JP2002340821A - Method of evaluating precision crystal structure of positive electrode material for lithium battery using neutron diffracting method and magnetic measuring method - Google Patents

Method of evaluating precision crystal structure of positive electrode material for lithium battery using neutron diffracting method and magnetic measuring method

Info

Publication number
JP2002340821A
JP2002340821A JP2001150290A JP2001150290A JP2002340821A JP 2002340821 A JP2002340821 A JP 2002340821A JP 2001150290 A JP2001150290 A JP 2001150290A JP 2001150290 A JP2001150290 A JP 2001150290A JP 2002340821 A JP2002340821 A JP 2002340821A
Authority
JP
Japan
Prior art keywords
neutron
measurement
magnetic
sample
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001150290A
Other languages
Japanese (ja)
Other versions
JP4839431B2 (en
Inventor
Hironori Kobayashi
弘典 小林
Kenichi Kawamoto
健一 河本
Hikari Sakabe
比夏里 栄部
Mitsuharu Tabuchi
光春 田渕
Tetsuo Sakai
哲男 境
Susumu Ikeda
進 池田
Takashi Kamiyama
崇 神山
Riyouji Sugano
了次 菅野
Kenichi Oikawa
健一 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
High Energy Accelerator Research Organization
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
High Energy Accelerator Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, High Energy Accelerator Research Organization filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001150290A priority Critical patent/JP4839431B2/en
Publication of JP2002340821A publication Critical patent/JP2002340821A/en
Application granted granted Critical
Publication of JP4839431B2 publication Critical patent/JP4839431B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a precision structure evaluating method aiming at the development of a lithium secondary battery, especially the development of a positive electrode material appropriate for a lithium secondary battery. SOLUTION: A neutron diffracting method using a high resolution neutron diffracting device and a magnetic measuring method using a super-conducting quantum interferometer are combined to obtain the accurate information related to lithium and oxygen in the structure of the electrode material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、中性子回折法及び
磁気測定法を組み合わせたリチウム二次電池の正極材料
の精密構造評価方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating the precise structure of a positive electrode material of a lithium secondary battery by combining a neutron diffraction method and a magnetic measurement method.

【0002】[0002]

【従来の技術】リチウム二次電池は、軽量で、しかもエ
ネルギー密度が高いため、携帯機器用電源として各方面
で広く実用化されている。
2. Description of the Related Art Lithium secondary batteries are widely used in various fields as power sources for portable equipment because of their light weight and high energy density.

【0003】電池のエネルギー密度等の特性は、主に電
極材料で規定されるため、より高性能の電極材料の実現
を目指して、開発が活発に行われている。中でも、正極
材料が、電池システムにおける低コスト化及び高エネル
ギー密度化の点で大きなウェイトを占めているため、重
要な研究開発要素の1つになっている。
[0003] Since the characteristics such as the energy density of a battery are mainly determined by the electrode material, development is being actively conducted with the aim of realizing a higher performance electrode material. Among them, the positive electrode material is one of the important R & D factors because it occupies a large weight in terms of cost reduction and high energy density in the battery system.

【0004】現在、既に市販されているリチウムコバル
ト酸化物を、リチウムニッケル酸化物やリチウムマンガ
ン酸化物等の低コスト材料で置き換える提案がなされて
おり、携帯機器用電源として一部実用化されている。
At present, proposals have been made to replace commercially available lithium cobalt oxides with low-cost materials such as lithium nickel oxide and lithium manganese oxide, and some of them have been put to practical use as power supplies for portable equipment. .

【0005】また、移動体用電源等のための大型電源に
おいては、電極材料としてリチウムマンガン酸化物が有
力候補となっており、電気自動車用駆動電源としての開
発が盛んに行われ、実用化されてきている。
[0005] In a large power source for a power source for a moving body, etc., lithium manganese oxide is a promising candidate as an electrode material, and development as a drive power source for an electric vehicle is actively carried out and put into practical use. Is coming.

【0006】しかし、携帯用電源機器のように幅広く普
及するためには、携帯機器用電源以上に優れたサイクル
特性や高寿命といった大型化に伴う特性要求を満たす必
要があり、より一層の電極材料の改良が必要である。
However, in order to be widely used as portable power supply devices, it is necessary to satisfy the requirements for characteristics such as cycle characteristics and long life, which are superior to those of portable device power supplies, as well as electrode materials. Need to be improved.

【0007】特に、リチウムマンガンスピネル酸化物
は、高温保存時に電池特性が劣化するという実用化にお
ける大きな問題を有しており、電池の劣化機構解明及び
劣化を抑制した優れた電池特性を示す材料の開発が、重
要な課題となっている。
[0007] In particular, lithium manganese spinel oxide has a serious problem in practical use that battery characteristics deteriorate during high-temperature storage. Development is an important issue.

【0008】従来の研究では、電解液や負極表面を検討
することにより、電池の構造中からのマンガンの溶出
が、電池特性に複雑な影響を与えることが提唱されてい
るが、正極材料そのものの構造変化を直接調べた研究
は、ほとんどない。
[0008] Previous studies have suggested that the elution of manganese from the structure of the battery has a complicated effect on battery characteristics by examining the electrolyte and the surface of the negative electrode. Few studies directly examined structural changes.

【0009】高温保存時の電池特性劣化を抑え、且つ大
型化に伴う厳しい要求特性を実現させるためには、正極
材料自体の高温保存時、サイクル時等における結晶構造
の変化を詳細に調べ、その原因を解明し、それに基いた
結晶構造の精密な制御が必要不可欠である。
In order to suppress the deterioration of the battery characteristics during high-temperature storage and to realize the strict required characteristics accompanying the increase in size, changes in the crystal structure of the positive electrode material itself during high-temperature storage and during cycling are examined in detail. It is essential to elucidate the cause and precisely control the crystal structure based on it.

【0010】そのためには、正極材料の構造中の各構成
元素の座標及び占有率を、高精度で迅速に解析できる測
定評価方法の開発が必要である。特に、わずかな構造変
化を精度良く検出できる方法の開発が、材料の問題点を
解明し、改良された正極材料を開発するために重要であ
る。更に、実用電池を用いた問題点の抽出も非常に重要
である。
For this purpose, it is necessary to develop a measurement and evaluation method capable of analyzing the coordinates and occupancy of each constituent element in the structure of the positive electrode material with high accuracy and speed. In particular, the development of a method capable of accurately detecting a slight structural change is important for elucidating the problems of materials and developing an improved positive electrode material. Further, extraction of problems using a practical battery is also very important.

【0011】従来は、例えば、高温保存後のリチウムマ
ンガンスピネルの構造変化を調べる方法としては、X線
回折測定が用いられてきた。この方法では、試料表面の
影響を受けた格子定数の変化の情報が得られるのみで、
構造内の軽元素であるリチウムや酸素の占有率や座標に
関する精度の良い情報は得られず、特にリチウムや酸素
の占有率についての情報は得られなかった。
Conventionally, for example, X-ray diffraction measurement has been used as a method of examining the structural change of lithium manganese spinel after storage at a high temperature. With this method, only information on the change in lattice constant affected by the sample surface can be obtained.
Accurate information on the occupancy and coordinates of the light elements lithium and oxygen in the structure was not obtained, and in particular, information on the occupancy of lithium and oxygen was not obtained.

【0012】遷移金属の電子状態及び局所構造を調べる
にはXAFS法(X線吸収微細構造解析法)が知られてお
り、また、特開平10−255801号公報においてXANES(X線
吸収端近傍構造)を用いた長寿命のリチウム二次電池の
開発法が提案されているが、どちらの方法もスペクトル
の変化が小さく、検出感度が低い。
The XAFS method (X-ray absorption fine structure analysis method) is known for examining the electronic state and local structure of a transition metal. XANES (X-ray absorption edge structure) is disclosed in Japanese Patent Application Laid-Open No. 10-255801. ) Have been proposed to develop a long-life lithium secondary battery, but both methods have a small change in spectrum and low detection sensitivity.

【0013】一方、中性子回折法によって、正極材料に
大きな影響を及ぼすリチウムや酸素等の元素に関する情
報を得ることができる。リチウムマンガンスピネル酸化
物において、中性子回折法を用いて酸素欠損を検出した
研究例としては、R. Kanno et al., J. Power Sources,
81-82, (1999) 542-546等で報告されている。しかしな
がら、この方法は、通常の酸化物の結晶構造解析を報告
するだけであり、結晶構造及び電池特性の関連性につい
ては報告されていない。
On the other hand, neutron diffraction can provide information on elements such as lithium and oxygen that have a large effect on the cathode material. Examples of studies using neutron diffraction to detect oxygen deficiency in lithium manganese spinel oxide include R. Kanno et al., J. Power Sources,
81-82, (1999) 542-546. However, this method only reports the crystal structure analysis of a normal oxide, and does not report the relationship between the crystal structure and battery characteristics.

【0014】更に、構造中の遷移金属の配位状態及び電
子状態を調べる方法としては、磁気測定法が知られてい
る。また、電池の充放電容量及び作動電圧の予測を迅速
に行う素材評価方法が、特開平9−180722号公報により
提案されているが、遷移金属の配位状態の予測を行う方
法については言及していない。
As a method for examining the coordination state and electronic state of a transition metal in a structure, a magnetic measurement method is known. Further, a material evaluation method for quickly estimating the charge / discharge capacity and operating voltage of a battery is proposed in Japanese Patent Application Laid-Open No. 9-180722, but mention is made of a method for estimating the coordination state of a transition metal. Not.

【0015】以上のように、磁気測定法を電極材料の素
材評価法として検討した例はあるが、構造評価とは関連
付けられていない。また、中性子回折法は、素材の構造
を解析するのみであった。従って、これらの方法を用い
て得られた情報は、実用電池の開発に反映されていな
い。
As described above, there is an example in which the magnetic measurement method is examined as a material evaluation method of an electrode material, but is not associated with the structural evaluation. In addition, the neutron diffraction method only analyzes the structure of the material. Therefore, information obtained using these methods is not reflected in the development of practical batteries.

【0016】[0016]

【発明が解決しようとする課題】本発明は、リチウム二
次電池の開発、特にリチウム二次電池に適した正極材料
の開発を可能とする精密構造評価方法を提供することを
主な目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for evaluating a precise structure which enables the development of a lithium secondary battery, particularly a positive electrode material suitable for a lithium secondary battery. .

【0017】[0017]

【課題を解決するための手段】本発明者は、高分解能中
性子回折装置を用いた中性子回折法及び超伝導量子干渉
計を用いた磁気測定法を組み合わせることにより、電極
材料の構造中のリチウムや酸素に関する精度の良い情報
を得ることが可能となり、その結果、電池電極材料の特
性劣化の構造的要因を解明できる方法を見出した。
Means for Solving the Problems The present inventor combines neutron diffraction using a high-resolution neutron diffractometer and magnetic measurement using a superconducting quantum interferometer to form lithium or lithium in an electrode material structure. It has become possible to obtain accurate information on oxygen, and as a result, has found a method capable of elucidating a structural factor of characteristic deterioration of a battery electrode material.

【0018】すなわち、本発明は以下の通りである。 項1.高分解能中性子回折装置を用いる中性子回折法と
超伝導量子干渉計を用いる磁気測定法とを組み合わせて
用いるリチウム電池用正極材料の精密構造評価方法。 項2.前記高分解能中性子回折装置が、中性子発生源と
測定試料との間に中性子発生源で発生した中性子を試料
に導く中性子導管と、測定試料を取り囲むように立体的
に敷き詰められた中性子検出器とを備えることを特徴と
する、項1記載の方法。 項3.前記検出器が散乱角150〜175度の検出器であり、
且つ該検出器が試料から2〜2.5m離れていることを特徴
とする、項2記載の方法。 項4.前記中性子回折法を、50ミリ秒の間隔で0.1〜10
Åの波長分布を有する白色パルス中性子を発生させて行
うことを特徴とする、項1〜3のいずれかに記載の方法。 項5.前記磁気測定法を、0〜1Tの磁場範囲、5〜350K温
度範囲で行うことを特徴とする、項1〜4のいずれかに記
載の方法。
That is, the present invention is as follows. Item 1. A precise structure evaluation method for a positive electrode material for a lithium battery using a combination of a neutron diffraction method using a high-resolution neutron diffractometer and a magnetic measurement method using a superconducting quantum interferometer. Item 2. The high-resolution neutron diffractometer, a neutron conduit to guide the neutrons generated in the neutron source between the neutron source and the measurement sample to the sample, and a neutron detector three-dimensionally spread around the measurement sample Item 3. The method according to Item 1, comprising: Item 3. The detector is a detector having a scattering angle of 150 to 175 degrees,
Item 3. The method according to Item 2, wherein the detector is apart from the sample by 2 to 2.5 m. Item 4. The neutron diffraction method was performed for 0.1 to 10 at 50 millisecond intervals.
Item 4. The method according to any one of Items 1 to 3, wherein the method is performed by generating white pulse neutrons having a wavelength distribution of Å. Item 5. Item 5. The method according to any one of Items 1 to 4, wherein the magnetic measurement is performed in a magnetic field range of 0 to 1 T and a temperature range of 5 to 350 K.

【0019】[0019]

【発明の実施の形態】本発明においては、高分解能中性
子回折装置及び超伝導量子干渉計を用いて、電極材料の
測定及び評価を行う。高分解能中性子回折装置として、
例えば、“Sirius(登録商標)”として知られる
装置を用いることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, measurement and evaluation of electrode materials are performed using a high-resolution neutron diffractometer and a superconducting quantum interferometer. As a high-resolution neutron diffractometer,
For example, an apparatus known as "Sirius (registered trademark)" can be used.

【0020】中性子は電気的に中性のため、物質内の強
力なクーロンポテンシャルの影響を受けずに、原子核に
より散乱される。そのため、中性子散乱長(核散乱振
幅)は核種で大きく異なるが、原子番号とは無関係であ
り、軽元素であっても詳細な情報を与える。
Since neutrons are electrically neutral, they are scattered by nuclei without being affected by the strong Coulomb potential in matter. For this reason, the neutron scattering length (nuclear scattering amplitude) varies greatly depending on the nuclide, but is independent of the atomic number, and gives detailed information even for a light element.

【0021】従って、リチウム二次電池正極材料となる
リチウム含有正極材料に対する中性子照射により、構造
及び物性に大きな影響を与えるリチウムの情報を詳しく
得ることができ、構造決定をより正確に行うことができ
る。
Therefore, by irradiating neutrons to the lithium-containing cathode material to be the cathode material of the lithium secondary battery, it is possible to obtain detailed information of lithium, which greatly affects the structure and physical properties, and to determine the structure more accurately. .

【0022】また、酸素の中性子散乱長が正の散乱長を
示すため、リチウムやマンガン等の負の散乱長を示す元
素の組み合わせの材料においては、酸素と陽イオンの区
別が容易である。この特徴を利用して、高分解能中性子
回折装置による精密結晶構造評価を行うことが可能にな
る。
In addition, since the neutron scattering length of oxygen indicates a positive scattering length, it is easy to distinguish oxygen and cations from a combination of elements having a negative scattering length such as lithium and manganese. By utilizing this feature, it is possible to perform precise crystal structure evaluation using a high-resolution neutron diffractometer.

【0023】磁気特性は、遷移金属の配位状態及び価数
状態に密接に関連している。特に酸化物においては、遷
移金属及び酸素の結合が、超交換相互作用として定性的
に研究されている。
The magnetic properties are closely related to the coordination state and valence state of the transition metal. Particularly in oxides, the bond between the transition metal and oxygen has been qualitatively studied as a super-exchange interaction.

【0024】特に、100K以下の低温下、0.1T以下の低磁
場下での磁気測定データは、遷移金属に起因するわずか
な構造変化及び価数状態の変化を反映していることが、
最近知られてきている。この特徴を利用して磁化率の温
度依存性及び磁化の磁場依存性の測定を行い、得られた
曲線の形状及び相対値を比較検討することで構造評価を
行うことが可能になる。
In particular, magnetic measurement data under a low temperature of 100 K or less and a low magnetic field of 0.1 T or less reflect slight structural changes and changes in valence states caused by transition metals.
Recently known. Using this feature, the temperature dependence of the magnetic susceptibility and the magnetic field dependence of the magnetization are measured, and the structure evaluation can be performed by comparing and examining the shapes and relative values of the obtained curves.

【0025】また、モル磁化率の逆数(χm -1)の温度
(T)依存性から得られる直線部分を、Curie-Weiss則
(χm -1=(T−θ)/Cm)を基に解析することにより得ら
れる有効磁気モーメント及びWeiss温度を用いて比較検
討することにより、構造評価を行うことも可能になる。
The linear part obtained from the temperature (T) dependence of the reciprocal (χ m −1 ) of the molar susceptibility is expressed by the Curie-Weiss rule (χ m −1 = (T−θ) / C m ). Structural evaluation can also be performed by comparative study using the effective magnetic moment and Weiss temperature obtained by analysis based on the base.

【0026】測定対象となる正極材料として、例えば、
リチウムマンガンスピネル酸化物が挙げられるが、これ
に限定されるものではない。
As the cathode material to be measured, for example,
Examples include, but are not limited to, lithium manganese spinel oxide.

