JP2002003220A - Anode material for lithium ion secondary battery, anode and battery using it - Google Patents

Anode material for lithium ion secondary battery, anode and battery using it

Info

Publication number
JP2002003220A
JP2002003220A JP2000180980A JP2000180980A JP2002003220A JP 2002003220 A JP2002003220 A JP 2002003220A JP 2000180980 A JP2000180980 A JP 2000180980A JP 2000180980 A JP2000180980 A JP 2000180980A JP 2002003220 A JP2002003220 A JP 2002003220A
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
secondary battery
composite oxide
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000180980A
Other languages
Japanese (ja)
Other versions
JP4654488B2 (en
Inventor
Michihiro Ikeda
道弘 池田
Kenji Okahara
賢二 岡原
Yuko Ishida
優子 石田
Akira Utsunomiya
明 宇都宮
Koji Shima
耕司 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2000180980A priority Critical patent/JP4654488B2/en
Publication of JP2002003220A publication Critical patent/JP2002003220A/en
Application granted granted Critical
Publication of JP4654488B2 publication Critical patent/JP4654488B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an anode-activating material which contains lithium and manganese compound oxide and is used for a lithium ion secondary battery with a superior recycle characteristic. SOLUTION: The anode material for a lithium ion secondary battery has a character that the material contains (a) lithium and manganese compound oxide that has a spinel structure of lithium manganese oxide in which one part of manganese site is substituted by other elements and the substituted element are distributed so that the standard deviation σ against the average of the substituted elements included in each primary crystal lattice is under 50% and (b) the compound oxide with lithium and at least a transition metal other than (a).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウムイオン二次
電池用正極材料に関するものである。詳しくは、リチウ
ムマンガン複合酸化物を含有する正極材料に関する。
The present invention relates to a positive electrode material for a lithium ion secondary battery. Specifically, the present invention relates to a positive electrode material containing a lithium manganese composite oxide.

【0002】[0002]

【従来の技術】正極及び負極が互いにリチウムイオンを
吸蔵・放出することによって電池として機能するリチウ
ムイオン二次電池は、高電圧、高エネルギー密度を有
し、携帯電話、携帯用パソコン、ビデオカメラ、電気自
動車等の用途に好適に用いることができる。リチウムイ
オン二次電池の正極活物質として、既に実用化されてい
る層状構造を有するリチウムコバルト複合酸化物は、4
V級の高電圧を得ることができ、かつ、高いエネルギー
密度を有する。しかし、原料であるコバルトは資源的に
も乏しく高価であるため、今後、大幅に需用が拡大して
いく可能性を考慮すると原料供給の面で不安があると共
に、更に価格が高騰することも予想される。リチウムコ
バルト酸化物に代わる正極活物質として、安価なマンガ
ンを原料としたスピネル型のリチウムマンガン複合酸化
物を正極物質として利用することが考えられている。し
かしながら、リチウムマンガン複合酸化物は、上記リチ
ウムコバルト複合酸化物に比し、サイクル特性が劣る、
すなわち50〜60℃の温度で繰り返し充放電を行った
際の容量劣化が大きい点が問題であった。この点に関し
ては、(1)リチウムマンガン複合酸化物の結晶性を改
善する、或いは(2)結晶構造を安定化するために、マ
ンガンサイトの一部を他の元素で置換することにより、
容量劣化が抑制されることが明らかになっているが、係
る改良のみでは、充分なサイクル特性を得るには至って
いない。
2. Description of the Related Art A lithium ion secondary battery, which functions as a battery by having a positive electrode and a negative electrode occlude and release lithium ions from each other, has a high voltage and a high energy density, and is used for mobile phones, portable personal computers, video cameras, It can be suitably used for applications such as electric vehicles. As a positive electrode active material for a lithium ion secondary battery, a lithium-cobalt composite oxide having a layered structure that has already been put into practical use is 4
A V-class high voltage can be obtained, and a high energy density is obtained. However, since the raw material cobalt is scarce in terms of resources and expensive, considering the possibility that demand will expand significantly in the future, there is concern about the supply of raw materials, and the price may rise further. is expected. As a positive electrode active material instead of lithium cobalt oxide, it has been considered to use a spinel-type lithium manganese composite oxide made of inexpensive manganese as a positive electrode material. However, lithium manganese composite oxide is inferior in cycle characteristics to the lithium cobalt composite oxide,
That is, there is a problem in that the capacity is significantly deteriorated when charge and discharge are repeatedly performed at a temperature of 50 to 60 ° C. In this regard, in order to (1) improve the crystallinity of the lithium-manganese composite oxide, or (2) replace some of the manganese sites with other elements in order to stabilize the crystal structure,
Although it has been found that capacity deterioration is suppressed, sufficient improvement in cycle characteristics has not been achieved by such improvement alone.

【0003】[0003]

【発明が解決しようとする課題】本発明は係る事情に鑑
みなされたものであって、リチウムマンガン複合酸化物
を含有し、サイクル特性が優れたリチウムイオン二次電
池の正極活物質を提供することを目的とするものであ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and provides a positive electrode active material for a lithium ion secondary battery containing a lithium manganese composite oxide and having excellent cycle characteristics. It is intended for.

【0004】[0004]

【課題を解決するための手段】本発明者等は、スピネル
型リチウムマンガン複合酸化物のMnサイトの一部を他
元素で置換した場合、各一次結晶粒子間の置換元素含有
量の分布状態がサイクル特性に影響することを見出し、
分布状態が可及的均一なスピネル型リチウムマンガン複
合酸化物を正極活物質とすることを提案(特願平11−
332414)したが、係るスピネル型リチウムマンガ
ン複合酸化物と他のリチウム遷移金属複合酸化物を組み
合わせることにより更にサイクル特性を向上させること
を見出し、本発明を達成した。すなわち本発明の要旨
は、(a)Mnサイトの一部が他元素で置換されたスピ
ネル型リチウムマンガン酸化物であって、各一次結晶粒
子の置換元素含有量の平均値に対するその標準偏差σが
50%以下となるように置換原子が分布しているリチウ
ムマンガン複合酸化物と、(b)少なくとも1種類の
(a)以外のリチウム遷移金属複合酸化物とを含有する
ことを特徴とするリチウムイオン二次電池用正極材料に
存する。本発明はまた、係る材料を用いたリチウムイオ
ン二次電池用正極及び電池にも存する。
The present inventors have found that, when a part of the Mn site of the spinel-type lithium manganese composite oxide is replaced by another element, the distribution state of the content of the replacement element between the primary crystal grains is reduced. Finding that it affects the cycle characteristics,
Proposal of using a spinel-type lithium manganese composite oxide having a distribution state as uniform as possible as a positive electrode active material
However, it has been found that the cycle characteristics are further improved by combining the spinel-type lithium manganese composite oxide with another lithium transition metal composite oxide, and the present invention has been achieved. That is, the gist of the present invention is that (a) a spinel-type lithium manganese oxide in which a part of a Mn site is substituted with another element, and a standard deviation σ of the average value of the substituted element content of each primary crystal particle is A lithium ion comprising: a lithium manganese composite oxide in which substitution atoms are distributed so as to be 50% or less; and (b) at least one lithium transition metal composite oxide other than (a). It exists in the positive electrode material for secondary batteries. The present invention also resides in a positive electrode for a lithium ion secondary battery and a battery using the material.

【0005】[0005]

【発明の実施の形態】以下、本発明について詳細に説明
する。本発明者等の検討によれば、Mnサイトの一部を
他元素で置換したスピネル型リチウムマンガン複合酸化
物は、各一次結晶粒子間の置換元素(他元素)含有量が
均一に分布している場合は、置換元素の平均含有量が同
じであっても、一次粒子間の含有量分布が不均一な場合
に比し、電解液中へのMn溶出量の抑制効果が大きく、
その結果、サイクル特性が向上するという効果を奏す
る。本発明の対象とする(a)のスピネル型リチウムマ
ンガン複合酸化物としては、その化学式が下記一般式
(1)で示される複合酸化物が好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. According to the study of the present inventors, in the spinel-type lithium manganese composite oxide in which a part of the Mn site is replaced by another element, the content of the replacement element (other element) between the primary crystal particles is uniformly distributed. When the average content of the substitution element is the same, even when the content distribution between the primary particles is non-uniform, the effect of suppressing the amount of Mn eluted into the electrolytic solution is large,
As a result, there is an effect that the cycle characteristics are improved. As the spinel-type lithium manganese composite oxide (a) of the present invention, a composite oxide represented by the following general formula (1) is preferable.

【0006】[0006]

【化2】 Li1+XMn2-X-YY4+z (1)## STR2 ## Li 1 + X Mn 2-XY M Y O 4 + z (1)

【0007】(但し、0<X<0.5、0<Y<0.
5、−0.1≦Z≦0.1であり、Mは置換元素を表
す。) Mnサイトの一部を置換する他元素としては、B、S
n、Al、Ti、V、Cr、Fe、Co、Ni、Cu、
Zn、Mg、Gaから選ばれる1種または2種以上の元
素が挙げられ、好ましくはAlである。なお、上記他元
素とともにMnサイトの一部がリチウムにより置換され
る場合もある。本願発明は係るスピネル型リチウムマン
ガン複合酸化物の一次結晶粒子の置換元素含有量の平均
値に対するその標準偏差σが50%以下となるように置
換元素が分布していることを必要とする。
(However, 0 <X <0.5, 0 <Y <0.
5, -0.1 ≦ Z ≦ 0.1, and M represents a substitution element. ) Other elements that replace part of the Mn site include B, S
n, Al, Ti, V, Cr, Fe, Co, Ni, Cu,
One or more elements selected from Zn, Mg, and Ga are mentioned, and Al is preferable. Note that a part of the Mn site may be replaced by lithium together with the other elements. The present invention requires that the substitution elements are distributed such that the standard deviation σ thereof relative to the average value of the substitution element contents of the primary crystal particles of the spinel-type lithium manganese composite oxide is 50% or less.

【0008】他元素で置換したリチウムマンガン複合酸
化物中の置換元素の平均含有量及び各一次粒子毎の置換
元素含有量を求める方法は、特に限定されるものではな
い。例えば、平均含有量は、複合酸化物試料を少量
(0.5〜5g程度)酸で溶解して原子吸光分析、IC
P(誘導結合プラズマ)分析等により測定することがで
きる。但し、この分析手法では、同時に各一次粒子毎の
置換元素含有量を測定することはできない。一方、各一
次粒子毎の置換元素含有量は、例えばAuger電子分
光分析(AES)で測定することができる。AESは、
電子顕微鏡で観察して、特定の一次粒子に電子線をスポ
ット照射し、散乱電子のエネルギー分析により、オージ
ェ効果による放出電子を検出する方法である。AESで
は、電子線のビーム径を100nm以下に絞ることが出
来、局所的な組成分析が可能となるので好ましい。従っ
て、複数の二次粒子から選んだ数個〜数十個の一次粒子
を対象として、それぞれの置換元素含有量を求めること
ができる。また、その測定値を平均して平均含有量を求
めることができる。そして、n個の一次粒子の中、i番
目の置換元素含有量をXi、n個の一次粒子の平均置換
元素含有量をXav.とした場合、変動(偏差の平方
和)S、及び標準偏差σは下式に従って算出される。
The method for obtaining the average content of the substitution element in the lithium manganese composite oxide substituted with another element and the content of the substitution element for each primary particle are not particularly limited. For example, the average content is determined by dissolving a complex oxide sample with a small amount (about 0.5 to 5 g) of an acid and performing atomic absorption analysis, IC
It can be measured by P (inductively coupled plasma) analysis or the like. However, this analysis method cannot simultaneously measure the substitution element content of each primary particle. On the other hand, the substitution element content for each primary particle can be measured by, for example, Auger electron spectroscopy (AES). AES is
This is a method in which specific primary particles are spot-irradiated with an electron beam by observation with an electron microscope, and emitted electrons due to the Auger effect are detected by energy analysis of scattered electrons. AES is preferable because the beam diameter of the electron beam can be reduced to 100 nm or less, and local composition analysis becomes possible. Therefore, it is possible to determine the respective replacement element contents for several to several tens of primary particles selected from a plurality of secondary particles. The average content can be determined by averaging the measured values. Then, among the n primary particles, the i-th substitution element content is Xi, and the average substitution element content of the n primary particles is Xav. , The variation (sum of squares of deviation) S and the standard deviation σ are calculated according to the following equations.

【0009】[0009]

【数1】 (Equation 1)

【0010】本発明の(A)のリチウムマンガン複合酸
化物は、上記の様にして求めた標準偏差σが置換元素含
有量の平均値に対して50%以下、好ましくは30%以
下であることを必要とする。
In the lithium manganese composite oxide (A) of the present invention, the standard deviation σ obtained as described above is not more than 50%, preferably not more than 30%, relative to the average value of the content of the substituted element. Need.

【0011】本発明の特定の標準偏差σを有するリチウ
ムマンガン複合酸化物の製造方法は特に限定されるもの
ではなく、公知の製法に準じ、生成複合酸化物の組成が
可及的に均一となり、一次粒子間の置換元素の含有量分
布が上記範囲となる様に、リチウム化合物、マンガン化
合物、置換元素化合物を粉砕混合し、焼成することによ
り製造することができる。原料のリチウム化合物として
は、例えば、水酸化リチウム、炭酸リチウム、硝酸リチ
ウム、酸化リチウム等あるいはこれらの水和物から選ば
れる1種または2種以上に混合物が使用される。マンガ
ン化合物としては、例えば、MnO2、Mn23、Mn3
4、MnO等のマンガン酸化物、或いはMnCO3等の
炭酸塩、MnOOH等から選ばれる1種または2種以上
の混合物が使用される。Mnサイトの一部を置換する他
元素の化合物としては、前述の元素を含む酸化物、水酸
化物、有機酸塩、塩化物、硝酸塩、硫酸塩等或いはその
水和物が使用される。例えば置換元素がAlの場合は、
Al23、AlOOH、Al(OH)3、Al(CH3
OO)3、AlCl3、Al(NO33・9H2O、Al2
(SO43等が挙げられ、好ましくはAl23、AlO
OH、Al(OH)3である。
The method for producing a lithium manganese composite oxide having a specific standard deviation σ of the present invention is not particularly limited, and the composition of the produced composite oxide becomes as uniform as possible according to a known production method. A lithium compound, a manganese compound, and a substitution element compound can be pulverized, mixed, and fired so that the content distribution of the substitution element between the primary particles is within the above range. As the lithium compound as a raw material, for example, a mixture of one or more selected from lithium hydroxide, lithium carbonate, lithium nitrate, lithium oxide and the like, or a hydrate thereof is used. Examples of the manganese compound include MnO 2 , Mn 2 O 3 , Mn 3
One or a mixture of two or more of manganese oxides such as O 4 and MnO, carbonates such as MnCO 3 , and MnOOH are used. As a compound of another element that partially replaces the Mn site, an oxide, a hydroxide, an organic acid salt, a chloride, a nitrate, a sulfate, or the like or a hydrate thereof containing the aforementioned element is used. For example, when the substitution element is Al,
Al 2 O 3 , AlOOH, Al (OH) 3 , Al (CH 3 C
OO) 3, AlCl 3, Al (NO 3) 3 · 9H 2 O, Al 2
(SO 4 ) 3 and the like, preferably Al 2 O 3 , AlO
OH and Al (OH) 3 .

【0012】これら原料化合物は、生成複合酸化物中の
Li、Mn及び置換元素の所望の組成に対応する割合で
使用される。(a)のリチウムマンガン複合酸化物を製
造するには、先ず原料化合物を混合する。原料が反応温
度において溶融しない化合物の場合は、反応性を上げる
目的で粉砕などの手段により、原料化合物の粒子径を1
0μm以下としておくのが好ましい。粉砕、混合の順序
には特に制限はなく、任意の順序で粉砕、混合すること
ができる。粉砕、混合の方法も均一な混合が可能であれ
は、特に限定されるものではなく、乾式でも湿式でも良
く、例えばボールミル、振動ミル、ビーズミル等の装置
を使用する混合方法が挙げられる。得られる複合酸化物
の一次粒子間の置換元素含有量分布の均一性が良好であ
るという点からは、湿式混合が好ましい。湿式で混合し
た場合には、混合物を乾燥する際に、噴霧乾燥等の手段
により、例えば1〜100μmに造粒しても良い。
These starting compounds are used in proportions corresponding to the desired composition of Li, Mn and the substitution element in the resulting composite oxide. In order to produce the lithium-manganese composite oxide of (a), first, raw material compounds are mixed. When the raw material is a compound that does not melt at the reaction temperature, the particle size of the raw material compound is reduced to 1 by a means such as pulverization in order to increase the reactivity.
It is preferable to set the thickness to 0 μm or less. The order of pulverization and mixing is not particularly limited, and pulverization and mixing can be performed in any order. The method of pulverization and mixing is not particularly limited as long as uniform mixing is possible, and a dry method or a wet method may be used, and examples thereof include a mixing method using an apparatus such as a ball mill, a vibration mill, and a bead mill. The wet mixing is preferable from the viewpoint that the uniformity of the substitution element content distribution among the primary particles of the obtained composite oxide is good. When the mixture is wet, the mixture may be granulated to, for example, 1 to 100 μm by a means such as spray drying when drying the mixture.

【0013】原料混合物は次いで、焼成される。焼成温
度は通常500℃以上、好ましくは550℃以上であ
り、また通常1000℃以下、中でも950℃以下が好
ましい。温度が低すぎると、結晶性の良いリチウムマン
ガン複合酸化物を得るために長時間の反応時間を要し好
ましくない。また、温度が高すぎると、目的とするリチ
ウムマンガン複合酸化物以外の相が生成するか、或いは
欠陥が多いリチウムマンガン複合酸化物を生成する結果
となり、二次電池とした際に容量の低下或いは充放電に
よる結晶構造の崩壊による劣化を招き好ましくない。ま
た、常温から上記の反応温度まで昇温する際には、反応
をより均一に行うために、例えば毎分5℃以下の温度で
徐々に昇温するか、或いは途中で一旦昇温を停止し一定
温度での保持時間を入れることが好ましい。
[0013] The raw material mixture is then calcined. The firing temperature is usually 500 ° C. or higher, preferably 550 ° C. or higher, and is usually 1000 ° C. or lower, particularly preferably 950 ° C. or lower. If the temperature is too low, a long reaction time is required to obtain a lithium-manganese composite oxide having good crystallinity, which is not preferable. On the other hand, if the temperature is too high, a phase other than the intended lithium manganese composite oxide is generated, or a lithium manganese composite oxide having many defects is generated, and the capacity of the secondary battery is reduced or It is not preferable because the crystal structure is degraded due to charge and discharge. When the temperature is raised from room temperature to the above-mentioned reaction temperature, in order to perform the reaction more uniformly, for example, the temperature is gradually raised at a temperature of 5 ° C. or less per minute, or the temperature is temporarily stopped on the way. It is preferable to include a holding time at a constant temperature.

