JPH10255801A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery

Info

Publication number
JPH10255801A
JPH10255801A JP9072818A JP7281897A JPH10255801A JP H10255801 A JPH10255801 A JP H10255801A JP 9072818 A JP9072818 A JP 9072818A JP 7281897 A JP7281897 A JP 7281897A JP H10255801 A JPH10255801 A JP H10255801A
Authority
JP
Japan
Prior art keywords
lithium
edge
positive electrode
ray absorption
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9072818A
Other languages
Japanese (ja)
Inventor
Izumi Nakai
泉 中井
Fumishige Nishikawa
文茂 西川
Tokuzo Konishi
徳三 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP9072818A priority Critical patent/JPH10255801A/en
Publication of JPH10255801A publication Critical patent/JPH10255801A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery with a long life time, in which capacity decrease is very small even if changing and discharging is repeated for a long time in a high energy density and a high temperature or if it is preserved at a high temperature. SOLUTION: This lithium secondary battery is equipped with nonaqueous electrolyte and a positive electrode while having lithium or a substance which can occlude and discharge lithium for a negative electrode. In this case, for the positive electrode active substance, a substance which is lithium manganese oxide with a spinel structure and of which pre-edge peak strength appeared in the neighbourhood of 6540eV in a X-ray absorbing end neighbouring structure (XANES) spectrum of a MnK absorbing end when standardized by an absorption coefficient under 6740eV, increases gradually along with deintercadation of lithium, in a X-ray absorption spectrum measured by X-ray absorbing fine structure analysis (XAFS) method, is adopted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スピネル系リチウ
ムマンガン酸化物を正極活物質とする非水系二次電池の
特性改善に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in characteristics of a nonaqueous secondary battery using a spinel lithium manganese oxide as a positive electrode active material.

【従来の技術】電子機器の小型化、軽量化が進められる
中、その電源として高エネルギー密度の二次電池の要望
は益々強まっている。近年では、金属リチウムに対して
4V程度の高い電圧が得られるLiCoO2を正極活物
質として用い、炭素材料を負極活物質としたリチウムイ
オン二次電池が市販されるようになった。しかしなが
ら、LiCoO2 は、Coの産出量が少ないため原料の
Co化合物の価格が高く、安定的な供給に不安のある材
料であることから、これに代わる材料の開発が望まれて
いる。その一例として、LiMn2 4 が提案されてい
る。このLiMn2 4 は原料が豊富で価格が安く、製
造コストも安いため、実用化に向けて種々の検討がなさ
れている。一般にLiMn2 4 は、リチウムとマンガ
ンのモル比が1:2となるようにMnO2 とLi2 CO
3 の様なマンガン酸化物とリチウム塩を混合後、加熱処
理する方法で容易に合成できる。しかし、この材料に
は、電池特性の基本であるサイクル特性が悪いという問
題があった。
2. Description of the Related Art As electronic devices become smaller and lighter, there is an increasing demand for high energy density secondary batteries as power sources. In recent years, lithium ion secondary batteries using LiCoO 2, which can provide a voltage as high as about 4 V with respect to metallic lithium, as a positive electrode active material and using a carbon material as a negative electrode active material have come to be marketed. However, LiCoO 2 is a material having a low production of Co, so that the cost of the raw material Co compound is high, and there is concern about stable supply. Therefore, development of an alternative material has been desired. As one example, LiMn 2 O 4 has been proposed. Since LiMn 2 O 4 is abundant in raw materials, inexpensive, and inexpensive in production, various studies have been made toward practical use. Generally, LiMn 2 O 4 is prepared by mixing MnO 2 and Li 2 CO 3 such that the molar ratio of lithium to manganese is 1: 2.
It can be easily synthesized by a method of mixing manganese oxide and lithium salt as described in 3 , and then subjecting it to heat treatment. However, this material has a problem that cycle characteristics, which are the basics of battery characteristics, are poor.

【0002】これを解決するために、例えば特公平8−
24043号公報には、結晶の格子定数aが8.22
以下のLiMn2 4 を活物質として使用することが提
案されている。また特開平6−187993号公報に
は、マンガンの酸化状態を高くするためリチウム過剰な
組成を提案している。また、特許公報第2058834
号では、LiMn2 4 中のMnの一部をCoやCr,
Feに置換することを提案している。これらは、結晶格
子やマンガンの酸化数に着目してリチウムマンガン酸化
物の改質を図り、サイクル特性を改良することを提案し
ている。確かに室温でのサイクル特性の改善効果は期待
できるが、高温下での保存や充放電サイクルに伴う容量
の低下は未だ大きく不充分である。
In order to solve this problem, for example,
No. 24043 discloses that the lattice constant a of a crystal is 8.22.
It has been proposed to use the following LiMn 2 O 4 as an active material. Japanese Patent Application Laid-Open No. Hei 6-187993 proposes a lithium-excess composition in order to increase the oxidation state of manganese. Also, Patent Publication No. 2058834
No., a part of Mn in LiMn 2 O 4 was changed to Co, Cr,
It is proposed to substitute Fe. They propose to improve the lithium manganese oxide by focusing on the crystal lattice and the oxidation number of manganese to improve the cycle characteristics. Although the effect of improving the cycle characteristics at room temperature can be expected, the decrease in capacity due to storage at high temperatures and charge / discharge cycles is still large and insufficient.

【発明が解決しようとする課題】本発明は、リチウムイ
オン二次電池のかかる問題を解決するものであり、高エ
ネルギー密度で高温で長期間にわたって充放電を繰り返
したり、高温で保存しても容量の低下が極めて少なく、
長寿命の電池を得ることのできるリチウムイオン二次電
池用正極材料を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention is to solve such a problem of a lithium ion secondary battery, and is capable of repeatedly charging and discharging at a high energy density and at a high temperature for a long period of time, or even when stored at a high temperature. Is extremely low,
It is an object of the present invention to provide a positive electrode material for a lithium ion secondary battery capable of obtaining a long-life battery.

【0003】[0003]

【課題を解決するための手段】本発明は、上述の従来技
術の問題点に着目してなされたものであり、X線吸収微
細構造解析(XAFS)法で測定したX線吸収スペクト
ルにおいて、6750eVでの吸収係数で規格化した際
のMnK吸収端のX線吸収端近傍構造(XANES)ス
ペクトルにおける6540eV付近に現れるプレエッジ
ピーク強度が二次電池の高温特性と深く関わっているこ
とを見い出したものである。以下、本発明を詳細に述べ
る。上述の通り、スピネル型リチウムマンガン酸化物の
特性改善の提案は、平均酸化数を3.5より大きくする
ことによって結晶の安定化を図る考えが一般的である。
本発明者らは、それら提案の活物質は高温特性に対して
は不十分であるという認識の基にマンガン元素と高温特
性に関して徹底した検討を行った。すなわち、焼成条
件、組成等合成条件の異なるスピネル型リチウムマンガ
ン酸化物を合成し、高温下での試験後、XAFS測定で
マンガンの電子状態を詳細に調べたところ、高温で長期
間にわたって充放電を繰り返したり、高温で保存しても
容量の低下が極めて少ないものは、X線吸収微細構造解
析(XAFS)法で測定したX線吸収スペクトルから求
められるMnK吸収端のX線吸収端近傍構造(XANE
S)スペクトルの6540eV付近に現れるプレエッジ
ピーク強度がリチウムのデインターカレート(放出)に
伴い逐次次第に大きくなることが判った。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and shows an X-ray absorption spectrum measured by X-ray absorption fine structure analysis (XAFS) method of 6750 eV. Found that the pre-edge peak intensity appearing at around 6540 eV in the X-ray absorption near edge structure (XANES) spectrum of the MnK absorption edge when normalized by the absorption coefficient in the above is deeply related to the high temperature characteristics of the secondary battery. It is. Hereinafter, the present invention will be described in detail. As described above, proposals for improving the characteristics of the spinel-type lithium manganese oxide generally involve stabilizing the crystal by increasing the average oxidation number to more than 3.5.
The present inventors have conducted thorough studies on manganese elements and high-temperature characteristics based on the recognition that the proposed active materials are insufficient for high-temperature characteristics. That is, spinel-type lithium manganese oxides with different synthesis conditions such as firing conditions and compositions were synthesized, and after testing at high temperature, the electronic state of manganese was examined in detail by XAFS measurement. If the capacity is extremely low even after repeated storage or storage at a high temperature, the structure near the X-ray absorption edge of the MnK absorption edge (XANE) determined from the X-ray absorption spectrum measured by the X-ray absorption fine structure analysis (XAFS) method
S) It was found that the pre-edge peak intensity appearing around 6540 eV of the spectrum gradually increased with lithium deintercalation (release).

【0004】一方、高温サイクルや高温保存によって明
らかに容量が低下するもの、すなわち高温特性が劣化す
るものは、6540eV付近に現れるプレエッジピーク
強度がリチウムのデインターカレートに伴い、一度、未
充電状態より小さくなり、更にリチウムをデインターカ
レートしていくとピーク強度が大きくなることをつきと
め、本発明の完成に至った。MnK吸収端の前に現れる
プレエッジピークは、一般的にはK殻電子の1sから3
dへの遷移による吸収や配位子の歪みなどによって出現
すると言われている。本発明のリチウムマンガン酸化物
の場合の詳細は不明であるが、Mnの電子状態や配位構
造に基づくMn原子の状態が、一般的なリチウムマンガ
ン酸化物と微妙に異なっているためと推測される。すな
わち本発明は、リチウム又はリチウムを吸蔵放出可能な
物質を負極とし、非水電解質および正極を備える二次電
池において、該正極活物質がスピネル構造をとるリチウ
ムマンガン酸化物であり、かつX線吸収微細構造解析
(XAFS)法で測定したX線吸収スペクトルにおい
て、6750eVでの吸収係数で規格化した際のMnK
吸収端のX線吸収端近傍構造(XANES)スペクトル
における6540eV付近に現れるプレエッジピーク強
度がリチウムのデインターカレートに伴い大きくなる、
ことを特徴とする非水系二次電池である。
[0004] On the other hand, in the case where the capacity is clearly reduced by the high-temperature cycle or high-temperature storage, that is, in the case where the high-temperature characteristics are deteriorated, the pre-edge peak intensity appearing around 6540 eV is once uncharged due to the deintercalation of lithium. It has been found that the peak intensity becomes larger as the state becomes smaller than the state and lithium is further deintercalated, thereby completing the present invention. The pre-edge peak appearing before the MnK absorption edge is generally between 1 s and 3 s of K-shell electrons.
It is said that it appears due to absorption due to the transition to d or ligand distortion. Although the details of the lithium manganese oxide of the present invention are unknown, it is presumed that the electronic state of Mn and the state of Mn atoms based on the coordination structure are slightly different from general lithium manganese oxide. You. That is, the present invention relates to a secondary battery comprising a nonaqueous electrolyte and a positive electrode, wherein the positive electrode active material is a lithium manganese oxide having a spinel structure, wherein the negative electrode is lithium or a substance capable of inserting and extracting lithium. In the X-ray absorption spectrum measured by the fine structure analysis (XAFS) method, MnK when normalized by the absorption coefficient at 6750 eV
The pre-edge peak intensity that appears near 6540 eV in the X-ray absorption near edge structure (XANES) spectrum at the absorption edge increases with lithium deintercalation.
It is a non-aqueous secondary battery characterized by the above.

【0005】ここで、一般的なX線吸収微細構造解析
(XAFS)の測定について説明する。IRやUVなど
の光は物質により吸収されるが、X線も例外なく物質に
より吸収され、その吸収分のエネルギーは光電子や蛍光
X線、及び熱に変換される。このとき、X線の吸収によ
って発生した光電子の一部は、複数の原子による散乱と
干渉によって、X線の吸収量に対し構造情報として反映
される。つまり、X線の吸収量をモニタすれば、原子構
造に関する情報が得られる。X線のビームライン上に物
質をおいた場合、物質に照射されたX線(入射X線:I
0)強度と物質を通過してきたX線(透過X線:It)
強度とからその物質によるX線の吸収量(X線吸収係
数)が算出される。X線吸収係数の増減をモニタしなが
らX線エネルギー(波長)を変化させ、X線吸収スペク
トルを測定すると、あるエネルギー位置でX線吸収係数
の急激な立ち上がり(吸収端)が観測される。この吸収
端のエネルギー位置は元素に固有であるため、この吸収
端付近のエネルギー領域で構造情報を抽出できれば、そ
れは元素固有の情報であることを意味する。
Here, measurement of general X-ray absorption fine structure analysis (XAFS) will be described. Although light such as IR and UV is absorbed by the substance, X-rays are also absorbed by the substance without exception, and the energy of the absorbed amount is converted into photoelectrons, fluorescent X-rays, and heat. At this time, part of the photoelectrons generated by the absorption of X-rays is reflected as structural information on the amount of X-ray absorption by scattering and interference by a plurality of atoms. That is, by monitoring the amount of X-ray absorption, information on the atomic structure can be obtained. When a substance is placed on an X-ray beam line, the X-ray irradiated on the substance (incident X-ray: I
0) Intensity and X-rays that have passed through the substance (transmission X-rays: It)
From the intensity, the X-ray absorption amount (X-ray absorption coefficient) of the substance is calculated. When the X-ray energy (wavelength) is changed while monitoring the increase / decrease of the X-ray absorption coefficient and the X-ray absorption spectrum is measured, a sharp rise (absorption edge) of the X-ray absorption coefficient is observed at a certain energy position. Since the energy position of the absorption edge is unique to an element, if structural information can be extracted in the energy region near the absorption edge, it means that the information is information unique to the element.

【0006】ある注目元素の吸収端付近のエネルギー領
域で、充分な精度でX線吸収スペクトルを測定すると、
吸収端から数十eVのエネルギー領域において減衰を伴
う大きな構造性振動が観測される。これをX線吸収端近
傍構造(XANES:X-rayabsorption near edge stru
cture )と呼び、主に注目元素の電子状態や立体構造に
関した情報を含有している。また、XANESよりもさ
らに高エネルギー側数百eVのエネルギー領域におい
て、同様な減衰を伴った微細な構造性振動が観測され
る。これをX線吸収微細構造(EXAFS:Extended X
-ray absorption Fine structure)と呼び、注目元素近
傍の局所構造(原子間距離や配位数)についての情報を
含有している。近年、上述したXANESとEXAFS
を総称してXAFSと呼んでいる。ところで、リチウム
イオン二次電池などにおいて、高性能な活物質を探索す
るためには、充放電量の異なる活物質毎の局所的結晶構
造や充放電に伴う構造変化の詳細を測定して明らかにす
ることが有効な指針となると考えられる。XAFSでか
かる測定を行うには、予め所定の充放電量に充放電され
た活物質を準備し該活物質に対してX線を透過する方法
が考えられる。しかしながらかかる測定法では、充放電
用の密閉型セル内から活物質を取り出してXAFS測定
用のセルに移動する際に、不用意に空気に触れるなどし
て活物質の物性が変化してしまうことがあり、この結果
正確な測定が行えない場合がある。
When the X-ray absorption spectrum is measured with sufficient accuracy in the energy region near the absorption edge of a certain element of interest,
Large structural vibration accompanied by attenuation is observed in the energy region of several tens eV from the absorption edge. This is called X-ray absorption near edge stru
cture), which mainly contains information on the electronic state and three-dimensional structure of the element of interest. Further, in the energy region of several hundred eV on the higher energy side than XANES, fine structural vibration accompanied by similar attenuation is observed. This is called X-ray absorption fine structure (EXAFS: Extended X
-ray absorption Fine structure) and contains information about the local structure (interatomic distance and coordination number) near the element of interest. In recent years, the above-mentioned XANES and EXAFS
Are collectively called XAFS. By the way, in order to search for high-performance active materials in lithium-ion secondary batteries, etc., the local crystal structure of each active material with different charge / discharge amount and the details of the structural change due to charge / discharge are measured and clarified. It is thought that doing so will be an effective guide. In order to perform such measurement by XAFS, a method of preparing an active material charged and discharged to a predetermined charge / discharge amount in advance and transmitting X-rays to the active material can be considered. However, in such a measurement method, when the active material is taken out from the closed cell for charge and discharge and moved to the XAFS measurement cell, the physical properties of the active material may be changed due to careless contact with air or the like. As a result, accurate measurement may not be performed.

【0007】また、活物質の充放電を別の場所で行う必
要があり、しかも、充放電量の異なる多種類の活物質を
用意しなければならないため、その測定に手間がかかる
という不都合があった。本発明者らはかかる不都合を解
消するために、密閉されたセル内で活物質の充放電を可
能にすることができると共に、充放電量の異なる活物質
毎の局所的結晶構造や充放電に伴う構造変化の詳細を簡
単且つ正確に測定することができる電池材料のX線吸収
微細構造測定用セルを作製した。本発明は、上述のセル
を用い、種々のスピネル型リチウムマンガン酸化物を充
放電しながらXAFS測定を行い、X線吸収スペクトル
から求められるMnK-吸収端 のX線吸収端近傍構造
(XANES)スペクトルにおける6540eV付近に
現れるプレエッジピーク強度と活物質の電池特性との関
係について詳細に調べた結果、高温特性に好適な強度関
係が存在することを見い出したものである。なお、本発
明におけるX線吸収微細構造(XAFS)の測定は、分
光結晶としてSi(111)チャンネルカットモノクロ
メーターを用い、X線エネルギーを6490eV〜67
50eVの間で走査し、透過法により行った。積算時間
は2秒/点とした。また角度補正は8980.3eVの
CuのK吸収端を12.7185度として行った。
Further, it is necessary to perform charging and discharging of the active material in another place, and it is necessary to prepare various kinds of active materials having different charging and discharging amounts. Was. The present inventors have made it possible to eliminate the inconvenience by enabling the charge and discharge of the active material in a sealed cell, and at the same time, to the local crystal structure and the charge and discharge of each active material having different charge and discharge amounts. An X-ray absorption fine structure measurement cell of a battery material capable of easily and accurately measuring the details of the accompanying structural change was manufactured. In the present invention, XAFS measurement is performed using the above-mentioned cell while charging and discharging various spinel-type lithium manganese oxides, and the MnK-absorption edge near-X-ray absorption edge structure (XANES) spectrum obtained from the X-ray absorption spectrum As a result of a detailed investigation of the relationship between the pre-edge peak intensity appearing at around 6540 eV and the battery characteristics of the active material, it was found that there was a strength relationship suitable for high-temperature characteristics. In the measurement of the X-ray absorption fine structure (XAFS) in the present invention, an X-ray energy of 6490 eV to 67 was used by using a Si (111) channel cut monochromator as a spectral crystal.
Scanning was performed between 50 eV, and transmission was performed. The integration time was 2 seconds / point. The angle was corrected by setting the K absorption edge of Cu of 8980.3 eV to 12.7185 degrees.

【0008】本発明の正極活物質は、以下のような方法
で合成することができる。例えばリチウム化合物とマン
ガン化合物とを混合後、加熱処理することにより得られ
る。リチウム化合物としては、特に制限されないが、例
えば、水酸化リチウム、炭酸リチウム、硝酸リチウム、
酸化リチウム、塩化リチウム、硫酸リチウム、酢酸リチ
ウム、ヨウ化リチウム、アルキルリチウム等が例示され
る。特に水酸化リチウム、炭酸リチウム、硝酸リチウム
が好ましい。マンガン化合物としては、特に制限されな
いが、例えば、電解二酸化マンガン(EMD)、化学合
成二酸化マンガン(CMD)、Mn2 3 、MnOOH
およびMn3 4 等のマンガン酸化物、水酸化物等が例
示される。特に電解二酸化マンガン、化学合成二酸化マ
ンガン、MnOOHが好ましい。LiとMnの混合比
(Li/Mn比)は、出発に用いる化合物や加熱条件に
より異なるが、通常は0.52〜0.75とすることが
好ましい。加熱処理条件は、出発に用いる化合物により
若干異なるが、600〜950℃で加熱処理することに
より得られる。また、加熱雰囲気は窒素、アルゴン、空
気、酸素あるいはこれらの混合ガスを用いることができ
る。本発明における正極活物質の平均粒径は、好ましく
は5〜50μm、さらに好ましくは5〜30μmの範囲
にあることである。
[0008] The positive electrode active material of the present invention can be synthesized by the following method. For example, it can be obtained by mixing a lithium compound and a manganese compound and then performing a heat treatment. The lithium compound is not particularly limited, for example, lithium hydroxide, lithium carbonate, lithium nitrate,
Examples thereof include lithium oxide, lithium chloride, lithium sulfate, lithium acetate, lithium iodide, and alkyl lithium. Particularly, lithium hydroxide, lithium carbonate, and lithium nitrate are preferable. The manganese compound is not particularly limited. For example, electrolytic manganese dioxide (EMD), chemically synthesized manganese dioxide (CMD), Mn 2 O 3 , MnOOH
And manganese oxides and hydroxides such as Mn 3 O 4 . Particularly, electrolytic manganese dioxide, chemically synthesized manganese dioxide, and MnOOH are preferable. The mixing ratio of Li and Mn (Li / Mn ratio) varies depending on the starting compound and the heating conditions, but is usually preferably 0.52 to 0.75. The heat treatment conditions are slightly different depending on the starting compound, but can be obtained by heat treatment at 600 to 950 ° C. As a heating atmosphere, nitrogen, argon, air, oxygen, or a mixed gas thereof can be used. The average particle diameter of the positive electrode active material in the present invention is preferably in the range of 5 to 50 μm, more preferably 5 to 30 μm.

【0009】本発明に用いられる負極材料は、リチウム
を可逆的に吸蔵放出可能な物質であれば特に制限されな
いが、例えば金属リチウム、アルミニウムをはじめリチ
ウムと合金化する金属材料、炭素材料、黒鉛および黒鉛
類似化合物、金属酸化物、金属窒化物などを用いること
ができる。本発明に用いられるリチウムイオン移動媒体
は、リチウム塩を非プロトン性有機溶媒に溶解した電解
液やリチウム塩を高分子マトリクス中に分散させた固
体、半固体、或いは両者の混合物など特に制限されない
が、リチウム塩としては、例えば過塩素酸リチウム、L
iBF4 、LiPF6 、LiAsF6 、CF3 SO3
i、(CF3 SO2 2 NLi、(CF3 SO2 3
Li、有機カルボン酸リチウム、フルオロカルボン酸リ
チウム、高分子スルフォン酸リチウム、高分子カルボン
酸リチウムなどを用いることができる。また、非プロト
ン性有機溶剤としては、プロピレンカーボネート、エチ
レンカーボネート、ジエチルカーボネート、ジメチルカ
ーボネート、メチルエチルカーボネートなどの有機カー
ボネート、ブチロラクトン、プロピオラクトン、酢酸エ
チル、酢酸ブチル、酢酸プロピル、プロピオン酸エチ
ル、プロピオン酸ブチルなど脂肪族有機エステル、グラ
イム、ジグライム、トリグライム、テトラヒドロフラ
ン、ジオキサン、ジエチルエーテル、シリコンオイルな
どの有機エーテル、ピリジン、トリエチルアミンなどの
有機アミン、アセトニトリル、プロピオニトリルなどの
有機ニトリルなどの有機ニトリルの単体または混合物を
少なくとも一部含有するものであり、これに他の非プロ
トン性有機溶媒、例えばベンゼン、トルエン、キシレ
ン、デカリンなどの芳香族炭化水素、ヘキサン、ペンタ
ン、デカンなどの脂肪族炭化水素、フェノール、カテコ
ール、ビスフェノールなどのアルキルエステル、芳香族
エステルやクロロフォルム、四塩化炭素、ジクロロメタ
ンなどのハロゲン系炭化水素を混合使用することも可能
である。
The negative electrode material used in the present invention is not particularly limited as long as it is a substance capable of inserting and extracting lithium reversibly. For example, metallic materials such as metallic lithium and aluminum, carbon materials, carbon materials, graphite, Graphite-like compounds, metal oxides, metal nitrides, and the like can be used. The lithium ion transfer medium used in the present invention is not particularly limited, such as an electrolyte solution in which a lithium salt is dissolved in an aprotic organic solvent or a solid in which a lithium salt is dispersed in a polymer matrix, a semi-solid, or a mixture of both. And lithium salts include, for example, lithium perchlorate, L
iBF 4 , LiPF 6 , LiAsF 6 , CF 3 SO 3 L
i, (CF 3 SO 2 ) 2 NLi, (CF 3 SO 2 ) 3 C
Li, lithium organic carboxylate, lithium fluorocarboxylate, lithium polymer sulfonate, lithium polymer carboxylate, or the like can be used. Further, as the aprotic organic solvent, propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, organic carbonates such as methyl ethyl carbonate, butyrolactone, propiolactone, ethyl acetate, butyl acetate, propyl acetate, ethyl propionate, propionate Organic ethers such as aliphatic organic esters such as butyl acid, glyme, diglyme, triglyme, tetrahydrofuran, dioxane, diethyl ether and silicone oil; organic amines such as pyridine and triethylamine; organic nitriles such as acetonitrile and propionitrile; It contains at least a part of a simple substance or a mixture, and may contain other aprotic organic solvents such as benzene, toluene, xylene, deca. Mixed use of aromatic hydrocarbons such as benzene, hexane, pentane, decane, etc., alkyl esters such as phenol, catechol and bisphenol, aromatic esters and halogenated hydrocarbons such as chloroform, carbon tetrachloride and dichloromethane. It is also possible.

【0010】次に前記高分子マトリクスとしては、例え
ば、ポリエチレンオキサイド、ポリテトラメチレンオキ
サイド、ポリビニルアルコール、ポリビニルブチラール
などの芳香族ポリエーテル、ポリエチレンスルフィド、
ポリプロピレンスルフィドなどの脂肪族ポリチオエーテ
ル、ポリエチレンサクシネート、ポリブチレンアジペー
ト、ポリカプロラクトンなどの脂肪族ポリエステル、ポ
リエチレンイミン、ポリイミドおよびその前駆体などを
用いることができる。 本発明に用いられるセパレータ
には、例えばポリエチレン、ポリプロピレンなどのポリ
オレフィン樹脂の多孔性シートやこれらの不織布などを
用いることができる。なお、本発明の電池は、請求項1
の特徴を備えたスピネル構造をとるリチウムマンガン酸
化物を正極活物質として用いる以外は、従来より公知の
リチウム二次電池(金属リチウム二次電池やリチウムイ
オン二次電池)と同じ構成をとることができる。
Next, examples of the polymer matrix include aromatic polyethers such as polyethylene oxide, polytetramethylene oxide, polyvinyl alcohol, and polyvinyl butyral; polyethylene sulfide;
Aliphatic polythioethers such as polypropylene sulfide, aliphatic polyesters such as polyethylene succinate, polybutylene adipate and polycaprolactone, polyethyleneimine, polyimide and precursors thereof can be used. As the separator used in the present invention, for example, a porous sheet of a polyolefin resin such as polyethylene or polypropylene, or a nonwoven fabric thereof can be used. In addition, the battery of the present invention corresponds to claim 1
Except for using a lithium manganese oxide having a spinel structure having the following characteristics as a positive electrode active material, it may have the same configuration as a conventionally known lithium secondary battery (metal lithium secondary battery or lithium ion secondary battery). it can.

【発明の実施の形態】以下、本発明の実施形態について
説明する。正極活物質として、表1に示される様な種々
の原料、焼成条件を適用することによってA〜Hの各種
リチウムマンガン酸化物を作製した。
Embodiments of the present invention will be described below. Various lithium manganese oxides A to H were prepared by applying various raw materials and firing conditions as shown in Table 1 as the positive electrode active material.

【0011】(実施例1)正極活物質の合成は、リチウ
ム化合物としてLi2 CO3 を、マンガン化合物として
電解二酸化マンガン(EMD)を用い、Li/Mn=
0.50の原子比で混合し、空気中(酸素濃度20vo
l%)850℃で20時間加熱処理することにより行っ
た。その後、最終組成がLi1.08Mn1.924 になるよ
うにLi2 CO3 を加え、更に20時間650℃で加熱
し、リチウムマンガン酸化物を得た。得られた生成物
は、X線回折と化学分析によりスピネル構造のLi
1.080 Mn1.916 4 であった。次に、正極活物質10
0重量部に対して導電剤として炭素粉末を8重量部、結
着剤としてポリフッ化ビニリデンを3.2重量部加え、
N- メチル- 2- ピロリドンを用いてペースト状にし、
アルミニウム箔の集電体に塗布し、乾燥、プレスして正
極とした。続いて、この正極と対極のリチウム金属とを
1ppm以下の水分量に管理されたアルゴンドライボッ
クス中で、X線の透過孔を具備し、かつX線光路上に正
極とリチウム対極とが対向するように位置する、充放電
操作が可能な密閉型X線吸収微細構造測定用セルに組込
み、1.0モル/リットルのLiPF6を溶解したエチ
レンカーボネート(EC)とジエチルカーボネート(D
EC)の混合溶液を注入し測定に供した。
Example 1 Synthesis of a positive electrode active material was performed using Li 2 CO 3 as a lithium compound and electrolytic manganese dioxide (EMD) as a manganese compound.
Mix at an atomic ratio of 0.50, and in air (oxygen concentration 20 vo
1%) at 850 ° C. for 20 hours. Thereafter, Li 2 CO 3 was added so that the final composition became Li 1.08 Mn 1.92 O 4, and the mixture was further heated at 650 ° C. for 20 hours to obtain a lithium manganese oxide. The obtained product was analyzed by X-ray diffraction and chemical analysis to obtain a spinel-structured Li.
1.080 was Mn 1.916 O 4. Next, the positive electrode active material 10
8 parts by weight of carbon powder as a conductive agent and 3.2 parts by weight of polyvinylidene fluoride as a binder are added to 0 parts by weight.
Paste with N-methyl-2-pyrrolidone,
It was applied to a current collector of aluminum foil, dried and pressed to obtain a positive electrode. Subsequently, the positive electrode and the lithium metal of the counter electrode are provided with an X-ray transmission hole in an argon dry box controlled to a moisture content of 1 ppm or less, and the positive electrode and the lithium counter electrode face each other on the X-ray optical path. Carbonate (EC) and diethyl carbonate (D) in which 1.0 mol / l of LiPF6 is dissolved in a closed X-ray absorption fine structure measurement cell capable of charge / discharge operation
The mixed solution of EC) was injected and used for measurement.

【0012】X線吸収微細構造(XAFS)は、該測定
セルで充放電電気量をモニターしながら、リチウムを所
定量脱挿入し、X線のエネルギーを6490〜6750
eVまで走査しながら、所定のリチウム脱挿入量につき
順次、吸収係数を測定しX線吸収スペクトルを得た。X
線吸収微細構造解析(XAFS)法で測定したX線吸収
スペクトルにおいて、6750eVでの吸収係数で規格
化した際のMnK吸収端のX線吸収端近傍構造(XAN
ES)スペクトルの6530から6580eVの範囲を
図1に示す。さらにプレエッジの部分を拡大したものを
図2に示す。図2において1は未充電活物質のプレエッ
ジピークを、2は充電により0.25のLiをデインタ
ーカレートした活物質のプレエッジピークを、3は充電
により0.67のLiをデインターカレートした活物質
のプレエッジピークを示す。このことから6540eV
付近に現れるプレエッジピーク強度がリチウムのデイン
ターカレートに伴い逐次大きくなっていることがわかっ
た。(このリチウムのデインターカレートに伴うプレエ
ッジの挙動をプレエッジタイプRと表1中で定義す
る。) 続いて、上記で作製した正極を用い、以下の手順により
電池を作製した。負極としては、活物質としての黒鉛化
メソカーボンファイバー100重量部に対して鱗片状黒
鉛5重量部と結着剤としてカルボキシメチルセルロース
1重量部、スチレンブタジエンゴム2重量部を加え、精
製水を用いてペースト状にし、銅箔の集電体に塗布し、
乾燥、プレスしたものを用いた。
In the X-ray absorption fine structure (XAFS), while monitoring the charge / discharge electricity amount in the measurement cell, a predetermined amount of lithium is inserted and removed, and the energy of the X-ray is 6490-6750.
While scanning up to eV, the absorption coefficient was measured sequentially for a predetermined amount of lithium desorption, and an X-ray absorption spectrum was obtained. X
In the X-ray absorption spectrum measured by the X-ray absorption fine structure analysis (XAFS) method, the structure near the X-ray absorption edge of the MnK absorption edge when normalized by the absorption coefficient at 6750 eV (XAN
ES) The range of the spectrum from 6530 to 6580 eV is shown in FIG. FIG. 2 shows an enlarged portion of the pre-edge portion. In FIG. 2, 1 is the pre-edge peak of the uncharged active material, 2 is the pre-edge peak of the active material obtained by deintercalating 0.25 Li by charging, and 3 is the de-interpolating of 0.67 Li by charging. The pre-edge peak of the calmed active material is shown. From this, 6540 eV
It was found that the pre-edge peak intensity appearing in the vicinity gradually increased with lithium deintercalation. (The behavior of the pre-edge accompanying the deintercalation of lithium is defined in Table 1 as pre-edge type R.) Subsequently, using the positive electrode produced above, a battery was produced by the following procedure. As the negative electrode, 5 parts by weight of flaky graphite, 1 part by weight of carboxymethyl cellulose as a binder, and 2 parts by weight of styrene-butadiene rubber were added to 100 parts by weight of graphitized mesocarbon fiber as an active material, and purified water was used. Paste, apply to the current collector of copper foil,
What was dried and pressed was used.

【0013】次に、上記の正極および負極との間にポリ
エチレン製の微多孔膜からなるセパレーターを介在させ
て互いに積層し、多数回捲回して渦巻き型の電極体を作
製した。さらに、この渦巻き型の電極体をニッケルメッ
キを施した鉄製の電池容器に中に収納した。負極リード
端子を電池容器の内底部にスポット溶接により接続し、
正極リード端子は電池封口板に同様にして接続した。次
に、この電池缶容器中に1.0モル/リットルのLiP
F6を溶解したエチレンカーボネート(EC)とジエチ
ルカーボネート(DEC)の混合溶液を注入し、該電池
容器と前記電池封口板とをポリプロピレン製パッキンを
介し、かしめ、密封し、外径17mm、高さ50mmの
円筒型非水電解質電池を作製した。この電池を、充放電
電流670mA、充電終止電圧4.2V、放電終止電圧
2.7Vで充放電を行った。その時の放電容量は670
mAhであった。この電池を上記の充放電条件で、20
℃と60℃の温度条件でそれぞれ充放電を繰り返した。
100サイクル後の容量維持率(1サイクル目の放電容
量に対する100サイクル目の放電容量の割合)は、そ
れぞれ95%と83%であった。
Next, a separator made of a microporous film made of polyethylene was interposed between the above-mentioned positive electrode and negative electrode, laminated one another, and wound many times to produce a spiral electrode body. Further, the spiral electrode body was housed in a nickel-plated iron battery container. Connect the negative electrode lead terminal to the inner bottom of the battery container by spot welding,
The positive electrode lead terminal was similarly connected to the battery sealing plate. Next, 1.0 mol / liter of LiP was placed in the battery can.
A mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) in which F6 is dissolved is injected, and the battery container and the battery sealing plate are caulked and sealed via a polypropylene packing, and have an outer diameter of 17 mm and a height of 50 mm. Was manufactured. This battery was charged and discharged at a charge / discharge current of 670 mA, a charge end voltage of 4.2 V, and a discharge end voltage of 2.7 V. The discharge capacity at that time was 670
mAh. This battery was charged for 20
Charge and discharge were repeated under the temperature conditions of ° C and 60 ° C, respectively.
The capacity retention rates after 100 cycles (the ratio of the discharge capacity at the 100th cycle to the discharge capacity at the first cycle) were 95% and 83%, respectively.

【0014】また、上記で作製した電池を4.2Vの充
電状態で85℃の高温槽に入れ24時間保存した。その
状態で2.7Vまで放電した。放電容量は470mAh
であり、容量維持率(保存前の室温での放電容量に対す
る85℃での放電容量の割合)は70%であった。次に
高温槽から取り出し室温に戻してから、再度4.2Vま
で充電した後、2.7Vまで放電した。放電容量は56
0mAhであり、回復率は84%であった。 (実施例2)正極活物質の合成は、リチウム化合物とし
てLiOH・H2 Oを、マンガン化合物として電解二酸
化マンガン(EMD)を用い、Li/Mn=0.50の
原子比で混合し、空気とN2 の混合ガス中(酸素濃度1
5vol%)750℃で20時間加熱処理することによ
り行った。その後、最終組成がLi1.04Mn1.964
なるようにLiOH・H2 Oを加え、更に12時間55
0℃で加熱し、リチウムマンガン酸化物を得た。得られ
た生成物は、X線回折と化学分析によりスピネル構造の
Li1.037 Mn1.960 4 であった。
Further, the battery prepared above was put in a high-temperature bath at 85 ° C. in a charged state of 4.2 V and stored for 24 hours. In this state, the battery was discharged to 2.7V. Discharge capacity is 470 mAh
And the capacity retention ratio (the ratio of the discharge capacity at 85 ° C. to the discharge capacity at room temperature before storage) was 70%. Next, the battery was taken out of the high-temperature bath, returned to room temperature, charged again to 4.2 V, and then discharged to 2.7 V. The discharge capacity is 56
0 mAh, and the recovery rate was 84%. Example 2 The synthesis of the positive electrode active material was performed by mixing LiOH · H 2 O as a lithium compound and electrolytic manganese dioxide (EMD) as a manganese compound at an atomic ratio of Li / Mn = 0.50, and mixing with air. In a mixed gas of N 2 (oxygen concentration 1
(5% by volume) at 750 ° C. for 20 hours. Thereafter, LiOH · H 2 O was added so that the final composition became Li 1.04 Mn 1.96 O 4 , and the mixture was further added for 55 hours.
The mixture was heated at 0 ° C. to obtain a lithium manganese oxide. The obtained product was found to be Li 1.037 Mn 1.960 O 4 having a spinel structure by X-ray diffraction and chemical analysis.

【0015】次に、実施例1と同様の方法で正極および
XAFSセルを作製した後、X線吸収微細構造解析(X
AFS)法で測定しX線吸収スペクトルを得た。675
0eVでの吸収係数で規格化した際のMnK吸収端のX
ANESスペクトルの6540eV付近に現れるプレエ
ッジピーク強度がリチウムのデインターカレートに伴い
逐次大きくなっていることがわかった。(プレエッジタ
イプR) 続いて、実施例1と同様の方法で電池を作製した。この
電池を、充放電電流700mA、充電終止電圧4.2
V、放電終止電圧2.7Vで充放電を行った。その時の
放電容量は700mAhであった。この電池を上記の充
放電条件で、20℃と60℃の温度条件でそれぞれ充放
電を繰り返した。100サイクル後の容量維持率(1サ
イクル目の放電容量に対する100サイクル目の放電容
量の割合)は、それぞれ92%と82%であった。ま
た、実施例1と同様にして85℃で保存した場合の容量
維持率は68%、回復率は81%であった。
Next, after a positive electrode and a XAFS cell were fabricated in the same manner as in Example 1, X-ray absorption fine structure analysis (X
(AFS) method to obtain an X-ray absorption spectrum. 675
X at MnK absorption edge when normalized by absorption coefficient at 0 eV
It was found that the pre-edge peak intensity appearing at around 6540 eV in the ANES spectrum gradually increased with lithium deintercalation. (Pre-edge type R) Subsequently, a battery was produced in the same manner as in Example 1. This battery was charged with a charge / discharge current of 700 mA and a charge end voltage of 4.2.
And charging / discharging at a discharge end voltage of 2.7 V. The discharge capacity at that time was 700 mAh. This battery was repeatedly charged and discharged under the above-mentioned charge and discharge conditions at temperature conditions of 20 ° C. and 60 ° C., respectively. The capacity retention rates after 100 cycles (the ratio of the discharge capacity at the 100th cycle to the discharge capacity at the first cycle) were 92% and 82%, respectively. When stored at 85 ° C. in the same manner as in Example 1, the capacity retention rate was 68%, and the recovery rate was 81%.

【0016】(実施例3)正極活物質の合成は、リチウ
ム化合物としてLiNO3 を、マンガン化合物としてγ
- MnOOHを用い、Li/Mn=0.56の原子比で
混合し、N2 中(酸素濃度0vol%)650℃で24
時間加熱処理することにより行った。得られたリチウム
マンガン酸化物は、X線回折と化学分析によりスピネル
構造のLi1.06Mn1.927 4 であった。次に、実施例
1と同様の方法で正極およびXAFSセルを作製した
後、X線吸収微細構造解析(XAFS)法で測定しX線
吸収スペクトルを得た。6750eVでの吸収係数で規
格化した際のMnK吸収端のXANESスペクトルの6
540eV付近に現れるプレエッジピーク強度がリチウ
ムのデインターカレートに伴い逐次大きくなっているこ
とがわかった。(プレエッジタイプR) 続いて、実施例1と同様の方法で電池を作製した。この
電池を、充放電電流680mA、充電終止電圧4.2
V、放電終止電圧2.7Vで充放電を行った。その時の
放電容量は680mAhであった。この電池を上記の充
放電条件で、20℃と60℃の温度条件でそれぞれ充放
電を繰り返した。100サイクル後の容量維持率(1サ
イクル目の放電容量に対する100サイクル目の放電容
量の割合)は、それぞれ95%と80%であった。ま
た、実施例1と同様にして85℃で保存した場合の容量
維持率は66%、回復率は80%であった。
Example 3 In the synthesis of the positive electrode active material, LiNO 3 was used as a lithium compound and γ was used as a manganese compound.
Using MnOOH, mixing at an atomic ratio of Li / Mn = 0.56, 24 hours at 650 ° C. in N 2 (oxygen concentration 0 vol%).
The heat treatment was performed for a time. The obtained lithium manganese oxide was found to have a spinel structure of Li 1.06 Mn 1.927 O 4 by X-ray diffraction and chemical analysis. Next, a positive electrode and an XAFS cell were prepared in the same manner as in Example 1, and then measured by an X-ray absorption fine structure analysis (XAFS) to obtain an X-ray absorption spectrum. XANES spectrum 6 at the MnK absorption edge when normalized by the absorption coefficient at 6750 eV
It was found that the pre-edge peak intensity appearing near 540 eV gradually increased with lithium deintercalation. (Pre-edge type R) Subsequently, a battery was produced in the same manner as in Example 1. This battery was charged and discharged with a charge current of 680 mA and a charge end voltage of 4.2.
And charging / discharging at a discharge end voltage of 2.7 V. The discharge capacity at that time was 680 mAh. This battery was repeatedly charged and discharged under the above-mentioned charge and discharge conditions at temperature conditions of 20 ° C. and 60 ° C., respectively. The capacity retention rates after 100 cycles (the ratio of the discharge capacity at the 100th cycle to the discharge capacity at the first cycle) were 95% and 80%, respectively. When stored at 85 ° C. in the same manner as in Example 1, the capacity retention rate was 66%, and the recovery rate was 80%.

【0017】(実施例4)正極活物質の合成は、リチウ
ム化合物としてLiOH・H2 Oを、マンガン化合物と
して化学合成二酸化マンガン(CMD)を用い、Li/
Mn=0.53の原子比で混合し、N2 中(酸素濃度0
vol%)750℃で20時間加熱処理することにより
行った。得られたリチウムマンガン酸化物は、X線回折
と化学分析によりスピネル構造のLi1.035 Mn1.961
4 であった。次に、実施例1と同様の方法で正極およ
びXAFSセルを作製した後、X線吸収微細構造解析
(XAFS)法で測定しX線吸収スペクトルを得た。6
750eVでの吸収係数で規格化した際のMnK吸収端
のXANESスペクトルの6540eV付近に現れるプ
レエッジピーク強度がリチウムのデインターカレートに
伴い逐次大きくなっていることがわかった。(プレエッ
ジタイプR) 続いて、実施例1と同様の方法で電池を作製した。この
電池を、充放電電流680mA、充電終止電圧4.2
V、放電終止電圧2.7Vで充放電を行った。その時の
放電容量は680mAhであった。この電池を上記の充
放電条件で、20℃と60℃の温度条件でそれぞれ充放
電を繰り返した。100サイクル後の容量維持率(1サ
イクル目の放電容量に対する100サイクル目の放電容
量の割合)は、それぞれ92%と82%であった。ま
た、実施例1と同様にして85℃で保存した場合の容量
維持率は71%、回復率は88%であった。
Example 4 The synthesis of the positive electrode active material was performed using LiOH.H 2 O as a lithium compound and chemically synthesized manganese dioxide (CMD) as a manganese compound.
Mixing at an atomic ratio of Mn = 0.53, and mixing in N 2 (oxygen concentration 0
(% by volume) at 750 ° C. for 20 hours. The obtained lithium manganese oxide was found to have a spinel structure of Li 1.035 Mn 1.961 by X-ray diffraction and chemical analysis.
O 4 . Next, a positive electrode and an XAFS cell were prepared in the same manner as in Example 1, and then measured by an X-ray absorption fine structure analysis (XAFS) to obtain an X-ray absorption spectrum. 6
It was found that the pre-edge peak intensity appearing near 6540 eV in the XANES spectrum at the MnK absorption edge when normalized by the absorption coefficient at 750 eV gradually increased with lithium deintercalation. (Pre-edge type R) Subsequently, a battery was produced in the same manner as in Example 1. This battery was charged and discharged with a charge current of 680 mA and a charge end voltage of 4.2.
And charging / discharging at a discharge end voltage of 2.7 V. The discharge capacity at that time was 680 mAh. This battery was repeatedly charged and discharged under the above-mentioned charge and discharge conditions at temperature conditions of 20 ° C. and 60 ° C., respectively. The capacity retention rates after 100 cycles (the ratio of the discharge capacity at the 100th cycle to the discharge capacity at the first cycle) were 92% and 82%, respectively. When stored at 85 ° C. in the same manner as in Example 1, the capacity retention rate was 71%, and the recovery rate was 88%.

【0018】(実施例5)正極活物質の合成は、リチウ
ム化合物としてLi2 CO3 を、マンガン化合物として
電解二酸化マンガン(EMD)を用い、Li/Mn=
0.61の原子比で混合し、空気中(酸素濃度20vo
l%)900℃で24時間加熱処理することにより行っ
た。得られたリチウムマンガン酸化物は、X線回折と化
学分析によりスピネル構造のLi1.120 Mn1.876 4
であった。
Example 5 A positive electrode active material was synthesized by using Li 2 CO 3 as a lithium compound and electrolytic manganese dioxide (EMD) as a manganese compound.
Mix at an atomic ratio of 0.61 and in air (oxygen concentration 20 vo
1%) by heating at 900 ° C. for 24 hours. The obtained lithium manganese oxide was found to have a spinel structure of Li 1.120 Mn 1.876 O 4 by X-ray diffraction and chemical analysis.
Met.

【0019】次に、実施例1と同様の方法で正極および
XAFSセルを作製した後、X線吸収微細構造解析(X
AFS)法で測定しX線吸収スペクトルを得た。675
0eVでの吸収係数で規格化した際のMnK吸収端のX
ANESスペクトルの6540eV付近に現れるプレエ
ッジピーク強度がリチウムのデインターカレートに伴い
逐次大きくなっていることがわかった。(プレエッジタ
イプR) 続いて、実施例1と同様の方法で電池を作製した。この
電池を、充放電電流600mA、充電終止電圧4.2
V、放電終止電圧2.7Vで充放電を行った。その時の
放電容量は600mAhであった。この電池を上記の充
放電条件で、20℃と60℃の温度条件でそれぞれ充放
電を繰り返した。100サイクル後の容量維持率(1サ
イクル目の放電容量に対する100サイクル目の放電容
量の割合)は、それぞれ95%と85%であった。ま
た、実施例1と同様にして85℃で保存した場合の容量
維持率は68%、回復率は85%であった。
Next, after a positive electrode and a XAFS cell were prepared in the same manner as in Example 1, X-ray absorption fine structure analysis (X
(AFS) method to obtain an X-ray absorption spectrum. 675
X at MnK absorption edge when normalized by absorption coefficient at 0 eV
It was found that the pre-edge peak intensity appearing at around 6540 eV in the ANES spectrum gradually increased with lithium deintercalation. (Pre-edge type R) Subsequently, a battery was produced in the same manner as in Example 1. This battery was charged with a charge / discharge current of 600 mA and a charge end voltage of 4.2.
And charging / discharging at a discharge end voltage of 2.7 V. The discharge capacity at that time was 600 mAh. This battery was repeatedly charged and discharged under the above-mentioned charge and discharge conditions at temperature conditions of 20 ° C. and 60 ° C., respectively. The capacity retention rates after 100 cycles (the ratio of the discharge capacity at the 100th cycle to the discharge capacity at the first cycle) were 95% and 85%, respectively. When stored at 85 ° C. in the same manner as in Example 1, the capacity retention rate was 68%, and the recovery rate was 85%.

【0020】(比較例1)正極活物質の合成は、リチウ
ム化合物としてLiNO3 を、マンガン化合物として電
解二酸化マンガン(EMD)を用い、Li/Mn=0.
50の原子比で混合し、空気中(酸素濃度20vol
%)450℃で24時間加熱処理することにより行っ
た。得られたリチウムマンガン酸化物は、X線回折と化
学分析によりスピネル構造のLi0.997 Mn1.996 4
であった。次に、実施例1と同様の方法で正極およびX
AFSセルを作製した後、X線吸収微細構造解析(XA
FS)法で測定しX線吸収スペクトルを得た。6750
eVでの吸収係数で規格化した際のMnK吸収端のXA
NESスペクトルのプレエッジの部分を拡大したものを
図3に示す。図3において4は未充電活物質のプレエッ
ジピークを、5は充電により0.33のLiをデインタ
ーカレートした活物質のプレエッジピークを、6は充電
により0.91のLiをデインターカレートした活物質
のプレエッジピークを示す。このことから6540eV
付近に現れるプレエッジピーク強度がリチウムのデイン
ターカレートに伴い、一度、未充電状態より小さくな
り、更にリチウムをデインターカレートしていくとピー
ク強度が大きくなっていることがわかった。(このリチ
ウムのデインターカレートに伴うプレエッジの挙動をプ
レエッジタイプSと表1中で定義する。)
Comparative Example 1 A positive electrode active material was synthesized using LiNO 3 as a lithium compound, electrolytic manganese dioxide (EMD) as a manganese compound, and Li / Mn = 0.
Mixed at an atomic ratio of 50 and in air (oxygen concentration 20 vol
%) By performing a heat treatment at 450 ° C. for 24 hours. The obtained lithium manganese oxide was found to have a spinel structure of Li 0.997 Mn 1.996 O 4 by X-ray diffraction and chemical analysis.
Met. Next, in the same manner as in Example 1, the positive electrode and X
After fabricating the AFS cell, X-ray absorption fine structure analysis (XA
The X-ray absorption spectrum was obtained by measurement by the FS) method. 6750
XA of MnK absorption edge when normalized by absorption coefficient in eV
FIG. 3 shows an enlarged pre-edge portion of the NES spectrum. In FIG. 3, 4 is a pre-edge peak of an uncharged active material, 5 is a pre-edge peak of an active material obtained by deintercalating 0.33 of Li by charging, and 6 is a de-interpolating of 0.91 of Li by charging. The pre-edge peak of the calmed active material is shown. From this, 6540 eV
It was found that the pre-edge peak intensity appearing in the vicinity became smaller than that in the uncharged state once with lithium deintercalation, and the peak intensity increased as lithium was further deintercalated. (This pre-edge behavior associated with lithium deintercalation is defined in Table 1 as pre-edge type S.)

【0021】続いて、実施例1と同様の方法で電池を作
製した。この電池を、充放電電流570mA、充電終止
電圧4.2V、放電終止電圧2.7Vで充放電を行っ
た。その時の放電容量は570mAhであった。この電
池を上記の充放電条件で、20℃と60℃の温度条件で
それぞれ充放電を繰り返した。100サイクル後の容量
維持率(1サイクル目の放電容量に対する100サイク
ル目の放電容量の割合)は、それぞれ60%と25%で
あった。また、実施例1と同様にして85℃で保存した
場合の容量維持率は38%、回復率は42%であった。 (比較例2)正極活物質の合成は、リチウム化合物とし
てLiOH・H2 Oを、マンガン化合物として化学合成
二酸化マンガン(CMD)を用い、Li/Mn=0.5
6の原子比で混合し、空気とO2の混合ガス中(酸素濃
度50vol%)750℃で20時間加熱処理すること
により行った。得られたリチウムマンガン酸化物は、X
線回折と化学分析によりスピネル構造のLi1.069 Mn
1.926 4 であった。次に、実施例1と同様の方法で正
極およびXAFSセルを作製した後、X線吸収微細構造
解析(XAFS)法で測定しX線吸収スペクトルを得
た。
Subsequently, a battery was manufactured in the same manner as in Example 1. This battery was charged and discharged at a charge / discharge current of 570 mA, a charge end voltage of 4.2 V, and a discharge end voltage of 2.7 V. The discharge capacity at that time was 570 mAh. This battery was repeatedly charged and discharged under the above-mentioned charge and discharge conditions at temperature conditions of 20 ° C. and 60 ° C., respectively. The capacity retention rates after 100 cycles (the ratio of the discharge capacity at the 100th cycle to the discharge capacity at the first cycle) were 60% and 25%, respectively. When stored at 85 ° C. in the same manner as in Example 1, the capacity retention rate was 38%, and the recovery rate was 42%. Comparative Example 2 The synthesis of the positive electrode active material was performed using LiOH.H 2 O as a lithium compound and chemically synthesized manganese dioxide (CMD) as a manganese compound, and Li / Mn = 0.5.
The mixture was mixed at an atomic ratio of 6 and heat-treated at 750 ° C. for 20 hours in a mixed gas of air and O 2 (oxygen concentration: 50 vol%). The obtained lithium manganese oxide is X
Li 1.069 Mn with spinel structure by X- ray diffraction and chemical analysis
1.926 O 4 . Next, a positive electrode and an XAFS cell were prepared in the same manner as in Example 1, and then measured by an X-ray absorption fine structure analysis (XAFS) to obtain an X-ray absorption spectrum.

【0022】6750eVでの吸収係数で規格化した際
のMnK吸収端のXANESスペクトルの6540eV
付近に現れるプレエッジピーク強度がリチウムのデイン
ターカレートに伴い、一度、未充電状態より小さくな
り、更にリチウムをデインターカレートしていくとピー
ク強度が大きくなっていることがわかった。(プレエッ
ジタイプS) 続いて、実施例1と同様の方法で電池を
作製した。この電池を、充放電電流610mA、充電終
止電圧4.2V、放電終止電圧2.7Vで充放電を行っ
た。その時の放電容量は610mAhであった。この電
池を上記の充放電条件で、20℃と60℃の温度条件で
それぞれ充放電を繰り返した。100サイクル後の容量
維持率(1サイクル目の放電容量に対する100サイク
ル目の放電容量の割合)は、それぞれ93%と43%で
あった。また、実施例1と同様にして85℃で保存した
場合の容量維持率は40%、回復率は45%であった。 (比較例3)正極活物質の合成は、リチウム化合物とし
てLi2 CO3 を、マンガン化合物としてMn2O3を
用い、Li/Mn=0.61の原子比で混合し、酸素中
(酸素濃度100vol%)700℃で20時間加熱処
理することにより行った。得られたリチウムマンガン酸
化物は、X線回折と化学分析によりスピネル構造のLi
1.112 Mn1.879 4 であった。
6540 eV of the XANES spectrum at the MnK absorption edge when normalized by the absorption coefficient at 6750 eV
It was found that the pre-edge peak intensity appearing in the vicinity became smaller than that in the uncharged state once with lithium deintercalation, and the peak intensity increased as lithium was further deintercalated. (Pre-edge type S) Subsequently, a battery was manufactured in the same manner as in Example 1. This battery was charged and discharged at a charge / discharge current of 610 mA, a charge end voltage of 4.2 V, and a discharge end voltage of 2.7 V. The discharge capacity at that time was 610 mAh. This battery was repeatedly charged and discharged under the above-mentioned charge and discharge conditions at temperature conditions of 20 ° C. and 60 ° C., respectively. The capacity retention rates after 100 cycles (the ratio of the discharge capacity at the 100th cycle to the discharge capacity at the first cycle) were 93% and 43%, respectively. When stored at 85 ° C. in the same manner as in Example 1, the capacity retention rate was 40%, and the recovery rate was 45%. (Comparative Example 3) In the synthesis of the positive electrode active material, Li 2 CO 3 was used as a lithium compound, Mn 2 O 3 was used as a manganese compound, and Li / Mn was mixed at an atomic ratio of 0.61, and oxygen was mixed (oxygen concentration 100 vol%). The heat treatment was performed at 700 ° C. for 20 hours. The obtained lithium manganese oxide was found to have a spinel structure of Li by X-ray diffraction and chemical analysis.
1.112 Mn 1.879 O 4 .

【0023】次に、実施例1と同様の方法で正極および
XAFSセルを作製した後、X線吸収微細構造解析(X
AFS)法で測定しX線吸収スペクトルを得た。675
0eVでの吸収係数で規格化した際のMnK吸収端のX
ANESスペクトルの6540eV付近に現れるプレエ
ッジピーク強度がリチウムのデインターカレートに伴
い、一度、未充電状態より小さくなり、更にリチウムを
デインターカレートしていくとピーク強度が大きくなっ
ていることがわかった。(プレエッジタイプS)続い
て、実施例1と同様の方法で電池を作製した。この電池
を、充放電電流610mA、充電終止電圧4.2V、放
電終止電圧2.7Vで充放電を行った。その時の放電容
量は610mAhであった。この電池を上記の充放電条
件で、20℃と60℃の温度条件でそれぞれ充放電を繰
り返した。100サイクル後の容量維持率(1サイクル
目の放電容量に対する100サイクル目の放電容量の割
合)は、それぞれ95%と48%であった。また、実施
例1と同様にして85℃で保存した場合の容量維持率は
42%、回復率は50%であった。
Next, after a positive electrode and a XAFS cell were manufactured in the same manner as in Example 1, X-ray absorption fine structure analysis (X
(AFS) method to obtain an X-ray absorption spectrum. 675
X at MnK absorption edge when normalized by absorption coefficient at 0 eV
The pre-edge peak intensity appearing in the vicinity of 6540 eV of the ANES spectrum becomes smaller than the uncharged state once with lithium deintercalation, and the peak intensity becomes larger as lithium is further deintercalated. all right. (Pre-edge type S) Subsequently, a battery was manufactured in the same manner as in Example 1. This battery was charged and discharged at a charge / discharge current of 610 mA, a charge end voltage of 4.2 V, and a discharge end voltage of 2.7 V. The discharge capacity at that time was 610 mAh. This battery was repeatedly charged and discharged under the above-mentioned charge and discharge conditions at temperature conditions of 20 ° C. and 60 ° C., respectively. The capacity retention rates after 100 cycles (the ratio of the discharge capacity at the 100th cycle to the discharge capacity at the first cycle) were 95% and 48%, respectively. When stored at 85 ° C. in the same manner as in Example 1, the capacity retention rate was 42%, and the recovery rate was 50%.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【発明の効果】本発明の正極活物質はスピネル構造をと
るリチウムマンガン酸化物であり、かつX線吸収微細構
造解析(XAFS)法で測定したX線吸収スペクトルに
おいて、6750eVでの吸収係数で規格化した際のM
nK吸収端のX線吸収端近傍構造(XANES)スペク
トルの6540eV付近に現れるプレエッジピーク強度
がリチウムのデインターカレートに伴い逐次大きくな
る、特徴を有している。これを用いる電池は、高温下で
の特性に優れていることから工業上極めて有用である。
The positive electrode active material of the present invention is a lithium manganese oxide having a spinel structure and is specified by an absorption coefficient at 6750 eV in an X-ray absorption spectrum measured by X-ray absorption fine structure analysis (XAFS). M when converted
It is characterized in that the pre-edge peak intensity, which appears near 6540 eV in the X-ray absorption near edge structure (XANES) spectrum at the nK absorption edge, gradually increases with lithium deintercalation. A battery using this is extremely useful industrially because of its excellent properties at high temperatures.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態の一例であるリチウムマンガ
ン酸化物のX線吸収スペクトルから求められるMnK吸
収端のX線吸収端近傍構造(XANES)スペクトルで
ある。
FIG. 1 is an X-ray absorption near edge structure (XANES) spectrum of a MnK absorption edge obtained from an X-ray absorption spectrum of a lithium manganese oxide which is an example of an embodiment of the present invention.

【図2】本発明の実施例1のリチウムマンガン酸化物の
X線吸収スペクトルから求められるMnK吸収端のX線
吸収端近傍構造(XANES)スペクトルにおいて65
40eV付近に現れるプレエッジピークである。
FIG. 2 shows the MnK absorption edge near the X-ray absorption edge structure (XANES) spectrum obtained from the X-ray absorption spectrum of the lithium manganese oxide of Example 1 of the present invention.
This is a pre-edge peak that appears near 40 eV.

【図3】比較例1のリチウムマンガン酸化物のX線吸収
スペクトルから求められるMnK吸収端のX線吸収端近
傍構造(XANES)スペクトルにおいて6540eV
付近に現れるプレエッジピークである。
FIG. 3 shows 6540 eV in a structure near the X-ray absorption edge (XANES) spectrum of the MnK absorption edge obtained from the X-ray absorption spectrum of the lithium manganese oxide of Comparative Example 1.
It is a pre-edge peak that appears in the vicinity.

【符号の説明】[Explanation of symbols]

1 未充電活物質のプレエッジピーク 2 充電により0.25のLiをデインターカレートし
た活物質のプレエッジピーク 3 充電により0.67のLiをデインターカレートし
た活物質のプレエッジピーク 4 未充電活物質のプレエッジピーク 5 充電により0.33のLiをデインターカレートし
た活物質のプレエッジピーク 6 充電により0.91のLiをデインターカレートし
た活物質のプレエッジピーク
1 Pre-edge peak of uncharged active material 2 Pre-edge peak of active material de-intercalated 0.25 Li by charging 3 Pre-edge peak of active material de-intercalated 0.67 Li by charging 4 Pre-edge peak of uncharged active material 5 Pre-edge peak of active material having 0.33 Li deintercalated by charging 6 Pre-edge peak of active material having 0.91 Li de-intercalated by charging

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 リチウム又はリチウムを吸蔵放出可能な
物質を負極とし、非水電解質および正極を備える二次電
池において、該正極活物質がスピネル構造をとるリチウ
ムマンガン酸化物であり、かつX線吸収微細構造解析
(XAFS)法で測定したX線吸収スペクトルにおい
て、6750eVでの吸収係数で規格化した際のMnK
吸収端のX線吸収端近傍構造(XANES)スペクトル
における6540eV付近に現れるプレエッジピーク強
度がリチウムのデインターカレートに伴い逐次大きくな
ることを特徴とする非水系二次電池。
1. A secondary battery comprising lithium or a substance capable of inserting and extracting lithium as a negative electrode, a non-aqueous electrolyte and a positive electrode, wherein the positive electrode active material is lithium manganese oxide having a spinel structure, and X-ray absorption. In the X-ray absorption spectrum measured by the fine structure analysis (XAFS) method, MnK when normalized by the absorption coefficient at 6750 eV
A non-aqueous secondary battery characterized in that a pre-edge peak intensity appearing at around 6540 eV in an X-ray absorption edge near-edge structure (XANES) spectrum at an absorption edge gradually increases with lithium deintercalation.
JP9072818A 1997-03-11 1997-03-11 Nonaqueous secondary battery Pending JPH10255801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9072818A JPH10255801A (en) 1997-03-11 1997-03-11 Nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9072818A JPH10255801A (en) 1997-03-11 1997-03-11 Nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JPH10255801A true JPH10255801A (en) 1998-09-25

Family

ID=13500387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9072818A Pending JPH10255801A (en) 1997-03-11 1997-03-11 Nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JPH10255801A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002340821A (en) * 2001-05-21 2002-11-27 National Institute Of Advanced Industrial & Technology Method of evaluating precision crystal structure of positive electrode material for lithium battery using neutron diffracting method and magnetic measuring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002340821A (en) * 2001-05-21 2002-11-27 National Institute Of Advanced Industrial & Technology Method of evaluating precision crystal structure of positive electrode material for lithium battery using neutron diffracting method and magnetic measuring method

Similar Documents

Publication Publication Date Title
US9023530B2 (en) Non-aqueous electrolyte secondary battery
US6159636A (en) Mixtures of lithium manganese oxide spinel as cathode active material
KR102140969B1 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method of same, and nonaqueous electrolyte secondary battery using same
US8163423B2 (en) Non-aqueous electrolyte battery and method of manufacturing the same
USRE49306E1 (en) Non-aqueous electrolyte secondary battery
US20070009798A1 (en) Negative electrode active material, nonaqueous electrolyte battery, battery pack and vehicle
US10964945B2 (en) Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
CN102694160A (en) Battery active material, nonaqueous electrolyte battery and battery pack
WO2017078136A1 (en) Positive electrode active material for lithium secondary batteries, method for producing positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
KR101927008B1 (en) Non-aqueous electrolyte battery
JP2003109599A (en) Positive electrode active material, and nonaqueous electrolyte secondary battery using the same
JP2001155734A (en) Lithium-manganese complex oxide and non-aqueous electrolytic secondary cell using the same
US8586247B2 (en) Positive electrode active material comprising an agglomeration of at least two primary particles for lithium battery and lithium battery using the same
CN101734636A (en) Method for preparing anode active substance, anode active substance, anode and battery
JPH09298061A (en) Nonaqueous secondary battery
JP7262365B2 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery
JP4690643B2 (en) Nonaqueous electrolyte secondary battery
JP7443579B2 (en) Nonaqueous electrolyte batteries and battery packs
JPH11102703A (en) Nonaqueous secondary battery
JPH10255801A (en) Nonaqueous secondary battery
JP4686131B2 (en) Nonaqueous electrolyte secondary battery
JPH10255802A (en) Secondary battery
KR102228749B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JPH09298062A (en) Nonaqueous secondary battery
JP2001167764A (en) Positive electrode material for lithium secondary battery

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20031208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060502