JP2009270851A - Member for neutron scattering experiment, and method for manufacturing the same - Google Patents

Member for neutron scattering experiment, and method for manufacturing the same Download PDF

Info

Publication number
JP2009270851A
JP2009270851A JP2008119496A JP2008119496A JP2009270851A JP 2009270851 A JP2009270851 A JP 2009270851A JP 2008119496 A JP2008119496 A JP 2008119496A JP 2008119496 A JP2008119496 A JP 2008119496A JP 2009270851 A JP2009270851 A JP 2009270851A
Authority
JP
Japan
Prior art keywords
vanadium
neutron scattering
weight
alloy
neutron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008119496A
Other languages
Japanese (ja)
Other versions
JP5247222B2 (en
Inventor
Hideo Yoshinaga
英雄 吉永
Akio Kawabata
章夫 川端
Sadanori Kakei
貞紀 掛井
Takashi Kamiyama
崇 神山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIYO KOKO CO Ltd
High Energy Accelerator Research Organization
Original Assignee
TAIYO KOKO CO Ltd
High Energy Accelerator Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIYO KOKO CO Ltd, High Energy Accelerator Research Organization filed Critical TAIYO KOKO CO Ltd
Priority to JP2008119496A priority Critical patent/JP5247222B2/en
Publication of JP2009270851A publication Critical patent/JP2009270851A/en
Application granted granted Critical
Publication of JP5247222B2 publication Critical patent/JP5247222B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a member for a neutron scattering experiment capable of reducing manifestation of a Bragg peak and a method for manufacturing the same. <P>SOLUTION: This member for a neutron scattering experiment includes a vanadium alloy comprising 2.8-12.8 wt.% of at least one metal selected from a group comprising aluminum, chromium, iron and nickel, and 87.2-97.2 wt.% of vanadium. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、中性子散乱実験用部材及びその製造方法に関する。   The present invention relates to a member for neutron scattering experiment and a method for manufacturing the same.

物質の結晶構造を測定する方法として、中性子回折法とX線回折法がある。このうち、中性子回折法はX線回折法と比較して水素、リチウム、酸素等の軽元素を高精度で測定できることから、近年注目されている。   As a method for measuring the crystal structure of a substance, there are a neutron diffraction method and an X-ray diffraction method. Among these, the neutron diffraction method has attracted attention in recent years because it can measure light elements such as hydrogen, lithium, and oxygen with higher accuracy than the X-ray diffraction method.

中性子回折法は、中性子を被測定試料に放射し、被測定試料により散乱される中性子の量を検知することにより行われる。   The neutron diffraction method is performed by emitting neutrons to a sample to be measured and detecting the amount of neutrons scattered by the sample to be measured.

中性子回折法では、被測定試料は試料ホルダーの中に保持されているため、中性子は試料ホルダーを通過して被測定試料に到達する。そのため、試料ホルダーが中性子を吸収する場合には、測定結果から得られる中性子回折プロファイルに大きなバックグランド(ノイズ)が生じて測定精度が低下する。従って、試料ホルダーの特性として中性子を吸収しないことが必要である。   In the neutron diffraction method, since the sample to be measured is held in the sample holder, neutrons pass through the sample holder and reach the sample to be measured. Therefore, when the sample holder absorbs neutrons, a large background (noise) is generated in the neutron diffraction profile obtained from the measurement result, and the measurement accuracy is lowered. Therefore, it is necessary not to absorb neutrons as a characteristic of the sample holder.

また、中性子が試料ホルダー通過時にホルダー内で回折又は干渉すると、中性子回折プロファイルにブラッグピーク(Bragg peak)が生じる。このピークも被測定試料に無関係のピークであるため、測定精度が低下する原因となる。従って、試料ホルダーは、回折及び干渉が生じにくい特性も必要である。   Further, when neutrons are diffracted or interfered in the holder when passing through the sample holder, a Bragg peak is generated in the neutron diffraction profile. Since this peak is also a peak unrelated to the sample to be measured, it causes a decrease in measurement accuracy. Therefore, the sample holder also needs to have a characteristic that hardly causes diffraction and interference.

現在、中性子回折プロファイルにおけるバックグランドが少なく且つブラッグピークの発現が小さい金属としてバナジウム金属単体が知られており、これを用いて試料ホルダーが作製されている(例えば、特許文献1)。   At present, vanadium metal alone is known as a metal with a small background in the neutron diffraction profile and a small expression of the Bragg peak, and a sample holder is manufactured using this (for example, Patent Document 1).