【0027】本発明において使用するリチウム源原料と
しては、酸化物、水溶性塩、水酸化物等があげられる。
遷移金属源原料としては、水溶性塩(硝酸塩、硫酸塩、
塩化物)、水酸化物、酸化水酸化物(MnOOH等)、金属
マンガン等が挙げられるが、これに限定されるものでは
ない。リチウム源原料、遷移金属源原料としては単独で
使用しても良く、2種以上を併用しても良い。
Examples of the lithium source material used in the present invention include oxides, water-soluble salts, and hydroxides.
Transition metal source materials include water-soluble salts (nitrates, sulfates,
Chloride), hydroxide, oxide hydroxide (MnOOH and the like), metal manganese and the like, but are not limited thereto. The lithium source material and the transition metal source material may be used alone or in combination of two or more.

【0028】本発明において使用される電極材料の合成
条件としては、原料混合比(元素組成比)がリチウム源
/遷移金属源で表すと0.4〜0.8、好ましくは0.5〜0.6の
範囲が良い。遷移金属源としては2種以上の遷移金属元
素を併用しても良い。焼成温度は、通常773〜1273K程度
で、より好ましくは973〜1173K程度が良く、空気中又は
酸素雰囲気下で24時間の焼成を数回繰り返すのが好まし
い。
The conditions for synthesizing the electrode material used in the present invention are such that the raw material mixture ratio (element composition ratio) is 0.4 to 0.8, preferably 0.5 to 0.6, when expressed as lithium source / transition metal source. Two or more transition metal elements may be used in combination as the transition metal source. The firing temperature is usually about 773 to 1273K, more preferably about 973 to 1173K, and it is preferable to repeat firing for 24 hours in air or in an oxygen atmosphere several times.

【0029】高分解能中性子回折測定法は、50ミリ秒の
間隔で0.1〜10Å程度の波長分布を有する白色パルス中
性子を発生させることができる、中性子源に設置した装
置(例えば、以下“Sirius”という)を用いて行うこと
ができる。
The high-resolution neutron diffraction measurement method is an apparatus (for example, hereinafter referred to as "Sirius") installed at a neutron source capable of generating white pulse neutrons having a wavelength distribution of about 0.1 to 10 ° at intervals of 50 milliseconds. ) Can be performed.

【0030】中性子は波長によって速度が異なるため、
検出器を十分遠方に置くと、中性子が検出器に到着する
時刻が波長によって違ってくる。従って、検出器に到着
する時刻を調べることで波長を知ることができる。
Since neutrons have different velocities depending on the wavelength,
If the detector is located far enough, the time at which the neutrons arrive at the detector will depend on the wavelength. Therefore, the wavelength can be known by checking the time of arrival at the detector.

【0031】“Sirius”を用いたリチウム二次電池用正
極材料の構造評価においては、検出器は試料から2〜2.5
m程度離れているのが良く、散乱角150〜175度程度の検
出器を用いるのが好ましい。データ解析の際の波長範囲
として0.8〜5Åを用いるのが好ましい。測定温度は室温
でよい。
In the evaluation of the structure of the positive electrode material for a lithium secondary battery using “Sirius”, the detector was used to measure the sample from 2 to 2.5
m and a detector having a scattering angle of about 150 to 175 degrees is preferably used. It is preferable to use 0.8 to 5 ° as a wavelength range for data analysis. The measurement temperature may be room temperature.

【0032】中性子発生源から発生した中性子を試料
(正極材料)に入射し、試料でブラッグ回折を起こす波
長を調べることにより、電池正極材料の結晶構造を詳細
に調べることができる。
The neutrons generated from the neutron source are incident on the sample (cathode material), and the crystal structure of the battery cathode material can be examined in detail by examining the wavelength at which Bragg diffraction occurs in the sample.

【0033】しかしながら、従来の装置では、電池電極
材料の迅速評価に適した十分な回折強度は得られていな
かった。構造評価に十分な強度のデータの収集を行うの
に5時間以上の測定時間が必要とされ、作成条件及び充
放電条件を変更した数多くの試料の構造評価には、必ず
しも適したものとは言えなかった。
However, in the conventional apparatus, sufficient diffraction intensity suitable for quick evaluation of battery electrode materials has not been obtained. Measurement time of 5 hours or more is required to collect data of sufficient strength for structural evaluation, and it is not necessarily suitable for structural evaluation of many samples with changed preparation conditions and charge / discharge conditions. Did not.

【0034】“Sirius”は、中性子発生源と試料との間
に中性子導管を設置することにより、中性子をロスなく
試料に導き、更に中性子検出器を試料を取り囲むように
立体的に敷き詰めることにより、従来の装置より1桁高
い回折強度を得ることができる。即ち、30分程度の測定
時間で、構造評価に適したデータの収集が可能である。
"Sirius" introduces a neutron conduit between a neutron source and a sample, guides neutrons to the sample without loss, and further lays a neutron detector three-dimensionally so as to surround the sample. Diffraction intensity one order higher than that of the conventional device can be obtained. That is, data suitable for structural evaluation can be collected in a measurement time of about 30 minutes.

【0035】また、“Sirius”は回折強度のみならず結
晶構造を調べる精密さにおいても、非常に高性能であ
る。例えば、分解能は、日本原子力研究所に設置された
同種の2台の装置がΔd/d=0.4%、0.2%に対し“Sirius”
は0.09%である。分解能はブラッグ回折線の分離の程度
を表し、この値が小さければそれだけブラッグ回折線が
分離できることを示す。
"Sirius" has very high performance not only in diffraction intensity but also in precision in examining the crystal structure. For example, the resolution is “Sirius” for two devices of the same type installed at the Japan Atomic Energy Research Institute, for Δd / d = 0.4% and 0.2%.
Is 0.09%. The resolution indicates the degree of separation of Bragg diffraction lines, and a smaller value indicates that Bragg diffraction lines can be separated more.

【0036】また、波数領域 Qは前者2台がQ=7Å-1に対
し、“Sirius”は30Å-1である。ブラッグ回折線の数は
波数領域の3乗に比例するため、反射の数が多い“Siriu
s”は、結晶構造を精密に調べるために必要な、極めて
多くの情報が得られる。
[0036] In addition, the wave number region Q is for the two former is Q = 7Å -1, "Sirius" is a 30Å -1. Since the number of Bragg diffraction lines is proportional to the cube of the wavenumber range, the number of reflections is large.
s "can provide an extremely large amount of information necessary for precisely examining the crystal structure.

【0037】試料(電池電極材料)はバナジウム製容器
に充填、“Sirius”にセットし、真空に排気した後、中
性子を入射するのが良い。検出器で検出された中性子
は、コンピュータで即座に前処理され構造解析されるこ
とができる。
The sample (battery electrode material) is preferably filled in a vanadium container, set in "Sirius", evacuated to a vacuum, and then neutrons are incident. Neutrons detected by the detector can be immediately preprocessed and structurally analyzed by a computer.

【0038】磁気測定は、SQUIDを用いて行った。SQUID
は、輪状に形成した超伝導体に一つのジョセフソン接合
を配した素子である。輪の中の磁束が貫くと、量子交換
効果によって、素子特性が磁束量子の周期で変化するた
め、SQUIDは、鋭敏な磁束計として利用されている。
The magnetic measurement was performed using SQUID. SQUID
Is an element in which one Josephson junction is arranged on a superconductor formed in a ring shape. When the magnetic flux in the ring penetrates, the element characteristics change at the cycle of the magnetic flux quantum due to the quantum exchange effect, so the SQUID is used as a sensitive magnetometer.

【0039】例えば、測定条件として、測定試料は10〜
300mg程度、磁場の範囲は0〜1T程度、測定温度範囲は5
〜350K程度が例示できる。測定モードとして、磁化の温
度依存性の測定及び磁化の磁場依存性を測定する必要が
ある。
For example, the measurement conditions are as follows.
300mg, magnetic field range 0 ~ 1T, measurement temperature range 5
About 350K can be exemplified. As the measurement mode, it is necessary to measure the temperature dependence of magnetization and the magnetic field dependence of magnetization.

【0040】精度の良いデータを得るには、測定試料は
30〜150mg程度、磁場の範囲は0〜0.3T程度の測定条件に
おいて、データ点数を増やして測定するのが好ましい。
磁化の温度依存性の測定では、測定温度範囲は5〜150K
程度が好ましい。
In order to obtain accurate data, the measurement sample must be
It is preferable to increase the number of data points under the measurement conditions of about 30 to 150 mg and the range of the magnetic field is about 0 to 0.3 T, and measure.
For measurement of temperature dependence of magnetization, measurement temperature range is 5 to 150K
The degree is preferred.

【0041】本発明では、電極特性評価には、コイン
型、18650型円筒型等のリチウムイオン二次電池用いて
電気化学特性の評価を行うが、該評価に用いられる電池
はこれらに限定されない。
In the present invention, the electrode characteristics are evaluated by using a lithium ion secondary battery such as a coin type or an 18650 type cylindrical type, but the battery used for the evaluation is not limited to these.

【0042】コイン型電池は、評価試料に導電剤、結着
剤等を配合し、混練して合剤とし、これを、例えばステ
ンレスメッシュからなる正極合剤に圧着して正極とする
のがよく、18650型円筒型は、評価試料に導電剤、結着
剤等を配合し、混練してペーストとし、これを、例えば
アルミ箔に均一に塗布後乾燥させて正極とするのがよ
い。
In a coin-type battery, it is preferable to mix a conductive agent, a binder, and the like with an evaluation sample and knead the mixture to form a mixture. In the case of the 18650 type cylindrical type, it is preferable to mix a conductive agent, a binder, and the like with an evaluation sample, knead the paste, apply the paste uniformly to, for example, an aluminum foil, and then dry the paste to obtain a positive electrode.

【0043】いずれの場合も、導電剤としてはアセチレ
ンブラック、ケッチェンブラック等が、結着剤としては
テトラフルオロエチレン、ポリフッ化ビニリデン等が例
示されるが、特に限定されるものではない。
In any case, the conductive agent is exemplified by acetylene black, Ketjen black and the like, and the binder is exemplified by tetrafluoroethylene and polyvinylidene fluoride, but is not particularly limited.

【0044】合剤における導電剤の配合量は特に限定さ
れないが、通常、合剤中1〜30重量%、好ましくは5〜15
重量%の範囲が良い。
The amount of the conductive agent in the mixture is not particularly limited, but is usually 1 to 30% by weight, preferably 5 to 15% by weight of the mixture.
The range of weight% is good.

【0045】結着剤の配合量も特に限定されないが、通
常、0〜30重量%、好ましくは3〜10重量%の範囲が良
い。
Although the amount of the binder is not particularly limited, it is usually in the range of 0 to 30% by weight, preferably 3 to 10% by weight.

【0046】本発明によれば、中性子回折法により得ら
れるリチウムや酸素等の軽元素の占有率等のデータ、及
び磁気測定法によるMn等の遷移金属の配位状態及び平均
価数等のデータを組み合わせることにより、得られた正
極材料のわずかな構造変化をも検出することができ、そ
の材料が電池の正極材料に適しているかどうかを評価す
ることができる。
According to the present invention, data such as the occupancy of light elements such as lithium and oxygen obtained by neutron diffraction, and data such as the coordination state and average valence of transition metals such as Mn obtained by magnetic measurement. By combining the above, even a slight structural change of the obtained cathode material can be detected, and it can be evaluated whether the material is suitable for the cathode material of the battery.

【0047】より具体的には、後記実施例及び試験例に
も示すように、例えば、原料の正極材料と常温及び高温
保存後の電池から取り出した正極材料とを対象として、
中性子回折と磁気測定とを行う。中性子回折により得ら
れた格子定数等の変化及び磁気測定により得られた磁化
率等の変化を解析することにより、正極材料の安定性、
即ち正極材料としての適性を評価することができる。
More specifically, as shown in the following Examples and Test Examples, for example, a positive electrode material as a raw material and a positive electrode material taken out of a battery after storage at room temperature and at a high temperature are considered as targets.
Perform neutron diffraction and magnetic measurements. By analyzing changes in lattice constants and the like obtained by neutron diffraction and changes in magnetic susceptibility and the like obtained by magnetic measurement, the stability of the cathode material,
That is, suitability as a positive electrode material can be evaluated.

【0048】[0048]

【実施例】実施例1 Li1+xMn2-xO4 (x=0.3,0.5,0.8,1.0)は、リチウムとマン
ガンの比が0.51〜0.57の範囲のモル比になるように、炭
酸リチウム(Li2CO3)及びマンガン酸化物(Mn3O4)を完全
に混合して作製した。1023K、24時間、空気中で焼成
後、炉内で徐冷を行った。
EXAMPLES Example 1 Li 1 + x Mn 2-x O 4 (x = 0.3,0.5,0.8,1.0) was carbonated such that the molar ratio of lithium to manganese was in the range of 0.51 to 0.57. It was produced by completely mixing lithium (Li 2 CO 3 ) and manganese oxide (Mn 3 O 4 ). After baking in air at 1023K for 24 hours, it was gradually cooled in a furnace.

【0049】得られた試料はいずれも、中性子回折測定
により、スピネル構造を示す単一相で不純物の痕跡がな
いことを確認した。中性子回折測定では、散乱角150〜1
75度の検出器を用いて中性子の検出を、0.8〜5Åの波長
範囲においてデータ解析を行った。
All of the obtained samples were confirmed by neutron diffraction measurement to be a single phase having a spinel structure and to have no trace of impurities. In the neutron diffraction measurement, the scattering angle is 150 to 1
Neutron detection was performed using a 75-degree detector in the wavelength range of 0.8 to 5 mm.

【0050】測定に用いた粉末試料は5g程度で、測定温
度は室温で行い、測定時間は各40分程度であった。構造
解析の結果より、測定試料の結晶相は仕込み組成とほぼ
一致していることが直接決定された。
The powder sample used for the measurement was about 5 g, the measurement was performed at room temperature, and the measurement time was about 40 minutes each. From the results of the structural analysis, it was directly determined that the crystal phase of the measurement sample substantially matched the charged composition.

【0051】磁気特性評価において、粉末試料50mgを使
用し、磁気特性評価装置としてSQUIDを用いて測定を行
った。磁化率の温度依存性の測定は、試料をゼロ磁場下
で5Kから300Kまで連続的に温度を上昇させた後、0.1Tの
磁場を印加し、300Kから5Kまで連続的に温度を下降させ
ることにより行った。
In the evaluation of the magnetic characteristics, a powder sample (50 mg) was used, and the measurement was performed using a SQUID as a magnetic characteristic evaluation device. To measure the temperature dependence of magnetic susceptibility, increase the temperature of the sample continuously from 5K to 300K under zero magnetic field, apply a 0.1T magnetic field, and continuously lower the temperature from 300K to 5K. Was performed.

【0052】また、磁化の磁場依存性の測定は、試料を
5Kの温度下で0T→0.1T→−0.1T→0.1Tの順に磁場を連続
的に変化させることにより、行った。磁気測定による磁
化率の温度依存性のデータより、リチウム組成の増加に
伴い、磁化率の増大及び20K付近のカスプが明瞭になる
ことが観測された。
The measurement of the magnetic field dependence of the magnetization is performed by
The test was performed by continuously changing the magnetic field in the order of 0T → 0.1T → −0.1T → 0.1T at a temperature of 5K. From the data of temperature dependence of magnetic susceptibility measured by magnetism, it was observed that the magnetic susceptibility increased and the cusp around 20K became clearer with the increase of lithium composition.

【0053】また、磁化の磁場依存性のデータより、リ
チウム組成の増加に伴い、より大きなヒステリシスを示
した。これはMn4+-O-Mn4+の強磁性成分の増大を示唆し
ており、構造中のMnの平均価数のわずかな上昇が検出さ
れた。
Further, from the data on the magnetic field dependence of the magnetization, greater hysteresis was shown as the lithium composition increased. This suggested an increase in the ferromagnetic component of Mn 4+ -O-Mn 4+ , and a slight increase in the average valence of Mn in the structure was detected.

【0054】実施例2 測定試料は、Li1.03Mn1.97O4の組成式で表されるリチウ
ムマンガンスピネル5gを、LiPF6が1MとなるようにEthyl
encarbonate (EC)及び1,2−diethoxycarbonate(DEC)の
混合溶媒(1:1)に溶かした有機電解液12g中に、80℃で6
日間保存することにより作製した。
Example 2 As a measurement sample, 5 g of lithium manganese spinel represented by a composition formula of Li 1.03 Mn 1.97 O 4 was mixed with Ethyl so that LiPF 6 became 1M.
6 g at 80 ° C in 12 g of an organic electrolyte dissolved in a mixed solvent (1: 1) of encarbonate (EC) and 1,2-diethoxycarbonate (DEC).
It was prepared by storing for days.

【0055】中性子回折測定では、散乱角150〜175度程
度の検出器を用いて中性子の検出を、0.8〜5Åの波長範
囲においてデータ解析を行った。測定に用いた粉末試料
は5g程度で、測定温度は室温で行い、測定時間は各40分
程度であった。
In the neutron diffraction measurement, a neutron was detected using a detector having a scattering angle of about 150 to 175 degrees, and data analysis was performed in a wavelength range of 0.8 to 5 °. The powder sample used for the measurement was about 5 g, the measurement was performed at room temperature, and the measurement time was about 40 minutes each.

【0056】“Sirius”による室温で得られた回折デー
タを用いて、Rietveld法にて結晶構造を決定した。測定
された中性子回折図形を図1に示す。
Using the diffraction data obtained at room temperature by "Sirius", the crystal structure was determined by the Rietveld method. FIG. 1 shows the measured neutron diffraction pattern.

【0057】中性子構造解析の結果、高温保存前の格子
定数は8.24282(3)Å、高温保存後の格子定数は8.23938
(5)Åであり、わずかな格子定数の減少が観測された。
As a result of neutron structure analysis, the lattice constant before storage at high temperature was 8.24282 (3) Å, and the lattice constant after storage at high temperature was 8.23938.
(5) Å, a slight decrease in lattice constant was observed.

【0058】この減少は、X線回折で得られた、保存前
の格子定数8.23849(7)Åから高温保存後の格子定数8.23
052(12)Åへの変化と比較して小さいことから、試料表
面の影響を受けない、高精度な格子定数の変化の検出が
可能であることが、明らかになった。
This decrease is due to the fact that the lattice constant before storage, which was obtained by X-ray diffraction, was 8.23849 (7) Å, and the lattice constant after storage at high temperature, 8.23
Since the change was smaller than the change to 052 (12) Å, it became clear that it was possible to detect the change of the lattice constant with high accuracy without being affected by the sample surface.

【0059】また、構造解析の結果より、80℃保存後の
試料においては、わずかながら構造中のリチウムが増加
し(Mnが減少し)、且つ酸素原子の占有率が変化しない
という情報を、正極材料から直接得ることができた。
According to the results of the structural analysis, the information that the lithium in the structure slightly increased (Mn decreased) and the occupancy of oxygen atoms did not change in the sample stored at 80 ° C. Could be obtained directly from the material.

【0060】磁気特性評価においては、粉末試料50mgを
磁気特性評価装置としてSQUIDを用いて測定を行った。
磁化率の温度依存性の測定は、ゼロ磁場下で5Kから300K
まで連続的に温度を上昇させた後、0.1Tの磁場を印加
し、300Kから5Kまで連続的に温度を下降させることによ
り行った。また、磁化の磁場依存性の測定は、5Kの温度
下で0T→0.1T→−0.1T→0.1Tの順に磁場を連続的に変化
させることにより行った。
In the evaluation of the magnetic characteristics, a powder sample (50 mg) was measured using a SQUID as a magnetic characteristic evaluation device.
Measurement of temperature dependence of magnetic susceptibility from 5K to 300K under zero magnetic field
After the temperature was continuously increased to 0.1K, a magnetic field of 0.1T was applied, and the temperature was continuously decreased from 300K to 5K. The measurement of the magnetic field dependence of magnetization was performed by continuously changing the magnetic field in the order of 0T → 0.1T → −0.1T → 0.1T at a temperature of 5K.

【0061】磁気測定による磁化率の温度依存性のデー
タより、Li1.03Mn1.97O4を80℃で保存した試料では、実
施例1で示された原料のLi1.03Mn1.97O4と比べて、磁化
率の増大及び20K付近のカスプが明瞭になることが検出
された。図2に磁化率の温度依存性の曲線を示す。
From the data on the temperature dependence of the magnetic susceptibility obtained by the magnetic measurement, the sample in which Li 1.03 Mn 1.97 O 4 was stored at 80 ° C. showed a lower value than the raw material Li 1.03 Mn 1.97 O 4 shown in Example 1. It was detected that the susceptibility increased and the cusp around 20K became clear. FIG. 2 shows a temperature dependence curve of the magnetic susceptibility.

【0062】また、高温保存前4.37μB、高温保存後4.3
Bの有効磁気モーメントが、160〜300Kのデータから
求められた。有効磁気モーメントの減少は、構造中のMn
4+成分の増大を示唆していた。
[0062] In addition, the high-temperature storage before 4.37μ B, high-temperature storage after 4.3
Effective magnetic moment of 1 [mu] B is obtained from the data of 160~300K. The reduction of the effective magnetic moment is due to Mn in the structure
This suggested an increase in the 4+ component.

【0063】磁化の磁場依存性のデータより、Li1.03Mn
1.97O4を80℃で保存した試料は、Li 1.05Mn1.95O4 より
大きなヒステリシスを示した。これは、Mn4+-O-Mn4+
強磁性成分の増大を示唆しており、構造中のMnの平均価
数のわずかな上昇が検出された。図3に磁化の磁場依存
性の曲線を示す。
From the data on the magnetic field dependence of magnetization,1.03Mn
1.97OFourWas stored at 80 ° C. 1.05Mn1.95OFour Than
It showed large hysteresis. This is Mn4+-O-Mn4+of
The average value of Mn in the structure suggests an increase in ferromagnetic components
A slight increase in the number was detected. Figure 3 shows the magnetic field dependence of magnetization.
1 shows a sex curve.

【0064】これらの磁気測定データより、Li1.03Mn
1.97O4を80℃で保存した試料において、Li1.05Mn1.95O4
及びLi1.08Mn1.92O4の磁化率の間の値を取ること、及
び磁化率曲線の形状について大きな変化が観測されない
ことが示された。この結果から、結晶構造内のMn配位状
態は大きく変わっていないこと、Mnの平均価数がこれら
の間で変化していることが明らかとなった。
From these magnetic measurement data, Li 1.03 Mn
In a sample in which 1.97 O 4 was stored at 80 ° C., Li 1.05 Mn 1.95 O 4
And the susceptibility of Li 1.08 Mn 1.92 O 4 and that no significant change was observed in the shape of the susceptibility curve. From this result, it became clear that the coordination state of Mn in the crystal structure did not change significantly, and that the average valence of Mn changed between them.

【0065】今回初めて、低温磁性を調べることによ
り、マンガンの微妙な配位状態の変化を検出した。
For the first time, a subtle change in the coordination state of manganese was detected by examining the low-temperature magnetism.

【0066】本実施例で得られた結果により、中性子回
折によりリチウム及び酸素の占有率が直接決定され、磁
気測定よりそれぞれの構造に対応する磁化曲線(磁化率
の温度依存性及び磁化の磁場依存性)が見出された。
From the results obtained in this example, the occupancy of lithium and oxygen is directly determined by neutron diffraction, and the magnetization curves (temperature dependence of magnetic susceptibility and magnetic field dependence of magnetization) Gender) was found.

【0067】中性子回折の結果と磁化測定の結果とが良
い対応関係を示していることから、中性子回折と磁気測
定とを組み合わせることにより、リチウムや酸素などの
高精度な情報が得られることが明らかになった。
Since the result of neutron diffraction and the result of magnetization measurement show a good correspondence, it is clear that high-precision information such as lithium and oxygen can be obtained by combining neutron diffraction and magnetic measurement. Became.

【0068】更に、簡便な磁気測定を主として用い、任
意抽出した試料に対して中性子回折を用いることによ
り、迅速な試料の結晶構造評価が可能となることが明ら
かになった。
Further, it has been clarified that the crystal structure of a sample can be quickly evaluated by mainly using simple magnetic measurement and by using neutron diffraction for an arbitrary sample.

【0069】実施例3 実用電池における正極の特性を確認するために、Li1.03
Mn1.97O4の組成式で表されるリチウムマンガンスピネル
を正極材料、メソカーボンマイクロビーズ(MCMB)を負
極材料、電解液にLiPF6が1MとなるようにECとDECの混合
溶媒(1:1)に溶かした有機電解液を用いて、18650型円筒
電池を作製した。
Example 3 In order to confirm the characteristics of the positive electrode in a practical battery, Li 1.03
Mn 1.97 O 4 positive electrode material lithium manganese spinel represented by the composition formula, mesocarbon microbeads (MCMB) a negative electrode material, a mixed solvent of EC and DEC as LiPF 6 is 1M in the electrolytic solution (1: 1 The 18650 type cylindrical battery was fabricated using the organic electrolyte dissolved in the above (1).

【0070】正極電極において、中性子回折測定への影
響を少なくするための導電助材としてのアセチレンブラ
ックを4%、バインダー(PVDF)を10%、正極活物質を86%の
比率で混ぜた電極を作製した。
In the positive electrode, an electrode obtained by mixing 4% of acetylene black as a conductive additive, 10% of a binder (PVDF), and 86% of a positive electrode active material to reduce the influence on neutron diffraction measurement was used. Produced.

【0071】室温で1ヶ月間保存した電池、及び充電状
態又は放電状態で80℃で6日間した電池を、試験終了
後、完全放電させた後に解体し、正極を集電体から剥が
して、正極材料であるリチウムマンガンスピネルを回収
した。正極材料はDECで洗浄後、室温で真空乾燥を行っ
た後に測定に供された。以上の解体作業はいずれもドラ
イルーム内で行われた。
The batteries stored for one month at room temperature and the batteries that were charged or discharged for 6 days at 80 ° C. were disassembled after complete discharge after the test, and the positive electrode was peeled off from the current collector. The material, lithium manganese spinel, was recovered. The positive electrode material was subjected to measurement after washing with DEC and vacuum drying at room temperature. All the above dismantling operations were performed in the dry room.

【0072】中性子回折測定では、散乱角150〜175度の
検出器を用いて中性子の検出を、0.8〜5Åの波長範囲に
おいてデータ解析を行った。測定に用いた粉末試料は5g
程度で、測定温度は室温で行い、測定時間は各40分程度
であった。
In the neutron diffraction measurement, a neutron was detected using a detector having a scattering angle of 150 to 175 degrees, and data analysis was performed in a wavelength range of 0.8 to 5 °. 5g powder sample used for measurement
The measurement was performed at room temperature, and the measurement time was about 40 minutes each.

【0073】“Sirius”による室温下での測定により得
られた回折データを用いて、結晶構造が決定された。中
性子構造解析の結果、高温保存後の格子定数が大きく減
少していることが明らかになった。
The crystal structure was determined using the diffraction data obtained by the measurement at room temperature with "Sirius". As a result of neutron structure analysis, it was found that the lattice constant after high-temperature storage was greatly reduced.

【0074】高温保存前の格子定数は8.24282(3)Å、室
温1ヶ月保存後の格子定数は8.23950(2)Åであり、室温
保存では1ヶ月後も顕著な格子定数の変化は観測されな
かった。
The lattice constant before storage at high temperature was 8.24282 (3) Å, and the lattice constant after storage at room temperature for one month was 8.23950 (2) Å. No remarkable change in lattice constant was observed after one month storage at room temperature. Was.

【0075】しかし、充電状態及び放電状態での80℃に
おける6日間保存後の格子定数は、それぞれ8.15519(3)
Å、8.16310(8)Åで、充電状態のサンプルにおいてより
小さな格子定数が観測されたが、いずれの試料において
も、酸素欠損は生じていなかった。
However, the lattice constant after storage at 80 ° C. for 6 days in the charged state and the discharged state is 8.15519 (3), respectively.
{, 8.16310 (8)}, a smaller lattice constant was observed in the charged sample, but no oxygen deficiency occurred in any of the samples.

【0076】磁気特性評価は、粉末試料50mgを、磁気特
性評価装置としてSQUIDを用いて測定することにより行
った。磁化率の温度依存性の測定は、試料をゼロ磁場下
で5Kから300Kまで連続的に温度上昇させた後、0.1Tの磁
場を印加し、300Kから5Kまで連続的に温度を下降させる
ことにより行った。
The magnetic properties were evaluated by measuring 50 mg of a powder sample using SQUID as a magnetic property evaluation device. Measurement of the temperature dependence of magnetic susceptibility is performed by continuously raising the temperature of the sample from 5K to 300K under zero magnetic field, applying a magnetic field of 0.1T, and continuously lowering the temperature from 300K to 5K. went.

【0077】また、磁化の磁場依存性の測定は、試料を
5Kの温度下で0T→0.1T→−0.1T→0.1Tの順に磁場を連続
的に変化させることにより行った。
The measurement of the dependence of the magnetization on the magnetic field was performed by measuring the sample.
This was performed by continuously changing the magnetic field in the order of 0T → 0.1T → −0.1T → 0.1T at a temperature of 5K.

【0078】磁気測定による磁化率の温度依存性のデー
タより、実施例1で示された原料のLi1.03Mn1.97O4と比
し、8〜10倍の磁化率の増大が観測された。この値は、
実施例1で示されたLi1.1Mn1.9O4の磁化率と比べても大
きな値を取ることから、大きな組成変化が生じているこ
とがわかる。
From the data on the temperature dependence of the magnetic susceptibility obtained by the magnetic measurement, an increase in magnetic susceptibility of 8 to 10 times was observed as compared with the raw material Li 1.03 Mn 1.97 O 4 shown in Example 1. This value is
Compared with the magnetic susceptibility of Li 1.1 Mn 1.9 O 4 shown in Example 1, the magnetic susceptibility shows a large value, indicating that a large composition change has occurred.

【0079】一方、磁化率曲線の形状には大きな変化が
観測されないことから、結晶構造内のMn配位状態が大き
く変化しているのではなく、平均価数が大きく上昇して
いることが明らかになった。
On the other hand, since no significant change is observed in the shape of the magnetic susceptibility curve, it is apparent that the average valence is not significantly changed but is significantly increased in the crystal structure. Became.

【0080】今回初めて、低温磁性を調べることによ
り、マンガンの微妙な配位状態の変化を検出した。
For the first time, a subtle change in coordination state of manganese was detected by examining low-temperature magnetism.

【0081】本実施例で得られた結果により、初めて、
実用電池の電極状態で電池特性評価された正極材料にお
いて、中性子回折によりリチウム及び酸素の占有率が直
接決定され、磁気測定よりそれぞれの構造に対応する磁
化曲線(磁化率の温度依存性及び磁化の磁場依存性)が
見出された。
For the first time, the results obtained in this example
The occupancy of lithium and oxygen is directly determined by neutron diffraction in the cathode material whose battery characteristics have been evaluated in the electrode state of a practical battery, and the magnetization curves (temperature dependence of susceptibility and magnetization Magnetic field dependence) was found.

【0082】中性子回折の結果及び磁化測定の結果は良
い対応関係を示していることから、中性子回折及び磁気
測定を組み合わせることにより、リチウムや酸素等の精
度良い情報が得られることが明らかとなった。
Since the results of neutron diffraction and the results of magnetization measurement show good correspondence, it has been clarified that accurate information on lithium, oxygen, etc. can be obtained by combining neutron diffraction and magnetic measurement. .

【0083】更に、測定試料を磁気測定法を用いて測定
した後、その測定された試料中から任意抽出した試料を
中性子回折法を用いて測定することにより、迅速且つ精
密な、試料の結晶構造評価が可能となることが明らかに
なった。
Further, after a measurement sample is measured by using a magnetic measurement method, a sample arbitrarily extracted from the measured sample is measured by using a neutron diffraction method, whereby a rapid and precise crystal structure of the sample is obtained. It became clear that evaluation was possible.

【0084】更に、本発明における精密構造評価法及び
実用電池試作装置を結びつけて、相互にフィードバック
をかけることにより、電池電極材料の開発をすること
は、これまでの電池材料開発において例はなく、高性能
な電極材料の開発に極めて有効な方法である。
Further, there is no example in the development of battery materials so far, in which the precision structure evaluation method of the present invention and the practical battery prototype device are combined and feedback is applied to each other to develop battery electrode materials. This is an extremely effective method for developing high-performance electrode materials.

【0085】試験例1 実施例1及び2で得られた測定試料を正極材料、負極に金
属リチウム、有機電解液にはLiPF6が1MとなるようにEC
とDECの混合溶媒(1:1)に溶かした電解液を用いたコイン
型電池を作製し、電流密度0.2mA/cm2で充放電サイクル
特性を測定した。
Test Example 1 The measurement samples obtained in Examples 1 and 2 were subjected to EC so that the positive electrode material, the negative electrode were lithium metal, and the organic electrolyte was LiPF 6 at 1M.
A coin-type battery was prepared using an electrolytic solution dissolved in a mixed solvent (1: 1) of and DEC, and charge / discharge cycle characteristics were measured at a current density of 0.2 mA / cm 2 .

【0086】正極合剤としては、試料、アセチレンブラ
ック、テフロン(登録商標)を85:10:5の割合に混合
したものを用いた。
As the positive electrode mixture, a mixture of a sample, acetylene black and Teflon (registered trademark) in a ratio of 85: 10: 5 was used.

【0087】図4に1サイクル目の充放電図形を示す。4.
4〜3.0Vのカットオフ電位で初期放電容量101mAh/gを示
した。これは原料のLi1.03Mn1.97O4の初期放電容量129m
A/gと比較して容量の減少が観測され、充放電効率も0.9
8から0.94へ低下した。
FIG. 4 shows a charge / discharge pattern in the first cycle. Four.
It showed an initial discharge capacity of 101 mAh / g at a cutoff potential of 4 to 3.0 V. This is the initial discharge capacity of raw material Li 1.03 Mn 1.97 O 4 129m
A decrease in capacity was observed compared to A / g, and the charge / discharge efficiency was 0.9.
It dropped from 8 to 0.94.

【0088】また、電池特性の劣化は、実施例2で観測
された構造中のMnの減少及び磁化率の増大に対応してお
り、高温保存前後でMnの配位状態及び磁化率の値が変化
が小さい試料を合成することで、高温保存時の劣化を抑
えたリチウムマンガンスピネル電極材料が得られること
が明らかとなった。
The deterioration of the battery characteristics corresponds to the decrease in Mn and the increase in magnetic susceptibility in the structure observed in Example 2, and the coordination state of Mn and the value of magnetic susceptibility before and after high-temperature storage were changed. It was clarified that by synthesizing a sample with a small change, a lithium manganese spinel electrode material with suppressed deterioration during high-temperature storage could be obtained.

【0089】試験例2 実施例3で得られた円筒型電池を用いて、電気量1/6Cで
充放電サイクル特性を測定した。円筒電池は4.4〜2.5V
のカットオフ電位で放電容量1000mAhを示した。放電状
態で80℃で6日間保存したところ、放電容量をほとんど
示さなかった。
Test Example 2 Using the cylindrical battery obtained in Example 3, the charge / discharge cycle characteristics were measured at a charge of 1 / 6C. 4.4-2.5V for cylindrical batteries
And a discharge capacity of 1000 mAh. When stored in a discharged state at 80 ° C. for 6 days, almost no discharge capacity was exhibited.

【0090】この電池特性の劣化は、実施例3で観測さ
れた構造中のMnの減少及び磁化率の増大に対応してお
り、高温保存前後でMnの配位状態及び磁化率の値が変化
が小さい試料を合成することで、高温保存時の劣化を抑
えたリチウムマンガンスピネル電極材料が得られること
が明らかとなった。
This deterioration in battery characteristics corresponds to the decrease in Mn and the increase in magnetic susceptibility in the structure observed in Example 3, and the coordination state of Mn and the value of magnetic susceptibility before and after high-temperature storage changed. It was clarified that by synthesizing a sample having a small value, a lithium manganese spinel electrode material with suppressed deterioration during high-temperature storage could be obtained.

【0091】[0091]

【発明の効果】本発明による中性子回折法及び磁気測定
法を組み合わせた精密構造評価方法を用いることによ
り、従来は得られなかった正極材料の構造に関する情報
を得ることができる。
By using the precise structure evaluation method combining the neutron diffraction method and the magnetic measurement method according to the present invention, it is possible to obtain information on the structure of the cathode material which has not been obtained conventionally.

【0092】更に、この精密構造評価法を用いて実用電
池試作装置で作成された種々の電池を評価することによ
り、効率的に材料開発を行うことが可能となる。
Furthermore, by using this precise structure evaluation method to evaluate various batteries produced by a practical battery prototype, it is possible to efficiently develop materials.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例2で測定された反応生成物の中性
子回折図形を示した図である。
FIG. 1 is a diagram showing a neutron diffraction pattern of a reaction product measured in Example 2 of the present invention.

【図2】本発明の実施例2で測定された反応生成物の磁化
率の温度依存性を示した図である。
FIG. 2 is a diagram showing the temperature dependence of the magnetic susceptibility of a reaction product measured in Example 2 of the present invention.

【図3】本発明の実施例2で測定された反応生成物の磁化
の磁場依存性を示した図である。
FIG. 3 is a diagram showing the magnetic field dependence of magnetization of a reaction product measured in Example 2 of the present invention.

【図4】本発明の実施例1及び2の反応生成物を正極材料
として用いたリチウムイオン二次電池の充放電サイクル
特性を示す図である。
FIG. 4 is a diagram showing charge / discharge cycle characteristics of a lithium ion secondary battery using the reaction products of Examples 1 and 2 of the present invention as a positive electrode material.

フロントページの続き (72)発明者 小林 弘典 大阪府池田市緑丘1丁目8番31号 独立行 政法人 産業技術総合研究所関西センター 内 (72)発明者 河本 健一 大阪府池田市緑丘1丁目8番31号 独立行 政法人 産業技術総合研究所関西センター 内 (72)発明者 栄部 比夏里 大阪府池田市緑丘1丁目8番31号 独立行 政法人 産業技術総合研究所関西センター 内 (72)発明者 田渕 光春 大阪府池田市緑丘1丁目8番31号 独立行 政法人 産業技術総合研究所関西センター 内 (72)発明者 境 哲男 大阪府池田市緑丘1丁目8番31号 独立行 政法人 産業技術総合研究所関西センター 内 (72)発明者 池田 進 茨城県つくば市大穂1番地1 高エネルギ ー加速器研究機構物質構造科学研究所内 (72)発明者 神山 崇 茨城県つくば市大穂1番地1 高エネルギ ー加速器研究機構物質構造科学研究所内 (72)発明者 菅野 了次 茨城県つくば市大穂1番地1 高エネルギ ー加速器研究機構物質構造科学研究所内 (72)発明者 及川 健一 茨城県つくば市大穂1番地1 高エネルギ ー加速器研究機構物質構造科学研究所内 Fターム(参考) 2G001 AA04 BA18 CA04 GA01 GA13 KA08 LA02 NA17 2G053 AA08 AB06 AB14 BA02 BA04 BA15 BB17 BC10 CA10 5H050 AA19 BA15 BA16 CA09 CB12 DA02 GA28 HA04 HA14 HA16 HA20 Continuing from the front page (72) Inventor Hironori Kobayashi 1-8-31 Midorioka, Ikeda-shi, Osaka Inside the National Institute of Advanced Industrial Science and Technology Kansai Center (72) Inventor Kenichi Kawamoto 1--8-3 Midorioka, Ikeda-shi, Osaka 31 Kansai Center, National Institute of Advanced Industrial Science and Technology (72) Inventor Sakabe Hinatsuri 1-38, Midorioka, Ikeda-shi, Osaka Prefecture Kansai Center, National Institute of Advanced Industrial Science and Technology (72) Inventor Mitsuharu Tabuchi 1-38-31 Midorigaoka, Ikeda-shi, Osaka Independent administrative institution Kansai Center, National Institute of Advanced Industrial Science and Technology (72) Inventor Tetsuo Sakai 1-38-31 Midorigaoka, Ikeda-shi, Osaka Independent administrative agency Sangyo (72) Inventor Susumu Ikeda 1-1-1 Oho, Tsukuba City, Ibaraki Prefecture High-energy Accelerator Research Organization Material Structure Science Laboratory (72) Inventor Takashi Kamiyama 1-1-1, Oho Tsukuba-city, Ibaraki Prefecture High Energyー Accelerator Research Organization Within the Science Research Institute (72) Inventor Ryoji Kanno 1-1-1 Oho, Tsukuba City, Ibaraki Prefecture High Energy Accelerator Research Organization In-house Research Institute for Materials Structure (72) Inventor Kenichi Oikawa 1-1-1, Oho 1 Tsukuba City, Ibaraki Research into High Energy Accelerators 2G001 AA04 BA18 CA04 GA01 GA13 KA08 LA02 NA17 2G053 AA08 AB06 AB14 BA02 BA04 BA15 BB17 BC10 CA10 5H050 AA19 BA15 BA16 CA09 CB12 DA02 GA28 HA04 HA14 HA16 HA20

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 高分解能中性子回折装置を用いる中性子
回折法と超伝導量子干渉計を用いる磁気測定法とを組み
合わせて用いるリチウム電池用正極材料の精密構造評価
方法。
1. A method for evaluating the precise structure of a positive electrode material for a lithium battery using a combination of a neutron diffraction method using a high-resolution neutron diffractometer and a magnetic measurement method using a superconducting quantum interferometer.
【請求項2】 前記高分解能中性子回折装置が、中性子
発生源と測定試料との間に中性子発生源で発生した中性
子を試料に導く中性子導管と、測定試料を取り囲むよう
に立体的に敷き詰められた中性子検出器とを備えること
を特徴とする、請求項1記載の方法。
2. The high-resolution neutron diffractometer is laid three-dimensionally between a neutron source and a measurement sample so as to surround a measurement sample with a neutron conduit for guiding neutrons generated by the neutron source to the sample. The method of claim 1, comprising a neutron detector.
【請求項3】 前記検出器が散乱角150〜175度の検出器
であり、且つ該検出器が試料から2〜2.5m離れているこ
とを特徴とする、請求項2記載の方法。
3. The method according to claim 2, wherein the detector is a detector having a scattering angle of 150 to 175 degrees, and the detector is 2 to 2.5 m away from the sample.
【請求項4】 前記中性子回折法を、50ミリ秒の間隔で
0.1〜10Åの波長分布を有する白色パルス中性子を発生
させて行うことを特徴とする、請求項1〜3のいずれかに
記載の方法。
4. The method of claim 1, wherein the neutron diffraction method is performed at intervals of 50 milliseconds.
The method according to any one of claims 1 to 3, wherein the method is performed by generating white pulse neutrons having a wavelength distribution of 0.1 to 10 °.
【請求項5】 前記磁気測定法を、0〜1Tの磁場範囲、5
〜350K温度範囲で行うことを特徴とする、請求項1〜4の
いずれかに記載の方法。
5. The method according to claim 1, wherein the magnetic measurement method is performed in a magnetic field range of 0 to 1T.
The method according to any one of claims 1 to 4, wherein the method is performed in a temperature range of ~ 350K.
JP2001150290A 2001-05-21 2001-05-21 Precise crystal structure evaluation method of cathode material for lithium battery using neutron diffraction method and magnetic measurement method Expired - Lifetime JP4839431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001150290A JP4839431B2 (en) 2001-05-21 2001-05-21 Precise crystal structure evaluation method of cathode material for lithium battery using neutron diffraction method and magnetic measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001150290A JP4839431B2 (en) 2001-05-21 2001-05-21 Precise crystal structure evaluation method of cathode material for lithium battery using neutron diffraction method and magnetic measurement method

Publications (2)

Publication Number Publication Date
JP2002340821A true JP2002340821A (en) 2002-11-27
JP4839431B2 JP4839431B2 (en) 2011-12-21

Family

ID=18995328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001150290A Expired - Lifetime JP4839431B2 (en) 2001-05-21 2001-05-21 Precise crystal structure evaluation method of cathode material for lithium battery using neutron diffraction method and magnetic measurement method

Country Status (1)

Country Link
JP (1) JP4839431B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100911579B1 (en) 2007-10-30 2009-08-10 현대자동차주식회사 The cell for in-situ Neutron Powder Diffraction Analysis of Lithium battery
JP2009270851A (en) * 2008-05-01 2009-11-19 Taiyo Koko Co Ltd Member for neutron scattering experiment, and method for manufacturing the same
JP2013127946A (en) * 2011-06-13 2013-06-27 Methode Electronics Inc System and method for determining the state of health of electrochemical battery cells
JP2016017901A (en) * 2014-07-10 2016-02-01 国立大学法人北海道大学 Diagnosis device and diagnosis method
KR20220089282A (en) * 2020-12-21 2022-06-28 주식회사 포스코 Positive active material, preparing method thereof and rechargeable lithium battery

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6453143A (en) * 1987-05-14 1989-03-01 Rolls Royce Plc Measurement of strain and temperature
JPH0311547A (en) * 1989-06-09 1991-01-18 Hitachi Ltd Surface measuring method and its device
JPH03109214A (en) * 1989-08-02 1991-05-09 Jeffrey L Tallon Oxide material for showing superconductivity and method of its preparation
JPH04270125A (en) * 1990-02-19 1992-09-25 Technol Finance Corp Pty Ltd Manganese oxide compound
JPH09180722A (en) * 1995-12-22 1997-07-11 Agency Of Ind Science & Technol Method for predicting discharging capacity and voltage of lithium battery utilizing lithium-manganese spinel cathode material
JPH09298062A (en) * 1996-03-04 1997-11-18 Sharp Corp Nonaqueous secondary battery
JPH10241691A (en) * 1996-12-24 1998-09-11 Hitachi Ltd Battery
JPH10255799A (en) * 1997-03-07 1998-09-25 Petoca:Kk Graphite material for high-capacity nonaqueous secondary battery negative electrode and its manufacture
JPH10255801A (en) * 1997-03-11 1998-09-25 Asahi Chem Ind Co Ltd Nonaqueous secondary battery
JPH10332608A (en) * 1997-05-27 1998-12-18 Toshiba Corp Equipment for examining neutron diffracting material
JP2001089157A (en) * 1999-09-17 2001-04-03 Agency Of Ind Science & Technol New laminar oxide, its production and lithium secondary battery using the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6453143A (en) * 1987-05-14 1989-03-01 Rolls Royce Plc Measurement of strain and temperature
JPH0311547A (en) * 1989-06-09 1991-01-18 Hitachi Ltd Surface measuring method and its device
JPH03109214A (en) * 1989-08-02 1991-05-09 Jeffrey L Tallon Oxide material for showing superconductivity and method of its preparation
JPH04270125A (en) * 1990-02-19 1992-09-25 Technol Finance Corp Pty Ltd Manganese oxide compound
JPH09180722A (en) * 1995-12-22 1997-07-11 Agency Of Ind Science & Technol Method for predicting discharging capacity and voltage of lithium battery utilizing lithium-manganese spinel cathode material
JPH09298062A (en) * 1996-03-04 1997-11-18 Sharp Corp Nonaqueous secondary battery
JPH10241691A (en) * 1996-12-24 1998-09-11 Hitachi Ltd Battery
JPH10255799A (en) * 1997-03-07 1998-09-25 Petoca:Kk Graphite material for high-capacity nonaqueous secondary battery negative electrode and its manufacture
JPH10255801A (en) * 1997-03-11 1998-09-25 Asahi Chem Ind Co Ltd Nonaqueous secondary battery
JPH10332608A (en) * 1997-05-27 1998-12-18 Toshiba Corp Equipment for examining neutron diffracting material
JP2001089157A (en) * 1999-09-17 2001-04-03 Agency Of Ind Science & Technol New laminar oxide, its production and lithium secondary battery using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100911579B1 (en) 2007-10-30 2009-08-10 현대자동차주식회사 The cell for in-situ Neutron Powder Diffraction Analysis of Lithium battery
JP2009270851A (en) * 2008-05-01 2009-11-19 Taiyo Koko Co Ltd Member for neutron scattering experiment, and method for manufacturing the same
JP2013127946A (en) * 2011-06-13 2013-06-27 Methode Electronics Inc System and method for determining the state of health of electrochemical battery cells
US9395418B2 (en) 2011-06-13 2016-07-19 Methode Electronics, Inc. System and method for determining the state of health of electrochemical battery cells
JP2016017901A (en) * 2014-07-10 2016-02-01 国立大学法人北海道大学 Diagnosis device and diagnosis method
KR20220089282A (en) * 2020-12-21 2022-06-28 주식회사 포스코 Positive active material, preparing method thereof and rechargeable lithium battery
KR102580333B1 (en) 2020-12-21 2023-09-18 포스코홀딩스 주식회사 Positive active material, preparing method thereof and rechargeable lithium battery

Also Published As

Publication number Publication date
JP4839431B2 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
Li et al. Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry
Wang et al. Study of Mn Dissolution from LiMn2 O 4 Spinel Electrodes Using Rotating Ring-Disk Collection Experiments
Ohzuku et al. Synthesis and characterization of 5 V insertion material of Li [FeyMn2− y] O4 for lithium-ion batteries
Kobayashi et al. Changes in the structure and physical properties of the solid solution LiNi 1− x Mn x O 2 with variation in its composition
Li et al. Stability and rate capability of Al substituted lithium-rich high-manganese content oxide materials for Li-ion batteries
Suzuki et al. Extracting the redox orbitals in Li battery materials with high-resolution x-ray compton scattering spectroscopy
Pourpoint et al. New Insights into the Crystal and Electronic Structures of Li1+ x V1–x O2 from Solid State NMR, Pair Distribution Function Analyses, and First Principles Calculations
Saitoh et al. Studies of Capacity Losses in Cycles and Storages for a Li1. 1Mn1. 9 O 4 Positive Electrode
Jia et al. The degradation characteristics and mechanism of Li [Ni0. 5Co0. 2Mn0. 3] O2 batteries at different temperatures and discharge current rates
Goonetilleke et al. In situ studies: electrochemistry and scattering
Palm et al. Na-ion mobility in P2-type Na 0.5 Mg x Ni 0.17− x Mn 0.83 O 2 (0≤ x≤ 0.07) from electrochemical and muon spin relaxation studies
JP2002340821A (en) Method of evaluating precision crystal structure of positive electrode material for lithium battery using neutron diffracting method and magnetic measuring method
JP2890025B2 (en) Prediction method of discharge capacity and operating voltage of lithium secondary battery using lithium manganese spinel cathode material
Kaiser et al. Li mobility in the battery cathode material Li x [Mn 1.96 Li 0.04] O 4 studied by muon-spin relaxation
Segi et al. Synchrotron radiation-based 61 Ni Mössbauer spectroscopic study of Li (Ni 1/3 Mn 1/3 Co 1/3) O 2 cathode materials of lithium ion rechargeable battery
Luo et al. Exploring the structural properties of cathode and anode materials in Li-ion battery via neutron diffraction technique
CN105154980A (en) Positive electrode material of lithium battery and preparation method thereof
Tostmann et al. In situ X-ray absorption studies of electrochemically induced phase changes in lithium-doped InSb
Kida et al. A study on the cycle performance of lithium secondary batteries using lithium nickel–cobalt composite oxide and graphite/coke hybrid carbon
Mansour et al. X-ray absorption spectra and the local structure of nickel in some oxycompounds and fluorides
Shui et al. Exploration of Alnico alloy as a magnetic electrode material for lithium-ion batteries
Çetin et al. Effect of Mn, Ni, Co transition metal ratios in lithium rich metal oxide cathodes on lithium ion battery performance
Rodriguez et al. Rietveld refinement of LiCoO2-type layered structures: semi-quantitative analysis of Li contents
Hu et al. Magnetic Resonance in Metal-Ion Batteries: From NMR (Nuclear Magnetic Resonance) to EPR (Electron Paramagnetic Resonance)
Abharana et al. First results of in-situ X-ray Absorption Spectroscopy study on charging-discharging cycles of lithium ion battery at Indus-2 SRS

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040506

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110111

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4839431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term