737B2 - Method for producing positive electrode active material for non-aqueous electrolyte secondary battery - Google Patents

Method for producing positive electrode active material for non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP3655737B2
JP3655737B2 JP22711297A JP22711297A JP3655737B2 JP 3655737 B2 JP3655737 B2 JP 3655737B2 JP 22711297 A JP22711297 A JP 22711297A JP 22711297 A JP22711297 A JP 22711297A JP 3655737 B2 JP3655737 B2 JP 3655737B2
Authority
JP
Japan
Prior art keywords
lithium
manganese
precursor
positive electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22711297A
Other languages
Japanese (ja)
Other versions
JPH1167204A (en
Inventor
裕美 幾原
雄二 岩本
浩一 菊田
眞一 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Fine Ceramics Center
Original Assignee
Japan Fine Ceramics Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Fine Ceramics Center filed Critical Japan Fine Ceramics Center
Priority to JP22711297A priority Critical patent/JP3655737B2/en
Publication of JPH1167204A publication Critical patent/JPH1167204A/en
Application granted granted Critical
Publication of JP3655737B2 publication Critical patent/JP3655737B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解液二次電池の正極活物質の製造方法に関するものであり、さらに詳しくは、組成が均一であり、微細で表面積の高い正極材料として有用なリチウムマンガナイトを製造する方法に関する。
【0002】
【従来の技術】
近年、ラップトップ型コンピューターや携帯電話、カムコーダ等に代表されるポータブル機器の需要の増加に伴い、電源となる二次電池の開発が進んでいる。リチウム二次電池は、これまでの二次電池に比べて高電圧、高エネルギー密度を得ることができるため小型軽量化が期待されている。
この二次電池の正極に用いる材料として、LiCoO2 、LiNiO2 、LiMn24 等の層状構造あるいはトンネル構造を有する材料が研究されている。これらの正極材料においては、リチウムイオンが結晶格子中の空サイトヘインターカレートとデインターカレートすることにより、電気化学反応が進行する。この中で、LiMn24 については、いくつかの合成法が知られており、Mn硝酸塩や酢酸塩などを出発物質として水溶液中で析出させる方法(P.Barboux,J.M.Tarascon,and F.K.Shokoohi,J.Soid State Chem.,94,185−196,1991)、あるいは炭酸リチウムと二酸化マンガンを混合して固相法により合成する方法(J.M.Tarascon,W.R.McKinnon,F.Coowar,T.N.Bowmer,G.Amatucci,and D.Guymard,J.Electrochem.Soc.141,1421−1431)等が用いられている。
しかし、従来の方法では、低温において、微細な表面積の高い正極材料を得ることは困難であった。
【0003】
【発明が解決しようとする課題】
このような状況の中で、本発明者らは、微細で表面積の高い正極材料を簡便な操作で作製する方法を開発することを目標として鋭意研究を積み重ねた結果、安定な前駆体溶液を用いて合成したリチウムマンガン化合物を、酸素雰囲気中で200〜750℃で加熱処理することにより所期の目的を達成し得ることを見出し、本発明を完成するに至った。
即ち、本発明は、非水電解液を用いた二次電池の正極の活物質材料に用いるのに有用な、微細で歪みの少ない粒子からなるリチウムマンガン酸化物を製造する方法を提供することを目的とする。
また、本発明は、低温において微細な表面積の高い正極材料を提供することを目的とする。
さらに、本発明は、上記正極材料を用いて、放電容量が大きく、サイクル特性に優れた二次電池を提供することをも目的としている。
【0004】
【課題を解決するための手段】
上記課題を達成する本発明は、一般式Li1-x Mn2-y 4 (0≦x<1.0、0≦y<0.5)で示されるスピネル型構造の複合酸化物の製造方法において、出発物質であるリチウム前駆体とマンガン前駆体を溶媒に溶解させ配位子置換することにより安定な前駆体溶液を調製し、この溶媒を留去あるいは濃縮することにより得られる前駆体を加熱処理させ正極材料を製造することを特徴とする二次電池の正極活物質の製造方法、である。
【0005】
【発明の実施の形態】
次に、本発明についてさらに詳述する。
非水電解液二次電池において大きな放電容量を得るための課題は、組成が均一であり、微細で表面積の高いリチウムマンガナイトを得ることにある。上記目的を達成するために、本発明の非水電解液二次電池の正極活物質の製造方法では、一般式Li1-x Mn2-y4 (0≦x<1.0、0≦y<0.5)で表されるスピネル型構造の複合酸化物の製造方法において、出発物質であるリチウム前駆体とマンガン前駆体を溶媒に溶解させ配位子置換することにより安定な前駆体溶液を調製し、この溶媒を留去あるいは濃縮することにより得られる前駆体を加熱処理させ、正極材料を製造する方法が採られる。
本発明は、前駆体としてLi(O−A)、Mn(O−B)z(z=2,3)とLi、Mnの配位子を変化させた原料を用いることを特徴とし、リチウムアルコキシドおよびリチウム塩、マンガンアルコキシドおよびマンガン錯塩などLi(O−A)、Mn(O−B)zとLi、Mnの配位子を変化させた原料を用いて適正な溶媒を用いることにより配位子を置換させ、安定な前駆体を形成させ正極材料を製造する方法を提供する。この方法によれば、固体混合法、水溶液からの沈澱法等、通常の正極材料の製造に使用される方法によるよりも、さらに低温において微細な表面積の高い正極材料の提供が可能となる。
【0006】
本発明は、非水二次電池の正極材料チリウムマンガナイトの特殊な製造方法として前駆体法を提起しているが、この前駆体法の場合のリチウムマンガナイトの原料については、リチウム源としては、リチウムアルコキシドおよびリチウム塩が好ましい。望ましくはリチウムメトキサイド、リチウムエトキサイド、リチウムプロポキサイド、酢酸リチウムなどが好ましい。また、マンガン源としては、マンガンアルコキシドおよびマンガン錯塩が好ましい。アルコキシドとしては、メトキシド、エトキシド、およびイソプロポキシド等の炭素数1〜3のアルコキシド類が、また、マンガン錯塩としては、マンガンアセチルアセトナート(Mn=2価、3価)が好ましい。
それぞれの原料を溶解する溶媒については、エチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテルなどが好ましい。
【0007】
アルゴン雰囲気下、例えば、上記のリチウムアルコキシドあるいはリチウム塩とマンガンアルコキシドあるいはマンガン錯塩をリチウムとマンガンの原子比がLi/Mn(モル比)=0.5となるよう不活性ガス雰囲気中で秤量した後、それぞれ溶媒に溶解し、約125℃から140℃の温度で、3時間以上窒素あるいは酸素雰囲気中で還流し配位子置換を行う。得られた2溶液の溶媒を濃縮あるいは留去後さらに溶媒を加える。このリチウムおよびマンガン前駆体溶液を混合し常温で1時間以上攪拌しても良いし、さらに還流を3時間以上続けても良い。次いで、例えば、この前駆体溶液を80℃で減圧乾燥し、溶媒を留去し前駆体粉末を得る。合成した前駆体は150℃〜200℃で酸素雰囲気中3時間加熱することが好ましい。加熱処理の温度は出発原料により適宜設定されるが温度は200〜750℃が好ましい。加熱処理の温度が100℃未満では結晶化は進行しない。100℃以上200℃以下でも結晶化は進行するが長時間を要するので好ましくない。
焼成雰囲気については、空気雰囲気または空気よりも高濃度の酸素を含む雰囲気で合成を行う方が好ましい。さらに好ましくは、純酸素雰囲気中で加熱処理を行うことが好ましい。
【0008】
【作用】
本発明の非水電解液二次電池の正極材料の製造方法により、均質で、微細なLiMn2 4 粉末の合成ができるのは、安定な前駆体溶液を調製できた効果による。即ち、本発明の出発物質であるリチウム前駆体とマンガン前駆体を溶媒に溶解させ配位子置換することにより、沈澱しない安定な前駆体溶液を調製できる。この溶媒を混合し攪拌あるいは還流することにより得られた前駆体溶液の溶媒を留去することにより得られる前駆体粉末を加熱処理することにより、配位子置換リチウムと配位子置換マンガンからほぼ同時に配位子の離脱が開始され、これに伴う前駆体由来のリチウムマンガナイトの結晶化が進行し、微細な結晶核が形成されたと考えられる。
【0009】
【実施例】
以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明は、当該実施例によって何ら限定されるものではない。
実施例1
窒素雰囲気下、市販のリチウムエトキサイドとマンガンイソプロポキサイドをリチウムとマンガンの原子比がLi/Mn(モル比)=0.5となるよう秤量した後、それぞれエチレングリコールモノエチルエーテルに溶解し、135℃で3時間還流し配位子置換を行った。得られた2溶液の溶媒を濃縮後エチレングリコールモノエチルエーテルを加えた。この2溶液を混合し常温で1時間攪拌した後、得られた溶液を80℃で減圧乾燥し、前駆体粉末を得た。合成した前駆体粉末を200℃で酸素雰囲気中3時間加熱後250℃で酸素中3時間熱処理しリチウムマンガナイトを得た。得られたリチウムマンガナイトを粉末X線回折による分析(CuKα)を行った。その結果を図1に示す。図1から明らかなようにLiMn2 4 に対応するピークが同定され250℃という低温でLiMn2 4 が生成されたことが確認できた。電子顕微鏡観察結果より、得られた粉末の平均一次粒子径は20nmであった。
【0010】
実施例2
実施例1と同様に合成した前駆体粉末を、200℃で酸素雰囲気中3時間仮焼後500℃で酸素中3時間焼成してリチウムマンガナイトを得た。得られたリチウムマンガナイトを粉末X線回折による分析(CuKα)を行った。その結果を図1に示す。図1から明らかなように500℃での焼成においてもLiMn2 4 の生成が確認された。電子顕微鏡観察結果より、得られた粉末の平均一次粒子径は20nmであった。
【0011】
実施例3
実施例1と同様に合成した前駆体粉末を、200℃で酸素雰囲気中3時間仮焼後700℃で酸素中3時間焼成してリチウムマンガナイトを得た。得られたリチウムマンガナイトを粉末X線回折による分析(CuKα)を行った。その結果を図1に示す。図1から明らかなように700℃の焼成によりLiMn2 4 に対応するピークが同定されLiMn2 4 の生成が確認された。電子顕微鏡観察結果より、得られた粉末の平均一次粒子径は22nmであった。
【0012】
比較例1
窒素雰囲気下、リチウムエトキサイドとマンガンイソプロポキサイドをリチウムとマンガンの原子比がLi/Mn(モル比)=0.5となるよう秤量した後、それぞれエチレングリコールモノエチルエーテルに溶解し、135℃で3時間還流し配位子置換を行った。得られた2溶液を溶媒留去後エチレングリコールモノエチルエーテルを加えた。この2溶液を混合し常温で1時間攪拌した後、得られた溶液を80℃で減圧乾燥し、前駆体粉末を得た。粉末X線回折(CuKα)の結果より、得られた粉末はアモルファス相であった。
【0013】
実施例4
実施例1から実施例3で合成した前駆体の熱分解挙動をTG−DTAにより調べた結果を図2に示す。測定に供した前駆体粉末は5.6gであり、昇温速度は5℃/minで酸素雰囲気中で評価した。200℃には燃焼によるLi/Mnの配位子の結合の開裂に伴う発熱ピークが見られた。発熱ピークが一つであることからリチウムアルコキシドとマンガンアルコキシドがほぼ同時に配位子の離脱が開始され、これに伴う前駆体由来のリチウムマンガナイトの結晶化が進行し、LiMn2 4 単相が得られたことが分かる。
【0014】
実施例5
酢酸リチウムを溶解させたエチレングリコールモノメチルエーテルに等量のアセチルアセトンを加え、これを混合し酸素気流中で3時間還流した。また、マンガンとアセチルアセトナートを溶解させたエチレングリコールモノメチルエーテルに等量の2−アミノエタノールを加え、これを混合し酸素気流中で3時間還流した。ここでLi/Mnは0.5とした。得られた溶液をそれぞれ溶媒留去し、これにエチレングリコールモノメチルエーテルを加え、窒素中で還流を行った後に溶液を溶媒留去し、前駆体粉末を得た。得られた粉末を酸素中200℃で加熱し配位子部分を解裂させたのち、700℃で3時間焼成を行った。得られたリチウムマンガナイトについて粉末X線回折(CuKα)を行った。その結果を図3に示す。図3にみられるようにLiMn2 4 に対応するピークが得られLiMn2 4 単相の粉末であることが確認できた。電子顕微鏡観察結果より、得られた粉末の平均一次粒子径は30nmであった。本実施例により配位子を制御することで安定な前駆体が得られ、これを焼成して微細なLiMn2 4 を生成することが可能となった。
【0015】
試験例1
図1のX線回折結果から得られた回折ピークの回折角度と、半価幅をHallの式に代入すると結晶子径と歪みの関係が得られる。250℃から700℃の全域にわたって、結晶子径はほぼ20nmであった。また700℃で焼成した試料の歪みは0.02%であった。
この700℃で製造した正極活物質の初期容量を評価するために試料電極を作製した。試料電極の構成は、正極活物質とアセチレンブラックとふっ素樹脂系結着剤が重量比で5:4:1となるように混合した正極合剤とし、対極Li、参照極を別のLi、電解液をプロピレンカーボネート、ジメトキシエタンの混合溶液にLiClO4 を溶かした液を用いて電池を組み立て、電池性能を評価したところ初期容量は126mAh/gが得られ、放電容量の大きく、かつサイクル特性の優れた電池となることが分かった。
【0016】
【発明の効果】
本発明によれば、前駆体法を用いて、従来技術では達成されなかった微細な、歪みの少ない粒子からなる正極材料が得られる。即ち、本発明の範囲外である比較例においては、結晶化していないアモルファス相、あるいは第二相の不純物が存在している。これに対し、本発明の範囲内である実施例においては、20〜35nmの微細なリチウムマンガナイト単相からなる粉末を得ることができる。したがって、本発明の正極活物質製造方法によれば、表面積の高いリチウムマンガナイトが得られる。さらには、放電容量が大きく、サイクル特性に優れた電池を得ることができる。
【図面の簡単な説明】
【図1】本発明の実施例1、2、3において得られたLiMn2 4 の粉末X線回折図である。
【図2】本発明の実施例4において得られた材料のTG−DTA曲線である。
【図3】本発明の実施例5において得られたLiMn2 4 の粉末X線回折図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery. More specifically, the present invention produces lithium manganite having a uniform composition, a fine and high specific surface area, and useful as a positive electrode material. Regarding the method.
[0002]
[Prior art]
In recent years, with the increase in demand for portable devices such as laptop computers, mobile phones, camcorders, etc., development of secondary batteries that serve as power sources is progressing. Lithium secondary batteries are expected to be smaller and lighter because they can obtain higher voltage and higher energy density than conventional secondary batteries.
As a material used for the positive electrode of the secondary battery, materials having a layered structure or a tunnel structure such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 have been studied. In these positive electrode materials, the lithium ions intercalate with empty sites in the crystal lattice, whereby an electrochemical reaction proceeds. Among them, several synthesis methods are known for LiMn 2 O 4 , and a method of precipitation in an aqueous solution using Mn nitrate or acetate as a starting material (P. Barboux, JM Tarascon, and F. K. Shokohi, J. Soid State Chem., 94, 185-196, 1991), or a method in which lithium carbonate and manganese dioxide are mixed and synthesized by a solid phase method (JM Tarascon, WR McKinnon, F. Coower, TN Bowmer, G. Amatocci, and D. Guymard, J. Electrochem. Soc. 141, 1421-1431) are used.
However, in the conventional method, it is difficult to obtain a fine positive electrode material having a high specific surface area at a low temperature.
[0003]
[Problems to be solved by the invention]
Under such circumstances, the present inventors have conducted intensive research aimed at developing a method for producing a fine cathode material having a high specific surface area by a simple operation, and as a result, a stable precursor solution was obtained. It has been found that the intended purpose can be achieved by heat-treating the lithium manganese compound synthesized by use at 200 to 750 ° C. in an oxygen atmosphere, and the present invention has been completed.
That is, the present invention provides a method for producing a lithium manganese oxide composed of fine and less distorted particles, which is useful for use as an active material for a positive electrode of a secondary battery using a non-aqueous electrolyte. Objective.
Another object of the present invention is to provide a fine positive electrode material having a high specific surface area at low temperatures.
Another object of the present invention is to provide a secondary battery having a large discharge capacity and excellent cycle characteristics, using the positive electrode material.
[0004]
[Means for Solving the Problems]
The present invention for achieving the above object is to produce a composite oxide having a spinel structure represented by the general formula Li 1-x Mn 2-y O 4 (0 ≦ x <1.0, 0 ≦ y <0.5). In the method, a stable precursor solution is prepared by dissolving a lithium precursor and a manganese precursor as starting materials in a solvent and replacing the ligand, and a precursor obtained by distilling or concentrating the solvent is prepared. A method for producing a positive electrode active material for a secondary battery, wherein the positive electrode material is produced by heat treatment.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in further detail.
The problem for obtaining a large discharge capacity in a non-aqueous electrolyte secondary battery is to obtain lithium manganite having a uniform composition, fineness and high specific surface area. In order to achieve the above object, in the method for producing a positive electrode active material of a non-aqueous electrolyte secondary battery of the present invention, a general formula Li 1-x Mn 2-y O 4 (0 ≦ x <1.0, 0 ≦ In the method for producing a composite oxide having a spinel structure represented by y <0.5), a stable precursor solution is obtained by dissolving a lithium precursor and a manganese precursor as starting materials in a solvent and replacing the ligand. And a precursor obtained by distilling or concentrating the solvent is heat-treated to produce a positive electrode material.
The present invention is characterized in that Li (OA), Mn (OB) z (z = 2, 3) and a raw material in which Li and Mn ligands are changed are used as a precursor, and lithium alkoxide is used. Lithium salts, manganese alkoxides and manganese complex salts such as Li (OA), Mn (OB) z and Li, by using a suitable solvent using raw materials in which Li and Mn ligands are changed Is provided to form a stable precursor and to produce a positive electrode material. According to this method, it is possible to provide a fine positive electrode material having a high specific surface area at a lower temperature than by a method used for producing a normal positive electrode material, such as a solid mixing method or a precipitation method from an aqueous solution.
[0006]
The present invention proposes a precursor method as a special method for producing the positive electrode material thyllium manganite of the non-aqueous secondary battery. The lithium manganite raw material in this precursor method is used as a lithium source. Are preferably lithium alkoxides and lithium salts. Desirably, lithium methoxide, lithium ethoxide, lithium propoxide, lithium acetate and the like are preferable. Further, as the manganese source, manganese alkoxide and manganese complex salt are preferable. As the alkoxide, alkoxides having 1 to 3 carbon atoms such as methoxide, ethoxide and isopropoxide are preferable, and as the manganese complex salt, manganese acetylacetonate (Mn = 2 valent, trivalent) is preferable.
As the solvent for dissolving each raw material, ethylene glycol monoethyl ether, ethylene glycol monomethyl ether, and the like are preferable.
[0007]
After weighing, for example, the above lithium alkoxide or lithium salt and manganese alkoxide or manganese complex salt in an inert gas atmosphere so that the atomic ratio of lithium and manganese is Li / Mn (molar ratio) = 0.5 in an argon atmosphere. Each of them is dissolved in a solvent and refluxed in a nitrogen or oxygen atmosphere at a temperature of about 125 ° C. to 140 ° C. for 3 hours or more to perform ligand substitution. The solvent of the obtained two solutions is concentrated or distilled off, and then the solvent is added. The lithium and manganese precursor solutions may be mixed and stirred at room temperature for 1 hour or longer, and reflux may be continued for 3 hours or longer. Next, for example, the precursor solution is dried under reduced pressure at 80 ° C., and the solvent is distilled off to obtain a precursor powder. The synthesized precursor is preferably heated at 150 to 200 ° C. in an oxygen atmosphere for 3 hours. The temperature of the heat treatment is appropriately set depending on the starting material, but the temperature is preferably 200 to 750 ° C. When the temperature of the heat treatment is less than 100 ° C., crystallization does not proceed. Although crystallization proceeds even at 100 ° C. or more and 200 ° C. or less, it takes a long time, which is not preferable.
As for the firing atmosphere, it is preferable to perform the synthesis in an air atmosphere or an atmosphere containing oxygen at a higher concentration than air. More preferably, heat treatment is performed in a pure oxygen atmosphere.
[0008]
[Action]
The homogeneous and fine LiMn 2 O 4 powder can be synthesized by the method for producing the positive electrode material of the non-aqueous electrolyte secondary battery of the present invention because of the effect of preparing a stable precursor solution. That is, a stable precursor solution that does not precipitate can be prepared by dissolving the lithium precursor and manganese precursor, which are the starting materials of the present invention, in a solvent and replacing the ligand. By heating the precursor powder obtained by distilling off the solvent of the precursor solution obtained by mixing and stirring or refluxing this solvent, almost from the ligand-substituted lithium and the ligand-substituted manganese. At the same time, the detachment of the ligand was initiated, and the accompanying crystallization of lithium manganite derived from the precursor progressed, and it was considered that fine crystal nuclei were formed.
[0009]
【Example】
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further in detail, this invention is not limited at all by the said Example.
Example 1
Under a nitrogen atmosphere, commercially available lithium ethoxide and manganese isopropoxide were weighed so that the atomic ratio of lithium and manganese was Li / Mn (molar ratio) = 0.5, and then dissolved in ethylene glycol monoethyl ether. The mixture was refluxed at 135 ° C. for 3 hours to perform ligand substitution. After concentrating the solvent of the obtained two solutions, ethylene glycol monoethyl ether was added. The two solutions were mixed and stirred at room temperature for 1 hour, and then the obtained solution was dried under reduced pressure at 80 ° C. to obtain a precursor powder. The synthesized precursor powder was heated at 200 ° C. in an oxygen atmosphere for 3 hours and then heat treated at 250 ° C. in oxygen for 3 hours to obtain lithium manganite. The obtained lithium manganite was analyzed by powder X-ray diffraction (CuKα). The result is shown in FIG. As is clear from FIG. 1, a peak corresponding to LiMn 2 O 4 was identified, and it was confirmed that LiMn 2 O 4 was produced at a low temperature of 250 ° C. From the result of observation with an electron microscope, the average primary particle size of the obtained powder was 20 nm.
[0010]
Example 2
The precursor powder synthesized in the same manner as in Example 1 was calcined at 200 ° C. for 3 hours in an oxygen atmosphere and then calcined at 500 ° C. for 3 hours in oxygen to obtain lithium manganite. The obtained lithium manganite was analyzed by powder X-ray diffraction (CuKα). The result is shown in FIG. As is apparent from FIG. 1, the formation of LiMn 2 O 4 was confirmed even in the firing at 500 ° C. From the result of observation with an electron microscope, the average primary particle size of the obtained powder was 20 nm.
[0011]
Example 3
The precursor powder synthesized in the same manner as in Example 1 was calcined at 200 ° C. for 3 hours in an oxygen atmosphere and then calcined at 700 ° C. for 3 hours in oxygen to obtain lithium manganite. The obtained lithium manganite was analyzed by powder X-ray diffraction (CuKα). The result is shown in FIG. As is clear from FIG. 1, a peak corresponding to LiMn 2 O 4 was identified by firing at 700 ° C., and the production of LiMn 2 O 4 was confirmed. From the result of observation with an electron microscope, the average primary particle diameter of the obtained powder was 22 nm.
[0012]
Comparative Example 1
In a nitrogen atmosphere, lithium ethoxide and manganese isopropoxide were weighed so that the atomic ratio of lithium and manganese was Li / Mn (molar ratio) = 0.5, and then dissolved in ethylene glycol monoethyl ether, respectively. The mixture was refluxed for 3 hours to perform ligand substitution. The obtained two solutions were evaporated, and then ethylene glycol monoethyl ether was added. The two solutions were mixed and stirred at room temperature for 1 hour, and then the obtained solution was dried under reduced pressure at 80 ° C. to obtain a precursor powder. From the result of powder X-ray diffraction (CuKα), the obtained powder was in an amorphous phase.
[0013]
Example 4
The results of examining the thermal decomposition behavior of the precursors synthesized in Examples 1 to 3 by TG-DTA are shown in FIG. The precursor powder used for the measurement was 5.6 g, and the temperature elevation rate was 5 ° C./min. At 200 ° C., an exothermic peak was observed accompanying the cleavage of the Li / Mn ligand bond by combustion. Since the exothermic peak is one, lithium alkoxide and manganese alkoxide start to detach from the ligand almost simultaneously, the accompanying crystallization of lithium manganite derived from the precursor proceeds, and the LiMn 2 O 4 single phase becomes You can see that it was obtained.
[0014]
Example 5
An equal amount of acetylacetone was added to ethylene glycol monomethyl ether in which lithium acetate was dissolved, and this was mixed and refluxed in an oxygen stream for 3 hours. Further, an equal amount of 2-aminoethanol was added to ethylene glycol monomethyl ether in which manganese and acetylacetonate were dissolved, and this was mixed and refluxed in an oxygen stream for 3 hours. Here, Li / Mn was set to 0.5. Each of the obtained solutions was distilled off, ethylene glycol monomethyl ether was added thereto, refluxed in nitrogen, and then the solution was distilled off to obtain a precursor powder. The obtained powder was heated in oxygen at 200 ° C. to cleave the ligand portion, and then calcined at 700 ° C. for 3 hours. The obtained lithium manganite was subjected to powder X-ray diffraction (CuKα). The result is shown in FIG. It was confirmed peak corresponding to LiMn 2 O 4 as seen in FIG. 3 is a powder of LiMn 2 O 4 single phase obtained. From the electron microscope observation results, the average primary particle size of the obtained powder was 30 nm. By controlling the ligand according to this example, a stable precursor was obtained, and this could be fired to produce fine LiMn 2 O 4 .
[0015]
Test example 1
By substituting the diffraction angle of the diffraction peak obtained from the X-ray diffraction result of FIG. 1 and the half-value width into the Hall equation, the relationship between the crystallite diameter and the strain can be obtained. The crystallite diameter was approximately 20 nm over the entire region from 250 ° C to 700 ° C. The distortion of the sample fired at 700 ° C. was 0.02%.
In order to evaluate the initial capacity of the positive electrode active material produced at 700 ° C., a sample electrode was prepared. The sample electrode is composed of a positive electrode mixture in which a positive electrode active material, acetylene black, and a fluororesin binder are mixed at a weight ratio of 5: 4: 1. The battery was assembled using a solution obtained by dissolving LiClO 4 in a mixed solution of propylene carbonate and dimethoxyethane, and the battery performance was evaluated. As a result, the initial capacity was 126 mAh / g, the discharge capacity was large, and the cycle characteristics were excellent. It turned out to be a battery.
[0016]
【The invention's effect】
According to the present invention, the precursor method is used to obtain a positive electrode material composed of fine, low-distortion particles that could not be achieved by the prior art. That is, in the comparative example that is outside the scope of the present invention, there is an amorphous phase that is not crystallized or impurities in the second phase. On the other hand, in the Example which is in the scope of the present invention, a powder composed of a fine lithium manganite single phase of 20 to 35 nm can be obtained. Therefore, according to the positive electrode active material manufacturing method of the present invention, lithium manganite having a high specific surface area can be obtained. Furthermore, a battery having a large discharge capacity and excellent cycle characteristics can be obtained.
[Brief description of the drawings]
FIG. 1 is a powder X-ray diffraction pattern of LiMn 2 O 4 obtained in Examples 1, 2, and 3 of the present invention.
FIG. 2 is a TG-DTA curve of the material obtained in Example 4 of the present invention.
FIG. 3 is a powder X-ray diffraction pattern of LiMn 2 O 4 obtained in Example 5 of the present invention.

Claims (7)

一般式Li1-x Mn2-y 4 (0≦x<1.0、0≦y<0.5)で示されるスピネル型構造の複合酸化物の製造方法において、出発物質であるリチウム前駆体とマンガン前駆体をエチレングリコールモノエチルエーテルまたはエチレングリコールモノメチルエーテル溶媒に溶解させ配位子置換することによりリチウムマンガナイトの前駆体である安定な前駆体溶液を調製し、この溶媒を濃縮あるいは留去することにより得られる前駆体を加熱処理させ正極材料を製造することを特徴とする二次電池の正極活物質の製造方法。In the process for producing a composite oxide having a spinel structure represented by the general formula Li 1-x Mn 2-y O 4 (0 ≦ x <1.0, 0 ≦ y <0.5), a lithium precursor as a starting material The precursor and manganese precursor are dissolved in ethylene glycol monoethyl ether or ethylene glycol monomethyl ether solvent, and ligand substitution is performed to prepare a stable precursor solution that is a precursor of lithium manganite , and the solvent is concentrated or distilled. A method for producing a positive electrode active material for a secondary battery, wherein the precursor obtained by leaving is heated to produce a positive electrode material. 配位子置換をエチレングリコールモノエチルエーテルまたはエチレングリコールモノメチルエーテル溶媒を用いて行い、沈殿しない安定なアルコキシド前駆体溶液を調製する請求項1に記載の正極活物質の製造方法。Ligand substitution of ethylene glycol monoethyl ether luma other was carried out using ethylene glycol monomethyl ether solvent, method for producing a positive electrode active material according to claim 1 for preparing a stable alkoxide precursor solution without precipitation. 出発物質であるリチウム前駆体とマンガン前駆体として、リチウムアルコキシドまたはリチウム塩、マンガンアルコキシドまたはマンガン錯塩を用いる請求項1に記載の正極活物質の製造方法。Lithium precursor and manganese precursor is the starting material, process for producing a positive active material of claim 1 using Li Ji um alkoxide or lithium salt, manganese alkoxide or manganese complex. リチウムアルコキシドまたはリチウム塩が、リチウムメトキシド、リチウムエトキシド、リチウムプロポキシド、または酢酸リチウムである請求項3に記載の正極活物質の製造方法。  The method for producing a positive electrode active material according to claim 3, wherein the lithium alkoxide or the lithium salt is lithium methoxide, lithium ethoxide, lithium propoxide, or lithium acetate. マンガンアルコキシドまたはマンガン錯塩が、マンガンメトキシド、マンガンエトキシド、マンガンイソプロポキシド、またはマンガンアセチルアセトナートである請求項3に記載の正極活物質の製造方法。  The method for producing a positive electrode active material according to claim 3, wherein the manganese alkoxide or the manganese complex salt is manganese methoxide, manganese ethoxide, manganese isopropoxide, or manganese acetylacetonate. 配位子置換は約125℃から10℃の温度で、酸素あるいは窒素雰囲気中でエチレングリコールモノエチルエーテルまたはエチレングリコールモノメチルエーテル溶媒中で還流することにより行われる請求項1または2に記載の正極活物質の製造方法。In ligand substitution temperatures from about 125 ℃ 1 4 0 ℃, according to claim 1 or 2 carried out by refluxing in an oxygen or nitrogen atmosphere with ethylene glycol monoethyl ether or ethylene glycol monomethyl ether solvent Manufacturing method of positive electrode active material. 配位子置換により調製された溶液を溶媒留去することにより得られた粉末を酸素雰囲気中で150〜200℃で3時間以上加熱し、さらに、200〜750℃の範囲で酸素を含む雰囲気または空気雰囲気中で時間以上熱処理を行うことで20〜35nmの均一で微細なLiMn2 4 の粒子を得る請求項1に記載の二次電池の正極活物質の製造方法。The powder obtained by distilling off the solution prepared by ligand substitution is heated in an oxygen atmosphere at 150 to 200 ° C. for 3 hours or more, and further, an atmosphere containing oxygen in the range of 200 to 750 ° C. the method for producing a positive electrode active material for a secondary battery according to claim 1 to obtain a uniform and fine particles of LiMn 2 O 4 of 20~35nm by performing heat treatment in an air atmosphere for 3 hours or more.
JP22711297A 1997-08-08 1997-08-08 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery Expired - Fee Related JP3655737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22711297A JP3655737B2 (en) 1997-08-08 1997-08-08 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22711297A JP3655737B2 (en) 1997-08-08 1997-08-08 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH1167204A JPH1167204A (en) 1999-03-09
JP3655737B2 true JP3655737B2 (en) 2005-06-02

Family

ID=16855675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22711297A Expired - Fee Related JP3655737B2 (en) 1997-08-08 1997-08-08 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3655737B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4106501A (en) * 2000-03-09 2001-09-17 Ishihara Sangyo Kaisha Ltd. Method for producing lithium manganese composite oxide and lithium cell using said lithium manganese composite oxide
KR100795982B1 (en) * 2007-03-26 2008-01-21 김재국 Electrode material using polyol process and method for synthesizing thereof
US8734998B2 (en) 2010-07-16 2014-05-27 Mitsui Mining & Smelting Co., Ltd. Spinel-type lithium transition metal oxide and positive electrode active material for lithium battery
JP6081782B2 (en) * 2012-11-23 2017-02-15 日本ケミコン株式会社 Lithium ion secondary battery electrode material, method for producing lithium ion secondary battery electrode material, and lithium ion secondary battery

Also Published As

Publication number Publication date
JPH1167204A (en) 1999-03-09

Similar Documents

Publication Publication Date Title
JP3691279B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
Hao et al. Synthesis and characterization of spinel Li4Ti5O12 anode material by oxalic acid-assisted sol–gel method
Kalyani et al. A new solution combustion route to synthesize LiCoO2 and LiMn2O4
EP2104163B1 (en) Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE Li-Ni COMPOSITE OXIDE PARTICLE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
JP3869182B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
JP5473894B2 (en) Room temperature single phase Li insertion / extraction material for use in Li-based batteries
KR100277796B1 (en) Cathode active material for lithium secondary battery and manufacturing method thereof
JP3221352B2 (en) Method for producing spinel-type lithium manganese composite oxide
JP5879761B2 (en) Lithium composite compound particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
US20110262809A1 (en) Non-stoichiometric titanium compound, carbon composite of the same, manufacturing method of the compound, active material of negative electrode for lithium-ion secondary battery containing the compound, and lithium-ion secondary battery using the active material of negative electrode
JP2008255000A (en) New titanium oxide, its preparation method and lithium rechargeable battery using the same as active material
JP3894614B2 (en) Method for producing lithium titanate
US9082525B2 (en) Lithium silicate-based compound and production process for the same, positive-electrode active material and positive electrode for use in lithium-ion secondary battery as well as secondary battery
JP2000058059A (en) Positive-electrode active material for lithium secondary battery and its manufacture
JP2003068305A (en) Negative material for secondary lithium battery and its manufacturing method
JP3894615B2 (en) Lithium titanate, method for producing the same, and lithium battery using the same
KR20060128814A (en) Method of preparing layered cathode active materials with high capacity and high safety for lithium secondary batteries and the product thereby
Raja et al. Alanine-assisted low-temperature combustion synthesis of nanocrystalline LiMn2O4 for lithium-ion batteries
JP3653210B2 (en) Method for producing spinel manganese oxide for lithium secondary battery
KR100784637B1 (en) Synthetic method of lithium titanate spinel oxide material using a li based molten salt
JP3655737B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
US7713313B1 (en) Process for preparing lithium manganate
JP4055269B2 (en) Manganese oxide and method for producing the same, lithium manganese composite oxide using manganese oxide, and method for producing the same
JPH10279315A (en) Production of lithium-cobalt multiple oxide
JP2001064020A (en) Production of lithium manganate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040726

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040727

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050304

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees