JPH10172570A - Lithium secondary battery and its positive electrode active material - Google Patents

Lithium secondary battery and its positive electrode active material

Info

Publication number
JPH10172570A
JPH10172570A JP8353618A JP35361896A JPH10172570A JP H10172570 A JPH10172570 A JP H10172570A JP 8353618 A JP8353618 A JP 8353618A JP 35361896 A JP35361896 A JP 35361896A JP H10172570 A JPH10172570 A JP H10172570A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
secondary battery
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8353618A
Other languages
Japanese (ja)
Inventor
Yukiko Ito
由紀子 伊藤
Masahiko Kato
雅彦 加藤
Akihiko Murakami
彰彦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP8353618A priority Critical patent/JPH10172570A/en
Publication of JPH10172570A publication Critical patent/JPH10172570A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery and its positive electrode active material, with which deterioration of the discharge capacity is less in the initial cycle and for a long-term cycle and also a high initial capacity is assured. SOLUTION: A lithium secondary battery is composed of a negative electrode using an active material capable of occluding and emitting lithium ions, a positive electrode using active material consisting of LiXMnYOZ having spinel structure, a separator interposed between the two electrodes, and an organic electrolytic solution. In the given chemical formula, X, Y, and Z satisfy the condition 0<Z-(X+Y)×(4/3)<=0.15, and the analytical value (m) Mn valence for LiXMnYOZ is related as 3.5<m<=3.75.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は,リチウム二次電池,特に優れた
特性を示す正極活物質を用いたリチウム二次電池及びそ
の正極活物質に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly to a lithium secondary battery using a positive electrode active material having excellent characteristics and a positive electrode active material thereof.

【0002】[0002]

【従来技術】種々の二次電池のうち,特にリチウム二次
電池は,電圧が高いうえ,自己放電が少なく保存性に優
れている。そのため,多くの分野において有望な二次電
池として期待されている。従来のリチウム二次電池とし
ては,正極活物質にスピネル構造のLiMn2 4 等の
金属酸化物を用いたものがある。
2. Description of the Related Art Among various secondary batteries, lithium secondary batteries, in particular, have high voltage, low self-discharge, and excellent storage stability. Therefore, it is expected as a promising secondary battery in many fields. As a conventional lithium secondary battery, there is one using a metal oxide such as LiMn 2 O 4 having a spinel structure as a positive electrode active material.

【0003】[0003]

【解決しようとする課題】しかしながら,上記従来のリ
チウム二次電池においては,次の問題がある。即ち,上
記従来のリチウム二次電池は,充放電サイクルを繰り返
すと放電容量が早期に減少するという問題がある。これ
に対し,充放電時の放電容量低下防止を図ったものとし
て,例えば特開平2−37665号公報に示されている
ごときリチウム二次電池が提案されている。
However, the above-mentioned conventional lithium secondary battery has the following problems. That is, the above-mentioned conventional lithium secondary battery has a problem that the discharge capacity is rapidly reduced when the charge / discharge cycle is repeated. On the other hand, a lithium secondary battery as disclosed in, for example, Japanese Patent Application Laid-Open No. 2-37665 has been proposed to prevent a decrease in discharge capacity during charging and discharging.

【0004】この従来のリチウム二次電池は,リチウム
マンガン酸化物(LiX MnY Z)を正極活物質とし
て用いたリチウム二次電池であって,該正極活物質のL
iとMnとの原子比,及びMn価数分析値を特定の値に
規定するというものである。しかしながら,この従来の
リチウム二次電池においては,約10サイクル以降の長
期の充放電サイクルによる放電容量の低下に対してはあ
る程度の効果が得られるものの,約10サイクルまでの
初期サイクルの放電容量については,未だ劣化が激し
い。
[0004] This conventional lithium secondary battery is a lithium secondary battery using lithium manganese oxide (Li x Mn Y O Z ) as a positive electrode active material.
The atomic ratio between i and Mn and the Mn valence analysis value are specified to specific values. However, in this conventional lithium secondary battery, although a certain effect can be obtained with respect to a decrease in the discharge capacity due to a long charge / discharge cycle after about 10 cycles, the discharge capacity in the initial cycle up to about 10 cycles is reduced. Is still severely degraded.

【0005】本発明は,かかる従来の問題に鑑みてなさ
れたもので,初期サイクル及び長期サイクルにおける放
電容量の劣化が少なく,かつ,初期容量が高い,リチウ
ム二次電池及びその正極活物質を提供しようとするもの
である。
The present invention has been made in view of such conventional problems, and provides a lithium secondary battery and a positive electrode active material having a high initial capacity with little deterioration in discharge capacity in an initial cycle and a long cycle. What you want to do.

【0006】[0006]

【課題の解決手段】請求項1の発明は,リチウムイオン
を吸蔵・放出可能な負極活物質を用いた負極と,スピネ
ル構造を有するLiX MnY Z よりなる正極活物質を
用いた正極と,両者間に介設されるセパレータと,有機
電解液とを有するリチウム二次電池において,上記Li
X MnY Z におけるX,Y,Zは,0<Z−(X+
Y)×(4/3)≦0.15の関係を満たし,かつ,上
記LiX MnY Z におけるMn価数分析値mは,3.
5<m≦3.75の関係にあることを特徴とするリチウ
ム二次電池にある。
According to the first aspect of the present invention, there is provided a negative electrode using a negative electrode active material capable of inserting and extracting lithium ions, and a positive electrode using a positive electrode active material made of Li x Mn Y O Z having a spinel structure. , A lithium secondary battery having a separator interposed therebetween and an organic electrolyte,
X Mn Y O Z in X, Y, Z is, 0 <Z- (X +
Y) satisfy the relationship × (4/3) ≦ 0.15, and the Li X Mn Y O Mn valence analysis m in Z is 3.
A lithium secondary battery is characterized in that 5 <m ≦ 3.75.

【0007】本発明において最も注目すべきことは,上
記LiX MnY Z におけるX,Y,Zは,0<Z−
(X+Y)×(4/3)≦0.15の関係を満たし,か
つ,上記LiX MnY Z におけるMn価数分析値m
は,3.5<m≦3.75の関係にあることである。
[0007] Most notably in the present invention, the Li X Mn Y O Z in X, Y, Z is 0 <Z-
The relationship of (X + Y) × (4/3) ≦ 0.15 is satisfied, and the Mn valence analysis value m in the above Li x Mn Y O Z
Is that 3.5 <m ≦ 3.75.

【0008】上記のZ−(X+Y)×(4/3)の値
(以下,適宜,A値という)は,スピネル構造のLiX
MnY Z における酸素過剰量を表す値である。A値が
0以下の場合には,LiX MnY Z における酸素量が
過剰にならず,容量劣化率を改善できないという問題が
ある。一方,0.15を超える場合には,酸素が過剰に
なりすぎ,逆に容量劣化率が悪化してくるという問題が
ある。
The value of Z− (X + Y) × (4/3) (hereinafter referred to as “A value” as appropriate) is the value of Li x in the spinel structure.
Is a value representing the excess oxygen in the Mn Y O Z. When the A value is 0 or less, there is a problem that the oxygen amount in Li x Mn Y O Z does not become excessive and the capacity deterioration rate cannot be improved. On the other hand, if it exceeds 0.15, there is a problem that oxygen becomes excessively large, and conversely, the capacity deterioration rate becomes worse.

【0009】また,上記のMn価数分析値m(以下,適
宜,m値という)は,Mnの平均イオン価数を示す指標
であって,次のヨードメトリ法により測定することがで
きる。即ち,試料にKIを加えて塩酸で溶解し,ヨウ素
イオン(I- )によって全Mnを2価に還元して,これ
によって生じるI2 の量をNa2 2 3 による酸化還
元滴定により定量する。このI2 の量がMnの還元に必
要となった電子の移動量と等しくなるので,これをIC
P発光分光分析によって得られた試料中のMn濃度で割
り,還元されたMnの価数2を加えることで平均価数を
求める。この平均価数が上記のMn価数分析値mであ
る。
The Mn valence analysis value m (hereinafter, appropriately referred to as m value) is an index indicating the average ionic valence of Mn, and can be measured by the following iodometry method. That is, KI is added to a sample, dissolved in hydrochloric acid, all Mn is reduced to divalent by iodine ion (I ), and the amount of I 2 generated thereby is determined by redox titration with Na 2 S 2 O 3. I do. Since the amount of I 2 is equal to the amount of electron transfer required for Mn reduction,
The average valence is obtained by dividing by the Mn concentration in the sample obtained by P emission spectroscopy and adding the valence of reduced Mn to 2. This average valence is the above-mentioned Mn valence analysis value m.

【0010】上記m値は,これが小さいほど得られる初
期容量が大きくなるという特徴があるが,3.5以下の
場合には,容量劣化率が大きくなるという問題がある。
一方,3.75を超える場合には初期容量が小さくなり
すぎるという問題がある。
The above-mentioned m value is characterized in that the smaller the value is, the larger the obtained initial capacity is. However, when the value is 3.5 or less, there is a problem that the capacity deterioration rate becomes large.
On the other hand, when it exceeds 3.75, there is a problem that the initial capacity becomes too small.

【0011】次に,上記A値及びm値を上記特定の値に
規制した正極活物質を作成する方法としては,例えば後
述するごとく,熱噴霧分解法により急速合成する方法が
ある。この方法においては,噴霧雰囲気中の酸素分圧を
コントロールすることによって酸素欠陥を抑制するとと
もに酸素過剰量を調整し,所望の組成のLiX MnY
Z を得ることができる。
Next, as a method for preparing a positive electrode active material in which the A value and the m value are regulated to the above specific values, for example, as described later, there is a method of rapid synthesis by a thermal spray decomposition method. In this method, oxygen deficiency is suppressed and oxygen excess is adjusted by controlling the oxygen partial pressure in the spray atmosphere, and Li x Mn Y O having a desired composition is adjusted.
Z can be obtained.

【0012】また,既に酸素欠陥を有しているLiX
Y Z を準備し,これを大気中あるいは酸素雰囲気中
において熱処理することにより酸素を付加する方法もあ
る。一方,既に酸素が過剰になりすぎているLiX Mn
Y Z を準備し,これを真空中等において熱処理するこ
とによって適度な酸素過剰量のLiX MnY Z を得る
方法もある。
In addition, Li X M which already has oxygen vacancies
Prepare the n Y O Z, which is also a method of adding oxygen by heat treatment in air or in an oxygen atmosphere. On the other hand, Li x Mn, which already has too much oxygen,
There is also a method in which Y O Z is prepared and heat-treated in a vacuum or the like to obtain Li X Mn Y O Z with an appropriate excess amount of oxygen.

【0013】次に,上記正極活物質を用いて正極を構成
するに当たっては,例えば,導電材としてアセチレンブ
ラック等を用い,また,結着材としてPTFE等を用い
て行う。また,上記負極に用いる負極活物質としては,
リチウムイオンを吸蔵・放出可能な物質を用いることが
必要であり,リチウム(金属リチウム),リチウム合
金,炭素体等が使用できる。
Next, in forming a positive electrode using the above-mentioned positive electrode active material, for example, acetylene black or the like is used as a conductive material, and PTFE or the like is used as a binder. In addition, as the negative electrode active material used for the negative electrode,
It is necessary to use a substance capable of occluding and releasing lithium ions, and lithium (metallic lithium), a lithium alloy, a carbon body, or the like can be used.

【0014】また,両極間に介設されるセパレータとし
ては,例えば,ポリプロピレンの多孔質フィルムやガラ
スフィルタなどが用いられる。そして,上記セパレータ
に含浸させる有機電解液としては,有機溶媒に適量の電
解質を溶解したものがある。上記有機溶媒としてはエチ
レンカーボネート,ジエチルカーボネート,プロピレン
カーボネート,ブチレンカーボネート,テトラヒドロフ
ラン,2−メチルテトラヒドロフラン,ジメトキシエタ
ン,ジオキソラン及びγ−ブチロラクトンから選ばれた
1種又は2種以上の溶媒が好適である。また,上記電解
質としては,LiPF6 ,LiClO4 ,LiBF4
LiAsF6 等がある。
As the separator interposed between the two electrodes, for example, a porous film of polypropylene or a glass filter is used. As the organic electrolyte to be impregnated in the separator, there is a solution obtained by dissolving an appropriate amount of electrolyte in an organic solvent. As the organic solvent, one or more solvents selected from ethylene carbonate, diethyl carbonate, propylene carbonate, butylene carbonate, tetrahydrofuran, 2-methyltetrahydrofuran, dimethoxyethane, dioxolane and γ-butyrolactone are preferred. As the electrolyte, LiPF 6 , LiClO 4 , LiBF 4 ,
LiAsF 6 and the like.

【0015】次に,本発明の作用につき説明する。本発
明のリチウム二次電池は,上記特定の範囲のA値及びm
値を有するLiXMnY Z を正極活物質として用いて
いる。そのため,初期の放電容量(初期容量)が高く,
かつ,充放電のサイクルを繰り返しても初期段階から長
期に亘って容量劣化を少なくすることができる。
Next, the operation of the present invention will be described. The lithium secondary battery of the present invention has an A value and m in the above specific range.
Li X Mn Y O Z having a certain value is used as the positive electrode active material. Therefore, the initial discharge capacity (initial capacity) is high,
Further, even if the charge / discharge cycle is repeated, the capacity deterioration can be reduced over a long period from the initial stage.

【0016】この理由は,次のように考えられる。即
ち,本発明においては,上記A値を特定の範囲に維持す
ることにより,正極活物質としてのLiX MnY Z
適度に酸素過剰にすることができる。この酸素過剰な状
態は,LiX MnY Z のスピネル構造中のLi,Mn
の一部を空位(欠損)とすることを意味する。したがっ
て,上記空位の存在によって,充放電時に繰り返される
Liイオンの拡散を容易にすることができる。
The reason is considered as follows. That is, in the present invention, by maintaining the value A in a specific range, Li X Mn Y O Z as a positive electrode active material can be moderately excessive in oxygen. The oxygen-excess state, Li X Mn Y O Z Li spinel structure in, Mn
Is vacant (deleted). Therefore, the presence of the vacancies facilitates the repeated diffusion of Li ions during charge and discharge.

【0017】特に,スピネル構造における8aサイト及
び16dサイトの空孔を形成することによって,Liイ
オンの拡散を非常に容易にさせることができる。それ
故,充放電時におけるスピネル構造へのダメージが軽減
され,正極の劣化が大幅に抑制される。
In particular, by forming vacancies at the 8a site and the 16d site in the spinel structure, diffusion of Li ions can be made very easy. Therefore, damage to the spinel structure during charging and discharging is reduced, and deterioration of the positive electrode is greatly suppressed.

【0018】一方,初期放電容量は,上記Mn価数分析
値mにより調整することが可能であるが,その値を上記
範囲内に調整することによって,高い放電容量を維持す
ることができる。ここで,従来であれば,初期容量が高
くなればなるほど正極に対するダメージが大きくなって
容量劣化率が急激に高くなる傾向にあった。これに対
し,本発明においては,上記A値の規制によって,上記
のごとくLiイオンの拡散を容易にすることができる。
それ故,充放電時の正極のダメージが少なくなり,放電
容量が非常に大きい初期段階においても,容量劣化を大
幅に改善することができる。
On the other hand, the initial discharge capacity can be adjusted by the above-mentioned Mn valence analysis value m. By adjusting the value within the above range, a high discharge capacity can be maintained. Here, in the prior art, the higher the initial capacity, the greater the damage to the positive electrode, and the more the capacity deterioration rate tends to increase rapidly. On the other hand, in the present invention, diffusion of Li ions can be facilitated as described above by regulating the A value.
Therefore, damage to the positive electrode during charge and discharge is reduced, and capacity deterioration can be significantly improved even in the initial stage where the discharge capacity is very large.

【0019】次に,上記優れたリチウム二次電池に用い
る正極活物質としては,次の発明がある。即ち,請求項
2の発明のように,スピネル構造を有するLiX MnY
Z よりなり,該LiX MnY Z におけるX,Y,Z
は,0<Z−(X+Y)×(4/3)≦0.15の関係
を満たし,かつ,上記LiX MnY Z におけるMn価
数分析値mは,3.5<m≦3.75の関係を有してい
るリチウム二次電池用の正極活物質であって,上記Li
X MnY Z の原料を溶媒に溶解した原料溶液を液滴状
に噴霧し,次いで,該液滴を加熱処理して,該液滴中の
原料を反応させると共に該液滴中の上記溶媒を蒸発させ
ることによって得られることを特徴とするリチウム二次
電池用の正極活物質がある。
Next, there is the following invention as a positive electrode active material used for the above-mentioned excellent lithium secondary battery. That is, as in the invention of claim 2, Li x Mn Y having a spinel structure
Consists O Z, X in said Li X Mn Y O Z, Y , Z
Is, 0 <Z- (X + Y ) satisfy the relationship × (4/3) ≦ 0.15, and the Li X Mn Y O Mn valence analysis m in Z is, 3.5 <m ≦ 3. 75. A positive electrode active material for a lithium secondary battery having a relationship of 75
A raw material solution obtained by dissolving a raw material of X Mn Y O Z in a solvent is sprayed in the form of droplets, and then the droplets are heat-treated to react the raw materials in the droplets and to form the solvent in the droplets. There is a positive electrode active material for a lithium secondary battery, which is obtained by evaporating.

【0020】本発明において最も注目すべきことは,請
求項1の発明に用いる正極活物質を得るために,上記原
料を溶媒に溶解した原料溶液に噴霧し,これを加熱処理
して上記溶媒を蒸発させると共に,上記原料を反応させ
るという製造工程を選択したことである。なお,上記
[Z−(X+Y)×(4/3)]の値(A値)と,上記
Mn価数分析値mの範囲限定理由は上記と同様である。
Most notably, in the present invention, in order to obtain the positive electrode active material used in the first aspect of the present invention, the above-mentioned raw material is sprayed on a raw material solution in a solvent, and this is heated to remove the solvent. That is, a manufacturing process in which the above-described raw materials are reacted together with the evaporation is selected. The reason for limiting the range of the value (A value) of [Z− (X + Y) × (4/3)] and the Mn valence analysis value m is the same as above.

【0021】上記加熱処理とは,原料溶液と略同じ組成
を有する液滴を加熱することにより熱分解して,該液滴
中の原料成分を溶液反応させると共に,液滴中の溶媒を
蒸発させる操作をいう。これにより,反応により生じた
粉末状の正極活物質と溶媒蒸気とが発生する。この両者
は,例えば,捕集器において分離され,正極活物質を得
ることができる。
The above-mentioned heat treatment means that a droplet having substantially the same composition as the raw material solution is heated to be thermally decomposed to cause the raw material components in the droplet to undergo a solution reaction and to evaporate the solvent in the droplet. Refers to operations. As a result, a powdery positive electrode active material and a solvent vapor generated by the reaction are generated. The two are separated, for example, in a collector, and a positive electrode active material can be obtained.

【0022】また,上記加熱処理は,上記原料を液滴状
に噴霧する容器内において,後述する種々の方法により
加熱することができる。また,上記原料溶液を液滴状に
噴霧する方法としては,原料溶液に超音波振動を付与す
る方法,圧縮した溶液をノズルから噴霧する方法,二流
体ノズルを用いて溶液とガスを噴霧する方法などがあ
る。
In the heating treatment, the raw material can be heated in a container for spraying the raw material in the form of droplets by various methods described later. The method of spraying the raw material solution in the form of droplets includes a method of applying ultrasonic vibration to the raw material solution, a method of spraying a compressed solution from a nozzle, and a method of spraying a solution and gas using a two-fluid nozzle. and so on.

【0023】また,上記加熱処理における雰囲気は,酸
素分圧を0.2〜1気圧にコントロールすることが好ま
しい。0.2気圧未満の場合には,スピネル構造におい
て酸素欠陥が発生しやすく,上記A値が低くなりすぎる
という問題がある。一方,1気圧を超える場合には,酸
素が過剰になりすぎるという問題がある。
It is preferable that the atmosphere in the heat treatment is controlled to have an oxygen partial pressure of 0.2 to 1 atm. If the pressure is less than 0.2 atm, oxygen deficiency is likely to occur in the spinel structure, and the A value becomes too low. On the other hand, when the pressure exceeds 1 atm, there is a problem that oxygen becomes excessive.

【0024】次に,本発明においては,次のような作用
が得られる。即ち,本発明においては,上記原料を溶媒
により溶解して原料溶液としている。そのため,原料を
均一化することができる。また,かかる均一の原料溶液
を液滴に噴霧し,次いで上記のごとく原料を反応させて
いる。そのため,原料は,加熱処理時の熱により,上記
液滴中において,瞬時に反応して正極活物質となる。一
方,液滴中の溶媒は,加熱処理時の熱により不要部分と
して蒸発し,反応系外へ放出される。
Next, in the present invention, the following operation is obtained. That is, in the present invention, the raw material is dissolved in a solvent to form a raw material solution. Therefore, the raw materials can be made uniform. Further, such a uniform raw material solution is sprayed on droplets, and then the raw materials are reacted as described above. Therefore, the raw material reacts instantaneously in the droplet by the heat during the heat treatment to become a positive electrode active material. On the other hand, the solvent in the droplets evaporates as unnecessary portions due to heat during the heat treatment, and is released outside the reaction system.

【0025】それ故,本製造工程を選択した場合には,
上記原料組成および加熱処理時の雰囲気等をコントロー
ルすることにより,上記特定範囲のA値及びm値を有す
る均一な組成の正極活物質を得ることができる。また,
従来知られている他の製造工程を選択した場合に比べて
も,上記特定範囲のA値,m値を有する組織に調整する
ことが非常に容易であるとともに,より均一な活物質が
得られる。したがって,本発明により得られた正極活物
質は,リチウム二次電池に用いることにより優れた機能
を発揮することができる。
Therefore, when this manufacturing process is selected,
By controlling the raw material composition, the atmosphere during the heat treatment, and the like, it is possible to obtain a positive electrode active material having a uniform composition having the A value and the m value in the specific range. Also,
Compared to the case where other known manufacturing processes are selected, it is very easy to adjust the structure to have the A value and m value in the above specific range, and a more uniform active material can be obtained. . Therefore, the positive electrode active material obtained according to the present invention can exhibit excellent functions when used in a lithium secondary battery.

【0026】次に,請求項3の発明のように,上記Li
X MnY Z の上記原料は,リチウム化合物と,マンガ
ン又はマンガン化合物とよりなり,上記リチウム化合物
はLiの酸化物,水酸化物,炭酸塩,硝酸塩,酢酸塩又
は蓚酸塩のうちの1種以上であることが好ましい。これ
らのものは,比較的,溶液中でイオン化しやすく均一性
向上の点で優れている。
Next, according to the third aspect of the present invention, the Li
The raw material of X Mn Y O Z comprises a lithium compound and manganese or a manganese compound, and the lithium compound is one of oxides, hydroxides, carbonates, nitrates, acetates, and oxalates of Li. It is preferable that it is above. These are relatively easy to ionize in a solution and are excellent in improving uniformity.

【0027】また,請求項4の発明のように,上記マン
ガン化合物はMnの酸化物,水酸化物,炭酸塩,硝酸
塩,酢酸塩又は蓚酸塩のうちの1種以上であることが好
ましい。これらのものは,比較的,溶液中でイオン化し
やすく均一性向上の点で優れている。
Also, as in the invention of claim 4, the manganese compound is preferably at least one of oxides, hydroxides, carbonates, nitrates, acetates and oxalates of Mn. These are relatively easy to ionize in a solution and are excellent in improving uniformity.

【0028】また,請求項5の発明のように,上記溶媒
は,例えば,水,酸水溶液,アルカリ水溶液,有機溶媒
のうちの1種以上を用いる。
Further, as in the invention of claim 5, as the solvent, for example, one or more of water, an aqueous acid solution, an aqueous alkali solution, and an organic solvent are used.

【0029】また,請求項6の発明のように,上記加熱
処理は,上記原料を噴霧する容器の外部からの加熱,上
記容器への加熱ガスの注入による加熱,溶媒の燃焼熱に
よる加熱のうちいずれか1種以上を用いることができ
る。
Further, as in the invention of claim 6, the heat treatment includes heating from the outside of the container for spraying the raw material, heating by injecting a heating gas into the container, and heating by combustion heat of the solvent. Any one or more of them can be used.

【0030】上記噴霧容器の外部からの加熱の場合に
は,加熱温度の調整を容易に行うことができる。また,
上記容器への加熱ガスの注入の場合には加熱効率を向上
させることができる。また,溶媒の燃焼による加熱の場
合には,一次粒子を瞬時に合成することができ組成の均
一性が向上するという効果が得られる。
In the case of heating from outside the spray container, the heating temperature can be easily adjusted. Also,
In the case of injecting the heating gas into the container, the heating efficiency can be improved. In addition, in the case of heating by burning the solvent, an effect is obtained that primary particles can be synthesized instantaneously, and the uniformity of the composition is improved.

【0031】[0031]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施形態例1 本発明の実施形態例にかかるリチウム二次電池につき説
明する。本例のリチウム二次電池は,リチウムを含有す
る負極と,スピネル構造を有するLiX MnY Z より
なる正極活物質を用いた正極と,有機電解液とを有す
る。
Embodiment 1 A lithium secondary battery according to an embodiment of the present invention will be described. The lithium secondary battery of the present embodiment includes a negative electrode containing lithium, a positive electrode using a positive electrode active material made of Li X Mn Y O Z having a spinel structure, and an organic electrolytic solution.

【0032】上記LiX MnY Z におけるX,Y,Z
は,0<Z−(X+Y)×(4/3)≦0.15の関係
を満たし,かつ,上記LiX MnY Z におけるMn価
数分析値mは,3.5<m≦3.75の関係にある。以
下,上記正極活物質の製造方法から説明する。
[0032] X in the above Li X Mn Y O Z, Y , Z
Is, 0 <Z- (X + Y ) satisfy the relationship × (4/3) ≦ 0.15, and the Li X Mn Y O Mn valence analysis m in Z is, 3.5 <m ≦ 3. There is a relationship of 75. Hereinafter, the method for producing the positive electrode active material will be described.

【0033】本例における正極活物質の製造は,上記L
X MnY Z の原料を溶媒に溶解した原料溶液を液滴
状に噴霧し,次いで,該液滴を加熱処理して,該液滴中
の原料を反応させると共に該液滴中の上記溶媒を蒸発さ
せて粉末状の上記正極活物質を製造する方法により行っ
た。
The production of the positive electrode active material in the present example
A raw material solution obtained by dissolving the raw material of i x Mn Y O Z in a solvent is sprayed in the form of droplets, and then the droplets are subjected to a heat treatment so that the raw materials in the droplets are reacted and the droplets in the droplets are reacted. The method was performed by evaporating the solvent to produce the powdered positive electrode active material.

【0034】具体的には,まず,硝酸リチウムと硝酸マ
ンガンとを,LiとMnとの原子比が1:2になるよう
に秤量し,水を溶媒として用いて10重量%の溶液をつ
くり,液状の混合物とする。次いで,この混合物を噴霧
する容器(熱処理炉)内の雰囲気,温度を所定の条件に
設定する。
Specifically, first, lithium nitrate and manganese nitrate were weighed so that the atomic ratio of Li to Mn was 1: 2, and a 10% by weight solution was prepared using water as a solvent. It is a liquid mixture. Next, the atmosphere and temperature in a container (heat treatment furnace) for spraying the mixture are set to predetermined conditions.

【0035】次いで,上記混合物を熱処理炉内に噴霧す
る。噴霧された混合物は,熱処理炉内において急速に加
熱処理され,上記有機溶媒が燃焼するとともに,粉状の
LiX MnY Z が急速に合成される。また,合成時間
は,噴霧速度を変えることにより調整した。次に,得ら
れた粉状のLiX MnY Z は,熱処理炉に連結された
捕集器により回収する。
Next, the above mixture is sprayed into a heat treatment furnace. The sprayed mixture is rapidly heated in a heat treatment furnace, and the organic solvent is burned and powdery Li X Mn Y O Z is rapidly synthesized. The synthesis time was adjusted by changing the spray speed. Next, the obtained powdery Li X Mn Y O Z is collected by a collector connected to a heat treatment furnace.

【0036】本例においては,後述する表1の試料N
o.E1〜E4に示すごとく,上記熱処理炉内の雰囲
気,温度,合成時間等の条件をコントロールすることに
よって,上記LiX MnY Z のA値(Z−(X+Y)
×(4/3)の値)及びMn価数分析値mが種々ことな
り,かつ本発明の範囲内にある正極活物質の粉末を得
た。また,試料No.E5は,試料No.E4のLiX
MnY Z 粉末をさらに大気中において700度の温度
において48時間熱処理したものである。
In this example, the sample N
o. As shown in E1 to E4, the A value (Z− (X + Y)) of the Li x Mn Y O Z is controlled by controlling conditions such as the atmosphere, temperature, and synthesis time in the heat treatment furnace.
× (4/3) value) and the Mn valence analysis value m were various and powders of the positive electrode active material within the range of the present invention were obtained. The sample No. E5 is the sample No. E4 Li X
It is obtained by heat treatment for 48 hours at Mn Y O Z powder further temperature of 700 degrees in the air.

【0037】また,比較のために,上記と同様の噴霧熱
分解法により作製して,上記m値を本発明範囲外とした
もの(試料No.C1,C2)と,上記A値を本発明範
囲外としたもの(試料No.C3,C4)とを準備し
た。さらに,比較のために,原料を固相状態で反応させ
る固相法により作製して上記A値を本発明範囲外とした
もの(試料No.C5〜C8)も準備した。なお,固相
法による活物質は,硝酸リチウムと電解二酸化マンガン
とを混合し,700℃の温度で120時間焼成し,その
後粉砕することにより得た。
For comparison, a sample prepared by the same spray pyrolysis method as above and having the above-mentioned m value outside the range of the present invention (sample Nos. C1 and C2) and the above-mentioned A value were compared with those of the present invention. Samples out of the range (Sample Nos. C3 and C4) were prepared. Further, for comparison, samples prepared by a solid phase method in which the raw materials were reacted in a solid phase state and the A value was out of the range of the present invention (sample Nos. C5 to C8) were also prepared. The active material obtained by the solid phase method was obtained by mixing lithium nitrate and electrolytic manganese dioxide, firing at a temperature of 700 ° C. for 120 hours, and then pulverizing.

【0038】次に,本例においては,上記の各正極活物
質を用いてリチウム二次電池を構成し,その性能をテス
トした。リチウム二次電池を作製するに当たっては,ま
ず,上記正極活物質と,導電材としてのアセチレンブラ
ック及び結着剤としてのPTFE(ポリ四フッ化エチレ
ン)を用いて,正極を作製した。
Next, in this example, a lithium secondary battery was constructed using each of the above-mentioned positive electrode active materials, and the performance thereof was tested. In manufacturing a lithium secondary battery, first, a positive electrode was manufactured using the positive electrode active material, acetylene black as a conductive material, and PTFE (polytetrafluoroethylene) as a binder.

【0039】負極は,Li金属を負極活物質として構成
した。また,有機電解液としては,EC(エチレンカー
ボネート)とDEC(ジエチルカーボネート)を1:1
の割合で混合した溶液に1MのLiPF6 を溶解したも
のを用いた。
The negative electrode was composed of Li metal as a negative electrode active material. Further, as the organic electrolyte, EC (ethylene carbonate) and DEC (diethyl carbonate) were used in a ratio of 1: 1.
A solution obtained by dissolving 1M LiPF 6 in a solution mixed at a ratio of 1% was used.

【0040】次に,上記種々の組成の正極活物質からな
る正極を有するリチウム二次電池を用い,充放電テスト
を行った。充放電条件は,カット・オフ電圧3.5〜
4.5V,電流密度1.0〜4.0mA/cm2 とし
た。Mn価数の測定方法については前記した通りであ
る。
Next, a charge / discharge test was performed using a lithium secondary battery having a positive electrode composed of the positive electrode active materials having various compositions described above. The charge and discharge conditions are cut-off voltage 3.5 to
The voltage was 4.5 V, and the current density was 1.0 to 4.0 mA / cm 2 . The method for measuring the Mn valence is as described above.

【0041】テスト結果を,表1及び図1,図2に示
す。図1は,横軸にMn価数分析値mを,縦軸に初期容
量(mAh/g)を取った。また,図2は,横軸に初期
容量(mAh/g)を,縦軸に容量劣化率(%/サイク
ル)を取った。容量劣化率は,[{(初期容量)−(5
0サイクル目容量)}/{(初期容量)×(50−
1)}]×100の計算式により求めた。
The test results are shown in Table 1 and FIGS. In FIG. 1, the horizontal axis represents the Mn valence analysis value m, and the vertical axis represents the initial capacity (mAh / g). In FIG. 2, the horizontal axis shows the initial capacity (mAh / g), and the vertical axis shows the capacity deterioration rate (% / cycle). The capacity deterioration rate is [{(initial capacity)-(5
0th cycle capacity)} / {(initial capacity) × (50−
1)}] × 100.

【0042】図1より知られるごとく,初期容量は,M
n価数分析値mが低いほど高い値を示し,本発明品と比
較品との間に明確な差は認められなかった。そして,m
値が3.5を超え3.75以下である場合には,全ての
試験品において良好な初期容量が得られた。しかしなが
ら,容量劣化率については,図2より知られるごとく,
その劣化の仕方が明確に2つのグループに分けられるこ
とがわかった。
As can be seen from FIG. 1, the initial capacity is M
The lower the n-valency analysis value m, the higher the value, and no clear difference was observed between the product of the present invention and the comparative product. And m
When the value was more than 3.5 and not more than 3.75, good initial capacities were obtained in all the test products. However, regarding the capacity deterioration rate, as is known from FIG.
It was found that the manner of deterioration was clearly divided into two groups.

【0043】即ち,第1のグループは,本発明品を主体
とするグループであって,初期容量が高くても比較的容
量劣化率が低い。一方,第2のグループは,Mn価数,
A値のいずれかが本発明の範囲外である比較品のグルー
プであり,容量劣化率が大きい。上記図1,図2及び表
1より知られるごとく,本発明品と比較品とを比べる
と,Mn価数をほぼ同一とし,同程度の初期容量とした
場合でも,本発明品は容量劣化率が低く抑えられ,非常
に良好であることがわかる。
That is, the first group is a group mainly including the product of the present invention, and the capacity deterioration rate is relatively low even if the initial capacity is high. On the other hand, the second group is Mn valence,
This is a group of comparative products in which one of the A values is out of the range of the present invention, and the capacity deterioration rate is large. As can be seen from FIGS. 1 and 2 and Table 1, when the product of the present invention is compared with the comparative product, even when the Mn valence is almost the same and the initial capacity is almost the same, the product of the present invention has a capacity deterioration rate. Is suppressed to a low level, which is very good.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【発明の効果】上記のごとく,本発明によれば,初期サ
イクル及び長期サイクルにおける放電容量の劣化が少な
く,かつ,初期容量が高い,リチウム二次電池及びその
正極活物質を提供することができる。
As described above, according to the present invention, it is possible to provide a lithium secondary battery and its positive electrode active material, which have a small deterioration in discharge capacity in an initial cycle and a long cycle and a high initial capacity. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態例1における,Mn価数分析値mと初
期容量との関係を示す説明図。
FIG. 1 is an explanatory diagram showing a relationship between an Mn valence analysis value m and an initial capacity in the first embodiment.

【図2】実施形態例1における,初期容量と容量劣化率
との関係を示す説明図。
FIG. 2 is an explanatory diagram showing a relationship between an initial capacity and a capacity deterioration rate in the first embodiment.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンを吸蔵・放出可能な負極
活物質を用いた負極と,スピネル構造を有するLiX
Y Z よりなる正極活物質を用いた正極と,両者間に
介設されるセパレータと,有機電解液とを有するリチウ
ム二次電池において,上記LiX MnY Z における
X,Y,Zは,0<Z−(X+Y)×(4/3)≦0.
15の関係を満たし,かつ,上記LiX MnY Z にお
けるMn価数分析値mは,3.5<m≦3.75の関係
にあることを特徴とするリチウム二次電池。
And 1. A negative electrode using lithium ions capable of absorbing and releasing the negative electrode active material, Li X M having a spinel structure
n Y O and a positive electrode using the positive electrode active material consisting of Z, a separator interposed between them, a lithium secondary battery having an organic electrolyte solution, X in the Li X Mn Y O Z, Y , Z Is 0 <Z− (X + Y) × (4/3) ≦ 0.
15. A lithium secondary battery which satisfies the relationship of No. 15 and wherein the Mn valence analysis value m of Li X Mn Y O Z satisfies the relationship of 3.5 <m ≦ 3.75.
【請求項2】 スピネル構造を有するLiX MnY Z
よりなり,該LiX MnY Z におけるX,Y,Zは,
0<Z−(X+Y)×(4/3)≦0.15の関係を満
たし,かつ,上記LiX MnY Z におけるMn価数分
析値mは,3.5<m≦3.75の関係を有しているリ
チウム二次電池用の正極活物質であって,上記LiX
Y Z の原料を溶媒に溶解した原料溶液を液滴状に噴
霧し,次いで,該液滴を加熱処理して,該液滴中の原料
を反応させると共に該液滴中の上記溶媒を蒸発させるこ
とにより得られることを特徴とするリチウム二次電池用
の正極活物質。
2. Li X Mn Y O Z having a spinel structure
More becomes, X in said Li X Mn Y O Z, Y , Z is
0 <Z- (X + Y) satisfies the × (4/3) ≦ 0.15 relationships, and the Li X Mn Y O Mn valence analysis m in Z is, 3.5 <m ≦ 3.75 in a positive electrode active material for lithium secondary batteries have a relationship, the Li X M
The material of the n Y O Z spraying the raw material solution in a solvent in droplet form, then heating the droplets, the solvent in the liquid droplets with reacting the material in the droplets A positive electrode active material for a lithium secondary battery, which is obtained by evaporating.
【請求項3】 請求項2において,上記LiX MnY
Z の上記原料は,リチウム化合物と,マンガン又はマン
ガン化合物とよりなり,上記リチウム化合物はLiの酸
化物,水酸化物,炭酸塩,硝酸塩,酢酸塩又は蓚酸塩の
うちの1種以上であることを特徴とするリチウム二次電
池用の正極活物質。
3. The method according to claim 2, wherein the Li x Mn Y O
The raw material for Z consists of a lithium compound and manganese or a manganese compound, and the lithium compound is at least one of oxides, hydroxides, carbonates, nitrates, acetates, and oxalates of Li. A positive electrode active material for a lithium secondary battery, comprising:
【請求項4】 請求項3において,上記マンガン化合物
はMnの酸化物,水酸化物,炭酸塩,硝酸塩,酢酸塩又
は蓚酸塩のうちの1種以上であることを特徴とするリチ
ウム二次電池用の正極活物質。
4. The lithium secondary battery according to claim 3, wherein the manganese compound is at least one of oxides, hydroxides, carbonates, nitrates, acetates and oxalates of Mn. Positive electrode active material.
【請求項5】 請求項2〜4のいずれか1項において,
上記溶媒は,水,酸水溶液,アルカリ水溶液,有機溶媒
のうちの1種以上であることを特徴とするリチウム二次
電池用の正極活物質。
5. The method according to claim 2, wherein
The positive electrode active material for a lithium secondary battery, wherein the solvent is at least one of water, an aqueous acid solution, an aqueous alkali solution, and an organic solvent.
【請求項6】 請求項2〜5のいずれか1項において,
上記加熱処理は,上記原料を噴霧する容器の外部からの
加熱,上記噴霧容器への加熱ガスの注入による加熱,溶
媒の燃焼熱による加熱のうちいずれか1種以上を用いる
ことを特徴とするリチウム二次電池用の正極活物質。
6. The method according to claim 2, wherein:
The heat treatment is performed by using at least one of heating from the outside of the container for spraying the raw material, heating by injection of a heating gas into the spray container, and heating by combustion heat of a solvent. A positive electrode active material for secondary batteries.
JP8353618A 1996-12-16 1996-12-16 Lithium secondary battery and its positive electrode active material Pending JPH10172570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8353618A JPH10172570A (en) 1996-12-16 1996-12-16 Lithium secondary battery and its positive electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8353618A JPH10172570A (en) 1996-12-16 1996-12-16 Lithium secondary battery and its positive electrode active material

Publications (1)

Publication Number Publication Date
JPH10172570A true JPH10172570A (en) 1998-06-26

Family

ID=18432072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8353618A Pending JPH10172570A (en) 1996-12-16 1996-12-16 Lithium secondary battery and its positive electrode active material

Country Status (1)

Country Link
JP (1) JPH10172570A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000041257A1 (en) * 1998-12-28 2000-07-13 Japan Energy Corporation Material of positive plate for lithium secondary cell and lithium secondary cell
JP2005191003A (en) * 2003-12-01 2005-07-14 Shin Kobe Electric Mach Co Ltd Lithium secondary battery and method of manufacturing lithium secondary battery
US6968128B2 (en) 2001-06-08 2005-11-22 Canon Kabushiki Kaisha Zoom lens and camera having the same
JP2008120679A (en) * 2000-11-16 2008-05-29 Hitachi Maxell Ltd Lithium-containing compound oxide, method for producing the same, and nonaqueous secondary battery
US8801960B2 (en) 2000-11-16 2014-08-12 Hitachi Maxell, Ltd. Lithium-containing complex oxide, non-aqueous secondary battery using the lithium-containing complex oxide, and method for producing the lithium-containing complex oxide
JP2016018645A (en) * 2014-07-07 2016-02-01 大陽日酸株式会社 Positive electrode material for lithium ion secondary battery and method for producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000041257A1 (en) * 1998-12-28 2000-07-13 Japan Energy Corporation Material of positive plate for lithium secondary cell and lithium secondary cell
JP2008120679A (en) * 2000-11-16 2008-05-29 Hitachi Maxell Ltd Lithium-containing compound oxide, method for producing the same, and nonaqueous secondary battery
US8801960B2 (en) 2000-11-16 2014-08-12 Hitachi Maxell, Ltd. Lithium-containing complex oxide, non-aqueous secondary battery using the lithium-containing complex oxide, and method for producing the lithium-containing complex oxide
US6968128B2 (en) 2001-06-08 2005-11-22 Canon Kabushiki Kaisha Zoom lens and camera having the same
JP2005191003A (en) * 2003-12-01 2005-07-14 Shin Kobe Electric Mach Co Ltd Lithium secondary battery and method of manufacturing lithium secondary battery
JP2016018645A (en) * 2014-07-07 2016-02-01 大陽日酸株式会社 Positive electrode material for lithium ion secondary battery and method for producing the same

Similar Documents

Publication Publication Date Title
JP3611188B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP4522683B2 (en) Method for producing electrode material powder, electrode material powder and electrode, and lithium battery
JPH06342657A (en) Lithium nickel dioxide cathode active substance its preparation and electrochemical battery
CN109155413B (en) Positive electrode active material, method for producing same, paste, and secondary battery
KR20160059781A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP2001223008A (en) Lithium secondary battery, positive electrode active substance for it and their manufacturing method
JP3611190B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP4190912B2 (en) Positive electrode active material for lithium ion battery and lithium ion battery having the same
JP2018186065A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery
US5824284A (en) Cathode material for lithium secondary battery and method for producing lithiated nickel dioxide and lithium secondary battery
US11862784B2 (en) Process for making a cathode active material for a lithium ion battery
JP2007039266A (en) Manufacturing method of lithium-manganese-nickel complex oxide and positive electrode active material for non-aqueous electrolyte secondary cell
JP4252331B2 (en) Method for producing positive electrode active material for lithium ion battery
JPH10172571A (en) Lithium secondary battery and manufacture of its positive electrode active material
JP3244227B2 (en) Non-aqueous electrolyte secondary battery
JPH10172570A (en) Lithium secondary battery and its positive electrode active material
JP4479874B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP3793054B2 (en) Nonaqueous electrolyte secondary battery
JP3407594B2 (en) Method for producing lithium nickel composite oxide
US11569504B2 (en) Positive electrode active material for lithium ion secondary batteries and method for producing same
JP4803867B2 (en) Method for producing lithium manganate for positive electrode of lithium battery
JPH10172569A (en) Lithium secondary battery and manufacture of its positive electrode active material
JPH11139831A (en) Production of cobalt oxide material and cell using the same cobalt oxide material produced therewith
KR100564748B1 (en) Cathode compositions for lithium batteries and method for preparing the same
JP2020184473A (en) Method for producing negative electrode active material composite for nonaqueous secondary battery