JPH11102703A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery

Info

Publication number
JPH11102703A
JPH11102703A JP9278014A JP27801497A JPH11102703A JP H11102703 A JPH11102703 A JP H11102703A JP 9278014 A JP9278014 A JP 9278014A JP 27801497 A JP27801497 A JP 27801497A JP H11102703 A JPH11102703 A JP H11102703A
Authority
JP
Japan
Prior art keywords
lithium
ray absorption
positive electrode
ray
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9278014A
Other languages
Japanese (ja)
Inventor
Izumi Nakai
泉 中井
Yohei Shiraishi
洋平 白石
Fumishige Nishikawa
文茂 西川
Toshio Tsubata
敏男 津端
Takahiro Himeda
卓宏 姫田
Tokuzo Konishi
徳三 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP9278014A priority Critical patent/JPH11102703A/en
Publication of JPH11102703A publication Critical patent/JPH11102703A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous secondary battery which is superior in high- temperature characteristic. SOLUTION: In a secondary battery using lithium or a material capable of absorbing/releasing lithium in a negative electrode, having a nonaqueous electrolyte, and a positive electrode, a positive active material is a lithium manganese oxide having spinel structure, in which in an X-ray absorption spectrum measured by an X-ray absorption fine structure (XAFS) analysis method, peak, intensity in the vicinity of 2.5 Å in a radius vector structure function obtained by Fourier transform of a wide region X-ray absorption fine structure spectrum (EXAFS) of MnK absorption edge is 17.5 or less, when 90% of lithium capable of theoretically being discharged is discharged.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スピネル系リチウ
ムマンガン複合酸化物を正極活物質とする非水二次電池
の特性改善に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in characteristics of a nonaqueous secondary battery using a spinel lithium manganese composite oxide as a positive electrode active material.

【0002】[0002]

【従来の技術】電子機器の小型化、軽量化が進められる
中、その電源として高エネルギー密度の二次電池の要望
は益々強まっている。近年では、金属リチウムに対して
4V程度の高い電圧が得られるLiCoO2を正極活物
質として用い、炭素材料を負極活物質としたリチウムイ
オン二次電池が市販されるようになった。
2. Description of the Related Art As electronic devices become smaller and lighter, there is an increasing demand for high energy density secondary batteries as power sources. In recent years, lithium ion secondary batteries using LiCoO 2, which can provide a voltage as high as about 4 V with respect to metallic lithium, as a positive electrode active material and using a carbon material as a negative electrode active material have come to be marketed.

【0003】しかしながら、LiCoO2 は、Coの産
出量が少ないため原料のCo化合物の価格が高く、安定
的な供給に不安のある材料であることから、これに代わ
る材料の開発が望まれている。その一例として、LiM
2 4 が提案されている。このLiMn2 4 は原料
が豊富で価格が安く、製造コストも安いため、実用化に
向けて種々の検討がなされている。一般にLiMn2
4 は、リチウムとマンガンのモル比が1:2となるよう
にMnO2 とLi2 CO3 の様なマンガン酸化物とリチ
ウム塩を混合後、加熱処理する方法で容易に合成でき
る。しかし、この材料には、電池特性の基本であるサイ
クル特性が悪いという問題があった。
[0003] However, LiCoO 2 is a material having a low production of Co, so that the price of the Co compound as a raw material is high, and there is concern about stable supply. Therefore, the development of a substitute material is desired. . As an example, LiM
n 2 O 4 has been proposed. Since LiMn 2 O 4 is abundant in raw materials, inexpensive, and inexpensive in production, various studies have been made toward practical use. Generally LiMn 2 O
No. 4 can be easily synthesized by a method of mixing a manganese oxide such as MnO 2 and a manganese oxide such as Li 2 CO 3 and a lithium salt such that the molar ratio of lithium and manganese is 1: 2, followed by heat treatment. However, this material has a problem that cycle characteristics, which are the basics of battery characteristics, are poor.

【0004】これを解決するために、例えば特公平8−
24043号公報には、結晶の格子定数aが8.22Å
以下のLiMn2 4 を活物質として使用することが提
案されている。また特開平6−187993号公報に
は、マンガンの酸化状態を高くするためリチウム過剰な
組成を提案している。また、特許第2058834号公
報では、LiMn2 4 中のMnの一部をCoやCr,
Feに置換することを提案している。これらは、結晶格
子やマンガンの酸化数に着目してリチウムマンガン酸化
物の改質を図り、サイクル特性を改良しようとするもの
である。このような方法によって、確かに室温でのサイ
クル特性の改善効果は期待できるが、高温下での保存や
充放電サイクルに伴い容量が低下するという問題点があ
った。
In order to solve this, for example, Japanese Patent Publication No.
No. 24043 discloses that the lattice constant a of a crystal is 8.22 °.
It has been proposed to use the following LiMn 2 O 4 as an active material. Japanese Patent Application Laid-Open No. Hei 6-187993 proposes a lithium-excess composition in order to increase the oxidation state of manganese. In Japanese Patent No. 2058834, a part of Mn in LiMn 2 O 4 is converted to Co, Cr,
It is proposed to substitute Fe. These are aimed at improving the cycle characteristics by modifying the lithium manganese oxide by focusing on the crystal lattice and the oxidation number of manganese. Although such a method can certainly be expected to improve the cycle characteristics at room temperature, there is a problem that the capacity is reduced due to storage at high temperatures and charge / discharge cycles.

【0005】[0005]

【発明が解決しようとする課題】本発明は、リチウムイ
オン二次電池のかかる問題を解決するものであり、高エ
ネルギー密度で高温で長期間にわたって充放電を繰り返
したり、高温で保存しても容量の低下が極めて少なく、
長寿命の非水二次電池を得ることを目的とする。
SUMMARY OF THE INVENTION The present invention is to solve such a problem of a lithium ion secondary battery, and is capable of repeatedly charging and discharging at a high energy density and at a high temperature for a long period of time, or even when stored at a high temperature. Is extremely low,
An object is to obtain a long-life non-aqueous secondary battery.

【0006】[0006]

【課題を解決するための手段】本発明は、上述の従来技
術の問題点に着目してなされたものであり、X線吸収微
細構造解析(XAFS)法で測定したX線吸収スペクト
ルにおいて、MnK吸収端の広域X線吸収微細構造(E
XAFS)スペクトルをフーリエ変換して得られた動径
構造関数における2.5Å付近のピーク強度が二次電池
の高温特性と深く関わっていることを見い出したもので
ある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and shows an MnK spectrum in an X-ray absorption spectrum measured by an X-ray absorption fine structure analysis (XAFS). Wide-range X-ray absorption fine structure at the absorption edge (E
It has been found that the peak intensity around 2.5 ° in the radial structure function obtained by Fourier transform of the (XAFS) spectrum is deeply related to the high temperature characteristics of the secondary battery.

【0007】以下、本発明を詳細に述べる。上述の通
り、スピネル型リチウムマンガン酸化物の特性改善の提
案は、平均酸化数を3.5より大きくすることによって
結晶の安定化を図る考えが一般的である。本発明者ら
は、それら提案の活物質は高温特性に対しては不十分で
あるという認識の基にマンガン元素と高温特性に関して
徹底した検討を行った。
Hereinafter, the present invention will be described in detail. As described above, proposals for improving the characteristics of the spinel-type lithium manganese oxide generally involve stabilizing the crystal by increasing the average oxidation number to more than 3.5. The present inventors have conducted thorough studies on manganese elements and high-temperature characteristics based on the recognition that the proposed active materials are insufficient for high-temperature characteristics.

