JP2013250184A - Reference substance for quantitative analysis of alloy element in steel material and method for manufacturing the same - Google Patents

Reference substance for quantitative analysis of alloy element in steel material and method for manufacturing the same Download PDF

Info

Publication number
JP2013250184A
JP2013250184A JP2012125835A JP2012125835A JP2013250184A JP 2013250184 A JP2013250184 A JP 2013250184A JP 2012125835 A JP2012125835 A JP 2012125835A JP 2012125835 A JP2012125835 A JP 2012125835A JP 2013250184 A JP2013250184 A JP 2013250184A
Authority
JP
Japan
Prior art keywords
analysis
mass
quantitative analysis
standard
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012125835A
Other languages
Japanese (ja)
Inventor
Tomohito Tanaka
智仁 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2012125835A priority Critical patent/JP2013250184A/en
Publication of JP2013250184A publication Critical patent/JP2013250184A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reference substance to be used for quantitative analysis of an ultra-trace alloy element or impurity content of a 10 mass ppm level in a steel material by using a physical analytical instrument having spatial resolution of 1 μm or less.SOLUTION: The reference substance is used for quantitative analysis of an ultra-trace analysis target element in the steel material by using the physical analytical instrument for performing ultra-trace element analysis in a diameter area of 0.01 to 1 μm. The reference substance is polycrystalline iron-base alloy containing predetermined mass % of the analysis target element and containing any one sort of Al: 1-10%, Si: 2-13% and Ni: 30-49%, in which the residual is composed of Fe and inevitable impurity and an average crystal grain diameter is 1 to 100 mm.

Description

本発明は、電子線プローブマイクロアナライザや二次イオン質量分析法などの物理分析機器を用いて、鉄鋼材料中の10質量ppmレベルの極微量の元素を定量分析する際に用いる標準物質とその作製方法に関する。   The present invention relates to a standard substance used for quantitative analysis of an extremely small amount of an element of 10 mass ppm in a steel material using a physical analysis instrument such as an electron probe microanalyzer or secondary ion mass spectrometry, and its production. Regarding the method.

鉄鋼材料において、マイクロメートルからサブマイクロメートル領域の微細領域に固溶している微量元素の濃度を定量分析するには、電子線プローブマイクロアナライザ(Electron Probe Micro Analyzer:EPMA)や、二次イオン質量分析法(Secondary Ion Mass Spectrometry:SIMS)などを用いる。特に、鉄鋼製品管理において、微量元素の濃度を定量する装置として、EPMAが広く用いられている。   To quantitatively analyze the concentration of trace elements dissolved in the micrometer to submicrometer range in steel materials, the electron probe microanalyzer (EPMA) or secondary ion mass An analysis method (Secondary Ion Mass Spectrometry: SIMS) or the like is used. In particular, EPMA is widely used as a device for quantifying the concentration of trace elements in steel product management.

これらの分析方法において定量分析を精度よく行うためには、元素の濃度が既知である標準試料を3個以上用意し、信号強度と元素濃度の関係をプロットして検量線を作成し、未知試料からの元素の信号強度を検量線に当てはめることで、未知試料の元素濃度を求める方法が一般的である。この方法は検量線法と呼ばれ、検量線作成に用いる標準物質の組成は、未知試料の組成に近いことが好ましい。   In order to perform quantitative analysis with high accuracy in these analysis methods, prepare 3 or more standard samples with known element concentrations, create a calibration curve by plotting the relationship between signal intensity and element concentration, In general, the element concentration of the unknown sample is obtained by applying the signal intensity of the element from the sample to the calibration curve. This method is called a calibration curve method, and it is preferable that the composition of the standard substance used for preparing the calibration curve is close to the composition of the unknown sample.

例えば、特許文献1に開示の定量分析法では、定量したい元素をイオン注入した標準物質を用いて、イオンマイクロアナライザによる検量線を作成している。しかしながら、注入されたイオンは、試料表面から内部にかけて濃度勾配を有するため、深さ方向分析が可能な測定方法でなければ、検量線を作成することができない。したがって、EPMAによる定量分析用の標準物質には、試料の平面方向、深さ方向に定量したい元素が均一に分布していることが求められる。   For example, in the quantitative analysis method disclosed in Patent Document 1, a calibration curve is created by an ion microanalyzer using a standard material into which an element to be quantified is ion-implanted. However, since the implanted ions have a concentration gradient from the sample surface to the inside, a calibration curve cannot be created unless the measurement method is capable of depth direction analysis. Therefore, the reference material for quantitative analysis by EPMA is required to uniformly distribute the element to be quantified in the plane direction and depth direction of the sample.

鉄鋼材料の標準物質は様々なものが作製され、市販もされている。鉄鋼材料の標準物質については、例えば、非特許文献1で纏められているように、日本鉄鋼連盟や、米国のNISTなどで取り扱っている。   Various standard materials for steel materials have been produced and are commercially available. Standard materials for steel materials are handled by the Japan Iron and Steel Federation, NIST in the United States, and the like, as summarized in Non-Patent Document 1, for example.

中でも、微小領域での成分均一性を保証した標準物質として、EPMA用の標準物質が、独立行政法人産業技術総合研究所より頒布されている。ただし、二元素系の鉄基合金が三種類(Fe−C合金、Fe−Ni合金、Fe−Cr合金)用意されているのみであり、また、添加元素の濃度範囲も限定されている。   Among them, a standard material for EPMA is distributed by the National Institute of Advanced Industrial Science and Technology as a standard material that guarantees the uniformity of components in a minute region. However, only two types of two-element iron-based alloys (Fe-C alloy, Fe-Ni alloy, Fe-Cr alloy) are prepared, and the concentration range of the additive element is also limited.

例えば、Fe−C合金の標準物質では、炭素濃度が、質量%で、0.01〜0.7%に限定されており、この濃度範囲外の炭素濃度を定量する場合、検量線の範囲から外れているため、定量結果の信頼性が低下する。これらの標準物質の結晶粒径は、数10μmから数100μm程度である。   For example, in the standard substance of the Fe-C alloy, the carbon concentration is limited to 0.01 to 0.7% in mass%, and when quantifying the carbon concentration outside this concentration range, from the range of the calibration curve Since it is off, the reliability of the quantitative result is lowered. The crystal grain size of these standard substances is about several tens of μm to several hundreds of μm.

これに加えて、微量で、かつ、粒界に偏析し易い元素の固溶濃度を定量したい場合、微量元素が粒界に多く偏在することで、粒内の固溶濃度が添加濃度から減少してしまう。特に、粒径が小さく、材料中に占める粒界の割合が大きくなるほど、この問題は顕在化する。後述するように、粒径が数μm程度に微細化すると、粒界偏析によって、粒内の固溶濃度が添加濃度に比べて減少する可能性がある。   In addition to this, when it is desired to quantify the solid solution concentration of elements that are trace amounts and easily segregate at the grain boundaries, the concentration of solid elements in the grains decreases from the added concentration due to the presence of many trace elements at the grain boundaries. End up. In particular, this problem becomes more apparent as the particle size is smaller and the proportion of grain boundaries in the material is larger. As will be described later, when the particle size is refined to about several μm, there is a possibility that the solid solution concentration in the particles is reduced compared to the added concentration due to grain boundary segregation.

この場合、1μm以下の空間分解能を有する物理分析機器を用いると、正確な検量線を作成することが困難であり、検量線の傾きが、真の傾きよりも小さくなる。   In this case, if a physical analysis instrument having a spatial resolution of 1 μm or less is used, it is difficult to create an accurate calibration curve, and the slope of the calibration curve becomes smaller than the true slope.

これは、化学分析などのバルク分析で標準試料の濃度を保証する場合、化学分析値は、試料全体の濃度が算出されるのに対し、1μm以下の空間分解能を有する物理分析機器を用いて、ランダムに標準試料にビームを照射して得られる信号強度は、粒界偏析によって減少した粒内の固溶濃度を求めてしまうためである。   This is because when the concentration of a standard sample is guaranteed in bulk analysis such as chemical analysis, the chemical analysis value is calculated by using a physical analysis instrument having a spatial resolution of 1 μm or less, whereas the concentration of the entire sample is calculated. This is because the signal intensity obtained by randomly irradiating the standard sample with a beam requires the solid solution concentration in the grains reduced by grain boundary segregation.

鉄鋼材料中の粒界に偏析し易い元素としては、例えば、B、S、P、N等が知られており、これらの元素について、微小領域の均一性を保証した標準物質の作製は、前述した理由から、極めて困難である。   As elements that are easily segregated at grain boundaries in steel materials, for example, B, S, P, N, etc. are known, and for these elements, the preparation of a standard material that guarantees the uniformity of a minute region is described above. This is extremely difficult.

一方、鉄鋼分析においては、ppmレベルの微量元素の添加が、材料特性に多大な影響を及ぼすことがあり、ppmレベルの定量分析に関するニーズが大きい。例えば、鉄鋼材料中に10質量ppmレベルのボロンを添加すると、鋼材の焼入れ性が向上して、鉄鋼材料の機械的特性を飛躍的に向上させることが可能である。しかしながら、ボロンは、鉄鋼材料中の炭素や窒素と化合物を形成し易く、固溶濃度が添加量から減少してしまうことがある。   On the other hand, in steel analysis, the addition of trace elements at the ppm level can greatly affect material properties, and there is a great need for quantitative analysis at the ppm level. For example, when 10 mass ppm of boron is added to the steel material, the hardenability of the steel material is improved and the mechanical properties of the steel material can be dramatically improved. However, boron tends to form a compound with carbon and nitrogen in the steel material, and the solid solution concentration may decrease from the amount added.

ボロン添加による焼入れ性向上効果は、粒内に固溶しているボロン量によって決定されるため、鋼材の機械特性を制御するためには、ボロンの添加量だけでなく、固溶濃度を定量する必要がある。   The effect of improving hardenability by adding boron is determined by the amount of boron dissolved in the grains. Therefore, in order to control the mechanical properties of steel, not only the amount of boron but also the solid solution concentration is quantified. There is a need.

ボロンの固溶濃度を決定する場合、ボロンの炭窒化物が分析範囲に含まれないように十分注意しながら、粒内で元素分析を行い、予め作成した検量線と照合することで固溶濃度を定量する。ところが、検量線を作成するための標準物質が不足していることにより、定量分析を行うことが不可能であった。   When determining the solid solution concentration of boron, perform elemental analysis within the grain and pay close attention to the calibration curve prepared in advance, taking care not to include boron carbonitride in the analysis range. Quantify. However, due to the lack of standard materials for preparing a calibration curve, it was impossible to perform quantitative analysis.

特開昭62−132156号公報JP-A-62-132156

井田巌、林部豊、ぶんせき1(2010)29Jun Ida, Yutaka Hayashibe, Bunkeki 1 (2010) 29

本発明は、上記課題に鑑みなされたものであり、鉄鋼材料中の10質量ppmレベルの極微量の合金元素や不純物元素の含有量を、1μm以下の空間分解能を有する物理分析機器を用いて定量分析するために用いる標準物質を提供することを目的とする。   The present invention has been made in view of the above problems, and the content of a trace amount of alloy elements and impurity elements at 10 ppm by mass in steel materials is quantified using a physical analysis instrument having a spatial resolution of 1 μm or less. The purpose is to provide a reference material used for analysis.

本発明者らは、前記課題を解決する手段を鋭意検討した。その結果、標準物質を、1mm以上の平均結晶粒径を有する多結晶体、又は、該多結晶体から切り出した単結晶の鉄基合金とすることで、添加した10質量ppmレベルの極微量元素の粒内固溶濃度が、粒界偏析によって低減することなく測定できることを見出した。   The present inventors have intensively studied means for solving the above-mentioned problems. As a result, by adding the standard substance to a polycrystal having an average crystal grain size of 1 mm or more, or a single crystal iron-based alloy cut out from the polycrystal, an added trace element at a level of 10 ppm by mass It was found that the intra-grain solid solution concentration can be measured without being reduced by grain boundary segregation.

本発明は、上記知見に基づいてなされたもので、その要旨は、以下の通りである。   This invention was made | formed based on the said knowledge, The summary is as follows.

(1)直径0.01〜1μmの領域にて微量元素分析を行う物理分析機器を用いて、鉄鋼材料中の極微量の分析対象元素を定量分析するために用いる標準物質であって、該標準物質が、質量%で、上記分析対象元素を所定量含有するとともに、Al:1〜10%、Si:2〜13%、及び、Ni:30〜49%のいずれか1種を含有し、残部がFe及び不可避的不純物からなり、平均結晶粒径が1〜100mmの多結晶体である鉄基合金であることを特徴とする微量元素定量分析用標準物質。   (1) A standard substance used for quantitative analysis of a trace amount of an element to be analyzed in a steel material using a physical analysis instrument that performs trace element analysis in a diameter range of 0.01 to 1 μm. The substance contains a predetermined amount of the element to be analyzed in mass%, and contains any one of Al: 1 to 10%, Si: 2 to 13%, and Ni: 30 to 49%, and the balance A reference material for quantitative analysis of trace elements, characterized in that is an iron-based alloy consisting of Fe and unavoidable impurities and having an average crystal grain size of 1 to 100 mm.

(2)前記微量元素定量分析用標準物質が前記多結晶体から切り出した単結晶体であることを特徴とする前記(1)に記載の微量元素定量分析用標準物質。   (2) The standard element for quantitative analysis of trace elements according to (1) above, wherein the standard substance for quantitative analysis of trace elements is a single crystal cut out from the polycrystal.

(3)前記物理分析機器が、電子線マイクロプローブアナライザ又は二次イオン質量分析装置であることを特徴とする前記(1)又は(2)に記載の微量元素定量分析用標準物質。   (3) The standard element for quantitative analysis of trace elements according to (1) or (2), wherein the physical analysis instrument is an electron beam microprobe analyzer or a secondary ion mass spectrometer.

(4)直径0.01〜1μmの領域にて微量元素分析を行う物理分析機器を用いて、鉄鋼材料中の極微量の分析対象元素を定量分析するために用いる標準物質の作製方法であって、
(i)質量%で、元素換算で所定量の分析対象元素の純物質又は溶鋼中で溶解可能な分析対象元素とFeからなる化合物とともに、Al換算で1〜10%のAlの純物質又は溶鋼中で溶解可能なFeAl系金属間化合物、Si換算で2〜13%のSiの純物質又は溶鋼中で溶解可能なFeSi系金属間化合物、及び、Ni換算で30〜49%のNiの純物質又は溶鋼中で溶解可能なFeNi系金属間化合物から選ばれる1種を電解鉄と混合し、非酸化性雰囲気中で加熱溶解して、鋳造し、その後、
(ii)上記鋳片を、非酸化性雰囲気中で、液相線温度〜500℃の間に1分以上45000分未満の時間均熱処理して、平均結晶粒径が1〜100mmの結晶粒を成長させ、次いで、急冷する
ことを特徴とする微量元素定量分析用標準物質の作製方法。
(4) A method for preparing a standard substance used for quantitative analysis of an extremely small amount of an element to be analyzed in a steel material using a physical analysis instrument that performs a trace element analysis in a region having a diameter of 0.01 to 1 μm. ,
(I) A pure substance or molten steel of 1 to 10% of Al in terms of Al together with a compound consisting of an analysis element and Fe that can be dissolved in molten steel in a predetermined amount of pure element of the element to be analyzed in terms of element in mass% FeAl intermetallic compound that can be dissolved in Si, 2 to 13% pure substance of Si in terms of Si, or FeSi intermetallic compound that can be dissolved in molten steel, and 30 to 49% pure substance of Ni in terms of Ni Alternatively, one selected from FeNi-based intermetallic compounds that can be dissolved in molten steel is mixed with electrolytic iron, heated and dissolved in a non-oxidizing atmosphere, and then cast.
(Ii) The above slab is soaked in a non-oxidizing atmosphere between a liquidus temperature of 500 ° C. and a time of 1 minute or more and less than 45000 minutes to obtain crystal grains having an average grain size of 1 to 100 mm. A method for producing a reference material for quantitative analysis of trace elements, characterized by growing and then rapidly cooling.

(5)前記急冷後の標準物質から単結晶体を切り出し標準物質とすることを特徴とする前記(4)に記載の微量元素定量分析用標準物質の作製方法。   (5) The method for producing a standard material for quantitative analysis of trace elements according to (4) above, wherein a single crystal is cut out from the standard material after quenching and used as a standard material.

(6)前記物理分析機器が、電子線マイクロプローブアナライザ又は二次イオン質量分析装置であることを特徴とする前記(4)又は(5)に記載の微量元素定量分析用標準物質の作製方法。   (6) The method for producing a standard material for quantitative analysis of trace elements according to (4) or (5), wherein the physical analysis instrument is an electron beam microprobe analyzer or a secondary ion mass spectrometer.

本発明によれば、鉄基合金中の微量元素の粒界偏析等により引き起こされる濃度不均一性が生じない、均一な標準物質を作製することが可能となる。その結果、EPMAやSIMSの1μm以下の空間分解能を有する物理分析機器を用いて、検量線法により、極微量元素の定量分析が可能となり、鉄鋼材料の製造上の冶金的問題の解明や材質向上への基礎知見を得ることが可能となる。   According to the present invention, it is possible to produce a uniform standard material in which concentration nonuniformity caused by grain boundary segregation of trace elements in an iron-based alloy does not occur. As a result, it is possible to perform quantitative analysis of trace elements by using a calibration curve method using a physical analysis instrument having a spatial resolution of 1 μm or less, such as EPMA and SIMS, and to elucidate metallurgical problems in manufacturing steel materials and improve materials It is possible to obtain basic knowledge on

粒内の固溶濃度の結晶粒径依存性を示す図である。It is a figure which shows the crystal grain size dependence of the solid solution concentration in a grain. EPMAによるPKα線強度の固溶濃度依存性を示す図である。It is a figure which shows the solid solution concentration dependence of PK (alpha) line | wire intensity by EPMA.

以下に、本発明を詳しく説明する。   The present invention is described in detail below.

本発明は、鉄鋼材料中の10質量ppmレベルの極微量の合金元素や不純物元素の含有量を、1μm以下の空間分解能を有する物理分析機器を用いて定量分析するために用いる標準物質、及び、該標準物質の作製方法に関する。   The present invention is a standard material used for quantitative analysis of the content of a trace amount of alloying elements and impurity elements at a level of 10 ppm by mass in steel materials using a physical analysis instrument having a spatial resolution of 1 μm or less, and The present invention relates to a method for producing the standard substance.

ここで、10質量ppmレベルとは、1〜20質量ppmの範囲を指す。また、物理分析機器とは、EPMAやSIMSなどの、マイクロメートルやサブマイクロメートル領域において微量元素分析が可能な装置を指す。   Here, the 10 mass ppm level refers to a range of 1 to 20 mass ppm. The physical analysis equipment refers to an apparatus capable of analyzing trace elements in the micrometer or submicrometer region, such as EPMA or SIMS.

このような微小領域において、標準物質中の添加元素の濃度分布を均一にするのには困難が伴う。例えば、多結晶体の場合、微量元素が粒界に偏析して、粒内の固溶濃度が添加濃度から減少することが考えられる。この問題は、粒界偏析し易い元素ほど、顕著となることが想定される。このような場合、物理分析機器を用いて得られる微量元素からの信号強度と、固溶濃度との関係を表す検量線を正確に作成することができない。そこで、まず、粒内の固溶濃度が、粒界偏析によりどの程度減少するかを、下記式(1)〜(3)で見積もった。   In such a minute region, it is difficult to make the concentration distribution of the additive element in the standard material uniform. For example, in the case of a polycrystal, it is conceivable that trace elements segregate at the grain boundaries, and the solid solution concentration in the grains decreases from the added concentration. It is assumed that this problem becomes more prominent for elements that are more likely to segregate at grain boundaries. In such a case, a calibration curve representing the relationship between the signal intensity from the trace element obtained using the physical analysis instrument and the solid solution concentration cannot be accurately created. Therefore, first, the extent to which the solid solution concentration in the grains decreases due to grain boundary segregation was estimated by the following formulas (1) to (3).

Fe−X二元素系の粒界偏析量の粒径依存性は、下記式(1)で表わされる(K. Ishida, Journal of Alloys and Compounds, 235 (1996) 244)。   The grain size dependence of the grain boundary segregation amount of the Fe-X two-element system is expressed by the following formula (1) (K. Ishida, Journal of Alloys and Compounds, 235 (1996) 244).

Figure 2013250184
ここで、xbは粒界偏析濃度(元素分率)、0xは添加元素濃度(元素分率)、tは粒界の厚さ、dは平均結晶粒径、ΔGは粒界偏析エネルギー、Rは気体定数、Tは温度である。
Figure 2013250184
Where x b is the grain boundary segregation concentration (element fraction), 0 x is the additive element concentration (element fraction), t is the grain boundary thickness, d is the average crystal grain size, ΔG is the grain boundary segregation energy, R is a gas constant and T is a temperature.

また、粒内の固溶濃度をXm、バルクに占める粒界の体積分率をf、粒内の体積分率を(1-f)とすると、下記式(2)となる。 Further, when the solid solution concentration in the grain is X m , the volume fraction of the grain boundary in the bulk is f, and the volume fraction in the grain is (1-f), the following equation (2) is obtained.

Figure 2013250184
ここで、結晶粒を球形と仮定すると、下記式(3)が得られる。
Figure 2013250184
Here, assuming that the crystal grains are spherical, the following formula (3) is obtained.

Figure 2013250184
粒界偏析層の厚みtは、数原子層程度とされているので、ここでは、t=1nmで計算する。また、定量分析したい元素の添加元素濃度を0x=10atomic−ppmとする。この場合、上記式(1)〜(3)を用い、かつ、粒界偏析エネルギーΔG、温度Tを代入することで、粒内における固溶濃度の結晶粒径依存性を計算することができる。
Figure 2013250184
Since the grain boundary segregation layer has a thickness t of about several atomic layers, the calculation is made here at t = 1 nm. Further, the additive element concentration of the element to be quantitatively analyzed is set to 0 x = 10 atomic-ppm. In this case, by using the above formulas (1) to (3) and substituting the grain boundary segregation energy ΔG and the temperature T, the dependence of the solid solution concentration in the grains on the crystal grain size can be calculated.

このようにして計算した粒内の固溶濃度の平均結晶粒径依存性を図1に示す(ΔG=60kJ/mol、T=1300Kとして計算)。   The average crystal grain size dependence of the solid solution concentration calculated in this way is shown in FIG. 1 (calculated assuming ΔG = 60 kJ / mol, T = 1300 K).

図1に示す通り、平均結晶粒径が小さいと、粒内の固溶濃度の値が平均結晶粒径に依存して小さくなることが解る。これは、平均結晶粒径が小さくなると、材料中に占める粒界の体積分率が上昇し、添加元素がより多く粒界偏析して、粒内の固溶濃度が減少するためである。   As shown in FIG. 1, it can be seen that when the average crystal grain size is small, the value of the solid solution concentration in the grain becomes small depending on the average crystal grain size. This is because when the average crystal grain size is reduced, the volume fraction of the grain boundaries in the material is increased, more additive elements are segregated at the grain boundaries, and the solid solution concentration in the grains is reduced.

この場合、元素濃度を化学分析値で保証しようとしても、化学分析値から判断される元素濃度(添加濃度に等しい)と、実際の粒内の固溶濃度が異なる値となり、正確な検量線作成が不可能となる。   In this case, even if it is attempted to guarantee the element concentration with the chemical analysis value, the element concentration determined from the chemical analysis value (equal to the addition concentration) and the actual solid solution concentration differ from each other, creating an accurate calibration curve. Is impossible.

図1より、粒界偏析によって固溶濃度が低下することを防ぐためには、平均結晶粒径が1mm程度以上であればよいことが解る。粒界偏析エネルギーΔGが大きいほど、固溶濃度の低下を防ぐために必要な平均結晶粒径は大きくなければならない。   From FIG. 1, it can be seen that the average crystal grain size should be about 1 mm or more in order to prevent the solid solution concentration from decreasing due to grain boundary segregation. The larger the grain boundary segregation energy ΔG, the larger the average crystal grain size necessary to prevent a decrease in the solid solution concentration.

ただし、ΔGの値は、偏析し易いとされるP、Sという元素の場合でも55kJ/mol程度である(P. Lejcek and S. Hofman, Surface and Interface Analysis, 33 (2002) 203)ので、平均結晶粒径は1mm程度であれば十分である。   However, the value of ΔG is about 55 kJ / mol even in the case of elements P and S which are considered to be easily segregated (P. Lejcek and S. Hofman, Surface and Interface Analysis, 33 (2002) 203). A crystal grain size of about 1 mm is sufficient.

平均結晶粒径は1mm以上であればよいが、本発明者らが実験したところ、今回の標準物質調整方法では、平均結晶粒径100mmを超える鉄鋼材料を作製することはできなかった。   The average crystal grain size may be 1 mm or more. However, when the present inventors experimented, it was not possible to produce a steel material exceeding the average crystal grain size of 100 mm with the current standard substance adjustment method.

ここで、鉄鋼材料の結晶粒を粗大化する方法について説明する。純鉄の場合、結晶粒を成長させ、粗大化するために高温で加熱しても、冷却過程で、面心立方構造から体心立方構造に相変態し、相変態による結晶粒微細化によって平均結晶粒径が数10μm程度となる。したがって、結晶粒を1mm以上に粗大化する場合、熱処理中に固相での相変態が起きないように、成分調整しなければならない。   Here, a method for coarsening the crystal grains of the steel material will be described. In the case of pure iron, even if it is heated at a high temperature to grow and coarsen crystal grains, it undergoes a phase transformation from a face-centered cubic structure to a body-centered cubic structure in the cooling process, and the average is obtained by grain refinement by phase transformation. The crystal grain size is about several tens of μm. Therefore, when the crystal grains are coarsened to 1 mm or more, the components must be adjusted so that phase transformation in the solid phase does not occur during the heat treatment.

例えば、Feに、Al、Si等を所定の濃度で添加すると、固相では、全ての温度域にわたって体心立方構造が安定となる。Alを添加する場合は、1〜10質量%で体心立方構造が安定となる。Siを添加する場合は、2〜13質量%でよい。   For example, when Al, Si, or the like is added to Fe at a predetermined concentration, the body-centered cubic structure becomes stable over the entire temperature range in the solid phase. When Al is added, the body-centered cubic structure becomes stable at 1 to 10% by mass. When adding Si, 2-13 mass% may be sufficient.

FeにNi等を所定の濃度で添加すると、固相では、全ての温度域にわたって面心立方構造が安定となるが、30質量%以上が好ましい。ただし、49質量%超であると、定量する元素や不可避的不純物が存在するので、標準物質の組成において、Ni濃度がFe濃度を上回る場合がある。この場合、Niベースの標準物質となり、鉄鋼材料中の微量元素定量分析のための標準物質としてはふさわしくない。   When Ni or the like is added to Fe at a predetermined concentration, the face-centered cubic structure becomes stable over the entire temperature range in the solid phase, but is preferably 30% by mass or more. However, if it exceeds 49% by mass, there are elements to be quantified and inevitable impurities, so the Ni concentration may exceed the Fe concentration in the composition of the standard substance. In this case, it becomes a Ni-based standard substance and is not suitable as a standard substance for quantitative analysis of trace elements in steel materials.

例え、添加元素の濃度が同一であっても、母材が変化すると、EPMAやSIMSによる分析時に得られる信号量が変化するためである。これは、電子線やイオンの試料への侵入深さや脱出深さが、母材の平均原子番号に依存することに由来する。   For example, even if the concentration of the additive element is the same, if the base material changes, the amount of signal obtained at the time of analysis by EPMA or SIMS changes. This is because the penetration depth and escape depth of the electron beam and ions into the sample depend on the average atomic number of the base material.

本発明の範囲では、分析対象元素の濃度範囲は10質量ppm程度であり、不可避的不純物と合わせても1質量%を超えることはないので、Niが49質量%以下であれば、Niベースの標準物質となることはない。   In the scope of the present invention, the concentration range of the element to be analyzed is about 10 ppm by mass, and even if combined with inevitable impurities, it does not exceed 1% by mass. It will not be a reference material.

固相温度域内で単相にするために添加するAl、Si、Ni等の元素が、実際に定量する元素と、標準物質を作製する過程で化合物を形成しないことが必要である。Al、Si、Ni等を含有する鋼を作製する場合は、例えば、電解鉄とAl、Si、Niの純物質、又は、溶鋼中で溶解可能なAl、Si、Niのいずれか一種とFeからなる金属間化合物を所定量混合して坩堝に装入し、加熱して溶解する。   It is necessary that elements such as Al, Si, and Ni that are added to form a single phase within the solid phase temperature range do not form a compound in the process of preparing a standard substance with the elements that are actually quantified. When producing steel containing Al, Si, Ni, etc., for example, from electrolytic iron and pure substance of Al, Si, Ni, or any one of Al, Si, Ni that can be dissolved in molten steel and Fe A predetermined amount of the intermetallic compound is mixed and charged in a crucible, and heated to dissolve.

ここでいう溶鋼中で溶解可能なAl、Si、Niのいずれか一種とFeからなる金属間化合物としては、例えば、Al2FeやAl5Fe2、FeSiやFeSi2、Fe3NiやFeNiなどの金属間化合物を挙げることができる。坩堝に装入する際に、分析対象元素の純物質、又は、溶鋼中で溶解可能な分析対象元素とFeからなる化合物を、所定量、併せて混合する。例えば、分析対象元素がBである場合、坩堝に装入する際にB単体、又は、FeB(フェロボロン)を添加する。 Examples of the intermetallic compound made of Fe and any one of Al, Si, and Ni that can be dissolved in the molten steel include Al 2 Fe, Al 5 Fe 2 , FeSi, FeSi 2 , Fe 3 Ni, FeNi, etc. The intermetallic compound can be mentioned. When the crucible is charged, a predetermined amount of a pure substance of the analysis target element or a compound of the analysis target element that can be dissolved in molten steel and Fe are mixed together. For example, when the analysis target element is B, B alone or FeB (ferroboron) is added when the crucible is charged.

電解鉄の純度は99.9質量%以上であればよい。好ましくは99.99質量%以上である。例えば、東邦亜鉛(株)が販売している電解鉄を用いればよい。   The purity of electrolytic iron should just be 99.9 mass% or more. Preferably it is 99.99 mass% or more. For example, electrolytic iron sold by Toho Zinc Co., Ltd. may be used.

加熱溶解は、溶鋼中への大気混入を防ぐため、アルゴンガスやヘリウムなどの希ガスを用いた非酸化性雰囲気中で行うことが好ましい。真空中での溶解がより好ましい。真空度は10-6〜104Paであればよい。104Pa超であると、真空にすることによる脱ガス効果が少なく、また、溶鋼中からガスが放出されるので、10-6Pa未満とするのは困難である。 The heat melting is preferably performed in a non-oxidizing atmosphere using a rare gas such as argon gas or helium in order to prevent air from entering the molten steel. More preferred is dissolution in vacuum. The degree of vacuum may be 10 −6 to 10 4 Pa. If it exceeds 10 4 Pa, there is little degassing effect due to the vacuum, and gas is released from the molten steel, so it is difficult to make it less than 10 −6 Pa.

このようにして、固相温度域内において、標準物質を単相とし、高温加熱すると、冷却中に相変態による結晶粒微細化が起きず、粗大な結晶粒が得られる。ここで、高温とは、500℃以上、液相線温度以下の温度をいう。500℃未満であれば、鉄中の添加元素の拡散係数が小さいため、結晶粒成長のための熱処理時間に膨大な時間を要する。   In this way, when the standard material is made into a single phase in the solid phase temperature range and heated at a high temperature, crystal grain refinement due to phase transformation does not occur during cooling, and coarse crystal grains are obtained. Here, the high temperature means a temperature of 500 ° C. or higher and a liquidus temperature or lower. If it is less than 500 degreeC, since the diffusion coefficient of the additive element in iron is small, enormous time is required for the heat treatment time for crystal grain growth.

一方、加熱温度が液相線温度を超えると、加熱中に液相が生成して、冷却中に凝固偏析が生じ、均質な標準物質を得ることができない。   On the other hand, when the heating temperature exceeds the liquidus temperature, a liquid phase is generated during heating, solidification segregation occurs during cooling, and a homogeneous standard material cannot be obtained.

加熱時間は1分以上45000分未満が好ましい。1分未満であると、加熱温度によっては結晶粒径が1mm以上に成長しない。45000分以上であれば、加熱時間に1カ月超を要し、時間がかかるうえ、これ以上加熱を続けても、元素の拡散距離に顕著な変化はみられない。   The heating time is preferably 1 minute or more and less than 45,000 minutes. If it is less than 1 minute, the crystal grain size does not grow to 1 mm or more depending on the heating temperature. If it is 45000 minutes or more, the heating time takes more than one month, it takes time, and even if heating is continued further, no significant change is observed in the element diffusion distance.

高温加熱は、表面酸化により添加元素が酸化物中に取り込まれることがあるので、不活性ガスを用いた非酸化性雰囲気中で行うことが好ましく、還元性雰囲気中がより好ましい。還元性雰囲気とは、鉄酸化物が還元される酸素分圧を有する雰囲気のことであり、例えば、1000℃において1.8×10-11Pa以下であればよい。 The high temperature heating is preferably performed in a non-oxidizing atmosphere using an inert gas, and more preferably in a reducing atmosphere, because an additive element may be taken into the oxide by surface oxidation. The reducing atmosphere is an atmosphere having an oxygen partial pressure at which iron oxide is reduced, and may be, for example, 1.8 × 10 −11 Pa or less at 1000 ° C.

このような雰囲気は、公知のように、水素と水蒸気が平衡する雰囲気において、水素分圧や水蒸気分圧を調整して実現できる。例えば、1atmの窒素雰囲気中に水素を体積分率で5%程度含有させ、水蒸気量を露点で―40℃とすればよい。   Such an atmosphere can be realized by adjusting the hydrogen partial pressure and the water vapor partial pressure in an atmosphere in which hydrogen and water vapor are in equilibrium as is well known. For example, hydrogen may be contained in a nitrogen atmosphere of 1 atm in a volume fraction of about 5%, and the water vapor amount may be −40 ° C. in terms of dew point.

熱処理後に表面を研削し、表面の偏析層や汚染層を取り除くことが好ましい。加熱後に冷却する際は、高温での元素分配を維持させるため、冷却速度は50〜1000℃/sが好ましく、水冷又は油冷し、可能な限り素早く冷却することが好ましい。今回の検討の範囲内では、1000℃/s超の冷却速度は、水冷、油冷では得難い。   It is preferable to grind the surface after the heat treatment to remove the segregation layer and the contamination layer on the surface. When cooling after heating, in order to maintain element distribution at a high temperature, the cooling rate is preferably 50 to 1000 ° C./s, preferably water cooling or oil cooling, and cooling as quickly as possible. Within the scope of this study, a cooling rate exceeding 1000 ° C./s is difficult to obtain with water cooling or oil cooling.

結晶粒を1mm以上に粗大化した後、このまま標準物質として用いてもよいが、単結晶部分を切り出して用いるのが好ましい。この単結晶を二分割し、一つの単結晶中の元素濃度を他の分析方法(化学分析、又は、他の機器分析)で定量すると、得られる分析値には、粒界偏析量が含まれていないため、粒内に固溶する元素濃度の値のみが得られる。後は、定量する元素の添加量を5水準程度変化させたものを用意し、EPMAやSIMS分析等で、もう一つの単結晶を分析し、当該元素からの信号強度を求め、信号強度と分析値をプロットすれば、検量線が作成され、定量分析が可能となる。   After the crystal grains are coarsened to 1 mm or more, they may be used as they are as standard substances, but it is preferable to cut out and use a single crystal portion. When this single crystal is divided into two and the element concentration in one single crystal is quantified by other analysis methods (chemical analysis or other instrumental analysis), the analysis value obtained includes the amount of grain boundary segregation. Therefore, only the value of the element concentration that dissolves in the grains can be obtained. After that, prepare an element whose amount to be quantified is changed by about 5 levels, analyze another single crystal by EPMA or SIMS analysis, etc., determine the signal intensity from the element, and analyze the signal intensity and analysis. If the values are plotted, a calibration curve is created and quantitative analysis is possible.

次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

Fe中のPの検量線を作成した例を示す。Feの固相を全ての温度域にわたって体心立方構造が安定となるよう、純度99.9質量%の電解鉄に、Alを5質量%混合し、併せて、Pを添加した鋼を真空溶解して鋳造した。P濃度は、狙い値で30質量ppm、80質量ppm、150質量ppm、300質量ppm、500質量ppmとした。   The example which created the calibration curve of P in Fe is shown. In order to stabilize the body-centered cubic structure of the Fe solid phase over the entire temperature range, 5% by mass of Al was mixed with 99.9% by mass of electrolytic iron, and steel added with P was vacuum-dissolved. And cast. The P concentration was set to 30 mass ppm, 80 mass ppm, 150 mass ppm, 300 mass ppm, and 500 mass ppm as target values.

鋳造した鋼に熱間圧延を施し、さらに、1000℃で熱間鍛造を施した。鍛造後、アルゴン雰囲気中で1300℃に加熱し、一週間、熱処理を施し、300℃/sで水冷した。   The cast steel was hot-rolled and further hot forged at 1000 ° C. After forging, it was heated to 1300 ° C. in an argon atmosphere, heat-treated for one week, and water-cooled at 300 ° C./s.

得られた鋼材の表面を研削し、表面偏析層を取り除いた。   The surface of the obtained steel material was ground and the surface segregation layer was removed.

また、エッチングして組織を現出させ、単結晶部分を1cm角で切り出した。得られた単結晶の一部を、透過型電子顕微鏡で観察し、観察領域内にPの析出物が認められないことを確認した。P濃度は、化学分析によって定量した。化学分析は、JIS G1258−1:2007に従い、ICP発光分光分析によって定量した。   Further, the structure was revealed by etching, and the single crystal portion was cut out at 1 cm square. A part of the obtained single crystal was observed with a transmission electron microscope, and it was confirmed that no precipitate of P was observed in the observation region. P concentration was quantified by chemical analysis. The chemical analysis was quantified by ICP emission spectroscopic analysis according to JIS G1258-1: 2007.

続いて、単結晶を鏡面研磨し、EPMA分析に供した。一つの試料につき、25点分析を行い、得られたX線強度(PKα線)の平均値を縦軸に、横軸に化学分析値をプロットした。結果を図2に示す。EPMA測定時の加速電圧は15kVとした。   Subsequently, the single crystal was mirror-polished and subjected to EPMA analysis. Each sample was analyzed at 25 points, and the average value of the obtained X-ray intensities (PKα rays) was plotted on the vertical axis and the chemical analysis values were plotted on the horizontal axis. The results are shown in FIG. The acceleration voltage during EPMA measurement was 15 kV.

比較のために、多結晶(平均結晶粒径:約5μm)を用いたときの検量線を図2中に併せて示す。図2に示すように、多結晶を用いた場合、検量線の傾きは小さくなる。これは、前述したように、多結晶の場合、平均結晶粒径が小さくなるので、粒界の体積密度が増加し、粒界偏析量が増加して、粒内の固溶濃度が減少してしまうためである。この検量線を用いて未知試料のP濃度を定量すると、真の値よりも高い値が算出されるので、正確なP濃度の分析ができない。   For comparison, a calibration curve when a polycrystal (average crystal grain size: about 5 μm) is used is also shown in FIG. As shown in FIG. 2, when a polycrystal is used, the slope of the calibration curve becomes small. This is because, as described above, in the case of polycrystal, the average crystal grain size becomes small, so the volume density of the grain boundary increases, the amount of segregation at the grain boundary increases, and the solid solution concentration in the grain decreases. It is because it ends. If the P concentration of an unknown sample is quantified using this calibration curve, a value higher than the true value is calculated, so that an accurate analysis of the P concentration cannot be performed.

ここで、図2中の単結晶で得た検量線の傾きをαとし、以下の実施例で得た検量線の傾きをβとする。分析誤差も考慮し、0.9≦β/α≦1.1のときに検量線が正しく作成されているとし、検量線が正しく作成されているかどうかを、下記のように判断する。   Here, the slope of the calibration curve obtained with the single crystal in FIG. 2 is α, and the slope of the calibration curve obtained in the following examples is β. Considering the analysis error, it is assumed that the calibration curve is correctly created when 0.9 ≦ β / α ≦ 1.1, and whether or not the calibration curve is correctly created is determined as follows.

β/α<0.9、1.1<β/αのとき、×(正しく作成されていない)
0.9≦β/α≦1.1 のとき、○(正しく作成されている)
[実施例No.1〜5]
電解鉄にAlを0.5〜13.0質量%混合し、併せて、Pを添加した鋼を真空溶解で製造した。Al濃度は、表1のNo.1〜5の欄に示す通り、0.5質量%、1.0質量%、5.0質量%、9.5質量%、13.0質量%であり、P濃度は、狙い値で、30質量ppm、80質量ppm、150質量ppm、300質量ppm、500質量ppmとした。
When β / α <0.9, 1.1 <β / α, x (not created correctly)
When 0.9 ≦ β / α ≦ 1.1, ○ (created correctly)
[Example No. 1-5]
Electrolytic iron was mixed with 0.5 to 13.0% by mass of Al, and steel with P added thereto was manufactured by vacuum melting. The Al concentration is No. 1 in Table 1. As shown in the columns 1 to 5, they are 0.5% by mass, 1.0% by mass, 5.0% by mass, 9.5% by mass, and 13.0% by mass, and the P concentration is a target value of 30%. It was set as mass ppm, 80 mass ppm, 150 mass ppm, 300 mass ppm, and 500 mass ppm.

続いて、鋼を熱間圧延し、1000℃で熱間鍛造を施した。鍛造後、アルゴン雰囲気中で1300℃に加熱し、一週間、熱処理し、300℃/sで水冷した。   Subsequently, the steel was hot-rolled and hot forged at 1000 ° C. After forging, it was heated to 1300 ° C. in an argon atmosphere, heat-treated for one week, and water-cooled at 300 ° C./s.

得られた鋼材の表面を研削し、表面偏析層を取り除いた。得られた試料の一部を透過型電子顕微鏡で観察し、観察領域内にPの析出物が認められないことを確認した。P濃度は化学分析によって定量した。化学分析はJIS G1258−1:2007に従い、ICP発光分光分析によって定量した。   The surface of the obtained steel material was ground and the surface segregation layer was removed. A part of the obtained sample was observed with a transmission electron microscope, and it was confirmed that no precipitate of P was observed in the observation region. P concentration was quantified by chemical analysis. The chemical analysis was quantified by ICP emission spectroscopic analysis according to JIS G1258-1: 2007.

結晶粒径は、1mm以下の場合は光学顕微鏡観察で、1mm超の場合は市販のデジタルカメラで撮影した画像から決定した。得られた平均結晶粒径を表1の平均結晶粒径の欄に示す。   The crystal grain size was determined by observation with an optical microscope when the particle size was 1 mm or less, and from an image taken with a commercially available digital camera when the particle size was more than 1 mm. The average crystal grain size obtained is shown in the column of average crystal grain size in Table 1.

続いて、試料を鏡面研磨し、EPMA分析に供した。一つの試料当たり、25点の分析を行い、得られたX線強度(PKα線)の平均値を縦軸に、横軸に化学分析値をプロットし、検量線を作成した。EPMA測定時の加速電圧は15kVとした。β/αの評価結果を、表1のβ/αの欄に示す。   Subsequently, the sample was mirror-polished and subjected to EPMA analysis. 25 samples were analyzed per sample, and a standard curve was prepared by plotting the average value of the obtained X-ray intensities (PKα rays) on the vertical axis and the chemical analysis values on the horizontal axis. The acceleration voltage during EPMA measurement was 15 kV. The evaluation results of β / α are shown in the column of β / α in Table 1.

Figure 2013250184
[実施例No.6〜10]
電解鉄にSiを1.5〜15.0質量%混合し、併せて、Pを添加した鋼を真空溶解で製造した。Si濃度は、表2のNo.6〜10の欄に示す通り、1.5質量%、2.0質量%、5.0質量%、13.0質量%、15.0質量%であり、P濃度は、狙い値で、30質量ppm、80質量ppm、150質量ppm、300質量ppm、500質量ppmとした。
Figure 2013250184
[Example No. 6-10]
A steel in which 1.5 to 15.0 mass% of Si was mixed with electrolytic iron and P was added together was manufactured by vacuum melting. The Si concentration is No. in Table 2. As shown in the columns 6 to 10, they are 1.5% by mass, 2.0% by mass, 5.0% by mass, 13.0% by mass, and 15.0% by mass, and the P concentration is a target value of 30%. It was set as mass ppm, 80 mass ppm, 150 mass ppm, 300 mass ppm, and 500 mass ppm.

続いて、鋼を熱間圧延し、1000℃で熱間鍛造を施した。鍛造後、アルゴン雰囲気中で1300℃に加熱し、一週間、熱処理し、300℃/sで水冷した。   Subsequently, the steel was hot-rolled and hot forged at 1000 ° C. After forging, it was heated to 1300 ° C. in an argon atmosphere, heat-treated for one week, and water-cooled at 300 ° C./s.

得られた鋼材の表面を研削し、表面偏析層を取り除いた。得られた試料の一部を透過型電子顕微鏡で観察し、観察領域内にPの析出物が認められないことを確認した。P濃度は化学分析によって定量した。化学分析はJIS G1258−1:2007に従い、ICP発光分光分析によって定量した。   The surface of the obtained steel material was ground and the surface segregation layer was removed. A part of the obtained sample was observed with a transmission electron microscope, and it was confirmed that no precipitate of P was observed in the observation region. P concentration was quantified by chemical analysis. The chemical analysis was quantified by ICP emission spectroscopic analysis according to JIS G1258-1: 2007.

結晶粒径は、1mm以下の場合は光学顕微鏡観察で、1mm超の場合は市販のデジタルカメラで撮影した画像から決定した。得られた平均結晶粒径を表2の平均結晶粒径の欄に示す。   The crystal grain size was determined by observation with an optical microscope when the particle size was 1 mm or less, and from an image taken with a commercially available digital camera when the particle size was more than 1 mm. The average crystal grain size obtained is shown in the column of average crystal grain size in Table 2.

続いて、試料を鏡面研磨し、EPMA分析に供した。一つの試料当たり、25点の分析を行い、得られたX線強度(PKα線)の平均値を縦軸に、横軸に化学分析値をプロットし、検量線を作成した。EPMA測定時の加速電圧は15kVとした。β/αの評価結果を、表2のβ/αの欄に示す。   Subsequently, the sample was mirror-polished and subjected to EPMA analysis. 25 samples were analyzed per sample, and a calibration curve was prepared by plotting the average value of the obtained X-ray intensities (PKα rays) on the vertical axis and the chemical analysis values on the horizontal axis. The acceleration voltage during EPMA measurement was 15 kV. The evaluation results of β / α are shown in the column of β / α in Table 2.

Figure 2013250184
[実施例No.11〜15]
電解鉄にNiを28〜53質量%混合し、併せて、Pを添加した鋼を真空溶解で製造した。Ni濃度は、表3のNo.11〜15の欄に示す通り、28質量%、30質量%、39質量%、48質量%、53質量%であり、P濃度は、狙い値で、30質量ppm、80質量ppm、150質量ppm、300質量ppm、500質量ppmとした。
Figure 2013250184
[Example No. 11-15]
Electrolytic iron was mixed with 28 to 53 mass% of Ni, and steel with P added thereto was manufactured by vacuum melting. The Ni concentration is the same as that in Table 3. As shown in the columns 11 to 15, they are 28 mass%, 30 mass%, 39 mass%, 48 mass%, 53 mass%, and the P concentration is a target value, 30 mass ppm, 80 mass ppm, 150 mass ppm. 300 mass ppm and 500 mass ppm.

続いて、鋼を熱間圧延し、1000℃で熱間鍛造を施した。鍛造後、アルゴン雰囲気中で1300℃に加熱し、一週間、熱処理し、300℃/sで水冷した。   Subsequently, the steel was hot-rolled and hot forged at 1000 ° C. After forging, it was heated to 1300 ° C. in an argon atmosphere, heat-treated for one week, and water-cooled at 300 ° C./s.

得られた鋼材の表面を研削し、表面偏析層を取り除いた。得られた試料の一部を透過型電子顕微鏡で観察し、観察領域内にPの析出物が認められないことを確認した。P濃度は化学分析によって定量した。化学分析はJIS G1258−1:2007に従い、ICP発光分光分析によって定量した。   The surface of the obtained steel material was ground and the surface segregation layer was removed. A part of the obtained sample was observed with a transmission electron microscope, and it was confirmed that no precipitate of P was observed in the observation region. P concentration was quantified by chemical analysis. The chemical analysis was quantified by ICP emission spectroscopic analysis according to JIS G1258-1: 2007.

結晶粒径は、1mm以下の場合は光学顕微鏡観察で、1mm超の場合は市販のデジタルカメラで撮影した画像から決定した。得られた平均結晶粒径を表3の平均結晶粒径の欄に示す。   The crystal grain size was determined by observation with an optical microscope when the particle size was 1 mm or less, and from an image taken with a commercially available digital camera when the particle size was more than 1 mm. The average crystal grain size obtained is shown in the column of average crystal grain size in Table 3.

続いて、試料を鏡面研磨し、EPMA分析に供した。一つの試料当たり、25点の分析を行い、得られたX線強度(PKα線)の平均値を縦軸に、横軸に化学分析値をプロットし、検量線を作成した。EPMA測定時の加速電圧は15kVとした。β/αの評価結果を、表3のβ/αの欄に示す。   Subsequently, the sample was mirror-polished and subjected to EPMA analysis. 25 samples were analyzed per sample, and a standard curve was prepared by plotting the average value of the obtained X-ray intensities (PKα rays) on the vertical axis and the chemical analysis values on the horizontal axis. The acceleration voltage during EPMA measurement was 15 kV. The evaluation results of β / α are shown in the column of β / α in Table 3.

Figure 2013250184
[実施例No.16〜20]
電解鉄にAlを0.5〜13.0質量%混合し、併せて、Pを添加した鋼を真空溶解で製造した。Al濃度は、表4のNo.16〜20の欄に示す通り、0.5質量%、1.0質量%、5.0質量%、9.5質量%、13.0質量%であり、P濃度は、狙い値で、30質量ppm、80質量ppm、150質量ppm、300質量ppm、500質量ppmとした。
Figure 2013250184
[Example No. 16-20]
Electrolytic iron was mixed with 0.5 to 13.0% by mass of Al, and steel with P added thereto was manufactured by vacuum melting. The Al concentration is No. in Table 4. As shown in the column of 16-20, it is 0.5 mass%, 1.0 mass%, 5.0 mass%, 9.5 mass%, 13.0 mass%, P concentration is a target value, 30 It was set as mass ppm, 80 mass ppm, 150 mass ppm, 300 mass ppm, and 500 mass ppm.

続いて、鋼を熱間圧延し、1000℃で熱間鍛造を施した。鍛造後、アルゴン雰囲気中で1300℃に加熱し、一週間、熱処理し、300℃/sで水冷した。   Subsequently, the steel was hot-rolled and hot forged at 1000 ° C. After forging, it was heated to 1300 ° C. in an argon atmosphere, heat-treated for one week, and water-cooled at 300 ° C./s.

得られた鋼材の表面を研削し、表面偏析層を取り除いた。得られた試料の一部を透過型電子顕微鏡で観察し、観察領域内にPの析出物が認められないことを確認した。続いて、単結晶の切り出しが不可であったNo.16とNo.20を除き、No.17〜19について、試料の単結晶部分を、切断機((株)マルトー、クリスタルカッターMC413)を用いて切り出した。P濃度は化学分析によって定量した。化学分析はJIS G1258−1:2007に従い、ICP発光分光分析によって定量した。   The surface of the obtained steel material was ground and the surface segregation layer was removed. A part of the obtained sample was observed with a transmission electron microscope, and it was confirmed that no precipitate of P was observed in the observation region. Subsequently, no. 16 and No. No. 20 About 17-19, the single crystal part of the sample was cut out using the cutting machine (Corporation | KK Maruto, crystal cutter MC413). P concentration was quantified by chemical analysis. The chemical analysis was quantified by ICP emission spectroscopic analysis according to JIS G1258-1: 2007.

続いて、単結晶試料を鏡面研磨し、EPMA分析に供した。一つの試料当たり、25点の分析を行い、得られたX線強度(PKα線)の平均値を縦軸に、横軸に化学分析値をプロットし、検量線を作成した。EPMA測定時の加速電圧は15kVとした。β/αの評価結果を、表4のβ/αの欄に示す。   Subsequently, the single crystal sample was mirror-polished and subjected to EPMA analysis. 25 samples were analyzed per sample, and a standard curve was prepared by plotting the average value of the obtained X-ray intensities (PKα rays) on the vertical axis and the chemical analysis values on the horizontal axis. The acceleration voltage during EPMA measurement was 15 kV. The evaluation results of β / α are shown in the column of β / α in Table 4.

Figure 2013250184
[実施例No.21〜25]
電解鉄にSiを1.5〜15.0質量%混合し、併せて、Pを添加した鋼を真空溶解で製造した。Si濃度は、表5のNo.21〜25の欄に示す通り、1.5質量%、2.0質量%、5.0質量%、13.0質量%、15.0質量%であり、P濃度は、狙い値で、30質量ppm、80質量ppm、150質量ppm、300質量ppm、500質量ppmとした。
Figure 2013250184
[Example No. 21-25]
A steel in which 1.5 to 15.0 mass% of Si was mixed with electrolytic iron and P was added together was manufactured by vacuum melting. The Si concentration is No. in Table 5. As shown in the columns 21 to 25, they are 1.5% by mass, 2.0% by mass, 5.0% by mass, 13.0% by mass, 15.0% by mass, and the P concentration is a target value, 30 It was set as mass ppm, 80 mass ppm, 150 mass ppm, 300 mass ppm, and 500 mass ppm.

続いて、鋼を熱間圧延し、1000℃で熱間鍛造を施した。鍛造後、アルゴン雰囲気中で1300℃に加熱し、一週間、熱処理し、300℃/sで水冷した。   Subsequently, the steel was hot-rolled and hot forged at 1000 ° C. After forging, it was heated to 1300 ° C. in an argon atmosphere, heat-treated for one week, and water-cooled at 300 ° C./s.

得られた鋼材の表面を研削し、表面偏析層を取り除いた。得られた試料の一部を透過型電子顕微鏡で観察し、観察領域内にPの析出物が認められないことを確認した。続いて、単結晶の切り出しが不可であったNo.21とNo.25を除き、No.22〜24について、試料の単結晶部分を、切断機((株)マルトー、クリスタルカッターMC413)を用いて切り出した。しかし、平均結晶粒径が1mm未満の多結晶体から、切断機を用いて単結晶領域のみを切り出すことができなかった。   The surface of the obtained steel material was ground and the surface segregation layer was removed. A part of the obtained sample was observed with a transmission electron microscope, and it was confirmed that no precipitate of P was observed in the observation region. Subsequently, no. 21 and no. No. 25, no. About 22-24, the single crystal part of the sample was cut out using the cutting machine (Corporation | KK Maruto, crystal cutter MC413). However, only a single crystal region could not be cut out from a polycrystalline body having an average crystal grain size of less than 1 mm using a cutting machine.

P濃度は化学分析によって定量した。化学分析はJIS G1258−1:2007に従い、ICP発光分光分析によって定量した。   P concentration was quantified by chemical analysis. The chemical analysis was quantified by ICP emission spectroscopic analysis according to JIS G1258-1: 2007.

続いて、単結晶試料を鏡面研磨し、EPMA分析に供した。一つの試料当たり、25点の分析を行い、得られたX線強度(PKα線)の平均値を縦軸に、横軸に化学分析値をプロットし、検量線を作製した。EPMA測定時の加速電圧は15kVとした。β/αの評価結果を、表5のβ/αの欄に示す。   Subsequently, the single crystal sample was mirror-polished and subjected to EPMA analysis. 25 points were analyzed per sample, and the average value of the obtained X-ray intensities (PKα rays) was plotted on the vertical axis and the chemical analysis values were plotted on the horizontal axis to prepare a calibration curve. The acceleration voltage during EPMA measurement was 15 kV. The evaluation results of β / α are shown in the column of β / α in Table 5.

Figure 2013250184
[実施例No.26〜30]
電解鉄にNiを28〜53質量%混合し、併せて、Pを添加した鋼を真空溶解で製造した。Ni濃度は、表6のNo.26〜30の欄に示す通り、28質量%、30質量%、39質量%、48質量%、53質量%であり、P濃度は、狙い値で、30質量ppm、80質量ppm、150質量ppm、300質量ppm、500質量ppmとした。
Figure 2013250184
[Example No. 26-30]
Electrolytic iron was mixed with 28 to 53 mass% of Ni, and steel with P added thereto was manufactured by vacuum melting. The Ni concentration is No. in Table 6. As shown in the column of 26-30, they are 28 mass%, 30 mass%, 39 mass%, 48 mass%, 53 mass%, and P concentration is a target value, 30 mass ppm, 80 mass ppm, 150 mass ppm. 300 mass ppm and 500 mass ppm.

続いて、鋼を熱間圧延し、1000℃で熱間鍛造を施した。鍛造後、アルゴン雰囲気中で1300℃に加熱し、一週間、熱処理し、300℃/sで水冷した。   Subsequently, the steel was hot-rolled and hot forged at 1000 ° C. After forging, it was heated to 1300 ° C. in an argon atmosphere, heat-treated for one week, and water-cooled at 300 ° C./s.

得られた鋼材の表面を研削し、表面偏析層を取り除いた。得られた試料の一部を透過型電子顕微鏡で観察し、観察領域内にPの析出物が認められないことを確認した。   The surface of the obtained steel material was ground and the surface segregation layer was removed. A part of the obtained sample was observed with a transmission electron microscope, and it was confirmed that no precipitate of P was observed in the observation region.

続いて、単結晶の切り出しが不可であったNo.26とNo.30を除き、No.27〜29について、試料の単結晶部分を、切断機((株)マルトー、クリスタルカッターMC413)を用いて切り出した。P濃度は化学分析によって定量した。化学分析はJIS G1258−1:2007に従い、ICP発光分光分析によって定量した。   Subsequently, no. 26 and no. No. 30 except for No. 30. About 27-29, the single crystal part of the sample was cut out using the cutting machine (Corporation | KK Maruto, crystal cutter MC413). P concentration was quantified by chemical analysis. The chemical analysis was quantified by ICP emission spectroscopic analysis according to JIS G1258-1: 2007.

続いて、試料を鏡面研磨し、EPMA分析に供した。一つの試料当たり、25点の分析を行い、得られたX線強度(PKα線)の平均値を縦軸に、横軸に化学分析値をプロットし、検量線を作成した。EPMA測定時の加速電圧は15kVとした。β/αの評価結果を、表6のβ/αの欄に示す。   Subsequently, the sample was mirror-polished and subjected to EPMA analysis. 25 samples were analyzed per sample, and a standard curve was prepared by plotting the average value of the obtained X-ray intensities (PKα rays) on the vertical axis and the chemical analysis values on the horizontal axis. The acceleration voltage during EPMA measurement was 15 kV. The evaluation results of β / α are shown in the column of β / α in Table 6.

Figure 2013250184
以上、表1の実施例のNo2〜4に示す通り、Al添加量が1〜10質量%の範囲内では、平均結晶粒径が1mm以上に粗大化することが可能で、検量線が正しく作成されて、正確な定量分析が可能となる。
Figure 2013250184
As described above, as shown in Nos. 2 to 4 of Examples in Table 1, when the Al addition amount is in the range of 1 to 10% by mass, the average crystal grain size can be coarsened to 1 mm or more, and the calibration curve is created correctly. Thus, accurate quantitative analysis becomes possible.

同様に、表2の実施例のNo7〜15に示す通り、Si添加量が2〜13質量%の範囲内、又は、Ni添加量が30〜49%の範囲内であれば、平均結晶粒径が1mm以上に粗大化することが可能で、検量線が正しく作成され、正確な定量分析が可能となる。   Similarly, as shown in Nos. 7 to 15 of the examples in Table 2, if the Si addition amount is in the range of 2 to 13% by mass or the Ni addition amount is in the range of 30 to 49%, the average crystal grain size Can be coarsened to 1 mm or more, a calibration curve is created correctly, and accurate quantitative analysis is possible.

単結晶は、粗大化した多結晶中の結晶粒を切り出して得るが、平均結晶粒径が1mm以上でないと、切断機を用いて単結晶部分を切り出すことができない。一方、Al、Si、Ni添加量が、上記濃度範囲内にあれば、平均結晶粒径が1mm以上となり、単結晶部分を切り出すことが可能で、多結晶体の場合と同様、検量線を正しく作成することができる。   A single crystal is obtained by cutting out crystal grains in a coarsened polycrystal, but if the average crystal grain size is not more than 1 mm, the single crystal portion cannot be cut out using a cutting machine. On the other hand, if the added amount of Al, Si, Ni is within the above-mentioned concentration range, the average crystal grain size becomes 1 mm or more, and it is possible to cut out a single crystal part. Can be created.

本発明によれば、鉄基合金中の微量元素の粒界偏析等により引き起こされる濃度不均一性が生じない、均一な標準物質を作製することが可能となる。その結果、EPMAやSIMSの1μm以下の空間分解能を有する物理分析機器を用いて、検量線法により、極微量元素の定量分析が可能となり、鉄鋼材料の製造上の冶金的問題の解明や材質向上への基礎知見を得ることが可能となる。よって、本発明は、鉄鋼産業において利用可能性が高いものである。   According to the present invention, it is possible to produce a uniform standard material in which concentration nonuniformity caused by grain boundary segregation of trace elements in an iron-based alloy does not occur. As a result, it is possible to perform quantitative analysis of trace elements by using a calibration curve method using a physical analysis instrument having a spatial resolution of 1 μm or less, such as EPMA and SIMS, and to elucidate metallurgical problems in manufacturing steel materials and improve materials It is possible to obtain basic knowledge on Therefore, the present invention has high applicability in the steel industry.

Claims (6)

直径0.01〜1μmの領域にて微量元素分析を行う物理分析機器を用いて、鉄鋼材料中の極微量の分析対象元素を定量分析するために用いる標準物質であって、該標準物質が、質量%で、上記分析対象元素を所定量含有するとともに、Al:1〜10%、Si:2〜13%、及び、Ni:30〜49%のいずれか1種を含有し、残部がFe及び不可避的不純物からなり、平均結晶粒径が1〜100mmの多結晶体である鉄基合金であることを特徴とする微量元素定量分析用標準物質。   A standard substance used to quantitatively analyze an extremely small amount of an element to be analyzed in a steel material using a physical analysis instrument that performs trace element analysis in a region having a diameter of 0.01 to 1 μm. In addition to containing a predetermined amount of the element to be analyzed in mass%, Al: 1 to 10%, Si: 2 to 13%, and Ni: 30 to 49%, the balance being Fe and A standard substance for quantitative analysis of trace elements, characterized in that it is an iron-based alloy that is an inevitable impurity and is a polycrystal having an average crystal grain size of 1 to 100 mm. 前記微量元素定量分析用標準物質が前記多結晶体から切り出した単結晶体であることを特徴とする請求項1に記載の微量元素定量分析用標準物質。   2. The standard element for quantitative analysis of trace elements according to claim 1, wherein the standard substance for quantitative analysis of trace elements is a single crystal cut out from the polycrystal. 前記物理分析機器が、電子線マイクロプローブアナライザ又は二次イオン質量分析装置であることを特徴とする請求項1又は2に記載の微量元素定量分析用標準物質。   The standard substance for quantitative analysis of trace elements according to claim 1 or 2, wherein the physical analysis instrument is an electron beam microprobe analyzer or a secondary ion mass spectrometer. 直径0.01〜1μmの領域にて微量元素分析を行う物理分析機器を用いて、鉄鋼材料中の極微量の分析対象元素を定量分析するために用いる標準物質の作製方法であって、
(i)質量%で、元素換算で所定量の分析対象元素の純物質又は溶鋼中で溶解可能な分析対象元素とFeから成る化合物とともに、Al換算で1〜10%のAlの純物質又は溶鋼中で溶解可能なFeAl系金属間化合物、Si換算で2〜13%のSiの純物質又は溶鋼中で溶解可能なFeSi系金属間化合物、及び、Ni換算で30〜49%のNiの純物質又は溶鋼中で溶解可能なFeNi系金属間化合物から選ばれる1種を電解鉄と混合し、非酸化性雰囲気中で加熱溶解して、鋳造し、その後、
(ii)上記鋳片を、非酸化性雰囲気中で、液相線温度〜500℃の間に1分以上45000分未満の時間均熱処理して、平均結晶粒径が1〜100mmの結晶粒を成長させ、次いで、急冷する
ことを特徴とする微量元素定量分析用標準物質の作製方法。
A method for preparing a standard substance used for quantitative analysis of an extremely small amount of an analysis target element in a steel material using a physical analysis instrument that performs trace element analysis in a region having a diameter of 0.01 to 1 μm,
(I) 1% to 10% pure Al material or molten steel in terms of Al, with a mass% of a predetermined amount of pure elemental material in terms of element or a compound composed of an analytical element soluble in molten steel and Fe FeAl intermetallic compound that can be dissolved in Si, 2 to 13% pure substance of Si in terms of Si, or FeSi intermetallic compound that can be dissolved in molten steel, and 30 to 49% pure substance of Ni in terms of Ni Alternatively, one selected from FeNi-based intermetallic compounds that can be dissolved in molten steel is mixed with electrolytic iron, heated and dissolved in a non-oxidizing atmosphere, and then cast.
(Ii) The above slab is soaked in a non-oxidizing atmosphere between a liquidus temperature of 500 ° C. and a time of 1 minute or more and less than 45,000 minutes to obtain crystal grains having an average crystal grain size of 1 to 100 mm. A method for producing a reference material for quantitative analysis of trace elements, characterized by growing and then rapidly cooling.
前記急冷後の標準物質から単結晶体を切り出し標準物質とすることを特徴とする請求項4に記載の微量元素定量分析用標準物質の作製方法。   The method for producing a standard material for quantitative analysis of trace elements according to claim 4, wherein a single crystal is cut out from the standard material after quenching and used as a standard material. 前記物理分析機器が、電子線マイクロプローブアナライザ又は二次イオン質量分析装置であること特徴とする請求項4又は5に記載の微量元素定量分析用標準物質の作製方法。   The method for producing a standard substance for quantitative analysis of trace elements according to claim 4 or 5, wherein the physical analysis instrument is an electron beam microprobe analyzer or a secondary ion mass spectrometer.
JP2012125835A 2012-06-01 2012-06-01 Reference substance for quantitative analysis of alloy element in steel material and method for manufacturing the same Pending JP2013250184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012125835A JP2013250184A (en) 2012-06-01 2012-06-01 Reference substance for quantitative analysis of alloy element in steel material and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012125835A JP2013250184A (en) 2012-06-01 2012-06-01 Reference substance for quantitative analysis of alloy element in steel material and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2013250184A true JP2013250184A (en) 2013-12-12

Family

ID=49849004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012125835A Pending JP2013250184A (en) 2012-06-01 2012-06-01 Reference substance for quantitative analysis of alloy element in steel material and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2013250184A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015219172A (en) * 2014-05-20 2015-12-07 住友金属鉱山株式会社 Method for preparing reference sample for analyzing cadmium metal
CN115266254A (en) * 2022-06-13 2022-11-01 国标(北京)检验认证有限公司 Preparation and value-fixing method of standard sample for aluminum slag component analysis

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015219172A (en) * 2014-05-20 2015-12-07 住友金属鉱山株式会社 Method for preparing reference sample for analyzing cadmium metal
CN115266254A (en) * 2022-06-13 2022-11-01 国标(北京)检验认证有限公司 Preparation and value-fixing method of standard sample for aluminum slag component analysis

Similar Documents

Publication Publication Date Title
Otto et al. Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures
Takahashi et al. Atomic-scale study on segregation behavior at austenite grain boundaries in boron-and molybdenum-added steels
Laplanche et al. Temperature dependencies of the elastic moduli and thermal expansion coefficient of an equiatomic, single-phase CoCrFeMnNi high-entropy alloy
Pradeep et al. Atomic-scale compositional characterization of a nanocrystalline AlCrCuFeNiZn high-entropy alloy using atom probe tomography
Barrirero et al. Comparison of segregations formed in unmodified and Sr-modified Al–Si alloys studied by atom probe tomography and transmission electron microscopy
Lentz et al. Solidification and phase formation of alloys in the hypoeutectic region of the Fe–C–B system
Cho et al. Surface selective oxidation of Sn-added CMnSi TRIP steel
Seol et al. Atom probe tomography and nano secondary ion mass spectroscopy investigation of the segregation of boron at austenite grain boundaries in 0.5 wt.% carbon steels
Akhlaghi et al. Lattice-parameter change induced by accommodation of precipitate/matrix misfit; misfitting nitrides in ferrite
Ahmadian et al. Aluminum depletion induced by co-segregation of carbon and boron in a bcc-iron grain boundary
Chen et al. Solute grain boundary segregation during high temperature plastic deformation in a Cr–Mo low alloy steel
Ahmad et al. Disorder trapping during the solidification of βNi 3 Ge from its deeply undercooled melt
Alvi et al. Enhanced mechanical, thermal and electrical properties of high‐entropy HfMoNbTaTiVWZr thin film metallic glass and its nitrides
Knipling et al. Effects of focused ion beam milling on austenite stability in ferrous alloys
CN101975750A (en) Standard substance for TC11 titanium alloy photoelectric spectral analysis and preparation method thereof
JP2013250184A (en) Reference substance for quantitative analysis of alloy element in steel material and method for manufacturing the same
Saito et al. Corrosion-resistant sintered stainless steels with non-equilibrium Mo-rich phases
Webel et al. Quantitative analysis of mixed niobium-titanium carbonitride solubility in HSLA steels based on atom probe tomography and electrical resistivity measurements
Saha et al. Revealing the localization of NiAl-type nano-scale B2 precipitates within the BCC phase of Ni alloyed low-density FeMnAlC steel
Fischer et al. Nanoscale twinning in Fe–Mn–Al–Ni martensite: a backscatter Kikuchi diffraction study
Sotomayor et al. Microstructural study of duplex stainless steels obtained by powder injection molding
Becker et al. Influence of annealing time on the microstructure and properties of additively manufactured X2CrNiMoN25–7–4 duplex stainless steel: Experiment and simulation
Slama et al. Insight on precipitate evolution during additive manufacturing of stainless steels via in-situ heating-cooling experiments in a transmission electron microscope
Wittig et al. Experimental simulation of dissimilar weld metal of high manganese steels by arc melting technique
Takahashi et al. Application of atom probe tomography to fundamental issues of steel materials