しかしながら、バナジウム金属単体を用いても依然としてブラッグピークは生じるため、ブラッグピークを更に低減して測定精度を向上させることが望まれている。
特開2002−340821号公報(特に[0037]段落)
However, even if a vanadium metal simple substance is used, a Bragg peak still occurs, so it is desired to further reduce the Bragg peak and improve the measurement accuracy.
JP 2002-340821 A (particularly, paragraph [0037])

本発明は、ブラッグピークの発現を低減させた中性子散乱実験用部材及びその製造方法を提供することを目的とする。   An object of the present invention is to provide a member for a neutron scattering experiment in which the expression of the Bragg peak is reduced and a method for producing the member.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、特定のバナジウム合金を中性子散乱実験用部材に適用する場合には、ブラッグピークの発現が低減された中性子散乱実験用部材を簡便に形成できることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above-mentioned object, the present inventors, when applying a specific vanadium alloy to a member for neutron scattering experiment, used a member for neutron scattering experiment with reduced Bragg peak expression. The present inventors have found that it can be easily formed and have completed the present invention.

即ち、本発明は、下記の中性子散乱実験用部材及びその製造方法に関する。
1.アルミニウム、クロム、鉄及びニッケルからなる群から選択される少なくとも1種の金属2.8〜12.8重量%並びにバナジウム87.2〜97.2重量%からなるバナジウム合金を含む中性子散乱実験用部材。
2.前記バナジウム合金は、アルミニウム3.7〜7.4重量%及びバナジウム92.6〜96.3重量%からなる、上記項1に記載の中性子散乱実験用部材。
3.前記バナジウム合金は、クロム6.6〜12.8重量%及びバナジウム87.2〜93.4重量%からなる、上記項1に記載の中性子散乱実験用部材。
4.前記バナジウム合金は、鉄2.8〜5.5重量%及びバナジウム94.5〜97.2重量%からなる、上記項1に記載の中性子散乱実験用部材。
5.前記バナジウム合金は、ニッケル2.8〜5.4重量%及びバナジウム94.6〜97.2重量%からなる、上記項1に記載の中性子散乱実験用部材。
6.前記部材は中性子散乱実験用の試料ホルダー又は窓材である、上記項1〜5のいずれかに記載の中性子散乱実験用部材。
7.前記部材は厚さが0.01〜1.0mmである、上記項1〜6のいずれかに記載の中性子散乱実験用部材。
8.中性子散乱実験用部材の製造方法であって、
アルミニウム、クロム、鉄及びニッケルからなる群から選択される少なくとも1種の金属2.8〜12.8重量%並びにバナジウム87.2〜97.2重量%からなるバナジウム合金を圧延する工程を有する製造方法。
9.アルミニウム、クロム、鉄及びニッケルからなる群から選択される少なくとも1種の金属2.8〜12.8重量%並びにバナジウム87.2〜97.2重量%からなるバナジウム合金を中性子散乱実験用部材に使用する方法。

以下、本発明について詳細に説明する。
That is, the present invention relates to the following member for neutron scattering experiment and method for producing the same.
1. A neutron scattering experimental member comprising a vanadium alloy comprising 2.8 to 12.8% by weight of at least one metal selected from the group consisting of aluminum, chromium, iron and nickel and 87.2 to 97.2% by weight of vanadium .
2. Item 2. The neutron scattering experimental member according to Item 1, wherein the vanadium alloy is composed of 3.7 to 7.4% by weight of aluminum and 92.6 to 96.3% by weight of vanadium.
3. The member for neutron scattering experiment according to Item 1, wherein the vanadium alloy is composed of 6.6 to 12.8% by weight of chromium and 87.2 to 93.4% by weight of vanadium.
4). The member for neutron scattering experiment according to Item 1, wherein the vanadium alloy is composed of 2.8 to 5.5% by weight of iron and 94.5 to 97.2% by weight of vanadium.
5. Item 2. The neutron scattering experimental member according to Item 1, wherein the vanadium alloy is composed of 2.8 to 5.4% by weight of nickel and 94.6 to 97.2% by weight of vanadium.
6). Item 6. The member for neutron scattering experiment according to any one of Items 1 to 5, wherein the member is a sample holder or window material for neutron scattering experiment.
7). The member for neutron scattering experiment according to any one of Items 1 to 6, wherein the member has a thickness of 0.01 to 1.0 mm.
8). A method for producing a neutron scattering experimental member,
Production comprising rolling a vanadium alloy comprising 2.8 to 12.8% by weight of at least one metal selected from the group consisting of aluminum, chromium, iron and nickel and 87.2 to 97.2% by weight of vanadium Method.
9. A vanadium alloy composed of 2.8 to 12.8% by weight of at least one metal selected from the group consisting of aluminum, chromium, iron and nickel and 87.2 to 97.2% by weight of vanadium is used as a member for neutron scattering experiments. How to use.

Hereinafter, the present invention will be described in detail.

1.中性子散乱実験用部材
本発明の中性子散乱実験用部材は、アルミニウム、クロム、鉄及びニッケルからなる群から選択される少なくとも1種の金属2.8〜12.8重量%並びにバナジウム87.2〜97.2重量%からなるバナジウム合金を含むことを特徴とする。
1. The member for neutron scattering experiment The member for neutron scattering experiment of the present invention is 2.8 to 12.8% by weight of at least one metal selected from the group consisting of aluminum, chromium, iron and nickel, and 87.2 to 97 vanadium. It is characterized in that it contains a vanadium alloy consisting of 2% by weight.

上記バナジウム合金は、実質的にアルミニウム、クロム、鉄及びニッケルからなる群から選択される少なくとも1種の金属2.8〜12.8重量%並びにバナジウム87.2〜97.2重量%からなる。   The vanadium alloy consists essentially of 2.8 to 12.8% by weight of at least one metal selected from the group consisting of aluminum, chromium, iron and nickel, and 87.2 to 97.2% by weight of vanadium.

特に、バナジウム合金が、アルミニウム及びバナジウムからなる合金である場合は、アルミニウムの好ましい含有量は3.7〜7.4重量%程度、より好ましくは5.3〜5.8重量%程度である。アルミニウムを含有する場合の合金の結晶粒の平均粒径は、通常20mm以下程度、好ましくは10mm以下程度である。   In particular, when the vanadium alloy is an alloy made of aluminum and vanadium, the preferable aluminum content is about 3.7 to 7.4% by weight, more preferably about 5.3 to 5.8% by weight. The average grain size of the alloy crystal grains in the case of containing aluminum is usually about 20 mm or less, preferably about 10 mm or less.

クロム及びバナジウムからなる合金である場合は、クロムの好ましい含有量は6.6〜12.8重量%程度であり、より好ましくは9.4〜10.0重量%程度である。クロムを含有する場合の合金の結晶粒の平均粒径は、通常20mm以下程度、好ましくは10mm以下程度である。   In the case of an alloy made of chromium and vanadium, the preferable chromium content is about 6.6 to 12.8% by weight, more preferably about 9.4 to 10.0% by weight. In the case of containing chromium, the average grain size of the alloy crystal grains is usually about 20 mm or less, preferably about 10 mm or less.

鉄及びバナジウムからなる合金である場合は、鉄の好ましい含有量は、2.8〜5.5重量%程度であり、好ましくは4.0〜4.4重量%程度である。鉄を含有する場合の合金の結晶粒の平均粒径は、通常0.5mm以下程度、好ましくは0.1mm以下程度である。   In the case of an alloy composed of iron and vanadium, the preferable content of iron is about 2.8 to 5.5% by weight, and preferably about 4.0 to 4.4% by weight. The average grain size of the alloy crystal grains in the case of containing iron is usually about 0.5 mm or less, preferably about 0.1 mm or less.

ニッケル及びバナジウムからなる合金である場合は、ニッケルの好ましい含有量は、2.8〜5.4重量%程度であり、より好ましくは3.9〜4.3重量%程度である。ニッケルを含有する場合の合金の結晶粒の平均粒径は、通常0.5mm以下程度、好ましくは0.1mm以下程度である。   In the case of an alloy composed of nickel and vanadium, the preferable content of nickel is about 2.8 to 5.4% by weight, more preferably about 3.9 to 4.3% by weight. In the case of containing nickel, the average grain size of the alloy crystal grains is usually about 0.5 mm or less, preferably about 0.1 mm or less.

本発明では、上記のうち、特に圧延等の成形性に優れる観点から、鉄及びバナジウムからなる合金、又はニッケル及びバナジウムからなる合金が好ましい。   In the present invention, among the above, an alloy composed of iron and vanadium or an alloy composed of nickel and vanadium is particularly preferable from the viewpoint of excellent formability such as rolling.

本発明のバナジウム合金は、中性子散乱実験用部材として使用される。特に、中性子散乱実験用の試料ホルダー又は窓材として好適に使用される。当該合金は上記特定の金属を上記特定の割合で含有するため、当該合金を用いた本発明の中性子散乱実験用部材は、中性子測定法により得られるプロファイルにおいて、バックグランドを抑制し、ブラッグピークの発現をより確実に防止することができる。   The vanadium alloy of the present invention is used as a member for neutron scattering experiments. In particular, it is suitably used as a sample holder or window material for neutron scattering experiments. Since the alloy contains the specific metal in the specific ratio, the neutron scattering experimental member of the present invention using the alloy suppresses the background in the profile obtained by the neutron measurement method, and has a Bragg peak. Expression can be prevented more reliably.

中性子散乱実験装置とは、中性子を放射し、被測定物の結晶構造や磁気構造を測定するものである。このような中性子散乱実験装置としては、例えば、日本原子力研究開発機構のJRR-3 HRPD、高エネルギー加速器研究機構のKENS VEGA等が挙げられる。   A neutron scattering experimental device emits neutrons and measures the crystal structure and magnetic structure of the object to be measured. Examples of such a neutron scattering experimental apparatus include JRR-3 HRPD of Japan Atomic Energy Agency and KENS VEGA of High Energy Accelerator Research Organization.

中性子散乱実験用部材とは、上記で挙げられた中性子散乱実験装置の一部又は付属品として用いられる部材であって、中性子を吸収せずに透過させる特性が求められている部材をいう。具体的には、試料ホルダー、窓材等が挙げられる。   The member for neutron scattering experiment is a member used as a part or an accessory of the neutron scattering experiment apparatus mentioned above, and refers to a member that is required to transmit the neutron without absorbing it. Specifically, a sample holder, a window material, etc. are mentioned.

試料ホルダーは、中性子散乱実験装置による被測定試料を内部に保持するものである。形状としては、一般的には、一方の端部(例えば、上部)が開口している有底円筒状又は有底角筒状等が挙げられる。   The sample holder holds the sample to be measured by the neutron scattering experimental apparatus. In general, the shape includes a bottomed cylindrical shape or a bottomed rectangular tube shape in which one end (for example, an upper portion) is open.

なお、試料ホルダーは、側面(測定時に中性子が透過する面)が、上記バナジウム合金から構成されていればよい。一方、底面(被測定試料を置く面)は、上記バナジウム合金であってもよく、また、他の公知の材料であってもよい。   In addition, the sample holder should just be comprised from the said vanadium alloy in the side surface (surface which a neutron permeate | transmits at the time of a measurement). On the other hand, the bottom surface (the surface on which the sample to be measured is placed) may be the vanadium alloy, or may be another known material.

窓材は、中性子を装置内部に導入するものであり、通常、平板状等である。その形は限定的でなく、矩形、円形等が挙げられる。   The window material is for introducing neutrons into the apparatus, and is usually flat. The shape is not limited, and examples thereof include a rectangle and a circle.

中性子散乱実験用部材の厚み(試料ホルダーの場合は、側面の肉厚)は限定的でないが、通常0.01〜1.0mm程度、好ましくは0.01〜0.1mm程度である。   The thickness of the neutron scattering experimental member (in the case of a sample holder, the thickness of the side surface) is not limited, but is usually about 0.01 to 1.0 mm, preferably about 0.01 to 0.1 mm.

2.中性子散乱実験用部材の製造方法
本発明の中性子散乱実験用部材の製造方法は、アルミニウム、クロム、鉄及びニッケルからなる群から選択される少なくとも1種の金属2.8〜12.8重量%並びにバナジウム87.2〜97.2重量%からなるバナジウム合金を圧延する工程を有する。本発明の製造方法は、上記バナジウム合金を使用するため、成形性に優れる。従って、バナジウム合金にうねり等を発生させずに均一に圧延することが可能であり、その結果、試料ホルダー、窓材等といった肉厚の薄い中性子散乱実験用部材に容易に成形することができる。
2. Method for Producing Neutron Scattering Experimental Member The method for producing a neutron scattering experimental member of the present invention includes 2.8 to 12.8% by weight of at least one metal selected from the group consisting of aluminum, chromium, iron and nickel, and A step of rolling a vanadium alloy composed of 87.2 to 97.2% by weight of vanadium. Since the manufacturing method of the present invention uses the vanadium alloy, it is excellent in formability. Therefore, the vanadium alloy can be uniformly rolled without generating undulation or the like, and as a result, it can be easily formed into a thin neutron scattering experimental member such as a sample holder or window material.

本発明の製造方法で使用するバナジウム合金は、金属単体としてアルミニウム、クロム、鉄及びニッケルからなる群から選択される少なくとも1種の金属を2.8〜12.8重量%、並びにバナジウム金属単体を87.2〜97.2重量%を配合する限り限定されない。なお、各金属の組み合わせの好ましい配合量は上記中性子回折装置用部材で説明したものと同様である。このようなバナジウム合金の製造方法としては、例えば、アーク溶解法、真空誘導溶解法、エレクトロンビーム溶解法等が挙げられる。本発明では、特にアーク溶解法が好ましい。これにより、ボタン型等の塊状、板状、インゴット状等のバナジウム合金が得られる。   The vanadium alloy used in the production method of the present invention contains 2.8 to 12.8% by weight of at least one metal selected from the group consisting of aluminum, chromium, iron and nickel as a simple metal, and a vanadium simple substance. It is not limited as long as 87.2 to 97.2% by weight is blended. In addition, the preferable compounding quantity of the combination of each metal is the same as that of what was demonstrated by the said member for neutron diffraction apparatuses. Examples of the method for producing such a vanadium alloy include an arc melting method, a vacuum induction melting method, and an electron beam melting method. In the present invention, the arc melting method is particularly preferable. Thereby, vanadium alloys, such as a button-shaped lump shape, plate shape, and ingot shape, are obtained.

圧延方法は、上記バナジウム合金を使用する限り限定でなく、常法に従って行えばよく、例えば、冷間圧延、温間圧延等が挙げられる。特に、本発明では冷間圧延が好ましい。   The rolling method is not limited as long as the vanadium alloy is used, and may be performed according to a conventional method, and examples thereof include cold rolling and warm rolling. In particular, cold rolling is preferred in the present invention.

必要に応じて、圧延工程の前後又は圧延工程中に、焼鈍処理を1回又は複数回行ってもよい。これにより、うねりをより確実に抑制することができる。   If necessary, the annealing treatment may be performed once or a plurality of times before or after the rolling process or during the rolling process. Thereby, a wave | undulation can be suppressed more reliably.

焼鈍(加熱)温度は限定的でなく、通常800〜1200℃程度、好ましくは900〜1100℃程度とすればよく、焼鈍時間は、通常0.5〜3.0時間程度、好ましくは1.0〜2.0時間程度とすればよい。   The annealing (heating) temperature is not limited and is usually about 800 to 1200 ° C., preferably about 900 to 1100 ° C. The annealing time is usually about 0.5 to 3.0 hours, preferably 1.0. It may be about 2.0 hours.

焼鈍は、例えば、減圧下又は真空下で行えばよく、例えば、10−3Pa以下(特に10−4Pa以下)で行うことが好ましい。 The annealing may be performed, for example, under reduced pressure or under vacuum, and is preferably performed at, for example, 10 −3 Pa or less (particularly 10 −4 Pa or less).

本発明の中性子散乱実験用部材によれば、特定の組成の合金を使用しているため、中性子回折法を用いた測定により得られるプロファイルにおいてブラッグピークの発現をより低減させることができる。   According to the neutron scattering experimental member of the present invention, since an alloy having a specific composition is used, the expression of the Bragg peak can be further reduced in the profile obtained by the measurement using the neutron diffraction method.

本発明の製造方法によれば、特定の組成の合金を使用しているため、バナジウム合金にうねり等を発生させずに均一に圧延することが可能であり、その結果、試料ホルダー、窓材等といった肉厚の薄い中性子散乱実験用部材を容易に成形することができる。   According to the manufacturing method of the present invention, since an alloy having a specific composition is used, it is possible to uniformly roll the vanadium alloy without generating undulation or the like. As a result, the sample holder, the window material, etc. Such a thin neutron scattering experimental member can be easily formed.

以下に実施例及び比較例を示し、本発明を具体的に説明する。但し、本発明は実施例に限定されない。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. However, the present invention is not limited to the examples.

実施例1〜4及び比較例1〜4
<合金材料の作製>
下記表1に示す割合で、各種金属単体粉末とバナジウム金属単体粉末とを混合し、アルゴンアーク炉で合金化を行うことにより、実施例1〜4及び比較例1〜4の中性子回折装置用バナジウム合金を作製した。
Examples 1-4 and Comparative Examples 1-4
<Production of alloy material>
Vanadium for neutron diffractometers of Examples 1 to 4 and Comparative Examples 1 to 4 by mixing various metal simple powders and vanadium metal simple powders in the ratio shown in Table 1 and alloying them in an argon arc furnace. An alloy was made.

具体的には、各種金属単体とバナジウム金属単体との混合物を、アルゴンアーク炉内に添加した後、熔解出力約8kWで小ボタン型バナジウム合金を作製した。次いで、得られた小ボタン型バナジウム合金を複数混合し、熔解出力約16kWで溶かし合わせることにより、均等に合金化された大ボタン型のバナジウム合金材料を得た。なお、熔解作業は油拡散ポンプを用いて真空にした後、高純度のアルゴンガスで置換することにより、熔解中に酸素及び窒素のガス成分が上昇しないように行った。   Specifically, after adding a mixture of various metals and vanadium metals into an argon arc furnace, a small button type vanadium alloy was produced with a melting output of about 8 kW. Next, a plurality of the obtained small button type vanadium alloys were mixed and melted together at a melting output of about 16 kW to obtain an evenly alloyed large button type vanadium alloy material. The melting operation was performed using an oil diffusion pump and then replaced with high-purity argon gas so that oxygen and nitrogen gas components did not rise during melting.

Figure 2009270851
Figure 2009270851

<中性子散乱実験用部材の作製(圧延特性の評価)>
上記で得られた実施例1〜4及び比較例1〜4の中性子散乱実験用バナジウム合金材料をそれぞれ幅23mm×長さ23mm×高さ5mmの板状バナジウム合金に切削した。
<Production of neutron scattering experimental member (evaluation of rolling characteristics)>
The vanadium alloy materials for neutron scattering experiments of Examples 1 to 4 and Comparative Examples 1 to 4 obtained above were cut into plate-like vanadium alloys each having a width of 23 mm, a length of 23 mm, and a height of 5 mm.

次に、得られた板状バナジウム合金に真空熱処理炉を用いて焼鈍処理を施した。焼鈍条件は、真空度5×10-4Pa以下、焼鈍温度900℃、焼鈍時間1時間とした。 Next, the obtained plate-like vanadium alloy was annealed using a vacuum heat treatment furnace. The annealing conditions were a vacuum degree of 5 × 10 −4 Pa or less, an annealing temperature of 900 ° C., and an annealing time of 1 hour.

次いで、焼鈍した板状バナジウム合金に冷間圧延を行うことにより幅150mm×長さ150mm×高さ0.1mmの厚さにして、実施例1〜4及び比較例1〜4の中性子散乱実験用部材を製造した。なお、冷間圧延の際、試験片が高さ1mm及び高さ0.3mmの時点で更に焼鈍処理(焼鈍条件は上述と同じ)を施した。   Next, the annealed plate-like vanadium alloy was cold-rolled to a thickness of 150 mm wide × 150 mm long × 0.1 mm high, and used for the neutron scattering experiments of Examples 1-4 and Comparative Examples 1-4. A member was manufactured. In addition, in the case of cold rolling, when the test piece was 1 mm in height and 0.3 mm in height, the annealing process (annealing conditions are the same as the above-mentioned) was given.

得られた実施例1〜4及び比較例1〜4の中性子散乱実験用部材について、評価は以下のように行った。この評価結果を表1に併記する。
◎:高さ0.05mmの圧延が達成できた
○:高さ0.05mm圧延時にうねりが発生した
△:高さ0.1mm圧延時にうねりが発生した
×:圧延不可
試験例(中性子回折測定)
実施例1〜4の中性子散乱実験用バナジウム合金及び比較例1の中性子散乱実験用バナジウム金属単体を幅23×長さ23×高さ5mmの板状バナジウム合金(又は板状バナジウム)に切削した。この板状バナジウム合金に中性子回折測定を行った。Vの最強線である(110)面の回折強度を格子面間隔dに対してプロットした結果を図1及びブラッグピークの有無について評価した結果を表1に示す。
The obtained members for neutron scattering experiments of Examples 1 to 4 and Comparative Examples 1 to 4 were evaluated as follows. The evaluation results are also shown in Table 1.
A: Rolling with a height of 0.05 mm was achieved. B: Waviness occurred during rolling with a height of 0.05 mm. Δ: Waviness occurred during rolling with a height of 0.1 mm.
Test example (neutron diffraction measurement)
The vanadium alloys for neutron scattering experiments of Examples 1 to 4 and the vanadium metal for neutron scattering experiments of Comparative Example 1 were cut into a plate-like vanadium alloy (or plate-like vanadium) having a width of 23 × length of 23 × height of 5 mm. Neutron diffraction measurement was performed on this plate-like vanadium alloy. Table 1 shows the results obtained by plotting the diffraction intensity of the (110) plane, which is the strongest line of V, with respect to the lattice spacing d and evaluating the presence or absence of the Bragg peak.

図1から明らかなように、比較例1の板状バナジウム金属単体には、ブラッグピークと呼ばれる鋭いピークが生じていたが、本実施例1〜4のバナジウム合金材料には、ブラッグピークは見られなかった。従って、本実施例1〜4のバナジウム合金材料から得られる中性子散乱実験用部材にも、ブラッグピークが見られないことが分かる。   As is clear from FIG. 1, the plate-like vanadium metal of Comparative Example 1 had a sharp peak called a Bragg peak, but the Bragg peak was found in the vanadium alloy materials of Examples 1 to 4. There wasn't. Therefore, it can be seen that no Bragg peak is observed in the members for neutron scattering experiments obtained from the vanadium alloy materials of Examples 1 to 4.

実施例1〜4のバナジウム合金材料及び比較例1バナジウム材料に中性子回折測定を行い、得られたプロファイルである。It is the profile obtained by performing the neutron diffraction measurement to the vanadium alloy material of Examples 1-4 and the comparative example 1 vanadium material.

Claims (9)

アルミニウム、クロム、鉄及びニッケルからなる群から選択される少なくとも1種の金属2.8〜12.8重量%並びにバナジウム87.2〜97.2重量%からなるバナジウム合金を含む中性子散乱実験用部材。   A neutron scattering experimental member comprising a vanadium alloy comprising 2.8 to 12.8% by weight of at least one metal selected from the group consisting of aluminum, chromium, iron and nickel and 87.2 to 97.2% by weight of vanadium . 前記バナジウム合金は、アルミニウム3.7〜7.4重量%及びバナジウム92.6〜96.3重量%からなる、請求項1に記載の中性子散乱実験用部材。   2. The neutron scattering experimental member according to claim 1, wherein the vanadium alloy is composed of 3.7 to 7.4 wt% aluminum and 92.6 to 96.3 wt% vanadium. 前記バナジウム合金は、クロム6.6〜12.8重量%及びバナジウム87.2〜93.4重量%からなる、請求項1に記載の中性子散乱実験用部材。   The member for neutron scattering experiments according to claim 1, wherein the vanadium alloy is composed of 6.6 to 12.8% by weight of chromium and 87.2 to 93.4% by weight of vanadium. 前記バナジウム合金は、鉄2.8〜5.5重量%及びバナジウム94.5〜97.2重量%からなる、請求項1に記載の中性子散乱実験用部材。   2. The neutron scattering experimental member according to claim 1, wherein the vanadium alloy is composed of 2.8 to 5.5 wt% iron and 94.5 to 97.2 wt% vanadium. 前記バナジウム合金は、ニッケル2.8〜5.4重量%及びバナジウム94.6〜97.2重量%からなる、請求項1に記載の中性子散乱実験用部材。   The member for neutron scattering experiment according to claim 1, wherein the vanadium alloy is composed of 2.8 to 5.4% by weight of nickel and 94.6 to 97.2% by weight of vanadium. 前記部材は中性子散乱実験用の試料ホルダー又は窓材である、請求項1〜5のいずれかに記載の中性子散乱実験用部材。   The member for a neutron scattering experiment according to any one of claims 1 to 5, wherein the member is a sample holder or a window material for a neutron scattering experiment. 前記部材は厚さが0.01〜1.0mmである、請求項1〜6のいずれかに記載の中性子散乱実験用部材。   The member for neutron scattering experiments according to any one of claims 1 to 6, wherein the member has a thickness of 0.01 to 1.0 mm. 中性子散乱実験用部材の製造方法であって、
アルミニウム、クロム、鉄及びニッケルからなる群から選択される少なくとも1種の金属2.8〜12.8重量%並びにバナジウム87.2〜97.2重量%からなるバナジウム合金を圧延する工程を有する製造方法。
A method for producing a neutron scattering experimental member,
Production comprising rolling a vanadium alloy comprising 2.8 to 12.8% by weight of at least one metal selected from the group consisting of aluminum, chromium, iron and nickel and 87.2 to 97.2% by weight of vanadium Method.
アルミニウム、クロム、鉄及びニッケルからなる群から選択される少なくとも1種の金属2.8〜12.8重量%並びにバナジウム87.2〜97.2重量%からなるバナジウム合金を中性子散乱実験用部材に使用する方法。   A vanadium alloy composed of 2.8 to 12.8% by weight of at least one metal selected from the group consisting of aluminum, chromium, iron and nickel and 87.2 to 97.2% by weight of vanadium is used as a member for neutron scattering experiments. How to use.
JP2008119496A 2008-05-01 2008-05-01 Neutron scattering experimental member and manufacturing method thereof Active JP5247222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008119496A JP5247222B2 (en) 2008-05-01 2008-05-01 Neutron scattering experimental member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008119496A JP5247222B2 (en) 2008-05-01 2008-05-01 Neutron scattering experimental member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009270851A true JP2009270851A (en) 2009-11-19
JP5247222B2 JP5247222B2 (en) 2013-07-24

Family

ID=41437551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008119496A Active JP5247222B2 (en) 2008-05-01 2008-05-01 Neutron scattering experimental member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5247222B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012083108A (en) * 2010-09-17 2012-04-26 Art Kagaku:Kk Hydrogen storage material structure analysis cell and manufacturing method of the same
CN105779841A (en) * 2015-12-28 2016-07-20 北京科技大学 Vanadium-based neutron transparent material for neutron diffraction high-pressure cavity and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61106764A (en) * 1984-08-09 1986-05-24 グラマン・エアロスペ−ス・コ−ポレイシヨン Oxidation resistant structural member, its production and nuclear fusion reactor
JP2000266699A (en) * 1999-03-18 2000-09-29 Toshiba Corp Method and apparatus for evaluating degree of deterioration of material
JP2002275551A (en) * 2001-01-12 2002-09-25 Daido Steel Co Ltd Method for manufacturing vanadium alloy
JP2002340821A (en) * 2001-05-21 2002-11-27 National Institute Of Advanced Industrial & Technology Method of evaluating precision crystal structure of positive electrode material for lithium battery using neutron diffracting method and magnetic measuring method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61106764A (en) * 1984-08-09 1986-05-24 グラマン・エアロスペ−ス・コ−ポレイシヨン Oxidation resistant structural member, its production and nuclear fusion reactor
JP2000266699A (en) * 1999-03-18 2000-09-29 Toshiba Corp Method and apparatus for evaluating degree of deterioration of material
JP2002275551A (en) * 2001-01-12 2002-09-25 Daido Steel Co Ltd Method for manufacturing vanadium alloy
JP2002340821A (en) * 2001-05-21 2002-11-27 National Institute Of Advanced Industrial & Technology Method of evaluating precision crystal structure of positive electrode material for lithium battery using neutron diffracting method and magnetic measuring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012083108A (en) * 2010-09-17 2012-04-26 Art Kagaku:Kk Hydrogen storage material structure analysis cell and manufacturing method of the same
CN105779841A (en) * 2015-12-28 2016-07-20 北京科技大学 Vanadium-based neutron transparent material for neutron diffraction high-pressure cavity and preparation method thereof

Also Published As

Publication number Publication date
JP5247222B2 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
Mohanty et al. High temperature oxidation study of direct laser deposited AlXCoCrFeNi (X= 0.3, 0.7) high entropy alloys
Laube et al. Controlling crystallographic ordering in Mo–Cr–Ti–Al high entropy alloys to enhance ductility
Adharapurapu et al. Aging effects on hardness and dynamic compressive behavior of Ti–55Ni (at.%) alloy
He et al. Characterization of precipitates in nano structured 14% Cr ODS alloys for fusion application
Mikhaylovskaya et al. Effect of eutectic particles on the grain size control and the superplasticity of aluminium alloys
Cho et al. Surface selective oxidation of Sn-added CMnSi TRIP steel
US20110041650A1 (en) Niobium based alloy that is resistant to aqueous corrosion
Fairbank et al. Ultra-high temperature intermetallics for the third millennium
Jiang et al. Effect of partial Ni substitution in V85Ni15 by Ti on microstructure, mechanical properties and hydrogen permeability of V-based BCC alloy membranes
Chattopadhyay et al. Nonisothermal and isothermal oxidation behavior of Nb-Si-Mo alloys
WO2013146034A1 (en) Cr-CONTAINING AUSTENITIC ALLOY AND METHOD FOR PRODUCING SAME
JP5247222B2 (en) Neutron scattering experimental member and manufacturing method thereof
Cockeram et al. The influence of fast neutron irradiation and irradiation temperature on the tensile properties of wrought LCAC and TZM molybdenum
JPWO2013150947A1 (en) Chromium-containing austenitic alloy
JP6292311B2 (en) Ni-base alloy tube
Chun et al. Effect of Mo addition on the crystal texture and deformation twin formation in Zr-based alloys
Li et al. Effect of annealing temperature on microstructure and mechanical properties in oxide dispersion strengthened Fe-14Cr alloys prepared by spark plasma sintering
Guria et al. Tensile properties of accident-tolerant aluminum-bearing ferritic steels
Zeng et al. An ultrathin melted layer on magnesium alloy manufactured by low power laser
Yin et al. Formation of AlCuFe icosahedral quasicrystal by mechanical alloying: XAFS and XRD studies
JP2013250184A (en) Reference substance for quantitative analysis of alloy element in steel material and method for manufacturing the same
Zhu et al. Effect of iron additions on environmental embrittlement of NiTi-base alloys
JP2010248627A (en) Sputtering target
Zhou et al. Growth of subscale on Fe–20Ni binary alloy in the presence of magnetic field
Lin et al. Martensitic transformation of cold-rolled and annealed Ti50Ni40Cu10 shape memory alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130125

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130409

R150 Certificate of patent or registration of utility model

Ref document number: 5247222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250