【0008】すなわち、焼成条件、組成等合成条件の異
なるスピネル型リチウムマンガン酸化物を合成し、高温
下での試験後、XAFS測定でマンガンの電子状態を詳
細に調べたところ、高温で長期間にわたって充放電を繰
り返したり、高温で保存しても容量の低下が極めて少な
いものは、X線吸収微細構造解析(XAFS)法で測定
したX線吸収スペクトルから求められるMnK吸収端の
広域X線吸収微細構造(EXAFS)スペクトルをフー
リエ変換して得られた動径構造関数における2.5Å付
近のピーク強度が理論的に放出可能なリチウム量の90
%を放出した時に17.5以下であることが判った。
That is, spinel-type lithium manganese oxides having different synthesis conditions such as firing conditions and compositions were synthesized, and after a test at a high temperature, the electronic state of manganese was examined in detail by XAFS measurement. Those whose capacity is extremely small even after repeated charge / discharge or storage at a high temperature are those which have a wide range of MnK absorption edges determined from X-ray absorption spectra measured by X-ray absorption fine structure analysis (XAFS). The peak intensity around 2.5 ° in the radial structure function obtained by Fourier transforming the structure (EXAFS) spectrum indicates that the amount of lithium that can be theoretically released is 90%.
% Was found to be less than 17.5.

【0009】一方、高温サイクルや高温保存によって明
らかに容量が低下するもの、すなわち高温特性が劣化す
るものは、動径構造関数における2.5Å付近のピーク
強度が理論的に放出可能なリチウム量の90%を放出し
た時に17.5以上になることをつきとめ、本発明の完
成に至った。動径構造関数における2.5Å付近のピー
ク強度は、Mn- Mn原子からの散乱の程度を表すが、
本発明のリチウムマンガン複合酸化物の場合、詳細は不
明だが、リチウムの脱離によって第二配位圏のMn- M
n原子からの散乱が一般的なリチウムマンガン酸化物の
様に大きくならず、Mn原子の局所構造が微妙に異なっ
ているためと推測される。
On the other hand, when the capacity clearly decreases due to the high-temperature cycle or high-temperature storage, that is, when the high-temperature characteristic deteriorates, the peak intensity around 2.5 ° in the radial structure function indicates the amount of lithium that can be theoretically released. It has been found that when it releases 90%, it becomes 17.5 or more, and the present invention has been completed. The peak intensity around 2.5 ° in the radial structure function indicates the degree of scattering from Mn-Mn atoms,
In the case of the lithium manganese composite oxide of the present invention, although details are unknown, Mn-M in the second coordination sphere is formed by elimination of lithium.
It is presumed that scattering from n atoms does not increase as in a general lithium manganese oxide, and the local structure of Mn atoms is slightly different.

【0010】すなわち本発明は、リチウム又はリチウム
を吸蔵放出可能な物質を負極とし、非水電解質および正
極を備える二次電池において、該正極活物質がスピネル
構造をとるリチウムマンガン複合酸化物であり、かつX
線吸収微細構造解析(XAFS)法で測定したX線吸収
スペクトルにおいて、MnK吸収端の広域X線吸収微細
構造(EXAFS)スペクトルをフーリエ変換して得ら
れた動径構造関数における2.5Å付近のピーク強度が
理論的に放出可能なリチウム量の90%を放出した時に
17.5以下であることを特徴とする非水二次電池であ
る。
That is, the present invention relates to a lithium-manganese composite oxide in which a positive electrode active material has a spinel structure in a secondary battery comprising lithium or a substance capable of inserting and extracting lithium as a negative electrode, and a nonaqueous electrolyte and a positive electrode. And X
In the X-ray absorption spectrum measured by the X-ray absorption fine structure analysis (XAFS) method, around 2.5 ° in the radial structure function obtained by Fourier-transforming the broad-range X-ray absorption fine structure (EXAFS) spectrum at the MnK absorption edge A non-aqueous secondary battery characterized in that the peak intensity is 17.5 or less when 90% of the theoretically releasable lithium amount is released.

【0011】ここで、一般的なX線吸収微細構造解析
(XAFS)の測定について説明する。IRやUVなど
の光は物質により吸収されるが、X線も例外なく物質に
より吸収され、その吸収分のエネルギーは光電子や蛍光
X線、及び熱に変換される。このとき、X線の吸収によ
って発生した光電子の一部は、複数の原子による散乱と
干渉によって、X線の吸収量に対し構造情報として反映
される。つまり、X線の吸収量をモニタすれば、原子構
造に関する情報が得られる。
Here, measurement of general X-ray absorption fine structure analysis (XAFS) will be described. Although light such as IR and UV is absorbed by the substance, X-rays are also absorbed by the substance without exception, and the energy of the absorbed amount is converted into photoelectrons, fluorescent X-rays, and heat. At this time, part of the photoelectrons generated by the absorption of X-rays is reflected as structural information on the amount of X-ray absorption by scattering and interference by a plurality of atoms. That is, by monitoring the amount of X-ray absorption, information on the atomic structure can be obtained.

【0012】X線のビームライン上に物質をおいた場
合、物質に照射されたX線(入射X線:I0 )強度と物
質を通過してきたX線(透過X線:It )強度とからそ
の物質によるX線の吸収量(X線吸収係数)が算出され
る。X線吸収係数の増減をモニタしながらX線エネルギ
ー(波長)を変化させ、X線吸収スペクトルを測定する
と、あるエネルギー位置でX線吸収係数の急激な立ち上
がり(吸収端)が観測される。この吸収端のエネルギー
位置は元素に固有であるため、この吸収端付近のエネル
ギー領域で構造情報を抽出できれば、それは元素固有の
情報であることを意味する。
[0012] When placing material on beamline X-rays, X-rays irradiated to the substance (incident X-ray: I 0) strength and substance X-rays having passed through the (transmitted X-rays: I t) and strength Then, the amount of X-ray absorption (X-ray absorption coefficient) by the substance is calculated. When the X-ray energy (wavelength) is changed while monitoring the increase / decrease of the X-ray absorption coefficient and the X-ray absorption spectrum is measured, a sharp rise (absorption edge) of the X-ray absorption coefficient is observed at a certain energy position. Since the energy position of the absorption edge is unique to an element, if structural information can be extracted in the energy region near the absorption edge, it means that the information is information unique to the element.

【0013】ある注目元素の吸収端付近のエネルギー領
域で、充分な精度でX線吸収スペクトルを測定すると、
吸収端から数十eVのエネルギー領域において減衰を伴
う大きな構造性振動が観測される。これをX線吸収端近
傍構造(XANES:X-rayabsorption near edge stru
cture )と呼び、主に注目元素の電子状態や立体構造に
関した情報を含有している。また、XANESよりもさ
らに高エネルギー側数百eVのエネルギー領域におい
て、同様な減衰を伴った微細な構造性振動が観測され
る。これを広域X線吸収微細構造(EXAFS:Extend
ed X-ray absorption Fine structure)と呼び、注目元
素近傍の局所構造(原子間距離や配位数)についての情
報を含有している。
When the X-ray absorption spectrum is measured with sufficient accuracy in the energy region near the absorption edge of a certain element of interest,
Large structural vibration accompanied by attenuation is observed in the energy region of several tens eV from the absorption edge. This is called X-ray absorption near edge stru
cture), which mainly contains information on the electronic state and three-dimensional structure of the element of interest. Further, in the energy region of several hundred eV on the higher energy side than XANES, fine structural vibration accompanied by similar attenuation is observed. This is called the wide area X-ray absorption fine structure (EXAFS: Extend).
It is called “ed X-ray absorption Fine structure” and contains information about the local structure (interatomic distance and coordination number) near the element of interest.

【0014】X線吸収スペクトルから抽出されたEXA
FSスペクトルに対し、適当な領域でフーリエ変換を行
うと動径分布関数が得られる。この関数は、注目元素を
中心とした電子密度の一次元分布であり、その極大値を
示す距離には何らかの原子が位置し、その強度は位置し
ている原子の電子密度に比例している。したがって、こ
の動径分布関数を数値的に吟味することによって、注目
元素についての構造情報を得ることができる。近年、上
述したXANESとEXAFSを総称してXAFSと呼
んでいる。
EXA extracted from X-ray absorption spectrum
When a Fourier transform is performed on an FS spectrum in an appropriate region, a radial distribution function can be obtained. This function is a one-dimensional distribution of the electron density centered on the element of interest, some atoms are located at the distance where the local maximum is shown, and the intensity is proportional to the electron density of the located atom. Therefore, structural information on the element of interest can be obtained by numerically examining the radial distribution function. In recent years, the above-mentioned XANES and EXAFS are collectively called XAFS.