【0014】焼成時間は、通常1時間以上、100時間
以下である。時間が短過ぎると結晶性の良いリチウムマ
ンガン複合酸化物が得られず、長すぎる反応時間は実用
的ではない。結晶欠陥が少ないリチウムマンガン複合酸
化物を得るためには、上記の反応後、ある程度の温度迄
はゆっくり冷却することが好ましく、800℃、好まし
くは600℃迄は5℃/分以下の冷却速度で徐冷するこ
とが好ましい。焼成に使用する加熱装置は、上記の温
度、雰囲気を達成できるものであれば特に制限はなく、
例えば箱形炉、管状炉、トンネル炉、ロータリーキルン
等を使用することができる。この様にして製造したリチ
ウムマンガン酸化物は、粒子径0.1〜3μmの一次粒
子が凝集した粒子径1〜100μmの二次粒子からな
り、かつ、窒素吸着による比表面積が0.1〜5m2
gであることが好ましい。一次粒子の大きさは、原料の
粉砕の程度、焼成温度、焼成時間等により制御すること
が可能である。二次粒子の粒子径は、原料の粉砕条件、
噴霧乾燥を行う場合は噴霧乾燥条件、焼成後の粉砕、分
級条件等により制御することが可能である。比表面積は
一次粒子の粒径及び二次粒子の粒径により制御すること
が可能であり、一次粒子の粒径及び/又は二次粒子の粒
径を大きくすることにより減少する。
The firing time is usually from 1 hour to 100 hours. If the time is too short, a lithium manganese composite oxide having good crystallinity cannot be obtained, and an excessively long reaction time is not practical. In order to obtain a lithium manganese composite oxide having few crystal defects, it is preferable to cool slowly to a certain temperature after the above reaction, and at a cooling rate of 5 ° C./min or less up to 800 ° C., preferably 600 ° C. Slow cooling is preferred. The heating device used for firing is not particularly limited as long as the above-described temperature and atmosphere can be achieved.
For example, a box furnace, a tubular furnace, a tunnel furnace, a rotary kiln and the like can be used. The lithium manganese oxide thus produced is composed of secondary particles having a particle diameter of 1 to 100 μm in which primary particles having a particle diameter of 0.1 to 3 μm are aggregated, and has a specific surface area of 0.1 to 5 m due to nitrogen adsorption. 2 /
g is preferable. The size of the primary particles can be controlled by the degree of pulverization of the raw material, the firing temperature, the firing time, and the like. The particle size of the secondary particles depends on the grinding conditions of the raw material,
When spray drying is performed, it can be controlled by spray drying conditions, pulverization after firing, classification conditions, and the like. The specific surface area can be controlled by the particle size of the primary particles and the particle size of the secondary particles, and is reduced by increasing the particle size of the primary particles and / or the particle size of the secondary particles.

【0015】本発明の正極材料の成分である(b)のリ
チウム遷移金属複合酸化物に含まれる遷移金属として
は、ニッケル、コバルト、マンガン、イリジウム等が挙
げられ、好ましくはニッケル、コバルトであり、特に好
ましくはニッケルである。(b)のリチウム遷移金属複
合酸化物の具体例としては、LiNiO2、LiCo
2、LiMnO2、Li2IrO3等が挙げられ、好まし
くは、LiNiO2、LiCoO2であり、特に好ましく
はLiNiO2である。またこれら化合物の遷移金属の
一部を他の元素で置換した化合物であっても良く、酸素
量が不定比なものであっても良い。複合酸化物(b)の
結晶構造安定化という観点から、遷移金属の一部が他元
素で置換されていることが好ましい。置換する他元素と
しては、通常、Al、Ti、V、Cr、Fe、Co、M
n、Ni、Cu、Zn、Mg、Ga、Zr等が挙げら
れ、好ましくはAl、Cr、Fe,Co、Ni、Mg、
Ga、更に好ましくはAlである。なお、2種以上の他
元素で置換されていても良い。
The transition metal contained in the lithium transition metal composite oxide (b), which is a component of the cathode material of the present invention, includes nickel, cobalt, manganese, iridium and the like, and is preferably nickel or cobalt. Particularly preferred is nickel. Specific examples of the lithium transition metal composite oxide (b) include LiNiO 2 , LiCo
O 2 , LiMnO 2 , Li 2 IrO 3 and the like can be mentioned, preferably LiNiO 2 and LiCoO 2 , and particularly preferably LiNiO 2 . Further, a compound in which a part of the transition metal of these compounds is substituted by another element may be used, and the compound may have a non-stoichiometric oxygen content. From the viewpoint of stabilizing the crystal structure of the composite oxide (b), it is preferable that a part of the transition metal is substituted with another element. As other elements to be substituted, Al, Ti, V, Cr, Fe, Co, M
n, Ni, Cu, Zn, Mg, Ga, Zr, etc., preferably Al, Cr, Fe, Co, Ni, Mg,
Ga, more preferably Al. In addition, two or more kinds of other elements may be substituted.

【0016】置換元素による置換割合は通常、遷移金属
の5モル%以上、好ましくは10モル%以上であり、通
常、遷移金属の60モル%以下、好ましくは40モル%
以下である。置換割合が少なすぎるとサイクル特性が低
下する場合があり、多すぎると容量が低下する場合があ
る。また(b)の複合酸化物の平均粒径と比表面積は、
通常、正極に用いる活物質の平均粒径や比表面積から大
きく逸脱するものでなければ特に問題ないが、(a)の
複合酸化物との接触効率を良くするという観点から、平
均粒径は(a)の複合酸化物の平均粒径より小さく、比
表面積は(a)の比表面積より大きい方が好ましい。
(b)の複合酸化物の好ましい比表面積は、2m2/g
以上、より好ましくは3m2/g以上、特に好ましくは
5m2/g以上である。比表面積を余りに大きくするこ
とは製造上困難でもあり、通常100m2/g以下、好
ましくは30m2/g以下である。なお、ここで比表面
積とは、窒素を吸着種としたBET法で測定した比表面
積をいう。比表面積の大きい粒子は、複合酸化物製造時
の焼成条件等を制御する方法によっても得られるが、形
成された粒子をジェットミルや、乾式ボールミル等で粉
砕して粒径を制御することによっても得ることができ
る。
The substitution ratio of the substitution element is usually at least 5 mol%, preferably at least 10 mol%, and usually at most 60 mol%, preferably at least 40 mol%, of the transition metal.
It is as follows. If the substitution ratio is too small, the cycle characteristics may decrease, and if it is too large, the capacity may decrease. The average particle size and specific surface area of the composite oxide of (b) are as follows:
Usually, there is no particular problem as long as the average particle diameter or specific surface area of the active material used for the positive electrode does not greatly deviate, but from the viewpoint of improving the contact efficiency with the composite oxide of (a), the average particle diameter is ( It is preferable that the average particle size of the composite oxide of a) is smaller than that of the composite oxide and that the specific surface area is larger than that of (a).
A preferred specific surface area of the composite oxide (b) is 2 m 2 / g.
It is more preferably at least 3 m 2 / g, particularly preferably at least 5 m 2 / g. Making the specific surface area too large is also difficult in production, and is usually 100 m 2 / g or less, preferably 30 m 2 / g or less. Here, the specific surface area refers to a specific surface area measured by a BET method using nitrogen as an adsorbed species. Particles having a large specific surface area can be obtained by a method of controlling the firing conditions and the like during the production of the composite oxide, but also by controlling the particle size by grinding the formed particles with a jet mill or a dry ball mill or the like. Obtainable.

【0017】(a)の複合酸化物と(b)の複合酸化物
との複合の形態は特に制限はなく、物理的な混合とする
こともでき、一方の粒子表面に他方の粒子の皮膜を形成
させても良い。好ましい(b)の酸化物であるLiNi
2の層状化合物は従来公知の各種の方法にて製造する
ことが出来る。例えば、リチウム、ニッケル、置換元素
を含有する出発原料を混合後、酸素雰囲気下で加熱焼成
することによって製造することが出来る。なお上記製造
方法において、置換元素を含有する原料を使用せず、N
iサイトが置換されていないリチウムニッケル酸化物を
製造し、これに置換元素含有する化合物の水溶液、溶融
塩或いは蒸気中で反応させた後、必要に応じて置換元素
をリチウムニッケル複合酸化物粒子内に拡散させるため
再度加熱処理を行うことによりNiサイトを置換元素で
置換してもよい。
The form of the composite of the composite oxide (a) and the composite oxide (b) is not particularly limited, and may be a physical mixture, and a film of one particle is coated on the surface of one particle. It may be formed. LiNi which is a preferable oxide of (b)
The layered compound of O 2 can be produced by various conventionally known methods. For example, it can be produced by mixing starting materials containing lithium, nickel, and a substitution element, and then heating and firing the mixture in an oxygen atmosphere. In the above manufacturing method, the raw material containing the substitution element was not used, and N
After preparing a lithium nickel oxide in which the i-site is not substituted and reacting it with an aqueous solution, a molten salt, or a vapor of a compound containing the substitution element, the substitution element is added to the lithium nickel composite oxide particles as necessary. The Ni site may be replaced by a replacement element by performing heat treatment again to diffuse the Ni.

【0018】原料として用いるリチウム化合物、置換元
素の化合物としては、(a)の製造法で説明したものと
同様の化合物が挙げられる。原料として用いられるニッ
ケル化合物としては、NiO等の酸化物、NiCO 3
Ni(NO32、NiSO4、酢酸ニッケル、ジカルボ
ン酸ニッケル、クエン酸ニッケル、脂肪酸ニッケル等の
ニッケル塩、水酸化ニッケル、ハロゲン化物等が挙げら
れ、好ましくは、NiO、NiCO3、ジカルボン酸ニ
ッケル、クエン酸ニッケル、水酸化ニッケルである。こ
れら原料化合物は(a)の製造の場合と同様の方法で混
合、焼成される。層状リチウムニッケル酸化物の焼成
は、例えば、酸素雰囲気下で600〜1000℃の温度
範囲で行われる。なお、特開平9−320598号公報
に記載されるように、焼成雰囲気としては炭酸ガスを除
去した大気も好適に使用出来る。正極材料中における
(a)の複合酸化物と(b)の複合酸化物の割合は、重
量比で(a):(b)=30:70〜99:1の範囲、
より好ましくは、50:50〜95:5の範囲である。
(b)の複合酸化物が上記範囲を逸脱して多くなると安
全性低下の怖れが生じ、逆に少なくなると容量向上効果
を得難くなる。
Lithium compound used as raw material, substitution source
The elemental compounds include those described in the production method of (a).
Similar compounds may be mentioned. Nis used as raw materials
Oxides such as NiO, NiCO Three,
Ni (NOThree)Two, NiSOFour, Nickel acetate, dicarbo
Nickel phosphate, nickel citrate, fatty acid nickel, etc.
Nickel salts, nickel hydroxide, halides, etc.
And preferably NiO, NiCOThree, Dicarboxylic acid
Nickel, nickel citrate and nickel hydroxide. This
These starting compounds are mixed in the same manner as in the production of (a).
If so, it is fired. Firing of layered lithium nickel oxide
Is, for example, a temperature of 600 to 1000 ° C. in an oxygen atmosphere.
Done in a range. In addition, Japanese Patent Application Laid-Open No. 9-320598
As described in the section, the firing atmosphere excludes carbon dioxide gas.
The removed atmosphere can also be suitably used. In the cathode material
The ratio of the composite oxide of (a) to the composite oxide of (b) is heavy.
(A) :( b) = 30: 70-99: 1 in a quantitative ratio,
More preferably, it is in the range of 50:50 to 95: 5.
If the amount of the composite oxide (b) deviates from the above range and increases,
There is fear of a decrease in totality.
Is difficult to obtain.

【0019】(a)及び(b)の複合酸化物を含有する
正極材料を用いて、二次電池を作成することが出来る、
二次電池の一例としては、正極、負極、電解液、セパレ
ーターからなる二次電池が挙げられ、正極と負極の間に
は電解質が存在し、かつ、セパレーターが正極と負極が
接触しない様にそれらの間に配置される。正極として
は、上記の割合の(a)及び(b)の混合物に、導電
材、結着剤並びにこれらを均一に分散させるための溶媒
を一定量混合した後、集電体上に塗布することにより製
造される。ここで用いられる導電材としては、天然黒
鉛、人造黒鉛、アセチレンブラック等が、結着剤として
はポリフッ化ビニリデン、ポリテトラフルオロエチレ
ン、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリ
エチレン、ニトロセルロース等が、分散用の溶媒として
はN−メチルピロリドン、テトラヒドロフラン、ジメチ
ルホルムアミド等が挙げられるがこれらに限定されるも
のではない。集電体の材質としてはアルミニウム、ステ
ンレス等が挙げられる。集電体上に塗布後、乾燥し、通
常ローラープレス、その他により圧密する。一方、負極
としては、カーボン系材料、例えば天然黒鉛、熱分解炭
素等を、Cu等の集電体上に塗布したもの、或いはリチ
ウム金属箔、リチウムーアルミニウム合金等が使用でき
る。
A secondary battery can be prepared using the positive electrode material containing the composite oxide of (a) and (b).
An example of a secondary battery is a secondary battery including a positive electrode, a negative electrode, an electrolyte, and a separator.An electrolyte is present between the positive electrode and the negative electrode, and the separator is provided so that the positive electrode and the negative electrode do not contact each other. Placed between. For the positive electrode, a predetermined amount of a conductive material, a binder, and a solvent for uniformly dispersing these components are mixed with the mixture of the above ratios (a) and (b), and then applied to a current collector. It is manufactured by As the conductive material used here, natural graphite, artificial graphite, acetylene black, etc., as the binder polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl acetate, polymethyl methacrylate, polyethylene, nitrocellulose, etc. are dispersed Examples of the solvent for use include N-methylpyrrolidone, tetrahydrofuran, dimethylformamide, and the like, but are not limited thereto. Examples of the material of the current collector include aluminum and stainless steel. After coating on the current collector, it is dried and compacted usually by a roller press or the like. On the other hand, as the negative electrode, a material obtained by applying a carbon-based material, for example, natural graphite, pyrolytic carbon, or the like on a current collector such as Cu, a lithium metal foil, a lithium-aluminum alloy, or the like can be used.

【0020】電解液としては、非水電解液であり、具体
的には、電解質としてLiCLO4、LiAsF6、Li
PF6 、LiBF4、LiBr、LiCF3SO3等が挙
げられ、電解液を構成する溶媒としては、テトラヒドロ
フラン、1、4−ジオキサン、ジメチルホルムアミド、
アセトニトリル、ベンゾニトリル、ジメチルカーボネー
ト、ジエチルカーボネート、メチルエチルカーボネー
ト、エチレンカーボネート、プロピレンカーボネート、
ブチレンカーボネート等が挙げられるが、これらに限定
されるものではない。またこれら溶媒は単独で使用して
も、或いは2種以上混合して使用しても良い。
The electrolyte is a non-aqueous electrolyte. Specifically, the electrolyte is LiCLO 4 , LiAsF 6 , Li
PF 6 , LiBF 4 , LiBr, LiCF 3 SO 3 and the like. Examples of the solvent constituting the electrolyte include tetrahydrofuran, 1,4-dioxane, dimethylformamide,
Acetonitrile, benzonitrile, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, ethylene carbonate, propylene carbonate,
Examples include butylene carbonate, but are not limited thereto. These solvents may be used alone or in combination of two or more.

【0021】セパレーターとしては、テフロン(登録商
標)、ポリエチレン、ポリプロピレン、ポリエステル等
の高分子、又はガラス繊維等の不織布フィルター、或い
はガラス繊維と高分子繊維の複合不織布フィルター等が
挙げられる。この様な本発明の正極材料を用いることに
より、実施例から明らかなように、高温での充放電サイ
クル後の容量維持率が高い二次電池を得ることが出来
る。
Examples of the separator include a non-woven fabric filter such as a polymer such as Teflon (registered trademark), polyethylene, polypropylene, and polyester, or a non-woven fabric filter such as a glass fiber, or a composite non-woven fabric filter including a glass fiber and a polymer fiber. By using such a positive electrode material of the present invention, a secondary battery having a high capacity retention rate after a high-temperature charge / discharge cycle can be obtained, as is clear from the examples.

【0022】[0022]

【実施例】以下本発明を実施例を用いて更に具体的に説
明するが、本発明はその要旨を超えない限り、以下の実
施例に制約されるものではない。 実施例1 Mn2O3、AlOOH、LiOHを、それぞれ最終的なスピネル型マ
ンガン酸リチウム中の組成で、Li:Mn:Al=1.04:1.8
4:0.12(モル比)となるように秤量し、これに純水を
加えて固形分濃度30wt%のスラリーを調製した。このス
ラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕器を
用いて、スラリー中の固形分の平均粒子径が0.5μm
になる迄、粉砕した後、二流体ノズル噴霧型のスプレー
ドライヤーを用いて、噴霧乾燥を行い、更に大気雰囲気
中で900℃で10時間焼成した。その結果、平均粒子径約
8μmのほぼ球状の造粒粒子が得られ、X線回折を測定
したところ、立方晶のスピネル型マンガン酸リチウムの
構造を有していることが確認された。なお、粒度分布の
測定は、レーザー回折・散乱式粒度分布測定装置(HORI
BA製 LA910)を用いて行った。この様にして得られたス
ピネル型マンガン酸リチウム粉末1gを酸で溶解し、原
子吸光分析法にて組成分析を行ったところ、Li:Mn:Al
=1.04:1.85:0.11(モル比)の組成比であった。
EXAMPLES The present invention will be described more specifically with reference to the following examples, but the present invention is not limited to the following examples unless it exceeds the gist. Example 1 Mn 2 O 3 , AlOOH, and LiOH were each composed of Li: Mn: Al = 1.04: 1.8 in the final spinel-type lithium manganate composition.
It was weighed so as to be 4: 0.12 (molar ratio), and pure water was added thereto to prepare a slurry having a solid concentration of 30 wt%. While stirring the slurry, the average particle diameter of the solid content in the slurry was 0.5 μm using a circulating medium stirring wet pulverizer.
Then, the mixture was pulverized, spray dried using a two-fluid nozzle spray type spray dryer, and further baked at 900 ° C. for 10 hours in an air atmosphere. As a result, substantially spherical granulated particles having an average particle diameter of about 8 μm were obtained. X-ray diffraction measurement confirmed that the particles had a cubic spinel-type lithium manganate structure. The particle size distribution was measured using a laser diffraction / scattering particle size distribution analyzer (HORI
BA910 made by BA). When 1 g of the spinel-type lithium manganate powder thus obtained was dissolved in an acid and analyzed for composition by atomic absorption spectrometry, Li: Mn: Al
The composition ratio was 1.04: 1.85: 0.11 (molar ratio).

【0023】次に、走査電子顕微鏡(SEM)観察の結
果、この正極活物質造粒粒子を構成している一次粒子の
粒子径は0.2〜1.0μmであることが判った。この
一次粒子におけるAl含有量に関して、Auger電子
分光分析法により測定を行った。先ず、計4個の造粒粒
子につき、各造粒粒子毎に、それを構成している一次粒
子3点を選択し、合計12個の一次粒子について、Auge
r電子分光分析を行った(測定装置:VG社製MICROLAB3
10-F)。情報としてはAl及びMnに関する信号強度値が得
られるが、Alの信号強度値/Mnの信号強度値の値を、A
l含有量の尺度として表−1に示した。これら測定値の
平均値に対する標準偏差は、24.5%であった。
Next, as a result of observation by a scanning electron microscope (SEM), it was found that the particle diameter of the primary particles constituting the positive electrode active material granulated particles was 0.2 to 1.0 μm. The Al content in the primary particles was measured by Auger electron spectroscopy. First, for a total of four granulated particles, for each granulated particle, three primary particles constituting the granulated particle are selected.
r Electron spectroscopy was performed (Measuring device: MICROLAB3 manufactured by VG)
10-F). As the information, the signal strength values for Al and Mn are obtained, and the signal strength value of Al / the signal strength value of Mn is represented by A
Table 1 shows the scale of the 1 content. The standard deviation of these measurements from the average was 24.5%.

【0024】リチウム遷移金属複合酸化物として、市販
の組成Li1.05Ni0.80Co0.15Al0.05O2なる層状リチウム
ニッケル酸化物を使用した。重量比で上記のスピネル型
リチウムマンガン酸化物/層状リチウムニッケル酸化物
=3/1となるように混合した。得られた、混合活物質
粉末をアセチレンブラック粉末及びポリテトラフルオロ
エチレン粉末と、75:20:5の重量比で混合し、乳
鉢中で混練してシート化した後、12mmφのポンチで打ち
抜き、17.0mgの円盤形正極合剤シートを作製した。この
正極合剤シートを16mmφのアルミメッシュにハンドプレ
ス機を用いて圧着して正極電極とした。また、負極剤と
しては、微小黒鉛粉末をポリフッ化ビニリデン及びN−
メチル−2−ピロリドンと混合して塗液とし、この塗液
をCuシート上に塗布して、乾燥後、12mmφのポンチで
円盤状に打ち抜き、負極電極とした。
As the lithium transition metal composite oxide, a commercially available layered lithium nickel oxide having a composition of Li 1.05 Ni 0.80 Co 0.15 Al 0.05 O 2 was used. The spinel-type lithium manganese oxide / layered lithium nickel oxide was mixed at a weight ratio of 3/1. The obtained mixed active material powder was mixed with acetylene black powder and polytetrafluoroethylene powder at a weight ratio of 75: 20: 5, kneaded in a mortar to form a sheet, and punched with a 12 mmφ punch to obtain 17.0. mg disk-shaped positive electrode mixture sheet was prepared. This positive electrode mixture sheet was pressure-bonded to a 16 mmφ aluminum mesh using a hand press to form a positive electrode. In addition, as the negative electrode agent, fine graphite powder was prepared by mixing polyvinylidene fluoride and N-
It was mixed with methyl-2-pyrrolidone to form a coating solution, and this coating solution was applied on a Cu sheet, dried, and punched into a disk shape with a 12 mmφ punch to obtain a negative electrode.

【0025】負極電極中の負極活物質正味重量は4.80mg
であった。この様にして作製した電極を、ポリエチレン
製のセパレーターを介してCR2032型(直径20mm×厚さ3.
2mm)のコイン電池に組み立てた。その際、電解液とし
ては、0.75M−LiPF6のエチレンカーボネート(EC):ジ
エチルカーボネート(DEC)=3:7組成のものを使用
した。この電池を4個作製し、そのうち1個の電池につ
いて4.2V迄充電し、充電状態のまま50℃の恒温槽
中に7日間保存した。保存終了後、電池を解体して電解
液を回収し、この電解液中に含まれるMnの量を測定し
たところ、0.38μmol/5mlであった。一方、残り3個の
電池に関しては、50℃の恒温槽中で、3.0〜4.2V
の範囲での1C充放電サイクル試験を実施した。この3
個の電池試験の1C-1サイクル目の放電容量及び、50
サイクル経過時の容量維持率(50サイクル目の放電容量
/1サイクル目の放電容量)の平均値は、初期放電容量
で95mAh/g、容量維持率で93%であった。
The net weight of the negative electrode active material in the negative electrode is 4.80 mg.
Met. The electrode prepared in this way was CR2032 type (diameter 20 mm x thickness 3.
2mm) coin battery. At that time, as the electrolytic solution, a 0.75M-LiPF 6 ethylene carbonate (EC): diethyl carbonate (DEC) = 3: 7 composition was used. Four of these batteries were produced, one of which was charged to 4.2 V, and stored in a constant temperature bath at 50 ° C. for 7 days while being charged. After the storage was completed, the battery was disassembled to collect the electrolytic solution, and the amount of Mn contained in the electrolytic solution was measured to be 0.38 μmol / 5 ml. On the other hand, for the remaining three batteries, 3.0 to 4.2 V in a 50 ° C. constant temperature bath.
A 1C charge / discharge cycle test in the range of was carried out. This 3
Discharge capacity at 1C-1 cycle of battery test and 50
The average value of the capacity retention rate at the end of the cycle (discharge capacity at the 50th cycle / discharge capacity at the first cycle) was 95 mAh / g in the initial discharge capacity and 93% in the capacity retention rate.

【0026】実施例2 リチウム遷移金属複合酸化物として、実施例1で用いた
Li1.05Ni0.80Co0.15Al0.05O2なる層状リチウムニッケ
ル酸化物を、気流衝突式粉砕機(セイシン企業製:ジェ
ットミル)を用いて粉砕し、平均粒子径:0.5μm、
比表面積6.9m2 の粒子とした。この層状リチウムニ
ッケル酸化物と、実施例1で調製したスピネル型リチウ
ムマンガン複合酸化物を、重量比でリチウムマンガン酸
化物/リチウムニッケル酸化物=3/1となるように混
合した。
Example 2 The layered lithium nickel oxide of Li 1.05 Ni 0.80 Co 0.15 Al 0.05 O 2 used in Example 1 was used as a lithium transition metal composite oxide in a gas impingement pulverizer (Jet mill manufactured by Seishin Enterprise). ), And pulverized using an average particle diameter of 0.5 μm,
The particles had a specific surface area of 6.9 m 2 . The layered lithium nickel oxide and the spinel-type lithium manganese composite oxide prepared in Example 1 were mixed so that the weight ratio of lithium manganese oxide / lithium nickel oxide was 3/1.

【0027】この様にして得られた、混合活物質粉末を
正極活物質として用い、実施例1と同様にして正極電極
を作成した。また、負極剤としては、微小黒鉛粉末をポ
リフッ化ビニリデン及びN−メチル−2−ピロリドンと
混合して塗液とし、実施例1と同様にして負極電極を作
成した。負極電極中の負極活物質正味重量は4.80mgであ
った。この様にして作製した電極を、ポリエチレン製の
セパレーターを介して実施例1と同様にCR2032型(直径
20mm×厚さ3.2mm)のコイン電池に組み立てた。この電
池を4個作製し、そのうち1個の電池について4.2V
迄充電し、充電状態のまま50℃の恒温槽中に7日間保
存した。保存終了後、電池を解体して電解液を回収し、
この電解液中に含まれるMnの量を測定したところ、0.
13μmol/5mlであった。一方、残り3個の電池に関して
は、50℃の恒温槽中で、3.0〜4.2Vの範囲での1
C充放電サイクル試験を実施した。この3個の電池試験
の1C-1サイクル目の放電容量及び、50サイクル経過
時の容量維持率(50サイクル目の放電容量/1サイクル
目の放電容量)の平均値は、初期放電容量で95mAh/g、
容量維持率で96%であった。
Using the mixed active material powder thus obtained as a positive electrode active material, a positive electrode was prepared in the same manner as in Example 1. In addition, as a negative electrode agent, a fine graphite powder was mixed with polyvinylidene fluoride and N-methyl-2-pyrrolidone to form a coating liquid, and a negative electrode was prepared in the same manner as in Example 1. The net weight of the negative electrode active material in the negative electrode was 4.80 mg. The electrode thus produced was connected to a CR2032 type (diameter) in the same manner as in Example 1 through a polyethylene separator.
Assembled into a coin battery of 20mm x 3.2mm thickness). Four of these batteries were manufactured, and 4.2 V was applied to one of the batteries.
The battery was kept in a constant temperature bath at 50 ° C. for 7 days. After storage is completed, disassemble the battery and collect the electrolyte,
When the amount of Mn contained in the electrolytic solution was measured, it was found that the amount of Mn was 0.1
13 μmol / 5 ml. On the other hand, with respect to the remaining three batteries, 1 in a range of 3.0 to 4.2 V was stored in a 50 ° C. thermostat.
C charge / discharge cycle test was performed. The average value of the discharge capacity in the 1C-1 cycle and the capacity retention rate after the 50th cycle (discharge capacity in the 50th cycle / discharge capacity in the first cycle) of the three battery tests was 95 mAh in the initial discharge capacity. / g,
The capacity retention was 96%.

【0028】比較例1 Mn2O3、AlOOH、Li2CO3粉末を、それぞれ最終的なスピネ
ル型マンガン酸リチウム中の組成で、Li:Mn:Al=1.0
4:1.84:0.12(モル比)となるように秤量し、ボール
ミルで乾式混合を行った。混合後の粉末を、最終的に90
0℃で10時間焼成した。生成物粉末は、X線回折では、
立方晶スピネル型のマンガン酸リチウムの構造を有して
いた。また、粒度分布測定及びSEM観察の結果から、
1.0μm前後の一次粒子が凝集し、凝集物の平均粒子径
は、10μmであった。さらに、この様にして得られた
リチウムマンガン酸化物粉末1gを酸に溶解し、原子吸
光法にて組成分析を行ったところ、Li:Mn:Al=1.04:
1.85:0.11(molR)の組成比であった。次に、この粉末
の一次粒子中のAl含有量に関して、実施例1と同様の方
法で、計4個の凝集粒子を選択し、各凝集粒子毎にそれ
を構成している一次粒子3個ずつ、計12個の一次粒子
について、Auger電子分光分析法により測定を行った。
結果を表−1に示す。これら測定値に対する標準偏差は
102.7%であった。
Comparative Example 1 Mn 2 O 3 , AlOOH, and Li 2 CO 3 powders were prepared by mixing each of the final compositions in spinel-type lithium manganate at a ratio of Li: Mn: Al = 1.0.
The weight was weighed so as to be 4: 1.84: 0.12 (molar ratio) and dry-mixed by a ball mill. After mixing the powder, finally 90
It was baked at 0 ° C. for 10 hours. The product powder, by X-ray diffraction,
It had a cubic spinel-type lithium manganate structure. Also, from the results of particle size distribution measurement and SEM observation,
The primary particles of about 1.0 μm aggregated, and the average particle diameter of the aggregate was 10 μm. Further, 1 g of the thus obtained lithium manganese oxide powder was dissolved in an acid, and the composition was analyzed by an atomic absorption method. As a result, Li: Mn: Al = 1.04:
The composition ratio was 1.85: 0.11 (molR). Next, regarding the Al content in the primary particles of the powder, a total of four aggregated particles were selected in the same manner as in Example 1, and three primary particles constituting each aggregated particle were selected. A total of 12 primary particles were measured by Auger electron spectroscopy.
The results are shown in Table 1. The standard deviation for these measurements was 102.7%.

【0029】リチウム遷移金属複合酸化物として、市販
の組成Li1.05Ni0.80Co0.15Al0.05O2なる層状リチウム
ニッケル酸化物を用い、重量比でリチウムマンガン複合
酸化物/リチウムニッケル酸化物=3/1となるように
添加し混合した。得られた混合物を用いて、実施例1と
同様の手順でCR2032型のコイン電池を4個組立て、その
うち1個の電池について4.2V迄充電し、充電状態の
まま50℃の恒温槽中に7日間保存した。保存終了後、
電池を解体して電解液を回収し、この電解液中に含まれ
るMnの量を測定したところ、0.63μmolであった。
一方、残り3個の電池に関しては、50℃の恒温槽中で、
3.0〜402Vの範囲での1C充放電サイクル試験を
実施した。この3個の電池試験の1サイクル目の初期放
電容量及び、50サイクル経過時の容量維持率(50サイ
クル目の放電容量/1サイクル目の放電容量)の平均値
は、初期放電容量では94mAh/gと実施例1と有意差が見
られなかったが、容量維持率では90%であった。
As the lithium transition metal composite oxide, a commercially available layered lithium nickel oxide having the composition Li 1.05 Ni 0.80 Co 0.15 Al 0.05 O 2 was used, and the lithium manganese composite oxide / lithium nickel oxide = 3/1 by weight ratio. And mixed. Using the obtained mixture, four CR2032 type coin batteries were assembled in the same procedure as in Example 1, and one of the batteries was charged to 4.2 V, and placed in a 50 ° C. constant temperature bath with the charged state. Stored for 7 days. After saving,
The battery was disassembled to recover the electrolytic solution, and the amount of Mn contained in the electrolytic solution was measured to be 0.63 μmol.
On the other hand, for the remaining three batteries,
A 1C charge / discharge cycle test in the range of 3.0 to 402 V was performed. The average values of the initial discharge capacity in the first cycle and the capacity retention rate after 50 cycles (discharge capacity in the 50th cycle / discharge capacity in the first cycle) of the three battery tests were 94 mAh / initial discharge capacity. Although no significant difference was found between g and Example 1, the capacity retention ratio was 90%.

【0030】比較例2 比較例1と同じリチウムマンガン複合酸化物と、実施例
2と同じジェットミルで粉砕したリチウムニッケル酸化
物を、重量比でリチウムマンガン複合酸化物/リチウム
ニッケル酸化物=3/1となるように混合した。得られ
た混合物を用いて、実施例1と同様の手順でCR2032型の
コイン電池を4個組立て、そのうち1個の電池について
4.2V迄充電し、充電状態のまま50℃の恒温槽中に
7日間保存した。保存終了後、電池を解体して電解液を
回収し、この電解液中に含まれるMnの量を測定したと
ころ、0.25μmol/5mlであった。一方、残り3個の電池
に関しては、50℃の恒温槽中で、3.0〜402Vの範
囲での1C充放電サイクル試験を実施した。この3個の
電池試験の1サイクル目の初期放電容量及び、50サイ
クル経過時の容量維持率(50サイクル目の放電容量/1
サイクル目の放電容量)の平均値は、初期放電容量では
94mAh/gと実施例2と有意差が見られなかったが、容量
維持率では93%であった。
Comparative Example 2 The same lithium manganese composite oxide as in Comparative Example 1 and the lithium nickel oxide pulverized by the same jet mill as in Example 2 were mixed in a weight ratio of lithium manganese composite oxide / lithium nickel oxide = 3 / 1 was mixed. Using the obtained mixture, four CR2032 type coin batteries were assembled in the same procedure as in Example 1, and one of the batteries was charged to 4.2 V, and placed in a 50 ° C. constant temperature bath with the charged state. Stored for 7 days. After the storage was completed, the battery was disassembled to recover the electrolytic solution, and the amount of Mn contained in the electrolytic solution was measured to be 0.25 μmol / 5 ml. On the other hand, the remaining three batteries were subjected to a 1C charge / discharge cycle test in a range of 3.0 to 402 V in a constant temperature bath at 50 ° C. The initial discharge capacity in the first cycle of the three battery tests and the capacity retention rate after 50 cycles (discharge capacity in 50th cycle / 1
The average value of the discharge capacity at the cycle is
Although 94 mAh / g was not significantly different from Example 2, the capacity retention rate was 93%.

【0031】比較例3 実施例1と同じリチウムマンガン複合酸化物をリチウム
遷移金属複合酸化物と混合すること無く単独で正極活物
質として用い、実施例1と同様の手順でCR2032型のコイ
ン電池を4個組立て、そのうち1個の電池について4.
2V迄充電し、充電状態のまま50℃の恒温槽中に7日
間保存した。保存終了後、電池を解体して電解液を回収
し、この電解液中に含まれるMnの量を測定したとこ
ろ、0.90μmol/5mlであった。一方、残り3個の電池に
関しては、50℃の恒温槽中で、3.0〜4.2Vの範囲での1
C充放電サイクル試験を実施した。この3個の電池試験
の1サイクル目の初期放電容量及び、50サイクル経過
時の容量維持率(50サイクル目の放電容量/1サイクル
目の放電容量)の平均値は、初期放電容量では95mAh/
g、容量維持率では89%であった。
Comparative Example 3 The same lithium manganese composite oxide as in Example 1 was used alone as a positive electrode active material without mixing with a lithium transition metal composite oxide, and a CR2032 type coin battery was manufactured in the same procedure as in Example 1. 3. Assembling four batteries, one of which is 4.
The battery was charged to 2 V, and stored in a constant temperature bath at 50 ° C. for 7 days while being charged. After the storage was completed, the battery was disassembled to recover the electrolytic solution, and the amount of Mn contained in the electrolytic solution was measured to be 0.90 μmol / 5 ml. On the other hand, the remaining three batteries were stored in a 50 ° C.
C charge / discharge cycle test was performed. The average values of the initial discharge capacity in the first cycle and the capacity retention rate after 50 cycles (discharge capacity in the 50th cycle / discharge capacity in the first cycle) of the three battery tests were 95 mAh / initial discharge capacity.
g, and the capacity retention was 89%.

【0032】比較例4 比較例1と同じリチウムマンガン複合酸化物をリチウム
遷移金属複合酸化物と混合すること無く単独で正極活物
質として用い、実施例1と同様の手順でCR2032型のコイ
ン電池を4個組立て、そのうち1個の電池について4.
2V迄充電し、充電状態のまま50℃の恒温槽中に7日
間保存した。保存終了後、電池を解体して電解液を回収
し、この電解液中に含まれるMnの量を測定したとこ
ろ、1.60μmol/5mlであった。一方、残り3個の電池に
関しては、50℃の恒温槽中で、3.0〜4.2Vの範囲
での1C充放電サイクル試験を実施した。この3個の電
池試験の1サイクル目の初期放電容量及び、50サイク
ル経過時の容量維持率(50サイクル目の放電容量/1サ
イクル目の放電容量)の平均値は、初期放電容量では94
mAh/g、容量維持率では81%であった。
COMPARATIVE EXAMPLE 4 The same lithium manganese composite oxide as in Comparative Example 1 was used alone as a positive electrode active material without mixing with a lithium transition metal composite oxide, and a CR2032 type coin battery was produced in the same procedure as in Example 1. 3. Assembling four batteries, one of which is 4.
The battery was charged to 2 V, and stored in a constant temperature bath at 50 ° C. for 7 days while being charged. After the storage was completed, the battery was disassembled to recover the electrolytic solution, and the amount of Mn contained in the electrolytic solution was measured to be 1.60 μmol / 5 ml. On the other hand, with respect to the remaining three batteries, a 1C charge / discharge cycle test in a range of 3.0 to 4.2 V was performed in a thermostat at 50 ° C. The average values of the initial discharge capacity in the first cycle and the capacity retention rate after 50 cycles (discharge capacity in the 50th cycle / discharge capacity in the first cycle) of the three battery tests were 94% in the initial discharge capacity.
mAh / g and the capacity retention rate were 81%.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【発明の効果】実施例から明らかなように、本発明に係
わる置換元素の分布が制御されたスピネル型リチウムマ
ンガン複合酸化物と他のリチウム遷移金属複合酸化物を
含有する正極材料を用いることにより、サイクル特性に
優れたリチウムイオン二次電池を得ることが出来る。
As is apparent from the examples, the use of the positive electrode material containing the spinel-type lithium manganese composite oxide and the other lithium transition metal composite oxide according to the present invention in which the distribution of the substitution element is controlled is achieved. Thus, a lithium ion secondary battery having excellent cycle characteristics can be obtained.

フロントページの続き (72)発明者 石田 優子 神奈川県横浜市青葉区鴨志田町1000番地 三菱化学株式会社横浜総合研究所内 (72)発明者 宇都宮 明 神奈川県横浜市青葉区鴨志田町1000番地 三菱化学株式会社横浜総合研究所内 (72)発明者 島 耕司 神奈川県横浜市青葉区鴨志田町1000番地 三菱化学株式会社横浜総合研究所内 Fターム(参考) 4G048 AA04 AB05 AC06 AD04 AD06 AE05 5H029 AJ05 AK03 AL07 AM03 AM04 AM05 AM07 DJ16 DJ17 HJ01 HJ02 HJ07 5H050 AA07 BA17 CA09 CB08 EA10 EA24 FA17 FA19 HA01 HA02 HA07 Continued on the front page (72) Inventor Yuko Ishida 1000 Kamoshita-cho, Aoba-ku, Yokohama-shi, Kanagawa Prefecture Inside Mitsubishi Chemical Research Laboratory (72) Inventor Akira Utsunomiya 1000 Kamoshida-cho, Aoba-ku, Yokohama-shi, Kanagawa Prefecture Mitsubishi Chemical Corporation Inside Yokohama Research Laboratory (72) Koji Shima 1000 Kamoshitacho, Aoba-ku, Yokohama-shi, Kanagawa Prefecture Mitsubishi Chemical Corporation Yokohama Research Laboratory F-term (reference) 4G048 AA04 AB05 AC06 AD04 AD06 AE05 5H029 AJ05 AK03 AL07 AM03 AM04 AM05 AM07 DJ16 DJ17 HJ01 HJ02 HJ07 5H050 AA07 BA17 CA09 CB08 EA10 EA24 FA17 FA19 HA01 HA02 HA07

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 (a)Mnサイトの一部が他元素で置換
されたスピネル型リチウムマンガン酸化物であって、各
一次結晶粒子の置換元素含有量の平均値に対するその標
準偏差σが50%以下となるように置換元素が分布して
いるリチウムマンガン複合酸化物と、(b)少なくとも
1種類の(a)以外のリチウム遷移金属複合酸化物とを
含有することを特徴とするリチウムイオン二次電池用正
極材料。
1. (a) A spinel-type lithium manganese oxide in which a part of an Mn site is substituted with another element, and a standard deviation σ of the average value of the substituted element content of each primary crystal particle is 50%. A lithium manganese composite oxide containing a lithium manganese composite oxide in which the substitution elements are distributed as follows, and (b) at least one lithium transition metal composite oxide other than (a). Cathode material for battery.
【請求項2】 (a)が、下記一般式(1) 【化1】 Li1+XMn2-X-YY4+z (1) (但し、0<X<0.5、0<Y<0.5、−0.1≦
Z≦0.1、Mは置換元素を表す。)で表されるリチウ
ムマンガン複合酸化物から選ばれることを特徴とする請
求項1記載のリチウムイオン二次電池用正極材料。
Wherein (a) is represented by the following general formula (1) ## STR1 ## Li 1 + X Mn 2-XY M Y O 4 + z (1) ( where, 0 <X <0.5,0 < Y <0.5, -0.1 ≦
Z ≦ 0.1, M represents a substitution element. The positive electrode material for a lithium ion secondary battery according to claim 1, wherein the positive electrode material is selected from lithium manganese composite oxides represented by the following formula:
【請求項3】 置換元素が、B、Sn、Al、Ti、
V、Cr、Fe、Co、Ni、Cu、Zn、Mg、Ga
から選ばれる1種又は2種以上の元素であることを特徴
とする請求項1又は2に記載のリチウムイオン二次電池
用正極材料。
3. The method according to claim 1, wherein the substitution element is B, Sn, Al, Ti,
V, Cr, Fe, Co, Ni, Cu, Zn, Mg, Ga
The positive electrode material for a lithium ion secondary battery according to claim 1, wherein the positive electrode material is at least one element selected from the group consisting of:
【請求項4】 置換元素が、Alであることを特徴とす
る請求項3に記載のリチウムイオン二次電池用正極材
料。
4. The positive electrode material for a lithium ion secondary battery according to claim 3, wherein the substitution element is Al.
【請求項5】 (b)のリチウム遷移金属複合酸化物の
遷移金属がNi及び/又はCoであることを特徴とする
請求項1乃至4のいずれかに記載のリチウムイオン二次
電池用正極材料。
5. The positive electrode material for a lithium ion secondary battery according to claim 1, wherein the transition metal of the lithium transition metal composite oxide of (b) is Ni and / or Co. .
【請求項6】 (b)のリチウム遷移金属複合酸化物
が、層状構造を有するリチウムニッケル複合酸化物又は
ニッケルサイトの一部がコバルトで置換されたリチウム
ニッケル複合酸化物から選ばれることを特徴とする請求
項5に記載のリチウムイオン二次電池用正極材料。
6. The lithium transition metal composite oxide (b) is selected from a lithium nickel composite oxide having a layered structure or a lithium nickel composite oxide in which nickel sites are partially substituted with cobalt. The positive electrode material for a lithium ion secondary battery according to claim 5.
【請求項7】 (b)のリチウム遷移金属複合酸化物が
比表面積2m2/g以上の粒子であることを特徴とする
請求項1乃至6のいずれかに記載のリチウムイオン二次
電池用正極材料。
7. The positive electrode for a lithium ion secondary battery according to claim 1, wherein the lithium transition metal composite oxide of (b) is a particle having a specific surface area of 2 m 2 / g or more. material.
【請求項8】 (a)のリチウムマンガン複合酸化物と
(b)のリチウム遷移金属複合酸化物の割合が、重量比
で、30:70〜99:1の範囲内であることを特徴と
する請求項1乃至7のいずれかに記載のリチウムイオン
二次電池用正極材料。
8. The weight ratio of the lithium manganese composite oxide of (a) to the lithium transition metal composite oxide of (b) is in the range of 30:70 to 99: 1. The positive electrode material for a lithium ion secondary battery according to claim 1.
【請求項9】 (a)のリチウムマンガン複合酸化物と
(b)のリチウム遷移金属複合酸化物の割合が、重量比
で、50:50〜95:5の範囲内であることを特徴と
する請求項8に記載のリチウムイオン二次電池用正極材
料。
9. The weight ratio of the lithium manganese composite oxide of (a) to the lithium transition metal composite oxide of (b) is in the range of 50:50 to 95: 5. The positive electrode material for a lithium ion secondary battery according to claim 8.
【請求項10】 請求項1乃至9のいずれかに記載のリ
チウム二次電池用正極材料を含有する活物質層を集電体
上に形成してなるリチウムイオン二次電池用正極。
10. A positive electrode for a lithium ion secondary battery, wherein an active material layer containing the positive electrode material for a lithium secondary battery according to claim 1 is formed on a current collector.
【請求項11】 請求項1乃至9のいずれかに記載のリ
チウム二次電池用正極材料を正極中に含有することを特
徴とするリチウムイオン二次電池。
11. A lithium ion secondary battery comprising the positive electrode material for a lithium secondary battery according to claim 1 in a positive electrode.
【請求項12】 請求項1乃至9のいずれかに記載のリ
チウムイオン二次電池用正極材料を使用した正極と、負
極と、リチウム塩を溶媒に溶解してなる電解液とからな
るリチウム二次電池。
12. A lithium secondary battery comprising: a positive electrode using the positive electrode material for a lithium ion secondary battery according to claim 1; a negative electrode; and an electrolyte obtained by dissolving a lithium salt in a solvent. battery.
【請求項13】 負極が、炭素材料を含有することを特
徴とする請求項11又は12に記載のリチウムイオン二
次電池
13. The lithium ion secondary battery according to claim 11, wherein the negative electrode contains a carbon material.
【請求項14】 リチウム塩がLiPF6であることを
特徴とする請求項12又は13に記載のリチウムイオン
二次電池。
14. The lithium ion secondary battery according to claim 12, wherein the lithium salt is LiPF 6 .
JP2000180980A 2000-06-16 2000-06-16 Positive electrode material for lithium ion secondary battery, positive electrode and battery using the same Expired - Fee Related JP4654488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000180980A JP4654488B2 (en) 2000-06-16 2000-06-16 Positive electrode material for lithium ion secondary battery, positive electrode and battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000180980A JP4654488B2 (en) 2000-06-16 2000-06-16 Positive electrode material for lithium ion secondary battery, positive electrode and battery using the same

Publications (2)

Publication Number Publication Date
JP2002003220A true JP2002003220A (en) 2002-01-09
JP4654488B2 JP4654488B2 (en) 2011-03-23

Family

ID=18681974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000180980A Expired - Fee Related JP4654488B2 (en) 2000-06-16 2000-06-16 Positive electrode material for lithium ion secondary battery, positive electrode and battery using the same

Country Status (1)

Country Link
JP (1) JP4654488B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164049A (en) * 2000-11-22 2002-06-07 Matsushita Electric Ind Co Ltd Lithium ion secondary battery
JP2013122927A (en) * 2013-01-29 2013-06-20 Nec Energy Devices Ltd Positive electrode for secondary battery, and lithium secondary battery including the same
WO2014178594A1 (en) * 2013-04-30 2014-11-06 주식회사 엘지화학 Method for manufacturing secondary battery and secondary battery using same
CN114725368A (en) * 2020-01-16 2022-07-08 游萃蓉 Negative electrode material for secondary battery, negative electrode, and secondary battery
US11901554B2 (en) 2020-01-16 2024-02-13 National Tsing Hua University Anode material for secondary battery, anode for secondary battery and secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9537140B2 (en) * 2012-04-27 2017-01-03 Mitsui Mining & Smelting Co., Ltd. Manganese spinel-type lithium transition metal oxide

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09293512A (en) * 1996-02-23 1997-11-11 Fuji Photo Film Co Ltd Lithium ion secondary battery and positive pole active material precursor
JPH11171551A (en) * 1997-10-08 1999-06-29 Nikki Chemcal Co Ltd Lithium manganese multiple oxide, its production and use
JPH11288713A (en) * 1998-04-02 1999-10-19 Yuasa Corp Lithium secondary battery
JPH11345614A (en) * 1998-06-01 1999-12-14 Yuasa Corp Nonaqueous electrolyte battery
JP2000077071A (en) * 1998-08-27 2000-03-14 Nec Corp Nonaqueous electrolyte secondary battery
JP2000138072A (en) * 1998-08-28 2000-05-16 Toyota Central Res & Dev Lab Inc Nonaqueous electrolyte secondary battery
JP2000195513A (en) * 1998-12-24 2000-07-14 Asahi Chem Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2000251892A (en) * 1999-03-02 2000-09-14 Toyota Central Res & Dev Lab Inc Positive electrode active material for lithium secondary battery, and the lithium secondary battery using the same
JP2000315503A (en) * 1999-03-01 2000-11-14 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
JP2001297762A (en) * 2000-04-12 2001-10-26 Japan Storage Battery Co Ltd Secondary cell with nonaqueous electrolyte

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09293512A (en) * 1996-02-23 1997-11-11 Fuji Photo Film Co Ltd Lithium ion secondary battery and positive pole active material precursor
JPH11171551A (en) * 1997-10-08 1999-06-29 Nikki Chemcal Co Ltd Lithium manganese multiple oxide, its production and use
JPH11288713A (en) * 1998-04-02 1999-10-19 Yuasa Corp Lithium secondary battery
JPH11345614A (en) * 1998-06-01 1999-12-14 Yuasa Corp Nonaqueous electrolyte battery
JP2000077071A (en) * 1998-08-27 2000-03-14 Nec Corp Nonaqueous electrolyte secondary battery
JP2000138072A (en) * 1998-08-28 2000-05-16 Toyota Central Res & Dev Lab Inc Nonaqueous electrolyte secondary battery
JP2000195513A (en) * 1998-12-24 2000-07-14 Asahi Chem Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2000315503A (en) * 1999-03-01 2000-11-14 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
JP2000251892A (en) * 1999-03-02 2000-09-14 Toyota Central Res & Dev Lab Inc Positive electrode active material for lithium secondary battery, and the lithium secondary battery using the same
JP2001297762A (en) * 2000-04-12 2001-10-26 Japan Storage Battery Co Ltd Secondary cell with nonaqueous electrolyte

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164049A (en) * 2000-11-22 2002-06-07 Matsushita Electric Ind Co Ltd Lithium ion secondary battery
JP2013122927A (en) * 2013-01-29 2013-06-20 Nec Energy Devices Ltd Positive electrode for secondary battery, and lithium secondary battery including the same
WO2014178594A1 (en) * 2013-04-30 2014-11-06 주식회사 엘지화학 Method for manufacturing secondary battery and secondary battery using same
KR101613101B1 (en) 2013-04-30 2016-04-19 주식회사 엘지화학 The Method for Preparing Secondary Battery and Secondary Battery Using the Same
US10038227B2 (en) 2013-04-30 2018-07-31 Lg Chem, Ltd. Method of manufacturing secondary battery and secondary battery using the same
CN114725368A (en) * 2020-01-16 2022-07-08 游萃蓉 Negative electrode material for secondary battery, negative electrode, and secondary battery
CN114725368B (en) * 2020-01-16 2023-08-15 游萃蓉 Negative electrode material for secondary battery, negative electrode, and secondary battery
US11901554B2 (en) 2020-01-16 2024-02-13 National Tsing Hua University Anode material for secondary battery, anode for secondary battery and secondary battery

Also Published As

Publication number Publication date
JP4654488B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
JP4894969B1 (en) Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery
US6692665B2 (en) Lithium managanese oxide, cathode material for lithium secondary battery, cathode, lithium secondary battery and process for manufacturing lithium manganese oxide
JP3033899B1 (en) Positive electrode active material for lithium secondary battery, method for producing the same and use thereof
JP3221352B2 (en) Method for producing spinel-type lithium manganese composite oxide
JP3047827B2 (en) Lithium secondary battery
JP3031546B1 (en) Lithium transition metal halide oxide, method for producing the same and use thereof
JP2002373658A (en) Method for producing positive electrode active material for lithium secondary battery
JP2000306584A (en) Positive electrode active material for lithium secondary battery and its manufacture
JP4655453B2 (en) Positive electrode material for lithium secondary battery, secondary battery using the same, and method for producing positive electrode material for lithium secondary battery
JP2001048545A (en) Production of lithium-manganese multiple oxide and secondary battery using the same
JP4144317B2 (en) Method for producing lithium transition metal composite oxide
US7575831B2 (en) Co-precipitation method for the preparation of Li1+xNi1-yCoyO2-based cathode materials
JP4114314B2 (en) Lithium manganese composite oxide, positive electrode material for lithium secondary battery, positive electrode, lithium secondary battery, and method for producing lithium manganese composite oxide
JP4543474B2 (en) Positive electrode active material, method for producing the same, and non-aqueous secondary battery using the same
JP2001146426A (en) Method for producing lithium manganese compound oxide and lithium ion secondary battery using the same
JP2003123742A (en) Method of manufacturing electrode plate for nonaqueous electrolyte secondary battery
JP4654488B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode and battery using the same
JP2006273620A (en) Lithium transition metal complex oxide, its manufacturing method, fired precursor for lithium transition metal complex oxide and lithium secondary battery
JP2001151511A (en) Lithium manganese double oxide and lithium secondary battery using the same
WO2020218592A1 (en) Nickel composite hydroxide, method for producing nickel composite hydroxide, positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP2002068747A (en) Lithium manganese complex oxide, positive electrode material for lithium secondary battery, positive electrode, and lithium secondary battery
CN113707873A (en) Lithium ion battery positive electrode material using eutectic lithium salt and preparation method thereof
JP4774661B2 (en) Lithium transition metal composite oxide, positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery, and method for producing lithium transition metal composite oxide
JP2000128540A (en) Manganese oxide, its production, lithium manganese multiple oxide produced with the same and production of the same multiple oxide
JP2000169152A (en) Cobalt-coated lithium manganese double oxide and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070612

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4654488

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees