JPH10182161A - Production of lithium-manganese double oxide - Google Patents

Production of lithium-manganese double oxide

Info

Publication number
JPH10182161A
JPH10182161A JP8343162A JP34316296A JPH10182161A JP H10182161 A JPH10182161 A JP H10182161A JP 8343162 A JP8343162 A JP 8343162A JP 34316296 A JP34316296 A JP 34316296A JP H10182161 A JPH10182161 A JP H10182161A
Authority
JP
Japan
Prior art keywords
composite oxide
lithium
lithium manganese
manganese composite
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8343162A
Other languages
Japanese (ja)
Inventor
Koji Hattori
康次 服部
Kazumi Okabe
参省 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP8343162A priority Critical patent/JPH10182161A/en
Publication of JPH10182161A publication Critical patent/JPH10182161A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a lithium-manganese double oxide capable of giving a large charging and discharging capacity and excellent charging and discharging cycle properties in using a positive electrode-active material of a lithium secondary cell. SOLUTION: A water-soluble compound carboxylic ester complex oligomer is generated by reacting a compound containing a metal element constructing a lithium-manganese double oxide and soluble in an oxypolycarboxylic acid or water with a polyol and the oxypolycarboxylic acid and the resultant product is heat-decomposed, then annealed. As a method for the heat decomposition, preferably a solid component separated from the reaction solution is calcined or spray heat decomposed at 500-900 deg.C, and the annealing temperature is preferably 600-850 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えばリチウム二
次電池の正極活物質として有用な、リチウムマンガン複
合酸化物の製造方法に関する。
The present invention relates to a method for producing a lithium manganese composite oxide useful as, for example, a positive electrode active material of a lithium secondary battery.

【0002】[0002]

【従来の技術】従来、リチウム二次電池の正極活物質と
して用いられるスピネル型リチウムマンガン複合酸化物
の製造方法としては、次のような種々の方法が提案され
ている。
2. Description of the Related Art Conventionally, the following various methods have been proposed for producing a spinel-type lithium manganese composite oxide used as a positive electrode active material of a lithium secondary battery.

【0003】(a)炭酸リチウムと二酸化マンガンのよ
うな粉末同士を混合し、800℃程度で焼成する、固相
法による方法。
(A) A solid phase method in which powders such as lithium carbonate and manganese dioxide are mixed and fired at about 800 ° C.

【0004】(b)低融点の硝酸リチウムや水酸化リチ
ウムを多孔質の二酸化マンガンに染み込ませて焼成す
る、溶融含浸法による方法。
(B) A method using a melt impregnation method in which low melting point lithium nitrate or lithium hydroxide is impregnated into porous manganese dioxide and fired.

【0005】(c)硝酸リチウムと硝酸マンガンを水に
溶解させ、超音波で霧状に噴霧し熱分解させる、噴霧熱
分解法による方法。
(C) A spray pyrolysis method in which lithium nitrate and manganese nitrate are dissolved in water, sprayed in a mist with ultrasonic waves, and thermally decomposed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
製造方法それぞれにおいて、以下に示すような問題点を
有していた。
However, each of the above-described manufacturing methods has the following problems.

【0007】(a)の固相法においては、出発原料とし
て炭酸塩や酸化物などの粉末を使用するため、比較的高
温で焼成する必要がある。このため、酸素過剰のスピネ
ルなどの欠陥スピネルが合成されやすい。又、各々の粉
末を分子レベルで均一に混合することは不可能であり、
例えば目的とするLiMn2 4 以外にLi2 MnO3
やLiMnO2 の生成を伴うことがあり、これらを防ぐ
ために酸素濃度を調整しながら長時間の焼成を数度繰り
返す必要があった。
In the solid phase method (a), since powders such as carbonates and oxides are used as starting materials, firing at a relatively high temperature is required. Therefore, a defective spinel such as an oxygen-excess spinel is easily synthesized. Also, it is impossible to mix each powder uniformly at the molecular level,
For example, in addition to the desired LiMn 2 O 4 , Li 2 MnO 3
And LiMnO 2 may be generated, and it is necessary to repeat firing for a long time several times while adjusting the oxygen concentration in order to prevent these.

【0008】(b)の溶融浸漬法においては、固相法の
場合と比較して、LiとMnの均一分散性が向上する。
In the melt immersion method (b), the uniform dispersibility of Li and Mn is improved as compared with the case of the solid phase method.

【0009】しかしながら、出発原料として多孔質のマ
ンガン原料を必要とする。ところが、この多孔質のマン
ガン原料を得るためには粉砕処理が必要であり、この処
理を施すために特別に準備した粉砕装置を必要とし、粉
砕過程での粉砕処理媒体や装置内壁の磨耗などにより不
純物が混入し、得られる正極活物質としての複合酸化物
粉末の品質が低下したり、コストアップにつながるとい
う問題点を有していた。又、低融点のリチウム原料の蒸
発を抑えるため低温で長時間焼成しないと、得られる複
合酸化物の結晶性が悪くなる。このため、二次電池の活
物質として用いた場合、電池の充放電サイクルを繰り返
すうちに、結晶構造が崩れ二次電池の容量が低下すると
いう問題点を有していた。さらに、二次電池のハイレー
ト放電や充放電サイクル特性を改善するために、Mnに
近いイオン半径を持つFe、Co、Ni、Mgといった
低価数カチオンでMnを置換する場合は、この溶融含浸
法においても、Mnと置換カチオンの分布が不均一なも
のとならざるを得なかった。
However, a porous manganese raw material is required as a starting material. However, in order to obtain this porous manganese raw material, a crushing process is required, and a specially prepared crushing device is required to perform this process. There has been a problem that impurities are mixed and the quality of the obtained composite oxide powder as a positive electrode active material is deteriorated or leads to an increase in cost. Further, unless the material is calcined at a low temperature for a long time in order to suppress the evaporation of the low melting point lithium raw material, the crystallinity of the obtained composite oxide deteriorates. For this reason, when used as an active material of a secondary battery, there has been a problem that the crystal structure is broken and the capacity of the secondary battery is reduced during repeated charge / discharge cycles of the battery. Further, when replacing Mn with a low-valent cation such as Fe, Co, Ni, or Mg having an ionic radius close to Mn in order to improve the high-rate discharge and charge / discharge cycle characteristics of the secondary battery, the melt impregnation method is used. Also, the distribution of Mn and the substituted cation had to be non-uniform.

【0010】(c)の噴霧熱分解法においては、スピネ
ル型リチウムマンガン複合酸化物を構成する元素をイオ
ンレベルで均一に混合できるため、溶融含浸法と比較し
ても、格段に均一性を増すことができる。又、原料の粉
砕工程を必要としないため、粉砕工程に起因する不純物
の混入を防止できるという利点を有している。
In the spray pyrolysis method (c), the elements constituting the spinel-type lithium manganese composite oxide can be uniformly mixed at the ionic level, so that the uniformity is remarkably increased as compared with the melt impregnation method. be able to. Further, since there is no need for a raw material pulverizing step, there is an advantage that contamination of impurities due to the pulverizing step can be prevented.

【0011】しかしながら、噴霧熱分解法では、脱水、
乾燥及び熱分解の一連の操作が数秒以内の短時間のうち
に行われるため、従来の焼成処理に比べて熱履歴が極め
て短く、合成した複合酸化物の結晶性が悪くなる傾向を
示す。このため、二次電池の活物質として用いた場合、
電池の充放電サイクルを繰り返すうちに、結晶構造が崩
れ二次電池の容量が低下するという問題点を有してい
た。又、合成した複合酸化物の比表面積が数十m2 /g
と非常に大きいため、この複合酸化物と接触する電解液
が分解して、二次電池の充放電サイクル特性や保存特性
を著しく低下させる場合があるという問題点を有してい
た。
However, in the spray pyrolysis method, dehydration,
Since a series of operations of drying and thermal decomposition are performed within a short time within several seconds, the heat history is extremely short as compared with the conventional calcination treatment, and the synthesized composite oxide tends to have poor crystallinity. Therefore, when used as an active material of a secondary battery,
As the charge / discharge cycle of the battery is repeated, the crystal structure is broken and the capacity of the secondary battery is reduced. The specific surface area of the synthesized composite oxide is several tens m 2 / g.
Therefore, there is a problem that the electrolytic solution in contact with the composite oxide is decomposed and the charge / discharge cycle characteristics and storage characteristics of the secondary battery may be significantly reduced.

【0012】そこで、本発明の目的は、上記問題点を解
決し、リチウム二次電池の正極活物質として用いたとき
に、充放電容量が大きくかつ充放電サイクル特性に優れ
た特性を得ることができるリチウムマンガン複合酸化物
の製造方法を提供することにある。
Accordingly, an object of the present invention is to solve the above-mentioned problems and to obtain characteristics having a large charge / discharge capacity and excellent charge / discharge cycle characteristics when used as a positive electrode active material of a lithium secondary battery. An object of the present invention is to provide a method for producing a lithium manganese composite oxide that can be produced.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するた
め、本発明のリチウムマンガン複合酸化物の製造方法
は、リチウムマンガン複合酸化物を構成する金属元素を
含みかつオキシポリカルボン酸又は水に可溶な化合物
と、ポリオールと、オキシポリカルボン酸とを反応させ
て水溶性の複合カルボン酸エステル錯体オリゴマーを生
成させた後、該生成物を熱分解しその後アニールするこ
とを特徴とする。
In order to achieve the above object, a method for producing a lithium manganese composite oxide according to the present invention comprises a metal element constituting the lithium manganese composite oxide, and the manganese composite oxide is soluble in oxypolycarboxylic acid or water. After reacting a soluble compound, a polyol and an oxypolycarboxylic acid to form a water-soluble complex carboxylate complex oligomer, the product is thermally decomposed and then annealed.

【0014】又、前記熱分解の方法は、前記複合カルボ
ン酸エステル錯体オリゴマーが生成した反応液を500
〜900℃の雰囲気中に噴霧する方法であることを特徴
とする。
Further, the method of the thermal decomposition is characterized in that the reaction solution in which the complex carboxylic acid ester complex oligomer is formed
It is a method of spraying in an atmosphere of up to 900 ° C.

【0015】又、前記熱分解の方法は、前記複合カルボ
ン酸エステル錯体オリゴマーが生成した反応液を固液分
離し、その固形分を500〜900℃で熱処理する方法
であることを特徴とする。
The thermal decomposition method is characterized in that the reaction solution in which the complex carboxylic acid ester complex oligomer has been formed is subjected to solid-liquid separation, and the solid content is heat-treated at 500 to 900 ° C.

【0016】又、前記アニールの温度は600〜850
℃であることを特徴とする。
Further, the annealing temperature is 600 to 850.
° C.

【0017】さらに、前記リチウムマンガン複合酸化物
は、一般式:LiMy Mn2-y 4 (但し、MはCr,N
i,Fe,Co,Mg,Liからなる群から選ばれた少
なくとも1種であり、0≦y≦0.4である)で表され
ることを特徴とする。
Further, the lithium manganese composite oxide has a general formula: LiM y Mn 2-y O 4 ( where M is Cr, N
at least one selected from the group consisting of i, Fe, Co, Mg, and Li, where 0 ≦ y ≦ 0.4).

【0018】ここで、出発原料として用いるリチウムマ
ンガン複合酸化物を構成する金属元素を含む化合物とし
ては、水又はオキシポリカルボン酸に可溶であれば、任
意のものを使用できる。代表的な水溶性化合物としては
酢酸塩、ギ酸塩、塩化物、硝酸塩などが挙げられる。
又、オキシポリカルボン酸に可溶である代表的な化合物
としては、炭酸塩が挙げられる。これら酢酸塩、ギ酸
塩、塩化物、硝酸塩及び炭酸塩は、アルコキシドなどの
分子中の水素イオンを金属イオンで置換した有機化合物
と比べて極めて安価であり、原料コストを低く抑えるこ
とができるので工業的に極めて有利である。又、これら
化合物の酢酸根、ギ酸根、塩素、硝酸根及び炭酸根は、
熱分解処理時にガスとなって飛散し粉体中に残留するこ
とがないので、不純物を含まない高純度のリチウムマン
ガン複合酸化物が得られる。
Here, as the compound containing the metal element constituting the lithium manganese composite oxide used as a starting material, any compound can be used as long as it is soluble in water or oxypolycarboxylic acid. Representative water-soluble compounds include acetate, formate, chloride, nitrate and the like.
Typical compounds soluble in oxypolycarboxylic acid include carbonates. These acetates, formates, chlorides, nitrates and carbonates are extremely inexpensive as compared to organic compounds in which hydrogen ions in molecules such as alkoxides are replaced by metal ions, and the cost of raw materials can be kept low. This is extremely advantageous in terms of efficiency. In addition, acetate, formate, chlorine, nitrate and carbonate of these compounds,
A high purity lithium manganese composite oxide containing no impurities can be obtained because it does not become a gas at the time of the thermal decomposition treatment and scatter and remains in the powder.

【0019】又、ポリオールとしては、エチレングリコ
ール、プロピレングリコール、ジエチテングリコール、
ジプロピレングリコール、ポリエチレングリコール、ポ
リプロピレングリコール、トリグリコール、テトラエチ
レングリコール、ブタンジオール−1,4−ヘキシレン
グリコール、オクチレングリコールなどのグリコールの
他、グリセリンなどの三価アルコール、四価、五価アル
コールなどの多価アルコールを適宜用いることができ
る。
As the polyol, ethylene glycol, propylene glycol, diethylene glycol,
In addition to glycols such as dipropylene glycol, polyethylene glycol, polypropylene glycol, triglycol, tetraethylene glycol, butanediol-1,4-hexylene glycol and octylene glycol, trihydric alcohols such as glycerin, tetrahydric and pentahydric alcohols Such polyhydric alcohols can be used as appropriate.

【0020】又、オキシポリカルボン酸の代表的なもの
としてはクエン酸が挙げられるが、他に林檎酸、メソ酒
石酸、葡萄酸、メコン酸などを適宜用いることができ
る。
A typical example of the oxypolycarboxylic acid is citric acid. In addition, malic acid, meso-tartaric acid, grape acid, meconic acid and the like can be used as appropriate.

【0021】ところで、リチウムマンガン複合酸化物を
構成する金属元素を含みかつオキシポリカルボン酸又は
水に可溶な化合物と、ポリオールと、オキシポリカルボ
ン酸とを反応させると、水溶性の複合カルボン酸エステ
ル錯体オリゴマーが生成し、リチウムマンガン複合酸化
物を構成する金属元素がイオンレベルでオリゴマー分子
中に均一に分散した状態となる。このオリゴマー溶液を
所定温度に維持した雰囲気中、例えば加熱筒内に霧状に
吹き込むと、瞬間的にオリゴマーが熱分解される。即
ち、従来の仮焼処理に比べて熱履歴が極めて短く、しか
も熱処理温度が低いため、凝集の全くない微細な球状の
リチウムマンガン複合酸化物が生成される。したがっ
て、従来法のように粉砕工程を必要とせず、粉砕工程に
起因する不純物の混入を排除できる。又、洗浄工程を必
要とせず、複合酸化物構成元素の洗浄による損失即ち組
成ずれを防止できる。
By the way, when a compound containing a metal element constituting a lithium manganese composite oxide and containing a metal element and being soluble in oxypolycarboxylic acid or water, a polyol and oxypolycarboxylic acid are reacted, a water-soluble composite carboxylic acid is obtained. An ester complex oligomer is generated, and the metal elements constituting the lithium manganese composite oxide are uniformly dispersed in the oligomer molecule at the ion level. When this oligomer solution is blown into an atmosphere maintained at a predetermined temperature, for example, into a heating cylinder, the oligomer is instantaneously thermally decomposed. That is, since the heat history is extremely short and the heat treatment temperature is low as compared with the conventional calcination treatment, a fine spherical lithium manganese composite oxide having no aggregation is generated. Therefore, unlike the conventional method, a pulverizing step is not required, and contamination of impurities caused by the pulverizing step can be eliminated. Further, a cleaning step is not required, and loss due to cleaning of the composite oxide constituent elements, that is, composition deviation can be prevented.

【0022】又、熱分解により得られた微細な複合酸化
物粉末をアニールすることにより、複合酸化物の比表面
積を小さくすることができる。
The specific surface area of the composite oxide can be reduced by annealing the fine composite oxide powder obtained by thermal decomposition.

【0023】[0023]

【発明の実施の形態】以下、本発明のリチウムマンガン
複合酸化物の製造方法の実施の形態について、LiMn
2 4 の場合を例として、実施例に基づき説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of a method for producing a lithium manganese composite oxide according to the present invention will be described with reference to LiMn.
The case of 2 O 4 will be described by way of example.

【0024】(実施例)まず、リチウム化合物として炭
酸リチウムと、マンガン化合物として硝酸マンガンを用
意した。次に、Li:Mnのモル比が1:2になるよう
に、炭酸リチウム0.25モルと硝酸マンガン1モルを
それぞれ正確に秤量分取して反応容器に入れ、これに
1.6モルのクエン酸とクエン酸に対して0.7倍モル
のエチレングリコールを加えた後、さらに純水を加えて
全量を800mlとした。
(Example) First, lithium carbonate was prepared as a lithium compound, and manganese nitrate was prepared as a manganese compound. Next, 0.25 mol of lithium carbonate and 1 mol of manganese nitrate were each accurately weighed and weighed and placed in a reaction vessel so that the molar ratio of Li: Mn was 1: 2. After adding citric acid and ethylene glycol in a molar amount 0.7 times the amount of citric acid, pure water was further added to bring the total amount to 800 ml.

【0025】その後、反応容器を110℃に維持したオ
イルバスにセットし、攪拌しながら2時間反応を行なわ
せて水溶性の複合カルボン酸エステルオリゴマーを生成
させた。反応終了後、反応容器をオイルバスより取り出
して室温まで冷却し、次いで、反応容器に純水を加えて
希釈して全量を1000mlとした。
Thereafter, the reaction vessel was set in an oil bath maintained at 110 ° C., and the reaction was carried out for 2 hours with stirring to produce a water-soluble complex carboxylic acid ester oligomer. After the completion of the reaction, the reaction vessel was taken out of the oil bath and cooled to room temperature. Then, the reaction vessel was diluted with pure water to make the total volume 1000 ml.

【0026】次に、このオリゴマー溶液を400〜90
0℃間の所定温度に調整した縦型熱分解炉中へ1200
ml/時間の速度で霧状に吹き込んで熱分解させて複合
酸化物を得た。その後、得られた複合酸化物を500〜
900℃間の所定の温度で2時間アニールして、表1の
試料番号1〜8に示すリチウムマンガン複合酸化物の粉
末を得た。
Next, this oligomer solution is mixed with
1200 into a vertical pyrolysis furnace adjusted to a predetermined temperature between 0 ° C
A composite oxide was obtained by blowing in a mist at a rate of ml / hour and thermally decomposing. Then, the obtained composite oxide was 500 to
Annealing was performed at a predetermined temperature of 900 ° C. for 2 hours to obtain lithium manganese composite oxide powders shown in Sample Nos. 1 to 8 in Table 1.

【0027】次に、以上得られた複合酸化物の粉末につ
いて、走査型電子顕微鏡(SEM)写真を撮り、それよ
り粒径を求めた。又、窒素吸着法により比表面積を求め
た。さらに、X線回折(XRD)分析法により、複合酸
化物の同定を行なった。結果を表1に示す。なお表1中
のLMはLiMn2 4 を表し、MOはMn2 3 を表
す。
Next, a scanning electron microscope (SEM) photograph was taken of the composite oxide powder obtained above, and the particle size was determined therefrom. The specific surface area was determined by a nitrogen adsorption method. Further, the composite oxide was identified by X-ray diffraction (XRD) analysis. Table 1 shows the results. In Table 1, LM represents LiMn 2 O 4 and MO represents Mn 2 O 3 .

【0028】又、得られたLiMn2 4 粉体を正極活
物質としたボタン型のリチウム二次電池を作製し、充放
電試験を行ないその放電容量を求めた。なお、リチウム
二次電池の正極には、LiMn2 4 粉体に導電剤とし
てのアセチレンブラックと結着剤としてのポリテトラフ
ルオロエチレンを加えてシート状に成形した後、SUS
メッシュに圧着したものを用いた。負極には金属リチウ
ムを用いた。正極と負極間のスペーサにはポリプロピレ
ン製多孔フィルムを用い、プロピレンカーボネートと
1,1−ジメトキシエタンの混合溶媒に過塩素酸リチウ
ムを溶解させたものを電解液として含浸させた。又、充
放電は4.3〜3.0V間の電位で0.5mA/cm2
の定電流で行なった。これらの結果を表2に示す。
Further, a button-type lithium secondary battery using the obtained LiMn 2 O 4 powder as a positive electrode active material was prepared, and a charge / discharge test was performed to determine a discharge capacity thereof. The positive electrode of the lithium secondary battery was formed into a sheet by adding LiMn 2 O 4 powder to acetylene black as a conductive agent and polytetrafluoroethylene as a binder, and then forming a sheet of SUS.
What was crimped to the mesh was used. Metallic lithium was used for the negative electrode. A porous film made of polypropylene was used as a spacer between the positive electrode and the negative electrode, and a solution in which lithium perchlorate was dissolved in a mixed solvent of propylene carbonate and 1,1-dimethoxyethane was impregnated as an electrolytic solution. The charge and discharge were performed at a potential of 4.3 to 3.0 V at 0.5 mA / cm 2.
At a constant current. Table 2 shows the results.

【0029】(比較例1)まず、リチウムマンガン複合
酸化物を構成する金属元素の化合物として、硝酸リチウ
ムと電解二酸化マンガンを用意した。次に、Li:Mn
のモル比が1:2になるように、硝酸リチウムと電解二
酸化マンガンをそれぞれ正確に秤量分取して容器に入
れ、溶媒にアルコール、玉石にPSZを用いて30時間
ボールミル粉砕を行った後、エバポレータで溶媒を除去
し、原料粉末を得た。その後、この粉末をアルミナ製の
匣に入れ、600℃で48時間焼成して、リチウムを電
解二酸化マンガン内に溶融含浸させることにより複合酸
化物を得た。
(Comparative Example 1) First, lithium nitrate and electrolytic manganese dioxide were prepared as compounds of metal elements constituting the lithium manganese composite oxide. Next, Li: Mn
Lithium nitrate and electrolytic manganese dioxide were each accurately weighed and weighed and placed in a container so that the molar ratio of the mixture was 1: 2, and after ball milling for 30 hours using alcohol as a solvent and PSZ as a cobblestone, The solvent was removed with an evaporator to obtain a raw material powder. Thereafter, this powder was placed in a box made of alumina, baked at 600 ° C. for 48 hours, and lithium was melt-impregnated in electrolytic manganese dioxide to obtain a composite oxide.

【0030】次に、以上得られた複合酸化物の粉末につ
いて、実施例と同様にして、粒径及び比表面積を求める
とともに複合酸化物の同定を行なった。結果を表1に示
す。次に、実施例と同様にして、二次電池を作製し、充
放電試験を行なった。結果を表2に示す。
Next, the particle diameter and specific surface area of the obtained composite oxide powder were determined and the composite oxide was identified in the same manner as in the examples. Table 1 shows the results. Next, a secondary battery was fabricated and a charge / discharge test was performed in the same manner as in the example. Table 2 shows the results.

【0031】(比較例2)まず、リチウムマンガン複合
酸化物を構成する金属元素の化合物として、炭酸リチウ
ムと炭酸マンガンを用意した。次に、Li:Mnのモル
比が1:2になるように、炭酸リチウムと炭酸マンガン
をそれぞれ正確に秤量分取して容器に入れ、溶媒にアル
コール、玉石にPSZを用いて30時間ボールミル粉砕
を行った後、エバポレータで溶媒を除去し、原料粉末を
得た。その後、この粉末をアルミナ製の匣に入れ、90
0℃で48時間焼成して複合酸化物を得た。
(Comparative Example 2) First, lithium carbonate and manganese carbonate were prepared as compounds of metal elements constituting the lithium manganese composite oxide. Next, lithium carbonate and manganese carbonate were each accurately weighed and dispensed so that the molar ratio of Li: Mn was 1: 2, put in a container, and ball milled for 30 hours using alcohol as a solvent and PSZ as a cobblestone. After that, the solvent was removed with an evaporator to obtain a raw material powder. Then, put this powder in an alumina box,
The mixture was fired at 0 ° C. for 48 hours to obtain a composite oxide.

【0032】次に、以上得られた複合酸化物の粉末につ
いて、実施例と同様にして、粒径及び比表面積を求める
とともに複合酸化物の同定を行なった。結果を表1に示
す。次に、実施例と同様にして、二次電池を作製し、充
放電試験を行なった。結果を表2に示す。
Next, the particle diameter and specific surface area of the obtained composite oxide powder were determined in the same manner as in the examples, and the composite oxide was identified. Table 1 shows the results. Next, a secondary battery was fabricated and a charge / discharge test was performed in the same manner as in the example. Table 2 shows the results.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】表1及び表2の結果から明らかなように、
本発明の方法により得られたLiMn2 4 を正極活物
質とすることにより、初期容量及び充放電サイクル特性
に優れたリチウム二次電池が得られる。
As is clear from the results in Tables 1 and 2,
By using LiMn 2 O 4 obtained by the method of the present invention as a positive electrode active material, a lithium secondary battery having excellent initial capacity and charge / discharge cycle characteristics can be obtained.

【0036】なお、熱分解の具体的な温度範囲として
は、500〜900℃が好ましい。即ち、この温度範囲
において、LiMn2 4 の単相が得られる。上限は、
生成したLiMn2 4 が熱により再度分解しない温度
以下に限定される。
The specific temperature range of the thermal decomposition is preferably from 500 to 900.degree. That is, in this temperature range, a single phase of LiMn 2 O 4 is obtained. The upper limit is
The temperature is limited to a temperature at which the generated LiMn 2 O 4 is not decomposed again by heat.

【0037】又、アニールの具体的な温度範囲として
は、600〜850℃が好ましい。この温度内におい
て、リチウム二次電池の正極活物質として適した粒径に
成長したリチウムマンガン複合酸化物が得られる。
The specific temperature range of the annealing is preferably from 600 to 850 ° C. At this temperature, a lithium manganese composite oxide grown to a particle size suitable as a positive electrode active material of a lithium secondary battery is obtained.

【0038】なお、上記実施例においては、リチウムマ
ンガン複合酸化物がLiMn2 4の場合について説明
したが、本発明はこれに限定されるものではない。一般
式LiMy Mn2-y 4 (但し、MはCr,Ni,F
e,Co,Mg,Liからなる群から選ばれた少なくと
も1種であり、0≦y≦0.4である)で表されるリチ
ウムマンガン複合酸化物全般について、同様の効果を得
ることができる。
In the above embodiment, the case where the lithium manganese composite oxide is LiMn 2 O 4 has been described, but the present invention is not limited to this. General formula LiM y Mn 2-y O 4 (where M is Cr, Ni, F
and at least one selected from the group consisting of e, Co, Mg, and Li, where 0 ≦ y ≦ 0.4). .

【0039】[0039]

【発明の効果】以上の説明から明らかなように、本発明
の製造方法によれば、ミクロ的に組成が均一でありしか
も不純物の混入を抑えたリチウムマンガン複合酸化物の
粉末を得ることができる。
As is apparent from the above description, according to the production method of the present invention, it is possible to obtain a lithium manganese composite oxide powder having a uniform composition microscopically and containing less impurities. .

【0040】したがって、このリチウムマンガン複合酸
化物を正極活物質として用いることにより、充放電容量
が大きくかつ充放電サイクル特性に優れたリチウム二次
電池を得ることができる。
Therefore, by using this lithium manganese composite oxide as a positive electrode active material, a lithium secondary battery having a large charge / discharge capacity and excellent charge / discharge cycle characteristics can be obtained.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01M 4/58 H01M 10/40 Z 10/40 C04B 35/00 A ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H01M 4/58 H01M 10/40 Z 10/40 C04B 35/00 A

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 リチウムマンガン複合酸化物を構成する
金属元素を含みかつオキシポリカルボン酸又は水に可溶
な化合物と、ポリオールと、オキシポリカルボン酸とを
反応させて水溶性の複合カルボン酸エステル錯体オリゴ
マーを生成させた後、該生成物を熱分解しその後アニー
ルすることを特徴とする、リチウムマンガン複合酸化物
の製造方法。
1. A water-soluble composite carboxylic acid ester obtained by reacting a compound containing a metal element constituting a lithium manganese composite oxide and soluble in oxypolycarboxylic acid or water, a polyol and oxypolycarboxylic acid. A method for producing a lithium manganese composite oxide, comprising: producing a complex oligomer; thermally decomposing the product; and annealing the product.
【請求項2】 前記熱分解の方法は、前記複合カルボン
酸エステル錯体オリゴマーが生成した反応液を500〜
900℃の雰囲気中に噴霧する方法であることを特徴と
する、請求項1記載のリチウムマンガン複合酸化物の製
造方法。
2. The method of thermal decomposition, wherein the reaction solution in which the complex carboxylate complex oligomer has been formed is 500 to
The method for producing a lithium manganese composite oxide according to claim 1, wherein the method is spraying in an atmosphere at 900 ° C.
【請求項3】 前記熱分解の方法は、前記複合カルボン
酸エステル錯体オリゴマーが生成した反応液を固液分離
し、その固形分を500〜900℃で熱処理する方法で
あることを特徴とする、請求項1記載のリチウムマンガ
ン複合酸化物の製造方法。
3. The method of thermal decomposition, wherein the reaction solution in which the complex carboxylic acid ester complex oligomer is formed is subjected to solid-liquid separation, and the solid content is heat-treated at 500 to 900 ° C. A method for producing a lithium manganese composite oxide according to claim 1.
【請求項4】 前記アニールの温度は600〜850℃
であることを特徴とする、請求項1〜3のいずれかに記
載のリチウムマンガン複合酸化物の製造方法。
4. The annealing temperature is 600 to 850 ° C.
The method for producing a lithium manganese composite oxide according to any one of claims 1 to 3, wherein
【請求項5】 前記リチウムマンガン複合酸化物は、一
般式:LiMy Mn2-y 4 (但し、MはCr,Ni,
Fe,Co,Mg,Liからなる群から選ばれた少なく
とも1種であり、0≦y≦0.4である)で表されるこ
とを特徴とする、請求項1〜4のいずれかに記載のリチ
ウムマンガン複合酸化物の製造方法。
5. The lithium manganese composite oxide has a general formula: LiM y Mn 2-y O 4 (where M is Cr, Ni,
5. It is at least one selected from the group consisting of Fe, Co, Mg, and Li, and 0 ≦ y ≦ 0.4. Production method of lithium manganese composite oxide.
JP8343162A 1996-12-24 1996-12-24 Production of lithium-manganese double oxide Pending JPH10182161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8343162A JPH10182161A (en) 1996-12-24 1996-12-24 Production of lithium-manganese double oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8343162A JPH10182161A (en) 1996-12-24 1996-12-24 Production of lithium-manganese double oxide

Publications (1)

Publication Number Publication Date
JPH10182161A true JPH10182161A (en) 1998-07-07

Family

ID=18359400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8343162A Pending JPH10182161A (en) 1996-12-24 1996-12-24 Production of lithium-manganese double oxide

Country Status (1)

Country Link
JP (1) JPH10182161A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000059830A1 (en) * 1999-03-30 2000-10-12 Toho Titanium Co., Ltd. Method for preparing lithium manganate, lithium manganate, positive electrode for lithium secondary cell containing the same as active material and lithium secondary cell
EP1382570A1 (en) * 2002-07-09 2004-01-21 Shoei Chemical Inc. Method for manufacturing highly-crystallized double oxide powder
KR100553738B1 (en) * 1999-10-26 2006-02-20 삼성에스디아이 주식회사 Spraying machine of bonding mixture for cell
JP2006188372A (en) * 2004-12-28 2006-07-20 Japan Fine Ceramics Center Manufacturing method of ceramic powder
JP2007261939A (en) * 2006-03-29 2007-10-11 Samsung Sdi Co Ltd Porous metal oxide and method of preparing the same
JP2011108406A (en) * 2009-11-13 2011-06-02 Univ Of Fukui Method of manufacturing active material for lithium ion secondary battery positive electrode

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4614251B2 (en) * 1999-03-30 2011-01-19 東邦チタニウム株式会社 Method for producing lithium manganate
EP1116692A1 (en) * 1999-03-30 2001-07-18 Toho Titanium Co., Ltd. Method for preparing lithium manganate, lithium manganate, positive electrode for lithium secondary cell containing the same as active material and lithium secondary cell
US6699297B1 (en) 1999-03-30 2004-03-02 Toho Titanium Co., Ltd. Method for preparing lithium manganate and positive electrode for lithium secondary cell containing the same
WO2000059830A1 (en) * 1999-03-30 2000-10-12 Toho Titanium Co., Ltd. Method for preparing lithium manganate, lithium manganate, positive electrode for lithium secondary cell containing the same as active material and lithium secondary cell
EP1116692A4 (en) * 1999-03-30 2007-04-04 Toho Titanium Co Ltd Method for preparing lithium manganate, lithium manganate, positive electrode for lithium secondary cell containing the same as active material and lithium secondary cell
KR100553738B1 (en) * 1999-10-26 2006-02-20 삼성에스디아이 주식회사 Spraying machine of bonding mixture for cell
EP1382570A1 (en) * 2002-07-09 2004-01-21 Shoei Chemical Inc. Method for manufacturing highly-crystallized double oxide powder
JP2004043216A (en) * 2002-07-09 2004-02-12 Shoei Chem Ind Co Method for manufacturing highly-crystallized double oxide powder
US7138102B2 (en) 2002-07-09 2006-11-21 Shoei Chemical Inc. Method for manufacturing highly-crystallized double oxide powder
JP2006188372A (en) * 2004-12-28 2006-07-20 Japan Fine Ceramics Center Manufacturing method of ceramic powder
JP2007261939A (en) * 2006-03-29 2007-10-11 Samsung Sdi Co Ltd Porous metal oxide and method of preparing the same
US8617510B2 (en) 2006-03-29 2013-12-31 Samsung Sdi Co., Ltd. Porous metal oxide and method of preparing the same
JP2011108406A (en) * 2009-11-13 2011-06-02 Univ Of Fukui Method of manufacturing active material for lithium ion secondary battery positive electrode

Similar Documents

Publication Publication Date Title
JP3221352B2 (en) Method for producing spinel-type lithium manganese composite oxide
JP3489685B2 (en) Lithium manganate, method for producing the same, and lithium battery using the same
JP3033899B1 (en) Positive electrode active material for lithium secondary battery, method for producing the same and use thereof
JP3036694B2 (en) Method for producing Li composite oxide for Li-ion battery electrode material
JPH11302020A (en) Lithium manganese compound oxide, its production and its use
JP2000072443A (en) Production of lithium manganese multiple oxide and its use
JPWO2018169004A1 (en) Nickel-manganese composite oxide and method for producing the same
JPH10214624A (en) Manufacture of nonaqueous secondary battery positive active material and lithium secondary battery using the same
KR100638132B1 (en) Method for producing lithium manganate and lithium cell using said lithium manganate
JPH10182161A (en) Production of lithium-manganese double oxide
JP2001114521A (en) Trimanganese tetraoxide and method for its production
KR20040092245A (en) 5V spinel complex-oxide prepared by ultrasonic spray pyrolysis methode, method for preparing the same, and lithium secondary batteries using the same
JP3407594B2 (en) Method for producing lithium nickel composite oxide
KR100557242B1 (en) 3V spinel complex-oxide as cathode material of lithium secondary batteries, the preparation method thereof, and the lithium secondary batteries using the same
Fauteux et al. Flexible synthesis of mixed metal oxides illustrated for LiMn2O4 and LiCoO2
JPH11278848A (en) Production of spinel type lithium manganese multiple oxide
CN113707873A (en) Lithium ion battery positive electrode material using eutectic lithium salt and preparation method thereof
JPH082921A (en) Lithium-manganese double oxide, its production and use
JPH10182160A (en) Production of lithium-manganese double oxide
JP2002003220A (en) Anode material for lithium ion secondary battery, anode and battery using it
JP2001163622A (en) Lithium manganese oxide, its production process and secondary cell using the same oxide
JPH10182157A (en) Production of lithium manganese multiple oxide
JP2001240417A (en) Method for manufacturing lithium manganate and lithium cell using the same
JP2003054952A (en) Method of producing lithium-manganese complex oxide and lithium battery obtained by using the lithium- manganese complex oxide
JPH10114527A (en) Production of lithium-cobalt multiple oxide