【0015】ところで、リチウムイオン二次電池などに
おいて、高性能な活物質を探索するためには、充放電量
の異なる活物質毎の局所的結晶構造や充放電に伴う構造
変化の詳細を測定して明らかにすることが有効な指針と
なると考えられる。XAFSでかかる測定を行うには、
予め所定の充放電量に充放電された活物質を準備し該活
物質に対してX線を透過する方法が考えられる。しかし
ながらかかる測定法では、充放電用の密閉型セル内から
活物質を取り出してXAFS測定用のセルに移動する際
に、不用意に空気に触れるなどして活物質の物性が変化
してしまうことがあり、この結果正確な測定が行えない
場合がある。
In order to search for a high-performance active material in a lithium ion secondary battery or the like, the local crystal structure of each active material having a different charge / discharge amount and details of the structural change due to charge / discharge are measured. It will be an effective guideline to clarify this. To make such a measurement with XAFS,
A method of preparing an active material charged and discharged to a predetermined charge / discharge amount in advance and transmitting X-rays to the active material can be considered. However, in such a measurement method, when the active material is taken out from the closed cell for charge and discharge and moved to the XAFS measurement cell, the physical properties of the active material may be changed due to careless contact with air or the like. As a result, accurate measurement may not be performed.

【0016】また、活物質の充放電を別の場所で行う必
要があり、しかも、充放電量の異なる多種類の活物質を
用意しなければならないため、その測定に手間がかかる
という不都合があった。解消するために、密閉されたセ
ル内で活物質の充放電を可能にすることができると共
に、充放電量の異なる活物質毎の局所的結晶構造や充放
電に伴う構造変化の詳細を簡単且つ正確に測定すること
ができる電池材料のX線吸収微細構造測定用セルを作製
した。
Further, it is necessary to perform charging and discharging of the active material in another place, and it is necessary to prepare various kinds of active materials having different charging and discharging amounts. Was. In order to solve this problem, charging and discharging of the active material can be made possible in a sealed cell, and the details of the local crystal structure of each active material having a different charge / discharge amount and the structural change due to the charge / discharge can be easily and simply described. A cell for X-ray absorption fine structure measurement of a battery material that can be accurately measured was prepared.

【0017】本発明は、上述のセルを用い、種々のスピ
ネル型リチウムマンガン複合酸化物を充放電しながらX
AFS測定を行い、X線吸収スペクトルから求められる
MnK吸収端の広域X線吸収微細構造(EXAFS)ス
ペクトルをフーリエ変換して得られた動径構造関数にお
ける2.5Å付近のピーク強度と活物質の電池特性との
関係について詳細に調べた結果、高温特性に好適な強度
関係が存在することを見い出したものである。
The present invention uses the above-described cell to charge and discharge various spinel-type lithium manganese composite oxides,
The AFS measurement is performed, and the peak intensity around 2.5 ° in the radial structure function obtained by Fourier transforming the broad X-ray absorption fine structure (EXAFS) spectrum at the MnK absorption edge obtained from the X-ray absorption spectrum and the active material As a result of examining the relationship with the battery characteristics in detail, it has been found that there is a strength relationship suitable for the high-temperature characteristics.

【0018】なお、本発明におけるX線吸収微細構造
(XAFS)の測定は、分光結晶としてSi(111)
チャンネルカットモノクロメーターを用い、X線エネル
ギーを6490eV〜6750eVの間で走査し、透過
法により行った。積算時間は2秒/点とした。また角度
補正は8980.3eVのCuのK吸収端を12.71
85度として行った。
The measurement of the X-ray absorption fine structure (XAFS) in the present invention was carried out by analyzing Si (111) as a spectral crystal.
Using a channel cut monochromator, X-ray energy was scanned between 6490 eV and 6750 eV, and transmission was performed by a transmission method. The integration time was 2 seconds / point. Angle correction is performed by setting the K absorption edge of Cu of 8980.3 eV to 12.71.
The test was performed at 85 degrees.

【0019】本発明の正極活物質は、以下のような方法
で合成することができる。例えばリチウム化合物とマン
ガン化合物とを混合後、加熱処理することにより得られ
る。リチウム化合物としては、特に制限されないが、例
えば、水酸化リチウム、炭酸リチウム、硝酸リチウム、
酸化リチウム、塩化リチウム、硫酸リチウム、酢酸リチ
ウム、ヨウ化リチウム、アルキルリチウム等が例示され
る。特に水酸化リチウム、炭酸リチウム、硝酸リチウム
が好ましい。
The positive electrode active material of the present invention can be synthesized by the following method. For example, it can be obtained by mixing a lithium compound and a manganese compound and then performing a heat treatment. The lithium compound is not particularly limited, for example, lithium hydroxide, lithium carbonate, lithium nitrate,
Examples thereof include lithium oxide, lithium chloride, lithium sulfate, lithium acetate, lithium iodide, and alkyl lithium. Particularly, lithium hydroxide, lithium carbonate, and lithium nitrate are preferable.

【0020】マンガン化合物としては、特に制限されな
いが、例えば、電解二酸化マンガン(EMD)、化学合
成二酸化マンガン(CMD)、Mn2 3 、MnOOH
およびMn3 4 等のマンガン酸化物、水酸化物等が例
示される。特に電解二酸化マンガン、化学合成二酸化マ
ンガン、MnOOHが好ましい。LiとMnの混合比
(Li/Mn比)は、出発に用いる化合物や加熱条件に
より異なるが、通常は0.52〜0.60とすることが
好ましい。
The manganese compound is not particularly limited. For example, electrolytic manganese dioxide (EMD), chemically synthesized manganese dioxide (CMD), Mn 2 O 3 , MnOOH
And manganese oxides and hydroxides such as Mn 3 O 4 . Particularly, electrolytic manganese dioxide, chemically synthesized manganese dioxide, and MnOOH are preferable. The mixing ratio of Li and Mn (Li / Mn ratio) varies depending on the starting compound and heating conditions, but is usually preferably 0.52 to 0.60.

【0021】加熱処理条件は、出発に用いる化合物によ
り若干異なるが、600〜950℃で加熱処理すること
により得られる。また、加熱雰囲気は窒素、アルゴン、
空気、酸素あるいはこれらの混合ガスを用いることがで
きる。本発明における正極活物質の平均粒径は、好まし
くは5〜50μm、さらに好ましくは5〜30μmの範
囲にあることである。本発明に用いられる負極材料は、
リチウムを可逆的に吸蔵放出可能な物質であれば特に制
限されないが、例えば金属リチウム、アルミニウムをは
じめリチウムと合金化する金属材料、炭素材料、黒鉛お
よび黒鉛類似化合物、金属酸化物、金属窒化物などを用
いることができる。
The heat treatment conditions vary slightly depending on the starting compound, but can be obtained by heat treatment at 600 to 950 ° C. The heating atmosphere is nitrogen, argon,
Air, oxygen or a mixed gas thereof can be used. The average particle diameter of the positive electrode active material in the present invention is preferably in the range of 5 to 50 μm, more preferably 5 to 30 μm. The negative electrode material used in the present invention,
The substance is not particularly limited as long as it is a substance capable of reversibly storing and releasing lithium. Examples thereof include metallic materials such as metallic lithium and aluminum, carbon materials, carbon materials, graphite and graphite-like compounds, metal oxides, and metal nitrides. Can be used.

【0022】本発明に用いられるリチウムイオン移動媒
体は、リチウム塩を非プロトン性有機溶媒に溶解した電
解液やリチウム塩を高分子マトリクス中に分散させた固
体、半固体、或いは両者の混合物など特に制限されない
が、リチウム塩としては、例えば過塩素酸リチウム、L
iBF4 、LiPF6 、LiAsF6 、CF3 SO3
i、(CF3 SO2 2 NLi、(CF3 SO2 3
Li、有機カルボン酸リチウム、フルオロカルボン酸リ
チウム、高分子スルフォン酸リチウム、高分子カルボン
酸リチウムなどを用いることができる。また、非プロト
ン性有機溶剤としては、プロピレンカーボネート、エチ
レンカーボネート、ジエチルカーボネート、ジメチルカ
ーボネート、メチルエチルカーボネート、メチルプロピ
ルカーボネートなどの有機カーボネート、ブチロラクト
ン、プロピオラクトン、酢酸エチル、酢酸ブチル、酢酸
プロピル、プロピオン酸エチル、プロピオン酸ブチルな
ど脂肪族有機エステル、グライム、ジグライム、トリグ
ライム、テトラヒドロフラン、ジオキサン、ジエチルエ
ーテル、シリコンオイルなどの有機エーテル、ピリジ
ン、トリエチルアミンなどの有機アミン、アセトニトリ
ル、プロピオニトリルなどの有機ニトリルなどの有機ニ
トリルの単体または混合物を少なくとも一部含有するも
のであり、これに他の非プロトン性有機溶媒、例えばベ
ンゼン、トルエン、キシレン、デカリンなどの芳香族炭
化水素、ヘキサン、ペンタン、デカンなどの脂肪族炭化
水素、フェノール、カテコール、ビスフェノールなどの
アルキルエステル、芳香族エステルやクロロフォルム、
四塩化炭素、ジクロロメタンなどのハロゲン系炭化水素
を混合使用することも可能である。
The lithium ion transfer medium used in the present invention may be, for example, an electrolyte in which a lithium salt is dissolved in an aprotic organic solvent, a solid or semisolid in which a lithium salt is dispersed in a polymer matrix, or a mixture of both. Although not limited, examples of the lithium salt include lithium perchlorate, L
iBF 4 , LiPF 6 , LiAsF 6 , CF 3 SO 3 L
i, (CF 3 SO 2 ) 2 NLi, (CF 3 SO 2 ) 3 C
Li, lithium organic carboxylate, lithium fluorocarboxylate, lithium polymer sulfonate, lithium polymer carboxylate, or the like can be used. Examples of the aprotic organic solvent include propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, organic carbonates such as methyl propyl carbonate, butyrolactone, propiolactone, ethyl acetate, butyl acetate, propyl acetate, and propion. Organic esters such as ethyl acetate and butyl propionate, organic ethers such as glyme, diglyme, triglyme, tetrahydrofuran, dioxane, diethyl ether, and silicon oil; organic amines such as pyridine and triethylamine; organic nitriles such as acetonitrile and propionitrile; Containing at least a part of a simple substance or a mixture of an organic nitrile of the present invention, to which other aprotic organic solvents such as benzene , Toluene, xylene, aromatic hydrocarbons such as decalin, hexane, pentane, aliphatic hydrocarbons such as decane, phenol, catechol, alkyl esters such as bisphenol, aromatic esters and chloroform,
It is also possible to use a mixture of halogenated hydrocarbons such as carbon tetrachloride and dichloromethane.

【0023】次に前記高分子マトリクスとしては、例え
ば、ポリエチレンオキサイド、ポリテトラメチレンオキ
サイド、ポリビニルアルコール、ポリビニルブチラール
などの芳香族ポリエーテル、ポリエチレンスルフィド、
ポリプロピレンスルフィドなどの脂肪族ポリチオエーテ
ル、ポリエチレンサクシネート、ポリブチレンアジペー
ト、ポリカプロラクトンなどの脂肪族ポリエステル、ポ
リエチレンイミン、ポリイミドおよびその前駆体などを
用いることができる。
Next, examples of the polymer matrix include aromatic polyethers such as polyethylene oxide, polytetramethylene oxide, polyvinyl alcohol and polyvinyl butyral, polyethylene sulfide, and the like.
Aliphatic polythioethers such as polypropylene sulfide, aliphatic polyesters such as polyethylene succinate, polybutylene adipate and polycaprolactone, polyethyleneimine, polyimide and precursors thereof can be used.

【0024】本発明に用いられるセパレータには、例え
ばポリエチレン、ポリプロピレンなどのポリオレフィン
樹脂の多孔性シートやこれらの不織布などを用いること
ができる。なお、本発明の電池は、請求項1の特徴を備
えたスピネル構造をとるリチウムマンガン複合酸化物を
正極活物質として用いる以外は、従来より公知のリチウ
ム二次電池(金属リチウム二次電池やリチウムイオン二
次電池)と同じ構成をとることができる。
As the separator used in the present invention, for example, a porous sheet of a polyolefin resin such as polyethylene or polypropylene, or a nonwoven fabric thereof may be used. The battery of the present invention is a conventional lithium secondary battery (metal lithium secondary battery or lithium secondary battery) except that a lithium manganese composite oxide having a spinel structure having the features of claim 1 is used as a positive electrode active material. Ion secondary battery).

【0025】[0025]

【発明の実施の形態】以下、本発明の実施形態について
説明する。正極活物質として、表1に示される様な種々
の原料、焼成条件を適用することによってA〜Hの各種
リチウムマンガン酸化物を作製した。
Embodiments of the present invention will be described below. Various lithium manganese oxides A to H were prepared by applying various raw materials and firing conditions as shown in Table 1 as the positive electrode active material.

【実施例】【Example】

(実施例1)正極活物質の合成は、リチウム化合物とし
てLi2 CO3 を、マンガン化合物として電解二酸化マ
ンガン(EMD)を用い、Li/Mn=0.50の原子
比で混合し、空気中(酸素濃度20vol%)850℃
で20時間加熱処理することにより行った。その後、最
終組成がLi1.08Mn1.924 になるようにLi2 CO
3 を加え、更に20時間650℃で加熱し、リチウムマ
ンガン酸化物を得た。得られた生成物は、X線回折と化
学分析によりスピネル構造のLi1.080 Mn1.916 4
であった。
(Example 1) In the synthesis of a positive electrode active material, Li 2 CO 3 was used as a lithium compound, electrolytic manganese dioxide (EMD) was used as a manganese compound, and Li / Mn was mixed at an atomic ratio of 0.50. Oxygen concentration 20 vol%) 850 ° C
For 20 hours. Then, Li 2 CO is added so that the final composition becomes Li 1.08 Mn 1.92 O 4.
3 was added, and the mixture was further heated at 650 ° C. for 20 hours to obtain a lithium manganese oxide. The resulting product, Li a spinel structure by X-ray diffraction and chemical analysis 1.080 Mn 1.916 O 4
Met.

【0026】次に、正極活物質100重量部に対して導
電剤として炭素粉末を7重量部、結着剤としてポリフッ
化ビニリデンを3重量部加え、N- メチル- 2- ピロリ
ドンを用いてペースト状にし、アルミニウム箔の集電体
に塗布し、乾燥、プレスして正極とした。続いて、この
正極と対極のリチウム金属とを1ppm以下の水分量に
管理されたアルゴンドライボックス中で、X線の透過孔
を具備し、かつX線光路上に正極とリチウム対極とが対
向するように位置する、充放電が可能な密閉型X線吸収
微細構造測定用セルに組込み、1.0モル/リットルの
LiPF6 を溶解したエチレンカーボネート(EC)と
ジメチルカーボネート(DMC)の混合溶液を注入し測
定に供した。
Next, 7 parts by weight of carbon powder as a conductive agent and 3 parts by weight of polyvinylidene fluoride as a binder are added to 100 parts by weight of the positive electrode active material, and a paste is formed using N-methyl-2-pyrrolidone. And applied to a current collector of aluminum foil, dried and pressed to obtain a positive electrode. Subsequently, the positive electrode and the lithium metal of the counter electrode are provided with an X-ray transmission hole in an argon dry box controlled to a moisture content of 1 ppm or less, and the positive electrode and the lithium counter electrode face each other on the X-ray optical path. A mixed solution of ethylene carbonate (EC) and dimethyl carbonate (DMC) in which 1.0 mol / l of LiPF 6 is dissolved is incorporated in a chargeable / dischargeable closed X-ray absorption fine structure measurement cell, It was injected and used for measurement.

【0027】また、上記で作製した正極を用い、以下の
手順により電池を作製した。負極としては、活物質とし
ての黒鉛化メソカーボンファイバー100重量部に対し
て鱗片状黒鉛5重量部と結着剤としてカルボキシメチル
セルロース1重量部、スチレンブタジエンゴム2重量部
を加え、精製水を用いてペースト状にし、銅箔の集電体
に塗布し、乾燥、プレスしたものを用いた。上記正極と
負極の間にセパレーターとして25μm厚のポリエチレ
ン微多孔膜を挟んでロール状に巻いて捲回体とした。
Using the positive electrode prepared above, a battery was prepared according to the following procedure. As the negative electrode, 5 parts by weight of flaky graphite, 1 part by weight of carboxymethyl cellulose as a binder, and 2 parts by weight of styrene-butadiene rubber were added to 100 parts by weight of graphitized mesocarbon fiber as an active material, and purified water was used. It was used as a paste, applied to a copper foil current collector, dried and pressed. A 25 μm-thick polyethylene microporous membrane was sandwiched between the positive electrode and the negative electrode as a separator to form a roll.

【0028】鉄製の角形缶の底部に絶縁性のフィルムを
挿入し、前記捲回体を押し潰して挿入した。次いで捲回
体から取り出した負極タブを閉塞蓋体に、正極タブを閉
塞蓋体の正極ピンに各々溶接した。電池缶の中にエチレ
ンカーボネートとジメチルカーボネートの1:2の混合
溶媒に1モル/リットルの濃度でLiPF6 を溶解した
電解液を注液した後、閉塞蓋体を溶接し、厚さ8.6m
m、巾34mm、高さ48mmの角形電池を作製し、高
温特性の評価に供した。
An insulating film was inserted into the bottom of a rectangular iron can, and the wound body was crushed and inserted. Next, the negative electrode tab taken out from the wound body was welded to the closing lid, and the positive electrode tab was welded to the positive electrode pin of the closing lid. An electrolyte obtained by dissolving LiPF 6 at a concentration of 1 mol / L in a 1: 2 mixed solvent of ethylene carbonate and dimethyl carbonate was poured into the battery can, and then the closure lid was welded to a thickness of 8.6 m.
m, a width of 34 mm, and a height of 48 mm were prepared and subjected to evaluation of high-temperature characteristics.

【0029】(実施例2)正極活物質の合成は、リチウ
ム化合物としてLiOH・H2 Oを、マンガン化合物と
して電解二酸化マンガン(EMD)を用い、Li/Mn
=0.50の原子比で混合し、空気とN2 の混合ガス中
(酸素濃度15vol%)750℃で20時間加熱処理
することにより行った。その後、最終組成がLi1.04
1.964になるようにLiOH・H2 Oを加え、更に
12時間550℃で加熱し、リチウムマンガン酸化物を
得た。得られた生成物は、X線回折と化学分析によりス
ピネル構造のLi1.037 Mn1.960 4 であった。次
に、実施例1と同様の方法で正極およびXAFSセルを
作製した後、X線吸収微細構造解析(XAFS)法で測
定したX線吸収スペクトルを得た。続いて、実施例1と
同様の方法で電池を作製し、高温特性を評価した。
Example 2 The synthesis of the positive electrode active material was carried out by using LiOH.H 2 O as a lithium compound and electrolytic manganese dioxide (EMD) as a manganese compound.
= 0.50, and heat-treated at 750 ° C. for 20 hours in a mixed gas of air and N 2 (oxygen concentration: 15 vol%). Then, the final composition is Li 1.04 M
LiOH.H 2 O was added so as to be n 1.96 O 4, and the mixture was further heated at 550 ° C. for 12 hours to obtain a lithium manganese oxide. The obtained product was found to be Li 1.037 Mn 1.960 O 4 having a spinel structure by X-ray diffraction and chemical analysis. Next, after producing a positive electrode and an XAFS cell in the same manner as in Example 1, an X-ray absorption spectrum measured by an X-ray absorption fine structure analysis (XAFS) method was obtained. Subsequently, a battery was manufactured in the same manner as in Example 1, and the high-temperature characteristics were evaluated.

【0030】(実施例3)正極活物質の合成は、リチウ
ム化合物としてLiNO3 を、マンガン化合物としてγ
- MnOOHを用い、Li/Mn=0.54の原子比で
混合し、N2 中(酸素濃度0vol%)650℃で24
時間加熱処理することにより行った。得られたリチウム
マンガン酸化物は、X線回折と化学分析によりスピネル
構造のLi1.06Mn1.927 4 であった。次に、実施例
1と同様の方法で正極およびXAFSセルを作製した
後、X線吸収微細構造解析(XAFS)法で測定したX
線吸収スペクトルを得た。続いて、実施例1と同様の方
法で電池を作製し、高温特性を評価した。
Example 3 In the synthesis of the positive electrode active material, LiNO 3 was used as a lithium compound and γ was used as a manganese compound.
Using MnOOH, mixing at an atomic ratio of Li / Mn = 0.54, 24 hours at 650 ° C. in N 2 (oxygen concentration 0 vol%).
The heat treatment was performed for a time. The obtained lithium manganese oxide was found to have a spinel structure of Li 1.06 Mn 1.927 O 4 by X-ray diffraction and chemical analysis. Next, after a positive electrode and an XAFS cell were manufactured in the same manner as in Example 1, X was measured by X-ray absorption fine structure analysis (XAFS).
A linear absorption spectrum was obtained. Subsequently, a battery was manufactured in the same manner as in Example 1, and the high-temperature characteristics were evaluated.

【0031】(実施例4)正極活物質の合成は、リチウ
ム化合物としてLiOH・H2 Oを、マンガン化合物と
して化学合成二酸化マンガン(CMD)を用い、Li/
Mn=0.53の原子比で混合し、O2 中(酸素濃度1
00vol%)800℃で20時間加熱処理することに
より行った。得られたリチウムマンガン酸化物は、X線
回折と化学分析によりスピネル構造のLi1.05Mn1.95
4 であった。次に、実施例1と同様の方法で正極およ
びXAFSセルを作製した後、X線吸収微細構造解析
(XAFS)法で測定したX線吸収スペクトルを得た。
続いて、実施例1と同様の方法で電池を作製し、高温特
性を評価した。
Example 4 The synthesis of a positive electrode active material was performed using LiOH.H 2 O as a lithium compound and chemically synthesized manganese dioxide (CMD) as a manganese compound.
Mn is mixed at an atomic ratio of 0.53, and mixed in O 2 (oxygen concentration 1
(00 vol%) by performing a heat treatment at 800 ° C. for 20 hours. The obtained lithium manganese oxide was found to have a spinel structure of Li 1.05 Mn 1.95 by X-ray diffraction and chemical analysis.
O 4 . Next, after producing a positive electrode and an XAFS cell in the same manner as in Example 1, an X-ray absorption spectrum measured by an X-ray absorption fine structure analysis (XAFS) method was obtained.
Subsequently, a battery was manufactured in the same manner as in Example 1, and the high-temperature characteristics were evaluated.

【0032】(実施例5)正極活物質の合成は、リチウ
ム化合物としてLi2 CO3 を、マンガン化合物として
電解二酸化マンガン(EMD)を用い、Li/Mn=
0.57の原子比で混合し、空気中(酸素濃度20vo
l%)900℃で24時間加熱処理することにより行っ
た。得られたリチウムマンガン酸化物は、X線回折と化
学分析によりスピネル構造のLi1.120 Mn1.876 4
であった次に、実施例1と同様の方法で正極およびXA
FSセルを作製した後、X線吸収微細構造解析(XAF
S)法で測定したX線吸収スペクトルを得た。続いて、
実施例1と同様の方法で電池を作製し、高温特性を評価
した。
Example 5 A positive electrode active material was synthesized by using Li 2 CO 3 as a lithium compound and electrolytic manganese dioxide (EMD) as a manganese compound.
Mix at an atomic ratio of 0.57, and in air (oxygen concentration 20 vo
1%) by heating at 900 ° C. for 24 hours. The obtained lithium manganese oxide was found to have a spinel structure of Li 1.120 Mn 1.876 O 4 by X-ray diffraction and chemical analysis.
Next, in the same manner as in Example 1, the positive electrode and XA
After fabricating the FS cell, X-ray absorption fine structure analysis (XAF
An X-ray absorption spectrum measured by the S) method was obtained. continue,
A battery was manufactured in the same manner as in Example 1, and the high-temperature characteristics were evaluated.

【0033】(比較例1)正極活物質の合成は、リチウ
ム化合物としてLiNO3 を、マンガン化合物として電
解二酸化マンガン(EMD)を用い、Li/Mn=0.
50の原子比で混合し、空気中(酸素濃度20vol
%)450℃で24時間加熱処理することにより行っ
た。得られたリチウムマンガン酸化物は、X線回折と化
学分析によりスピネル構造のLi0.997 Mn1.996 4
であった。次に、実施例1と同様の方法で正極およびX
AFSセルを作製した後、X線吸収微細構造解析(XA
FS)法で測定したX線吸収スペクトルを得た。続い
て、実施例1と同様の方法で電池を作製し、高温特性を
評価した。
Comparative Example 1 A positive electrode active material was synthesized by using LiNO 3 as a lithium compound, electrolytic manganese dioxide (EMD) as a manganese compound, and Li / Mn = 0.
Mixed at an atomic ratio of 50 and in air (oxygen concentration 20 vol
%) By performing a heat treatment at 450 ° C. for 24 hours. The obtained lithium manganese oxide was found to have a spinel structure of Li 0.997 Mn 1.996 O 4 by X-ray diffraction and chemical analysis.
Met. Next, in the same manner as in Example 1, the positive electrode and X
After fabricating the AFS cell, X-ray absorption fine structure analysis (XA
An X-ray absorption spectrum measured by the FS) method was obtained. Subsequently, a battery was manufactured in the same manner as in Example 1, and the high-temperature characteristics were evaluated.

【0034】(比較例2)正極活物質の合成は、リチウ
ム化合物としてLiOH・H2 Oを、マンガン化合物と
して化学合成二酸化マンガン(CMD)を用い、Li/
Mn=0.54の原子比で混合し、空気とO2 の混合ガ
ス中(酸素濃度50vol%)750℃で20時間加熱
処理することにより行った。得られたリチウムマンガン
酸化物は、X線回折と化学分析によりスピネル構造のL
1.069 Mn1.926 4 であった。次に、実施例1と同
様の方法で正極およびXAFSセルを作製した後、X線
吸収微細構造解析(XAFS)法で測定したX線吸収ス
ペクトルを得た。続いて、実施例1と同様の方法で電池
を作製し、高温特性を評価した。
Comparative Example 2 A positive electrode active material was synthesized by using LiOH.H 2 O as a lithium compound and chemically synthesized manganese dioxide (CMD) as a manganese compound.
Mixing was performed at an atomic ratio of Mn = 0.54, and heat treatment was performed at 750 ° C. for 20 hours in a mixed gas of air and O 2 (oxygen concentration: 50 vol%). The obtained lithium manganese oxide was identified as having a spinel structure L by X-ray diffraction and chemical analysis.
i 1.069 Mn 1.926 O 4 . Next, after producing a positive electrode and an XAFS cell in the same manner as in Example 1, an X-ray absorption spectrum measured by an X-ray absorption fine structure analysis (XAFS) method was obtained. Subsequently, a battery was manufactured in the same manner as in Example 1, and the high-temperature characteristics were evaluated.

【0035】(比較例3)正極活物質の合成は、リチウ
ム化合物としてLi2 CO3 を、マンガン化合物として
Mn2 3 を用い、Li/Mn=0.57の原子比で混
合し、酸素中(酸素濃度100vol%)700℃で2
0時間加熱処理することにより行った。得られたリチウ
ムマンガン酸化物は、X線回折と化学分析によりスピネ
ル構造のLi1.112 Mn1.879 4 であった。次に、実
施例1と同様の方法で正極およびXAFSセルを作製し
た後、X線吸収微細構造解析(XAFS)法で測定した
X線吸収スペクトルを得た。続いて、実施例1と同様の
方法で電池を作製し、高温特性を評価した。
Comparative Example 3 A positive electrode active material was synthesized by mixing Li 2 CO 3 as a lithium compound and Mn 2 O 3 as a manganese compound at an atomic ratio of Li / Mn = 0.57. (Oxygen concentration 100 vol%) 2 at 700 ° C
The heating was performed for 0 hours. The obtained lithium manganese oxide was found to have a spinel structure of Li 1.112 Mn 1.879 O 4 by X-ray diffraction and chemical analysis. Next, after producing a positive electrode and an XAFS cell in the same manner as in Example 1, an X-ray absorption spectrum measured by an X-ray absorption fine structure analysis (XAFS) method was obtained. Subsequently, a battery was manufactured in the same manner as in Example 1, and the high-temperature characteristics were evaluated.

【0036】<試験結果>実施例および比較例で作製し
たX線吸収微細構造(XAFS)試料は、以下のように
評価した。X線吸収微細構造(XAFS)測定セルで充
放電電気量をモニターしながらリチウムを所定量脱挿入
し、X線のエネルギーを6490〜6750eVまで走
査しながら所定のリチウム脱挿入量につき順次、吸収係
数を測定しX線吸収スペクトルを得た。続いて定数項を
加えた Victoreenの式(Cλ3 −Dλ4 +Const .)を
用いてバックグランドを差し引き、Cubic-Spline(weigh
t)法により孤立原子の吸光度を見積もりEXAFS信号
を抽出した。抽出したEXAFS信号に、重みkn (n
= 3)を掛けてフーリエ変換し、吸収原子からの距離の
関数である動径構造関数を導いた。理論的に放出可能な
リチウム量の90%を放出した時の2.5Å付近のピー
ク強度は、得られた動径構造関数より求めた。
<Test Results> The X-ray absorption fine structure (XAFS) samples prepared in Examples and Comparative Examples were evaluated as follows. A predetermined amount of lithium is inserted and removed while monitoring the amount of charge and discharge electricity with an X-ray absorption fine structure (XAFS) measurement cell, and the absorption coefficient is sequentially determined for a predetermined amount of lithium insertion and removal while scanning the X-ray energy from 6490 to 6750 eV. Was measured to obtain an X-ray absorption spectrum. Subsequently, the background was subtracted using Victoreen's equation (Cλ 3 −Dλ 4 + Const.) To which a constant term was added, and Cubic-Spline (weighing) was performed.
The EXAFS signal was extracted by estimating the absorbance of the isolated atoms by the method t). Weights k n (n
= 3) to perform a Fourier transform to derive a radial structure function that is a function of the distance from the absorbing atom. The peak intensity around 2.5 ° when 90% of the theoretically releaseable lithium amount was released was determined from the obtained radial structure function.

【0037】次の表1には実施例1〜5及び比較例1〜
3の上記2.5Å付近のピーク強度が示されている。X
線吸収微細構造解析(XAFS)法で測定したX線吸収
スペクトルを図1に、さらに、X線吸収スペクトルから
求められるMnK吸収端の広域X線吸収微細構造(EX
AFS)スペクトルの動径構造関数を図2に示す。ま
た、実施例1、2および比較例1のリチウムマンガン酸
化物のX線吸収スペクトルから求められる広域X線吸収
微細構造(EXAFS)スペクトルにおける理論的に放
出可能なリチウム量に対する放出リチウムの割合に対す
るフーリエ変換した2.5A付近のピーク強度の絶対値
を図3に示す。
The following Table 1 shows Examples 1 to 5 and Comparative Examples 1 to
3 shows the peak intensity around 2.5 ° above. X
The X-ray absorption spectrum measured by the X-ray absorption fine structure analysis (XAFS) method is shown in FIG. 1, and further, the broad X-ray absorption fine structure at the MnK absorption edge obtained from the X-ray absorption spectrum (EX
The radial structure function of the (AFS) spectrum is shown in FIG. Further, the Fourier to the ratio of the theoretically released lithium to the amount of lithium that can be theoretically released in the wide area X-ray absorption fine structure (EXAFS) spectrum obtained from the X-ray absorption spectra of the lithium manganese oxides of Examples 1 and 2 and Comparative Example 1 FIG. 3 shows the converted absolute value of the peak intensity around 2.5 A.

【0038】さらに実施例および比較例で作製した電池
を以下のように評価した。充電電圧4.2Vで5時間充
電を行った後700mAの一定電流で2.7Vまで放電
を行い電池容量を求めた。さらにこの充放電サイクルを
5サイクル繰り返した後、充電を行い4.2Vの充電状
態で85℃下、120時間保存後、室温まで冷却し放電
を行った。自己放電率は{1−(6サイクル目の放電量
/5サイクル目の放電量)}×100により求めた。ま
た、同時に作製した別の電池を用い、充電電圧4.2V
で5時間充電を行った後700mAの一定電流で2.7
Vまで放電を行うサイクルを60℃下、100サイクル
行い、1サイクル目の放電容量に対する100サイクル
目の放電容量の比を求め、60℃でのサイクル維持率と
した。この高温での保存とサイクル試験の結果は表2に
示されている。表2に示すとおり、本発明の非水二次電
池は、高温での保存およびサイクル性に優れていること
が判る。
Further, the batteries produced in the examples and comparative examples were evaluated as follows. After charging at a charging voltage of 4.2 V for 5 hours, the battery was discharged at a constant current of 700 mA to 2.7 V to obtain a battery capacity. After repeating this charge / discharge cycle for 5 cycles, the battery was charged, stored at 85 ° C. for 120 hours in a 4.2 V charged state, cooled to room temperature, and discharged. The self-discharge rate was determined by {1- (discharge amount at sixth cycle / discharge amount at fifth cycle)} × 100. Further, using another battery manufactured at the same time, the charging voltage was 4.2 V.
After charging for 5 hours at a constant current of 700 mA, 2.7
A cycle of discharging to V was performed at 60 ° C. for 100 cycles, and the ratio of the discharge capacity at the 100th cycle to the discharge capacity at the first cycle was determined, which was defined as the cycle maintenance rate at 60 ° C. The results of this high temperature storage and cycle test are shown in Table 2. As shown in Table 2, it can be seen that the non-aqueous secondary battery of the present invention is excellent in storage at high temperatures and cycleability.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【発明の効果】本発明の正極活物質はスピネル構造をと
るリチウムマンガン複合酸化物であり、かつX線吸収微
細構造解析(XAFS)法で測定したX線吸収スペクト
ルにおいて、MnK吸収端の広域X線吸収微細構造(E
XAFS)スペクトルをフーリエ変換して得られた動径
構造関数における2.5Å付近のピーク強度が理論的に
放出可能なリチウム量の90%を放出した時に17.5
以下である、特徴を有している。これを用いる電池は、
高温下での特性に優れていることから工業上極めて有用
である。
The positive electrode active material of the present invention is a lithium manganese composite oxide having a spinel structure, and in the X-ray absorption spectrum measured by the X-ray absorption fine structure analysis (XAFS) method, the wide area X at the MnK absorption edge is obtained. Line absorption fine structure (E
XAFS) when the peak intensity around 2.5 ° in the radial structure function obtained by Fourier transform of the spectrum emits 90% of the theoretically dischargeable lithium amount, 17.5.
It has the following features. The battery using this is
It is industrially extremely useful because of its excellent properties at high temperatures.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態の一例であるリチウムマンガ
ン複合酸化物のX線吸収スペクトルである。
FIG. 1 is an X-ray absorption spectrum of a lithium manganese composite oxide which is an example of an embodiment of the present invention.

【図2】本発明の実施形態の一例であるリチウムマンガ
ン複合酸化物のX線吸収スペクトルから求められるMn
K吸収端の広域X線吸収微細構造(EXAFS)スペク
トルの動径構造関数である。
FIG. 2 shows Mn determined from an X-ray absorption spectrum of a lithium manganese composite oxide as an example of an embodiment of the present invention.
It is a radial structure function of a broad X-ray absorption fine structure (EXAFS) spectrum at a K absorption edge.

【図3】本発明の実施例1、2および比較例1のリチウ
ムマンガン複合酸化物のX線吸収スペクトルから求めら
れる広域X線吸収微細構造(EXAFS)スペクトルに
おける理論的に放出可能なリチウム量に対する放出リチ
ウムの割合に対するフーリエ変換した2.5Å付近のピ
ーク強度の絶対値である。
FIG. 3 shows the amount of lithium that can be theoretically released in a broad X-ray absorption fine structure (EXAFS) spectrum obtained from the X-ray absorption spectra of the lithium manganese composite oxides of Examples 1 and 2 and Comparative Example 1 of the present invention. This is the absolute value of the peak intensity around 2.5 ° obtained by Fourier transform with respect to the ratio of the released lithium.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 津端 敏男 神奈川県川崎市川崎区夜光1丁目3番1号 旭化成工業株式会社内 (72)発明者 姫田 卓宏 神奈川県川崎市川崎区夜光1丁目3番1号 旭化成工業株式会社内 (72)発明者 小西 徳三 神奈川県川崎市川崎区夜光1丁目3番1号 旭化成工業株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshio Tsubata 1-3-1 Yoko, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Asahi Kasei Kogyo Co., Ltd. No. 1 Inside Asahi Kasei Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 リチウム又はリチウムを吸蔵放出可能な
物質を負極とし、非水電解質および正極を備える二次電
池において、該正極活物質がスピネル構造をとるリチウ
ムマンガン複合酸化物であり、かつX線吸収微細構造解
析(XAFS)法で測定したX線吸収スペクトルにおい
て、MnK吸収端の広域X線吸収微細構造(EXAF
S)スペクトルをフーリエ変換して得られた動径構造関
数における2.5Å付近のピーク強度が理論的に放出可
能なリチウム量の90%を放出した時に17.5以下で
あることを特徴とする非水二次電池。
1. A secondary battery comprising lithium or a substance capable of inserting and extracting lithium as a negative electrode, a nonaqueous electrolyte and a positive electrode, wherein the positive electrode active material is a lithium manganese composite oxide having a spinel structure, and an X-ray In an X-ray absorption spectrum measured by an absorption fine structure analysis (XAFS) method, a wide area X-ray absorption fine structure at the MnK absorption edge (EXAF)
S) The peak intensity around 2.5 ° in the radial structure function obtained by Fourier transforming the spectrum is 17.5 or less when 90% of the theoretically dischargeable lithium amount is released. Non-aqueous secondary battery.
JP9278014A 1997-09-26 1997-09-26 Nonaqueous secondary battery Pending JPH11102703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9278014A JPH11102703A (en) 1997-09-26 1997-09-26 Nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9278014A JPH11102703A (en) 1997-09-26 1997-09-26 Nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JPH11102703A true JPH11102703A (en) 1999-04-13

Family

ID=17591444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9278014A Pending JPH11102703A (en) 1997-09-26 1997-09-26 Nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JPH11102703A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002544110A (en) * 1999-05-07 2002-12-24 ヴェイランス・テクノロジー・インコーポレーテッド Stabilized electrochemical cell active material
WO2009005164A1 (en) * 2007-07-03 2009-01-08 Sumitomo Chemical Company, Limited Lithium composite metal oxide
JP2009212093A (en) * 2009-06-22 2009-09-17 Sony Corp Positive electrode for battery and nonaqueous electrolyte secondary battery using the same
WO2014007357A1 (en) * 2012-07-06 2014-01-09 住友化学株式会社 Lithium composite metal oxide, positive electrode active substance, positive electrode, and non-aqueous electrolyte secondary battery
WO2014007360A1 (en) * 2012-07-06 2014-01-09 住友化学株式会社 Lithium composite metal oxide, production method for lithium composite metal oxide, positive electrode active substance, positive electrode, and non-aqueous electrolyte secondary battery

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07101727A (en) * 1993-09-30 1995-04-18 Tosoh Corp Lithium manganese double oxide, its production and application
JPH07245106A (en) * 1994-03-02 1995-09-19 Masayuki Yoshio Manufacture of lixmn2o4 for lithium secondary battery and application thereof to nonaqueous battery
JPH09161800A (en) * 1995-12-06 1997-06-20 Toshiba Battery Co Ltd Manufacture of lithium secondary battery
JPH09259880A (en) * 1996-03-19 1997-10-03 Mitsubishi Chem Corp Nonaqueous electrolyte secondary battery, and manufacture of positive electrode active material thereof
JPH10112317A (en) * 1996-10-08 1998-04-28 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH10241691A (en) * 1996-12-24 1998-09-11 Hitachi Ltd Battery
JPH10261416A (en) * 1997-03-18 1998-09-29 Ube Ind Ltd Lithium battery composite oxide, its manufacture, and its usage
JPH10289710A (en) * 1997-04-16 1998-10-27 Dainippon Toryo Co Ltd Manufacture of lithium-manganese composite oxide for nonaqueous lithium secondary battery and application therefor
JPH10294099A (en) * 1997-04-21 1998-11-04 Sony Corp Non-aqueous electrolyte secondary cell
JPH10308217A (en) * 1997-03-06 1998-11-17 Matsushita Electric Ind Co Ltd Alkaline dry battery
JPH10308235A (en) * 1997-05-02 1998-11-17 Nec Corp Nonaqueous electrolyte secondary battery and its manufacture
JPH10326620A (en) * 1997-03-25 1998-12-08 Mitsubishi Heavy Ind Ltd Manufacture of li composite oxide as material for electrode of li ion battery
JPH1126018A (en) * 1997-07-08 1999-01-29 Matsushita Denchi Kogyo Kk Lithium secondary battery
JPH1145713A (en) * 1997-05-26 1999-02-16 Mitsubishi Chem Corp Secondary battery

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07101727A (en) * 1993-09-30 1995-04-18 Tosoh Corp Lithium manganese double oxide, its production and application
JPH07245106A (en) * 1994-03-02 1995-09-19 Masayuki Yoshio Manufacture of lixmn2o4 for lithium secondary battery and application thereof to nonaqueous battery
JPH09161800A (en) * 1995-12-06 1997-06-20 Toshiba Battery Co Ltd Manufacture of lithium secondary battery
JPH09259880A (en) * 1996-03-19 1997-10-03 Mitsubishi Chem Corp Nonaqueous electrolyte secondary battery, and manufacture of positive electrode active material thereof
JPH10112317A (en) * 1996-10-08 1998-04-28 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH10241691A (en) * 1996-12-24 1998-09-11 Hitachi Ltd Battery
JPH10308217A (en) * 1997-03-06 1998-11-17 Matsushita Electric Ind Co Ltd Alkaline dry battery
JPH10261416A (en) * 1997-03-18 1998-09-29 Ube Ind Ltd Lithium battery composite oxide, its manufacture, and its usage
JPH10326620A (en) * 1997-03-25 1998-12-08 Mitsubishi Heavy Ind Ltd Manufacture of li composite oxide as material for electrode of li ion battery
JPH10289710A (en) * 1997-04-16 1998-10-27 Dainippon Toryo Co Ltd Manufacture of lithium-manganese composite oxide for nonaqueous lithium secondary battery and application therefor
JPH10294099A (en) * 1997-04-21 1998-11-04 Sony Corp Non-aqueous electrolyte secondary cell
JPH10308235A (en) * 1997-05-02 1998-11-17 Nec Corp Nonaqueous electrolyte secondary battery and its manufacture
JPH1145713A (en) * 1997-05-26 1999-02-16 Mitsubishi Chem Corp Secondary battery
JPH1126018A (en) * 1997-07-08 1999-01-29 Matsushita Denchi Kogyo Kk Lithium secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002544110A (en) * 1999-05-07 2002-12-24 ヴェイランス・テクノロジー・インコーポレーテッド Stabilized electrochemical cell active material
JP4891481B2 (en) * 1999-05-07 2012-03-07 ヴェイランス・テクノロジー・インコーポレーテッド Stabilized electrochemical cell active material
WO2009005164A1 (en) * 2007-07-03 2009-01-08 Sumitomo Chemical Company, Limited Lithium composite metal oxide
JP2009032655A (en) * 2007-07-03 2009-02-12 Sumitomo Chemical Co Ltd Lithium composite metal oxide
US8440353B2 (en) 2007-07-03 2013-05-14 Sumitomo Chemical Company, Limited Lithium mixed metal oxide
JP2009212093A (en) * 2009-06-22 2009-09-17 Sony Corp Positive electrode for battery and nonaqueous electrolyte secondary battery using the same
WO2014007357A1 (en) * 2012-07-06 2014-01-09 住友化学株式会社 Lithium composite metal oxide, positive electrode active substance, positive electrode, and non-aqueous electrolyte secondary battery
WO2014007360A1 (en) * 2012-07-06 2014-01-09 住友化学株式会社 Lithium composite metal oxide, production method for lithium composite metal oxide, positive electrode active substance, positive electrode, and non-aqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
US6753112B2 (en) Positive electrode active material and non-aqueous secondary battery using the same
US9023530B2 (en) Non-aqueous electrolyte secondary battery
US8163423B2 (en) Non-aqueous electrolyte battery and method of manufacturing the same
CN102144322B (en) Electrode active substance, its manufacture method, nonaqueous secondary battery electrode and non-aqueous secondary batteries
US8039151B2 (en) Negative electrode active material, nonaqueous electrolyte battery, battery pack and vehicle
US5773168A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
US10964945B2 (en) Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
JPH1173962A (en) Nonaqueous system secondary battery
EP3193395B1 (en) Non-aqueous electrolyte battery
JP2003109599A (en) Positive electrode active material, and nonaqueous electrolyte secondary battery using the same
WO2017078136A1 (en) Positive electrode active material for lithium secondary batteries, method for producing positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
JP2001155734A (en) Lithium-manganese complex oxide and non-aqueous electrolytic secondary cell using the same
JP2003257427A (en) Electrode material for nonaqueous secondary battery
US20090246604A1 (en) Non-Aqueous Electrolyte Battery, Method of Manufacturing the Same and Method of Using the Same
US6274272B1 (en) Active cathode material for a lithium rechargeable cell
JPH09298061A (en) Nonaqueous secondary battery
JP2020021741A (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP6630865B1 (en) Lithium composite metal oxide powder and positive electrode active material for lithium secondary batteries
JPH11102703A (en) Nonaqueous secondary battery
JP4690643B2 (en) Nonaqueous electrolyte secondary battery
JPH10255801A (en) Nonaqueous secondary battery
JP2016018656A (en) Method for manufacturing lithium-containing complex metal oxide, positive electrode active material, positive electrode and nonaqueous electrolyte secondary battery
JPH10255802A (en) Secondary battery
JPH09298062A (en) Nonaqueous secondary battery
JP3594232B2 (en) Method for producing particulate material for negative electrode of non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20031208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070417