JP3407594B2 - Method for producing lithium nickel composite oxide - Google Patents

Method for producing lithium nickel composite oxide

Info

Publication number
JP3407594B2
JP3407594B2 JP09561797A JP9561797A JP3407594B2 JP 3407594 B2 JP3407594 B2 JP 3407594B2 JP 09561797 A JP09561797 A JP 09561797A JP 9561797 A JP9561797 A JP 9561797A JP 3407594 B2 JP3407594 B2 JP 3407594B2
Authority
JP
Japan
Prior art keywords
composite oxide
lithium
nickel
nickel composite
lithium nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09561797A
Other languages
Japanese (ja)
Other versions
JPH10114528A (en
Inventor
康次 服部
裕久 山下
行雄 坂部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP09561797A priority Critical patent/JP3407594B2/en
Priority to DE69700687T priority patent/DE69700687T2/en
Priority to EP97112289A priority patent/EP0824087B1/en
Priority to CA002212824A priority patent/CA2212824C/en
Priority to US08/910,753 priority patent/US6187282B1/en
Priority to KR1019970038609A priority patent/KR100282720B1/en
Priority to CN97117612A priority patent/CN1091545C/en
Publication of JPH10114528A publication Critical patent/JPH10114528A/en
Application granted granted Critical
Publication of JP3407594B2 publication Critical patent/JP3407594B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/34Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of sprayed or atomised solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えばリチウム二
次電池の正極活物質として有用なリチウムニッケル複合
酸化物の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a lithium nickel composite oxide useful as, for example, a positive electrode active material of a lithium secondary battery.

【0002】[0002]

【従来の技術】従来、リチウム二次電池の正極活物質と
して用いられるリチウムニッケル複合酸化物の製造方法
としては、次のような種々の方法が提案されている。
2. Description of the Related Art Conventionally, the following various methods have been proposed as a method for producing a lithium nickel composite oxide used as a positive electrode active material of a lithium secondary battery.

【0003】(イ)炭酸リチウムと酸化ニッケルのよう
な粉末同士を混合し、酸素気流中750℃程度で焼成す
る、固相法による方法。
(A) A solid-phase method in which powders such as lithium carbonate and nickel oxide are mixed and fired in an oxygen stream at about 750 ° C.

【0004】(ロ)低融点の硝酸リチウムや水酸化リチ
ウムと水酸化ニッケルとを混合し、酸素気流中、低温で
焼成する方法。
(B) A method in which low melting point lithium nitrate or lithium hydroxide and nickel hydroxide are mixed and fired at a low temperature in an oxygen stream.

【0005】(ハ)硝酸リチウムと硝酸ニッケルを水に
溶解させ、超音波で霧状に噴霧し熱分解させる、噴霧熱
分解法による方法。
(C) A method by a spray pyrolysis method in which lithium nitrate and nickel nitrate are dissolved in water and atomized by ultrasonic waves for thermal decomposition.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
製造方法それぞれにおいて、以下に示すような問題点を
有していた。
However, each of the above manufacturing methods has the following problems.

【0007】(イ)の固相法においては、出発原料とし
て炭酸塩や酸化物などの粉末を使用するため、比較的高
温で焼成する必要がある。このため、リチウムの蒸発が
激しく、Li/Niのモル比がズレてしまう。又、各々
の粉末を分子レベルで均一に混合することは不可能であ
り、例えば目的とするLiNiO2 以外にLi2 Ni8
10の生成を伴うことがあり、これらを防ぐために酸素
濃度を調整しながら長時間の焼成を数度繰り返す必要が
あった。
In the solid phase method (a), since powders of carbonates and oxides are used as starting materials, it is necessary to calcine at a relatively high temperature. For this reason, the evaporation of lithium is intense and the molar ratio of Li / Ni shifts. Further, it is impossible to uniformly mix the respective powders at the molecular level. For example, in addition to the target LiNiO 2 , Li 2 Ni 8
Occurrence of O 10 may occur, and in order to prevent these, it was necessary to repeat firing for several hours while adjusting the oxygen concentration.

【0008】(ロ)の方法においては、固相法の場合と
比較して、低温で合成するためLiとNi比のズレが少
ない。
In the method (b), compared with the case of the solid phase method, since the synthesis is performed at a low temperature, the difference between the Li and Ni ratios is small.

【0009】しかしながら、長時間焼成しないと、得ら
れる複合酸化物の結晶性が悪くなる。このため、二次電
池の活物質として用いた場合、電池の充放電サイクルを
繰り返すうちに、結晶構造が崩れ二次電池の容量が低下
するという問題点を有していた。さらに、二次電池の充
放電サイクル特性を改善するために、Niに近いイオン
半径を持つFe、Co、Mn、Mg、Alといったカチ
オンでNiを置換する場合は、Niと置換カチオンの分
布が不均一なものとならざるを得なかった。
However, if not fired for a long time, the crystallinity of the obtained composite oxide will deteriorate. Therefore, when used as an active material of a secondary battery, there is a problem that the crystal structure collapses and the capacity of the secondary battery decreases during repeated charge / discharge cycles of the battery. Furthermore, in order to improve the charge / discharge cycle characteristics of the secondary battery, when Ni is replaced with a cation having an ionic radius close to that of Ni, such as Fe, Co, Mn, Mg, or Al, the distribution of Ni and the replacement cation is not uniform. It had to be uniform.

【0010】(ハ)の噴霧熱分解法においては、リチウ
ムニッケル複合酸化物を構成する元素をイオンレベルで
均一に混合できるため、従来法と比較しても、格段に均
一性を増すことができる。又、原料の粉砕工程を必要と
しないため、粉砕工程に起因する不純物の混入を防止で
きるという利点を有している。
In the spray pyrolysis method (c), since the elements constituting the lithium nickel composite oxide can be uniformly mixed at the ion level, the uniformity can be remarkably increased as compared with the conventional method. . Moreover, since the raw material crushing step is not required, there is an advantage that impurities can be prevented from being mixed in due to the crushing step.

【0011】しかしながら、噴霧熱分解法では、脱水、
乾燥及び熱分解の一連の操作が数秒以内の短時間のうち
に行われるため、従来の焼成処理に比べて熱履歴が極め
て短く、合成した複合酸化物の結晶性が悪くなる傾向を
示す。このため、二次電池の活物質として用いた場合、
電池の充放電サイクルを繰り返すうちに、結晶構造が崩
れ二次電池の容量が低下するという問題点を有してい
た。又、合成した複合酸化物の比表面積が数十m2 /g
と非常に大きいため、この複合酸化物と接触する電解液
が分解して、二次電池の充放電サイクル特性や保存特性
を著しく低下させる場合があるという問題点を有してい
た。
However, in the spray pyrolysis method, dehydration,
Since a series of operations of drying and thermal decomposition are performed within a short time within a few seconds, the thermal history is extremely short as compared with the conventional baking treatment, and the crystallinity of the synthesized composite oxide tends to deteriorate. Therefore, when used as the active material of a secondary battery,
There was a problem that the crystal structure collapsed and the capacity of the secondary battery decreased as the charge / discharge cycle of the battery was repeated. In addition, the specific surface area of the synthesized composite oxide is several tens m 2 / g
Therefore, there is a problem in that the electrolytic solution in contact with the composite oxide may be decomposed and the charge / discharge cycle characteristics and storage characteristics of the secondary battery may be significantly deteriorated.

【0012】そこで、本発明の目的は、上記問題点を解
決し、リチウム二次電池の正極活物質として用いたとき
に、均質で、充放電サイクル特性や保存特性に優れた、
リチウムニッケル複合酸化物の製造方法を提供すること
にある。
Therefore, an object of the present invention is to solve the above-mentioned problems, and when used as a positive electrode active material of a lithium secondary battery, it is homogeneous and is excellent in charge / discharge cycle characteristics and storage characteristics.
It is to provide a method for producing a lithium nickel composite oxide.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するた
め、本発明のリチウムニッケル複合酸化物の製造方法
は、リチウムニッケル複合酸化物を構成する金属元素を
含む化合物の水溶液及びアルコール溶液のうち少なくと
も1種を噴霧熱分解して複合酸化物を得た後、該複合酸
化物をアニールして平均粒径を1〜5μmに成長させ、
比表面積を2〜10m2 /gとすることを特徴とする。
In order to achieve the above object, the method for producing a lithium-nickel composite oxide of the present invention comprises at least an aqueous solution and an alcohol solution of a compound containing a metal element constituting the lithium-nickel composite oxide. After spray pyrolyzing one type to obtain a composite oxide, the composite oxide is annealed to grow the average particle size to 1 to 5 μm,
The specific surface area is 2 to 10 m 2 / g.

【0014】又、前記噴霧熱分解の温度は500〜90
0℃であり、前記アニールの温度は600〜850℃で
あることを特徴とする。
The temperature of the spray pyrolysis is 500 to 90.
The temperature is 0 ° C., and the annealing temperature is 600 to 850 ° C.

【0015】又、前記リチウムニッケル複合酸化物は、
LiNiO2 であることを特徴とする。
The lithium nickel composite oxide is
It is characterized in that it is LiNiO 2 .

【0016】又、前記金属元素を含む化合物は無機酸塩
であることを特徴とする。
Further, the compound containing the metal element is an inorganic acid salt.

【0017】そして、前記金属元素を含む化合物は、硝
酸リチウム、酢酸リチウム及びギ酸リチウムのうち少な
くとも1種と、硝酸ニッケル、酢酸ニッケル及びギ酸ニ
ッケルのうち少なくとも1種であることを特徴とする。
The compound containing the metal element is characterized in that it is at least one of lithium nitrate, lithium acetate and lithium formate, and at least one of nickel nitrate, nickel acetate and nickel formate.

【0018】上述のように、リチウムニッケル複合酸化
物を構成する金属元素を含む化合物の水溶液及び/又は
アルコール溶液を加熱雰囲気中に噴霧すると、瞬時に熱
分解して自己化学分解作用により微細化が起こり、表面
活性の高い微細な複合酸化物が得られる。その後、この
複合酸化物をアニールすることにより、平均粒径が1〜
5μmに成長し比表面積が2〜10m2 /gの、リチウ
ム二次電池用正極活物質として好適な表面活性の高い複
合酸化物を得ることができる。
As described above, when an aqueous solution and / or alcohol solution of a compound containing a metal element forming the lithium nickel composite oxide is sprayed into a heating atmosphere, it is instantly decomposed by heat and self-chemically decomposes to reduce the size. Occurs, and a fine composite oxide having high surface activity is obtained. Then, by annealing this composite oxide, the average particle size is 1 to
It is possible to obtain a complex oxide having a high surface activity which grows to 5 μm and has a specific surface area of 2 to 10 m 2 / g, which is suitable as a positive electrode active material for a lithium secondary battery.

【0019】なお、本発明でいうリチウムニッケル複合
酸化物はLiNiO2 に限定されるものではない。特性
改善を目的としてNiの一部をCr、Mn、Fe、C
o、Mg、Alなどで置換したものもリチウムニッケル
複合酸化物に含む。したがって、本発明のリチウムニッ
ケル複合酸化物を構成する金属元素としては、Li、N
iに限定されずに、Cr、Mn、Fe、Co、Mg、A
lなども含まれる。そして、これらの代表的な水溶性化
合物としては、酢酸塩、ギ酸塩、硝酸塩、塩化物などが
挙げられる。これら酢酸塩、ギ酸塩、硝酸塩、塩化物な
どの化合物は、アルコキシドなどの分子中の水素イオン
を金属イオンで置換した有機化合物に比べて極めて安価
であり、原料コストを低く抑えることができるので工業
的に有利である。
The lithium nickel composite oxide referred to in the present invention is not limited to LiNiO 2 . A part of Ni is Cr, Mn, Fe, C for the purpose of improving the characteristics.
Those substituted with o, Mg, Al and the like are also included in the lithium nickel composite oxide. Therefore, as the metal elements constituting the lithium nickel composite oxide of the present invention, Li, N
Not limited to i, Cr, Mn, Fe, Co, Mg, A
1 and the like are also included. And as these typical water-soluble compounds, acetate, formate, nitrate, chloride and the like can be mentioned. Compounds such as acetates, formates, nitrates and chlorides are extremely cheap as compared with organic compounds in which hydrogen ions in the molecule such as alkoxides are replaced with metal ions, and the raw material cost can be kept low. Is advantageous.

【0020】[0020]

【発明の実施の形態】以下、本発明の実施の形態につい
て、リチウムニッケル複合酸化物がLiNiO2 の場合
を例として、実施例により説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described by way of examples, taking a case where the lithium nickel composite oxide is LiNiO 2 as an example.

【0021】(実施例)まず、LiNiO2 を構成する
金属元素の化合物として、硝酸リチウム、酢酸リチウ
ム、ギ酸リチウム、硝酸ニッケル、酢酸ニッケル及びギ
酸ニッケルを用意した。次に、これら化合物を表1に示
す原料の組み合わせで、LiとNiのモル比で1:1と
なるようにそれぞれ正確に秤量分取して容器に入れ、こ
れに水とアルコールの1:1(体積比)混合溶液100
0mlを加えた後、撹拌して溶解させた。
(Examples) First, lithium nitrate, lithium acetate, lithium formate, nickel nitrate, nickel acetate and nickel formate were prepared as compounds of metal elements constituting LiNiO 2 . Next, these compounds were accurately weighed out and put into a container with a combination of the raw materials shown in Table 1 so that the molar ratio of Li and Ni was 1: 1. (Volume ratio) Mixed solution 100
After adding 0 ml, the mixture was stirred and dissolved.

【0022】次に、この混合溶液を400〜900℃間
の所定温度に調整した縦型熱分解炉内へ、1200ml
/時間の速度でノズルから霧状に吹き込んで熱分解さ
せ、複合酸化物の粉末を得た。その後、得られた複合酸
化物をアルミナ製の匣に入れ、500〜900℃間の所
定温度で2時間アニールして、表1の試料番号1〜16
に示すLiNiO2 を得た。
Next, 1200 ml of this mixed solution was put into a vertical pyrolysis furnace adjusted to a predetermined temperature between 400 and 900 ° C.
It was blown in a mist form from a nozzle at a rate of / hour for thermal decomposition to obtain a composite oxide powder. Then, the obtained composite oxide was put into an alumina box and annealed at a predetermined temperature of 500 to 900 ° C. for 2 hours to obtain sample numbers 1 to 16 in Table 1.
To obtain LiNiO 2 .

【0023】又、表1の試料番号17に示す比較例とし
て、他の合成法によりLiNiO2を得た。即ち、ま
ず、出発原料として水酸化リチウムと水酸化ニッケルを
用意した、次に、この水酸化リチウムと水酸化ニッケル
をLiとNiのモル比で1:1となるようにそれぞれ正
確に秤量分取した後、ボールミルで粉砕・混合後、75
0℃で2時間酸素気流中で焼成し、複合酸化物を得た。
Further, as a comparative example shown in sample No. 17 of Table 1, LiNiO 2 was obtained by another synthesis method. That is, first, lithium hydroxide and nickel hydroxide were prepared as starting materials, and then the lithium hydroxide and nickel hydroxide were accurately weighed and fractionated so that the molar ratio of Li and Ni was 1: 1. After crushing and mixing with a ball mill, 75
The composite oxide was obtained by firing in an oxygen stream at 0 ° C. for 2 hours.

【0024】次に、以上得られた複合酸化物の粉末につ
いて、走査型電子顕微鏡(SEM)写真を撮り、それよ
り粒径を求めた。又、窒素吸着法により複合酸化物の比
表面積を求めた。さらに、X線回折(XRD)分析法に
より、複合酸化物の同定を行なった。以上の結果を表1
に示す。なお表1中のLNはLiNiO2 を表し、NO
はLi2 Ni8 10 を表す。
Next, a scanning electron microscope (SEM) photograph was taken of the powder of the composite oxide obtained above, and the particle size was determined from it. Further, the specific surface area of the composite oxide was determined by the nitrogen adsorption method. Further, the composite oxide was identified by an X-ray diffraction (XRD) analysis method. The above results are shown in Table 1.
Shown in. Note that LN in Table 1 represents LiNiO 2 , and NO
Represents Li 2 Ni 8 O 10 .

【0025】[0025]

【表1】 [Table 1]

【0026】次に、以上得られた複合酸化物を正極活物
質として、二次電池を作製した。即ち、上記複合酸化物
の粉末と導電剤としてのアセチレンブラックと、結着剤
としてのポリ4フッ化エチレンを混練し、シート状に成
形し、SUSメッシュに圧着して正極とした。
Next, a secondary battery was prepared using the composite oxide obtained above as a positive electrode active material. That is, the powder of the above complex oxide, acetylene black as a conductive agent, and polytetrafluoroethylene as a binder were kneaded, molded into a sheet, and pressed onto a SUS mesh to obtain a positive electrode.

【0027】その後、図1に示すように、ポリプロピレ
ン製のセパレータ5を介して、上記正極3と負極4とし
てのリチウム金属を正極3のSUSメッシュ側が外側に
なるように重ね、正極3を下にしてステンレス製の正極
缶1内に収容した。そして、セパレータ5に電解液を染
み込ませた。なお、電解液としては、プロピレンカーボ
ネートと1,1−ジメトキシエタンの混合溶媒に過塩素
酸リチウムを溶解させたものを用いた。その後、正極缶
1の口を絶縁パッキング6を介してステンレス製の負極
板2で封止し、表2に示す種類のリチウム二次電池を完
成させた。
After that, as shown in FIG. 1, the positive electrode 3 and the lithium metal as the negative electrode 4 are stacked with the SUS mesh side of the positive electrode 3 on the outside through the separator 5 made of polypropylene, and the positive electrode 3 is placed downward. And stored in a positive electrode can 1 made of stainless steel. Then, the separator 5 was impregnated with the electrolytic solution. As the electrolytic solution, a solution prepared by dissolving lithium perchlorate in a mixed solvent of propylene carbonate and 1,1-dimethoxyethane was used. Then, the mouth of the positive electrode can 1 was sealed with a negative electrode plate 2 made of stainless steel through an insulating packing 6 to complete a lithium secondary battery of the type shown in Table 2.

【0028】次に、得られたリチウム二次電池につい
て、充放電電流密度0.5mA/cm2 、充電終止電圧
が4.2V、放電終止電圧が3.0Vの条件下で100
サイクルの充放電試験を行なった。その後、充放電試験
終了後の二次電池を解体し、正極の状態(剥離の有無)
を目視で確認した。以上の結果を表2に示す。
Next, the obtained lithium secondary battery was charged under conditions of a charge / discharge current density of 0.5 mA / cm 2 , a charge end voltage of 4.2 V, and a discharge end voltage of 3.0 V.
A cycle charge / discharge test was performed. After that, disassemble the secondary battery after completion of the charge / discharge test and check the state of the positive electrode (presence or absence of peeling)
Was visually confirmed. The above results are shown in Table 2.

【0029】[0029]

【表2】 [Table 2]

【0030】表1の結果より、リチウムニッケル複合酸
化物を構成する金属元素の溶液を噴霧熱分解した後、ア
ニールすることにより、平均粒径を1〜5μmに成長さ
せ、比表面積を2〜10m2 /gとした複合酸化物が得
られる。又、この複合酸化物はLiNiO2 の単相を示
している。そして、この複合酸化物を正極活物質として
用いることにより、表2に示すように、充放電サイクル
特性に優れた電極の剥離などの劣化のないリチウム二次
電池が得られる。
From the results shown in Table 1, the solution of the metal element constituting the lithium nickel composite oxide was sprayed and pyrolyzed and then annealed to grow the average particle size to 1 to 5 μm and the specific surface area to 2 to 10 m. A composite oxide of 2 / g is obtained. Further, this composite oxide shows a single phase of LiNiO 2 . Then, by using this composite oxide as a positive electrode active material, as shown in Table 2, a lithium secondary battery having excellent charge / discharge cycle characteristics without deterioration such as peeling of electrodes can be obtained.

【0031】なお、噴霧熱分解温度の具体的な温度範囲
としては、500〜900℃が好ましい。即ち、500
℃以上ではリチウムニッケル複合酸化物の単相が得られ
る。又、上限は、生成したリチウムニッケル複合酸化物
が熱により再度分解しない温度以下に限定される。
The specific temperature range of the spray pyrolysis temperature is preferably 500 to 900 ° C. That is, 500
A single phase of a lithium nickel composite oxide is obtained at a temperature of ℃ or above. Further, the upper limit is limited to a temperature not higher than the temperature at which the produced lithium nickel composite oxide is not decomposed again by heat.

【0032】又、アニール温度の具体的な温度範囲とし
ては、600〜850℃が好ましい。即ち、600℃未
満では熱分解で得たリチウムニッケル複合酸化物の結晶
性や粒径の成長が不十分で、二次電池としたときのサイ
クル特性や保存特性の改善がみられない。一方、アニー
ル温度が850℃を超えると粒径が成長しすぎて、リチ
ウムニッケル複合酸化物を正極活物質としたときに得ら
れる二次電池の容量が低下してしまう。
The specific temperature range of the annealing temperature is preferably 600 to 850 ° C. That is, when the temperature is lower than 600 ° C., the crystallinity and particle size of the lithium nickel composite oxide obtained by thermal decomposition are insufficiently grown, and the cycle characteristics and storage characteristics cannot be improved in the secondary battery. On the other hand, when the annealing temperature exceeds 850 ° C., the grain size grows too much, and the capacity of the secondary battery obtained when the lithium nickel composite oxide is used as the positive electrode active material decreases.

【0033】なお、上記実施例においては、LiNiO
2 を構成する金属元素の化合物が硝酸塩、酢酸塩又はギ
酸塩の場合について説明したが、本発明はこれのみに限
定されるものではない。即ち、これら以外に塩化物など
の水又はアルコールに溶解する化合物を適宜用いること
ができる。
In the above embodiment, LiNiO
Although the case where the compound of the metal element constituting 2 is nitrate, acetate or formate has been described, the present invention is not limited to this. That is, other than these, compounds such as chlorides that are soluble in water or alcohol can be used as appropriate.

【0034】又、試料番号14に示すように、これらL
iNiO2 を構成する金属元素の化合物のうち、Li化
合物として硝酸リチウムを用いNi化合物としてギ酸ニ
ッケルを用いることにより、試料番号10に示す酢酸リ
チウムと酢酸ニッケルを用いた場合や、試料番号11に
示すギ酸リチウムとギ酸ニッケルを用いた場合と比較し
て放電容量が高く、試料番号4に示す硝酸リチウムと硝
酸ニッケルを用いた場合と同等の高い放電容量を得るこ
とができる。そして、この硝酸リチウムとギ酸ニッケル
を用いた場合には、式(1)に示すような反応が起こ
り、式(2)の反応が起こる硝酸リチウムと硝酸ニッケ
ルと比較して、NO2 の発生量が1/3となり、反応後
の廃ガス処理が容易となる。したがって、LiNiO2
を構成する金属元素の化合物としては、硝酸リチウムと
ギ酸ニッケルを用いるのが最も好ましい。
Further, as shown in sample No. 14, these L
When lithium nitrate is used as the Li compound and nickel formate is used as the Ni compound among the compounds of the metal elements constituting iNiO 2 , the case of using lithium acetate and nickel acetate shown in Sample No. 10 or shown in Sample No. 11 is shown. The discharge capacity is higher than that when lithium formate and nickel formate are used, and the same high discharge capacity as when using lithium nitrate and nickel nitrate shown in Sample No. 4 can be obtained. When this lithium nitrate and nickel formate are used, a reaction as shown in formula (1) occurs, and the amount of NO 2 generated is greater than that of lithium nitrate and nickel nitrate in which the reaction of formula (2) occurs. Becomes 1/3, and the waste gas treatment after the reaction becomes easy. Therefore, LiNiO 2
It is most preferable to use lithium nitrate and nickel formate as the compound of the metal element constituting the.

【0035】 LiNO3 +Ni(HCOO)2 +O2 → LiNiO2 +2CO2 +NO2 +H2 O ・・(1) LiNO3 +Ni(NO3 2 → LiNiO2 +3NO2 +0.5O2 ・・(2)。LiNO 3 + Ni (HCOO) 2 + O 2 → LiNiO 2 + 2CO 2 + NO 2 + H 2 O .. (1) LiNO 3 + Ni (NO 3 ) 2 → LiNiO 2 + 3NO 2 + 0.5O 2. (2).

【0036】又、リチウムニッケル複合酸化物が、Li
NiO2 以外の、LiNiO2 のNiサイトの一部をC
r、Mn、Fe、Co、Mg、Alなどで置換したもの
などの場合にも、同様の効果を得ることができる。
The lithium nickel composite oxide is Li
Except for NiO 2 , a part of Ni site of LiNiO 2 is C
Similar effects can be obtained also in the case of substituting with r, Mn, Fe, Co, Mg, Al or the like.

【0037】[0037]

【発明の効果】以上の説明で明らかなように、本発明の
製造方法によれば、均質で、粒径が1〜5μmであって
比表面積が2〜10m2 /gのリチウムニッケル複合酸
化物を得ることができる。
As is apparent from the above description, according to the production method of the present invention, a lithium nickel composite oxide that is homogeneous, has a particle size of 1 to 5 μm and a specific surface area of 2 to 10 m 2 / g. Can be obtained.

【0038】したがって、この複合酸化物を二次電池の
正極活物質として用いることにより、充放電サイクル特
性や保存特性に優れたリチウム二次電池を得ることがで
きる。
Therefore, by using this composite oxide as a positive electrode active material of a secondary battery, a lithium secondary battery having excellent charge / discharge cycle characteristics and storage characteristics can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】リチウム二次電池の一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of a lithium secondary battery.

【符号の説明】[Explanation of symbols]

1 正極缶 2 負極板 3 正極 4 負極 5 セパレータ 6 絶縁パッキング 1 positive electrode can 2 Negative electrode plate 3 positive electrode 4 Negative electrode 5 separator 6 Insulating packing

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平10−69910(JP,A) 特開 平3−80118(JP,A) 特開 平8−306358(JP,A) (58)調査した分野(Int.Cl.7,DB名) C01G 25/00 - 57/00 H01M 4/02 H01M 4/58 ─────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-10-69910 (JP, A) JP-A-3-80118 (JP, A) JP-A-8-306358 (JP, A) (58) Field (Int.Cl. 7 , DB name) C01G 25/00-57/00 H01M 4/02 H01M 4/58

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 リチウムニッケル複合酸化物を構成する
金属元素を含む化合物の水溶液及びアルコール溶液のう
ち少なくとも1種を噴霧熱分解して複合酸化物を得た
後、該複合酸化物をアニールして平均粒径を1〜5μm
に成長させ、比表面積を2〜10m2 /gとすることを
特徴とする、リチウムニッケル複合酸化物の製造方法。
1. A composite oxide is obtained by subjecting at least one of an aqueous solution of a compound containing a metal element constituting a lithium nickel composite oxide and an alcohol solution to spray pyrolysis to obtain the composite oxide, and then annealing the composite oxide. Average particle size 1-5 μm
And a specific surface area of 2 to 10 m 2 / g.
【請求項2】 前記噴霧熱分解の温度は500〜900
℃であり、前記アニールの温度は600〜850℃であ
ることを特徴とする、請求項1記載のリチウムニッケル
複合酸化物の製造方法。
2. The temperature of the spray pyrolysis is 500 to 900.
C., and the annealing temperature is 600 to 850.degree. C., The method for producing a lithium-nickel composite oxide according to claim 1, wherein the annealing temperature is 600 to 850.degree.
【請求項3】 前記リチウムニッケル複合酸化物は、L
iNiO2 であることを特徴とする、請求項1又は請求
項2記載のリチウムニッケル複合酸化物の製造方法。
3. The lithium nickel composite oxide is L
characterized in that it is a INiO 2, The method according to claim 1 or claim 2 lithium nickel composite oxide according.
【請求項4】 前記金属元素を含む化合物は無機酸塩で
あることを特徴とする、請求項1〜3のうちいずれかに
記載のリチウムニッケル複合酸化物の製造方法。
4. The method for producing a lithium nickel composite oxide according to claim 1, wherein the compound containing the metal element is an inorganic acid salt.
【請求項5】 前記金属元素を含む化合物は、硝酸リチ
ウム、酢酸リチウム及びギ酸リチウムのうち少なくとも
1種と、硝酸ニッケル、酢酸ニッケル及びギ酸ニッケル
のうち少なくとも1種であることを特徴とする、請求項
1〜3のうちいずれかに記載のリチウムニッケル複合酸
化物の製造方法。
5. The compound containing a metal element is at least one selected from lithium nitrate, lithium acetate and lithium formate, and at least one selected from nickel nitrate, nickel acetate and nickel formate. Item 4. A method for producing a lithium nickel composite oxide according to any one of Items 1 to 3.
JP09561797A 1996-08-13 1997-04-14 Method for producing lithium nickel composite oxide Expired - Fee Related JP3407594B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP09561797A JP3407594B2 (en) 1996-08-13 1997-04-14 Method for producing lithium nickel composite oxide
DE69700687T DE69700687T2 (en) 1996-08-13 1997-07-17 Process for the preparation of lithium complex containing cobalt or nickel
EP97112289A EP0824087B1 (en) 1996-08-13 1997-07-17 Manufacturing method of lithium complex oxide comprising cobalt or nickel
CA002212824A CA2212824C (en) 1996-08-13 1997-08-12 Manufacturing method of lithium complex oxide comprising cobalt or nickel
US08/910,753 US6187282B1 (en) 1996-08-13 1997-08-13 Manufacturing method of lithium complex oxide comprising cobalt or nickel
KR1019970038609A KR100282720B1 (en) 1996-08-13 1997-08-13 Manufacturing method of lithium complex oside comprising cobalt or nickel
CN97117612A CN1091545C (en) 1996-08-13 1997-08-13 Mannufacturing method of lithium complex oxide comprising cobalt or nickel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP21343596 1996-08-13
JP8-213435 1996-08-13
JP09561797A JP3407594B2 (en) 1996-08-13 1997-04-14 Method for producing lithium nickel composite oxide

Publications (2)

Publication Number Publication Date
JPH10114528A JPH10114528A (en) 1998-05-06
JP3407594B2 true JP3407594B2 (en) 2003-05-19

Family

ID=26436838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09561797A Expired - Fee Related JP3407594B2 (en) 1996-08-13 1997-04-14 Method for producing lithium nickel composite oxide

Country Status (2)

Country Link
JP (1) JP3407594B2 (en)
KR (1) KR100282720B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0986117B1 (en) * 1997-05-27 2007-08-29 TDK Corporation Method for producing electrode for non-aqueous electrolyte battery
JP4872164B2 (en) * 2001-06-13 2012-02-08 三菱化学株式会社 Layered lithium nickel manganese composite oxide
KR100564744B1 (en) 2003-05-07 2006-03-27 한국전자통신연구원 Li-Co-Mn oxides as cathode material for lithium batteries and synthesis of the same
JP2006339092A (en) * 2005-06-06 2006-12-14 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and its negative electrode
JP2010108928A (en) * 2008-10-01 2010-05-13 Daiken Chemical Co Ltd Process of producing lithium cell active material, lithium cell active material, and lithium system secondary battery
WO2022076280A1 (en) * 2020-10-05 2022-04-14 Northwestern University Composites with surface refining and conformal graphene coating, electrodes, and fabricating methods of same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4567031A (en) * 1983-12-27 1986-01-28 Combustion Engineering, Inc. Process for preparing mixed metal oxides
FR2704216A1 (en) * 1993-04-23 1994-10-28 Centre Nat Rech Scient Electrode materials for rechargeable lithium batteries and their method of synthesis

Also Published As

Publication number Publication date
KR100282720B1 (en) 2001-02-15
KR19980018644A (en) 1998-06-05
JPH10114528A (en) 1998-05-06

Similar Documents

Publication Publication Date Title
JP3221352B2 (en) Method for producing spinel-type lithium manganese composite oxide
US5742070A (en) Method for preparing an active substance of chemical cells
EP0820113B1 (en) Spinel-type lithium manganese oxide as a cathode active material for nonaqueous electrolyte lithium secondary batteries
JP3487441B2 (en) Method for producing active material for lithium secondary battery
EP0712173B1 (en) Positive electrode active material for nonaqueous cell and its process of preparation
EP0824087B1 (en) Manufacturing method of lithium complex oxide comprising cobalt or nickel
JP4153125B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
KR20030028447A (en) Cathod intercalation compositions, production methods and rechargeable lithium batteries containing the same
JP3036694B2 (en) Method for producing Li composite oxide for Li-ion battery electrode material
JP3384280B2 (en) Method for producing positive electrode active material for lithium secondary battery
KR20110044936A (en) Process for the production of lithium-manganese double oxide for lithium ion batteries and lithium-manganese double oxide for lithium ion batteries made by the same, and lithium ion batteries cotaining the same
JPH111324A (en) Platy nickel hydroxide particle, its production and production of lithium-nickel complex oxide particle using the nickel hydroxide particle as raw material
JP3407594B2 (en) Method for producing lithium nickel composite oxide
JP2001114521A (en) Trimanganese tetraoxide and method for its production
JP2001508391A (en) Preparation method of lithium manganese oxide
JPH11278848A (en) Production of spinel type lithium manganese multiple oxide
JPH10182161A (en) Production of lithium-manganese double oxide
KR100564748B1 (en) Cathode compositions for lithium batteries and method for preparing the same
JP3487941B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte battery
JPH10114527A (en) Production of lithium-cobalt multiple oxide
JPH11343120A (en) Production of spinel oxide particulate powder
JPH10182157A (en) Production of lithium manganese multiple oxide
JPH10182160A (en) Production of lithium-manganese double oxide
KR100477400B1 (en) Method for manufacturing Lil + xMn2-xO4 for secondary battery electrode
JP2001052684A (en) Positive electrode active material for nonaqueous secondary battery, manufacture thereof and nonaqueous secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100314

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees