JP2001151511A - Lithium manganese double oxide and lithium secondary battery using the same - Google Patents

Lithium manganese double oxide and lithium secondary battery using the same

Info

Publication number
JP2001151511A
JP2001151511A JP33241499A JP33241499A JP2001151511A JP 2001151511 A JP2001151511 A JP 2001151511A JP 33241499 A JP33241499 A JP 33241499A JP 33241499 A JP33241499 A JP 33241499A JP 2001151511 A JP2001151511 A JP 2001151511A
Authority
JP
Japan
Prior art keywords
composite oxide
lithium
manganese composite
lithium manganese
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33241499A
Other languages
Japanese (ja)
Inventor
Akira Utsunomiya
明 宇都宮
Takeshi Sueyoshi
剛 末吉
Keiji Yamahara
圭二 山原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP33241499A priority Critical patent/JP2001151511A/en
Publication of JP2001151511A publication Critical patent/JP2001151511A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive polarity active material for a lithium ion secondary battery excellent in high temperature cycle property. SOLUTION: The lithium manganese double oxide is a spinel type lithium manganese double oxide obtained by replacing a part of manganese site by another element and the replaced elements are distributed to be <=50% in the standard deviation (G) to the average value of the replaced element content in each primary crystal particle.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムマンガン
複合酸化物の製造方法及びこれを正極活物質として用い
た二次電池に関するものである。
The present invention relates to a method for producing a lithium manganese composite oxide and a secondary battery using the same as a positive electrode active material.

【0002】[0002]

【従来の技術】正極及び負極が互いにリチウムイオンを
吸蔵・放出することによって電池として機能するリチウ
ムイオン二次電池は、高電圧・高エネルギー密度を有
し、携帯電話、携帯用パソコン、ビデオカメラ、電気自
動車等の用途に好適に用いることができる。
2. Description of the Related Art A lithium ion secondary battery, which functions as a battery by a positive electrode and a negative electrode absorbing and releasing lithium ions from each other, has a high voltage and a high energy density, and is used for mobile phones, portable personal computers, video cameras, It can be suitably used for applications such as electric vehicles.

【0003】リチウムイオン二次電池用の正極活物質と
しては、層状複合酸化物であるLi 1-X CoO2 (0≦
x≦1)が4V級の高電圧を得ることができ、且つ高い
エネルギー密度を有することから、既に広く実用化され
ている。一方で原料であるCoは資源的にも乏しく高価
であるため、今後も大幅に需要が拡大してゆく可能性を
考えると、原料供給の面で不安があると共に、更に価格
が高騰することも有り得る。そこで、Li1-x CoO2
に変わり得る正極活物質として安価なMnを原料とした
リチウムマンガン複合酸化物を正極活物質として利用す
ることが考えられている。
A positive electrode active material for a lithium ion secondary battery and
As a result, the layered composite oxide Li 1-XCoOTwo(0 ≦
x ≦ 1) can obtain a high voltage of 4V class and is high.
Because of its energy density, it has already been widely used
ing. On the other hand, raw material Co is scarce in resources and expensive
Therefore, there is a possibility that demand will increase significantly in the future.
If you think about it, there is concern about the supply of raw materials,
Could soar. Then, Li1-xCoOTwo
Made of inexpensive Mn as a positive electrode active material
Using lithium manganese composite oxide as positive electrode active material
It is thought that.

【0004】しかして、リチウムマンガン複合酸化物
は、50〜60℃の温度で繰り返し充放電を行った際の
容量劣化が前述のLi1-x CoO2 と比較して大きい点
で問題があった。この点に関しては、(1)リチウムマ
ンガン複合酸化物の結晶性を改善する、(2)結晶構造
を安定化するために、Mnの一部を一種、或いはそれ以
上の元素で置換する事により容量劣化抑制効果があるこ
とが明らかになっている。しかしながら、かかる改良に
よっても、未だ十分ではなく、更なる改良が求められて
いる。
[0004] However, the lithium manganese composite oxide has a problem in that the capacity deterioration when repeatedly charged and discharged at a temperature of 50 to 60 ° C is greater than that of the above-mentioned Li 1-x CoO 2 . . In this regard, in order to (1) improve the crystallinity of the lithium manganese composite oxide, and (2) stabilize the crystal structure, a part of Mn is replaced by one or more elements to increase the capacity. It has been clarified that there is a deterioration suppressing effect. However, such improvement is not yet sufficient, and further improvement is required.

【0005】[0005]

【発明が解決しようとする課題】本発明はかかる事情に
鑑みなされたものであって、リチウムイオン二次電池の
正極活物質に好適な、特に、サイクル特性に優れた正極
活物質となるリチウムマンガン複合酸化物を提供するこ
とを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide lithium manganese which is suitable for a positive electrode active material of a lithium ion secondary battery, particularly, a positive electrode active material having excellent cycle characteristics. An object is to provide a composite oxide.

【0006】[0006]

【課題を解決するための手段】本発明者らは鋭意検討を
重ねた結果、スピネル型リチウムマンガン複合酸化物の
Mnサイトの一部を他元素で置換した場合、各一次結晶
粒子間の置換元素含有量の分布状態がサイクル特性に影
響することを見出し、本発明を完成するに至った。即ち
本発明の要旨は、Mnサイトの一部が他元素で置換され
たスピネル型リチウムマンガン複合酸化物であって、各
一次結晶粒子の置換元素含有量の平均値に対するその標
準偏差σが50%以下となるように、置換元素が分布し
ていることを特徴とするリチウムマンガン複合酸化物に
存する。
Means for Solving the Problems As a result of intensive studies, the present inventors have found that when a part of the Mn site of the spinel-type lithium manganese composite oxide is substituted with another element, the substitution element between the primary crystal grains is changed. The inventors have found that the distribution state of the content affects the cycle characteristics, and have completed the present invention. That is, the gist of the present invention is a spinel-type lithium manganese composite oxide in which a part of the Mn site is substituted by another element, and the standard deviation σ of the average value of the substituted element content of each primary crystal particle is 50%. As described below, the present invention resides in a lithium manganese composite oxide in which the substitution elements are distributed.

【0007】[0007]

【発明の実施の形態】以下本発明について詳細に説明す
る。本発明者らの検討によれば、Mnサイトの一部を他
元素で置換したスピネル型リチウムマンガン複合酸化物
は、各一次結晶粒子間の置換元素(他元素)含有量が均
一に分布している場合は、置換元素の平均含有量が同じ
であっても、一次粒子間の含有量分布が不均一な場合に
比し、電解液中へのMn溶出量の抑制効果が大きく、そ
の結果、サイクル特性が向上するという効果を奏する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. According to the study of the present inventors, the spinel-type lithium manganese composite oxide in which a part of the Mn site is substituted with another element has a uniform distribution of the substitution element (other element) content between the primary crystal grains. In the case where the average content of the substitution element is the same, even when the content distribution between the primary particles is not uniform, the effect of suppressing the elution amount of Mn into the electrolytic solution is large, and as a result, This has the effect of improving the cycle characteristics.

【0008】本発明の対象とするMnサイトの一部を他
元素で置換したスピネル型リチウムマンガン複合酸化物
としては、その化学式が下記一般式(1)
The spinel-type lithium manganese composite oxide in which a part of the Mn site is replaced by another element, which is the object of the present invention, has the following chemical formula (1)

【0009】[0009]

【化2】 Li1+x Mn2-x-Y Y 4 (1)## STR2 ## Li 1 + x Mn 2-xY M Y O 4 (1)

【0010】(但し、0<X<0.5、0<Y<0.
5、Mは置換元素を表す)で示される複合酸化物が好ま
しい。上記式中、Mで表される置換元素としては、B、
Sn、Al、Ti、V、Cr、Fe、Co、Ni、C
u、Zn、Mg、Gaから選ばれる元素が挙げられ、好
ましくはアルミニウム(Al)である。
(However, 0 <X <0.5, 0 <Y <0.
5, M represents a substitution element). In the above formula, as the substitution element represented by M, B,
Sn, Al, Ti, V, Cr, Fe, Co, Ni, C
Examples include elements selected from u, Zn, Mg, and Ga, and preferably aluminum (Al).

【0011】Mnサイトの一部を他元素で置換したスピ
ネル型リチウムマンガン複合酸化物の置換元素の平均含
有量及び、各一次粒子毎の置換元素含有量を求める方法
は特に限定されるものではない。まず、平均含有量を求
める方法としては、例えば、複合酸化物試料少量(0.
5g〜5g程度)を、酸で溶解して原子吸光分析、IC
P(誘導結合プラズマ)分析等により測定する方法があ
る。但し、この分析手法では同時に各一次粒子毎の置換
元素含有量を測定することは出来ない。一方、各一次粒
子毎の置換元素含有量は、例えばAuger電子分光分
析(AES)を用いることが出来る。AESは、電子顕
微鏡で観察して、特定の一次粒子に電子線をスポット照
射し、散乱電子のエネルギー分析により、オージェ効果
による放出電子を検出する方法である。AESでは、電
子線のビーム径を100nm以下に絞ることが出来、局
所的な組成分析が可能となるので好ましい。従って、複
数の二次粒子から選んだ数個〜数十個の一次粒子を対象
として、それぞれの置換元素含有量を求めることが出来
る。また、その測定値を平均して平均含有量を求めるこ
とが出来る。ところで、n個の各一次粒子のうち、i番
目の置換元素含有量をXi、n個の一次粒子の平均置換
元素含有量をXAV.とした場合、変動(偏差の平方和)
S、及び標準偏差σは下式に従って算出される。
The method for determining the average content of the substitution element in the spinel-type lithium manganese composite oxide in which a part of the Mn site is substituted by another element and the content of the substitution element for each primary particle are not particularly limited. . First, as a method of obtaining the average content, for example, a small amount of a composite oxide sample (0.
About 5 g to 5 g) dissolved in an acid and analyzed by atomic absorption spectrometry, IC
There is a method of measuring by P (inductively coupled plasma) analysis or the like. However, this analysis technique cannot simultaneously measure the substitution element content of each primary particle. On the other hand, the substitution element content of each primary particle can be determined by, for example, Auger electron spectroscopy (AES). AES is a method in which a specific primary particle is spot-irradiated with an electron beam by observation with an electron microscope, and the emitted electrons due to the Auger effect are detected by energy analysis of scattered electrons. AES is preferable because the beam diameter of the electron beam can be reduced to 100 nm or less, and local composition analysis becomes possible. Therefore, it is possible to determine the respective replacement element contents for several to several tens of primary particles selected from a plurality of secondary particles. Further, the average value can be obtained by averaging the measured values. By the way, among the n primary particles, the i-th substituted element content is Xi, and the average substituted element content of the n primary particles is X AV . , Change (sum of squared deviations)
S and standard deviation σ are calculated according to the following equations.

【0012】[0012]

【数1】 (Equation 1)

【0013】本発明に係わるリチウムマンガン複合酸化
物は、上記の様にして求めた標準偏差σが、置換元素含
有量の平均値に対して50%以下、好ましくは30%以
下のものである。本発明に係わるMnサイトの一部を他
元素で置換したリチウムマンガン複合酸化物の製造方法
は特に限定されるものではなく、公知の方法に準じ、生
成酸化物の組成が可及的に均一となり、一次粒子間の置
換元素の含有量分布が上記範囲となるように、リチウム
化合物、マンガン化合物、置換元素化合物を粉砕混合
し、焼成する方法により製造すればよい。
The lithium manganese composite oxide according to the present invention has a standard deviation σ obtained as described above of 50% or less, preferably 30% or less, with respect to the average value of the content of the substituted elements. The method for producing a lithium manganese composite oxide in which a part of the Mn site is substituted with another element according to the present invention is not particularly limited, and according to a known method, the composition of the produced oxide becomes as uniform as possible. The lithium compound, the manganese compound, and the replacement element compound may be pulverized, mixed, and fired so that the content distribution of the replacement element between the primary particles is within the above range.

【0014】原料として用いるリチウム化合物として
は、例えば、水酸化リチウム、炭酸リチウム、硝酸リチ
ウム、酸化リチウム等あるいはこれらの水和物から選ば
れる1種または2種以上の混合物を挙げられる。マンガ
ン化合物としては、例えば、MnO2 、Mn2 3 、M
3 4 、MnO等のマンガン酸化物、あるいはMnC
3 等の炭酸塩、あるいはMnOOH等から選ばれる1
種または2種以上の混合物が挙げられる。
Examples of the lithium compound used as a raw material include one or a mixture of two or more selected from lithium hydroxide, lithium carbonate, lithium nitrate, lithium oxide and the like and hydrates thereof. As the manganese compound, for example, MnO 2 , Mn 2 O 3 , M
Manganese oxides such as n 3 O 4 and MnO, or MnC
1 selected from carbonates such as O 3 or MnOOH
Species or a mixture of two or more species.

【0015】マンガンサイトの一部を置換する他元素の
化合物としては、前述の元素を含む酸化物、水酸化物、
有機酸塩、塩化物、硝酸塩、硫酸塩等あるいはその水和
物が挙げられる。具体的には置換元素がAlの場合は、
Al2 3 、AlOOH、Al(OH)3 、Al(CH
3 COO)3 、AlCl3 、Al(NO3 3 ・9H 2
O、Al2 (SO4 3 等が挙げられ、好ましくはAl
2 3 、AlOOH、Al(OH)3 である。
[0015] The other element that replaces part of the manganese site
Compounds include oxides, hydroxides,
Organic acid salts, chlorides, nitrates, sulfates, etc. or their hydration
Things. Specifically, when the substitution element is Al,
AlTwoOThree, AlOOH, Al (OH)Three, Al (CH
ThreeCOO)Three, AlClThree, Al (NOThree)Three・ 9H Two
O, AlTwo(SOFour)ThreeAnd the like, preferably Al
TwoOThree, AlOOH, Al (OH)ThreeIt is.

【0016】これら原料化合物の使用割合は、Li、M
n及び置換元素Mが前記一般式(1)の組成となるよう
に使用される。これら原料化合物は、先ず混合される。
反応温度において溶融しない化合物の場合は、反応性を
上げる目的で粉砕等の手段により、粒子径を10μm以
下としておくのが好ましい。粉砕、混合の順序には特に
制限が無く、任意の順序で粉砕、混合することができ
る。粉砕、混合の方法も均一な混合が可能であれば特に
限定されるものでは無い。乾式でも湿式でも良く、例え
ばボールミル、振動ミル、ビーズミル等の装置を使用す
る混合方法が挙げられるが、得られる複合酸化物の一次
粒子間の置換元素含有量分布の均一性が良好であること
が必要なことから、湿式混合が好ましい。湿式で混合し
た場合には、混合物を乾燥する際に、噴霧乾燥等の手段
により例えば1〜100μmに造粒しても良い。
The proportions of these starting compounds used are Li, M
n and the substitution element M are used so as to have the composition represented by the general formula (1). These starting compounds are first mixed.
In the case of a compound that does not melt at the reaction temperature, it is preferable to reduce the particle diameter to 10 μm or less by means such as pulverization in order to increase the reactivity. The order of pulverization and mixing is not particularly limited, and pulverization and mixing can be performed in an arbitrary order. The method of pulverization and mixing is not particularly limited as long as uniform mixing is possible. Dry or wet methods may be used, and examples thereof include a mixing method using an apparatus such as a ball mill, a vibration mill, and a bead mill.However, the uniformity of the substitution element content distribution among the primary particles of the obtained composite oxide is preferably good. Wet mixing is preferred because it is necessary. When the mixture is wet, when the mixture is dried, the mixture may be granulated to, for example, 1 to 100 μm by means such as spray drying.

【0017】原料混合物の焼成温度は、通常500℃以
上好ましくは550℃以上であり、また通常1000℃
以下、中でも950℃以下が好ましい。温度が低すぎる
と、結晶性の良いリチウムマンガン複合酸化物を得るた
めに長時間の反応時間を要し好ましくない。また温度が
高すぎると、目的とするリチウムマンガン複合酸化物以
外の相が生成するか、あるいは欠陥が多いリチウムマン
ガン複合酸化物を生成する結果となり、二次電池とした
際に容量の低下あるいは充放電による結晶構造の崩壊に
よる劣化を招き好ましくない。また、常温から上記の反
応温度まで昇温する際には、反応をより均一に行うため
に例えば毎分5℃以下の温度で徐々に昇温するか、ある
いは途中で一旦昇温を停止し、一定温度での保持時間を
入れる事が好ましい。
The firing temperature of the raw material mixture is usually 500 ° C. or higher, preferably 550 ° C. or higher, and usually 1000 ° C.
Below, especially 950 ° C or less is preferred. If the temperature is too low, a long reaction time is required to obtain a lithium-manganese composite oxide having good crystallinity, which is not preferable. On the other hand, if the temperature is too high, a phase other than the target lithium manganese composite oxide is generated, or a lithium manganese composite oxide having many defects is generated. It is not preferable because it causes deterioration due to collapse of the crystal structure due to discharge. When the temperature is raised from room temperature to the above reaction temperature, the temperature is gradually raised at a temperature of, for example, 5 ° C. or less per minute in order to perform the reaction more uniformly, or the temperature is temporarily stopped on the way, It is preferable to provide a holding time at a constant temperature.

【0018】焼成時間は通常1時間以上100時間以下
である。時間が短すぎると結晶性の良いリチウムマンガ
ン複合酸化物が得られず、長すぎる反応時間は実用的で
はない。結晶欠陥が少ないリチウムマンガン複合酸化物
を得るためには、上記の反応後、ある程度の温度迄はゆ
っくりと冷却することが好ましく、800℃、好ましく
は600℃迄は5℃/min.以下の冷却速度で徐冷す
ることが好ましい。焼成に使用する加熱装置は、上記の
温度、雰囲気を達成できるものであれば特に制限はな
く、例えば箱形炉、管状炉、トンネル炉、ロータリーキ
ルン等を使用することができる。
The firing time is usually from 1 hour to 100 hours. If the time is too short, a lithium manganese composite oxide having good crystallinity cannot be obtained, and an excessively long reaction time is not practical. In order to obtain a lithium manganese composite oxide having few crystal defects, it is preferable to slowly cool to a certain temperature after the above reaction, and to cool at 800 ° C., preferably 5 ° C./min. It is preferable to gradually cool at the following cooling rate. The heating device used for firing is not particularly limited as long as the above-described temperature and atmosphere can be achieved, and for example, a box furnace, a tubular furnace, a tunnel furnace, a rotary kiln, and the like can be used.

【0019】この様にして製造したリチウムマンガン酸
化物は、粒子径0.1〜3μmの1次粒子が凝集した、
粒子径1〜100μmの2次粒子からなり、かつ窒素吸
着による比表面積が0.1〜5m2 /gであること好ま
しい。1次粒子の大きさは、原料の粉砕の程度、焼成温
度、焼成時間等により制御することが可能である。2次
粒子の粒子径は、原料の粉砕条件、噴霧乾燥を行う場合
は噴霧乾燥条件、焼成後の粉砕、分級条件等により制御
することが可能である。比表面積は1次粒子の粒径およ
び2次粒子の粒径により制御することが可能であり、1
次粒子の粒径及び/又は2次粒子の粒径を大きくするこ
とにより減少する。
In the lithium manganese oxide thus produced, primary particles having a particle size of 0.1 to 3 μm are aggregated.
It is preferably composed of secondary particles having a particle size of 1 to 100 μm and having a specific surface area of 0.1 to 5 m 2 / g by nitrogen adsorption. The size of the primary particles can be controlled by the degree of pulverization of the raw material, the firing temperature, the firing time, and the like. The particle size of the secondary particles can be controlled by the conditions for pulverizing the raw material, the conditions for spray-drying when performing spray-drying, the conditions for pulverization after calcination, and the classification conditions. The specific surface area can be controlled by the particle size of the primary particles and the particle size of the secondary particles.
It is reduced by increasing the particle size of the secondary particles and / or the particle size of the secondary particles.

【0020】本発明のMnサイトの一部を他元素で置換
したリチウムマンガン酸化物を正極活物質として、二次
電池を作製することができる。本発明の2次電池の一例
としては、正極、負極、電解液、セパレーターからなる
2次電池が挙げられ、正極と負極との間には電解質が存
在し、かつセパレーターが正極と負極が接触しないよう
にそれらの間に配置される。正極としては、本発明で得
られたリチウムマンガン酸化物(正極活物質)、導電
材、結着剤、並びにこれらを均一に分散させる為の溶媒
を一定量で混合した後、集電体上に塗布する。ここで用
いられる導電材としては、天然黒鉛、人造黒鉛、アセチ
レンブラック等が、結着剤としてはポリフッ化ビニリデ
ン、ポリテトラフルオロエチレン、ポリ酢酸ビニル、ポ
リメチルメタクリレート、ポリエチレン、ニトロセルロ
ース等が、分散用の溶媒としてはN−メチルピロリド
ン、テトラヒドロフラン、ジメチルホルムアミド等が挙
げられるが、これらに限定されるものではない。集電体
の材質としてはアルミニウム、ステンレス等が挙げられ
る。集電体上に塗布後、乾燥し、通常、ローラープレ
ス、その他の手法により圧密する。
A secondary battery can be manufactured using the lithium manganese oxide of the present invention in which a part of the Mn site is replaced by another element as a positive electrode active material. As an example of the secondary battery of the present invention, a secondary battery including a positive electrode, a negative electrode, an electrolytic solution, and a separator may be mentioned. An electrolyte exists between the positive electrode and the negative electrode, and the separator does not contact the positive electrode and the negative electrode. So be placed between them. As the positive electrode, the lithium manganese oxide (positive electrode active material) obtained according to the present invention, a conductive material, a binder, and a solvent for uniformly dispersing the lithium manganese oxide are mixed in a certain amount, and then mixed on a current collector. Apply. As the conductive material used here, natural graphite, artificial graphite, acetylene black, etc., as the binder polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl acetate, polymethyl methacrylate, polyethylene, nitrocellulose, etc., dispersed Solvents include N-methylpyrrolidone, tetrahydrofuran, dimethylformamide and the like, but are not limited thereto. Examples of the material of the current collector include aluminum and stainless steel. After being coated on the current collector, it is dried and usually consolidated by a roller press or other methods.

【0021】一方、負極としては、カーボン系材料(天
然黒鉛、熱分解炭素等)をCu等の集電体上に塗布した
もの、或いはリチウム金属箔、リチウム−アルミニウム
合金等が使用できる。
On the other hand, as the negative electrode, a material obtained by applying a carbon-based material (natural graphite, pyrolytic carbon, or the like) on a current collector such as Cu, a lithium metal foil, a lithium-aluminum alloy, or the like can be used.

【0022】本発明で使用する電解液は非水電解液であ
り、具体的には、電解塩としてはLiClO4 、LiA
sF6 、LiPF6 、LiBF4 、LiBr、LiCF
3 SO3 等が挙げられ、電解液を構成する溶媒として
は、テトラヒドロフラン、1,4−ジオキサン、ジメチ
ルホルムアミド、アセトニトリル、ベンゾニトリル、ジ
メチルカーボネート、ジエチルカーボネート、メチルエ
チルカーボネート、エチレンカーボネート、プロピレン
カーボネート、ブチレンカーボネート等が挙げられる
が、これらに限定されるものではない。また、これら溶
媒は単独で用いても良いし、2種類以上を混合して用い
ても良い。
The electrolytic solution used in the present invention is a non-aqueous electrolytic solution. Specifically, as the electrolytic salt, LiClO 4 , LiA
sF 6 , LiPF 6 , LiBF 4 , LiBr, LiCF
3 SO 3 and the like, and as a solvent constituting the electrolytic solution, tetrahydrofuran, 1,4-dioxane, dimethylformamide, acetonitrile, benzonitrile, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, ethylene carbonate, propylene carbonate, butylene Examples thereof include carbonate, but are not limited thereto. These solvents may be used alone or as a mixture of two or more.

【0023】本発明で用いられるセパレーターとして
は、テフロン、ポリエチレン、ポリプロピレン、ポリエ
ステル等の高分子、又はガラス繊維等の不織布フィルタ
ー、或いはガラス繊維と高分子繊維の複合不織布フィル
ター等を挙げられる。この様にして、本発明で得られた
正極活物質を用いて作成した二次電池は、実施例から明
らかなように、高温での充放電サイクル後の容量維持率
が高い二次電池が得られる。
Examples of the separator used in the present invention include a polymer such as Teflon, polyethylene, polypropylene, and polyester, a nonwoven fabric filter such as glass fiber, and a composite nonwoven fabric filter of glass fiber and polymer fiber. In this manner, the secondary battery prepared using the positive electrode active material obtained by the present invention can obtain a secondary battery having a high capacity retention rate after a high-temperature charge / discharge cycle, as is clear from the examples. Can be

【0024】[0024]

【実施例】以下、本発明を実施例を用いて、更に具体的
に説明するが、本発明は、その要旨を超えない限り、如
何の実施例に制約されるものではない。 実施例1 Mn2 3 、AlOOH、LiOHを、それぞれ最終的
なスピネル型リチウムマンガン複合酸化物中の組成で、
Li:Mn:Al=1.04:1.84:0.12(モ
ル比)となるように秤量し、これに純水を加えて固形分
濃度30重量%のスラリーを調整した。このスラリーを
攪拌しながら、循環式媒体攪拌型湿式粉砕器を用いて、
スラリー中の固形分の平均粒子径が0.5μmになる
迄、粉砕した後、二流体ノズル噴霧型のスプレードライ
ヤーを用いて、噴霧乾燥を行い、更に大気雰囲気中で9
00℃にて10時間焼成した。その結果、平均粒子径約
8μmのほぼ球状の造粒粒子が得られた。X線回折を測
定したところ、立方晶のスピネル型リチウムマンガン複
合酸化物の構造を有していることが確認された。なお、
粒度分布の測定は、レーザー回折散乱式粒度分布測定装
置(HORIBA製LA910)を用いて行った。この
様にして得られた複合酸化物粉末1gを酸で溶解し、原
子吸光分析法にて組成分析を行ったところ、Li:M
n:Al=1.04:1.85:0.11(モル比)の
組成であった。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to any examples as long as the gist is not exceeded. Example 1 Mn 2 O 3 , AlOOH, and LiOH were each represented by a composition in a final spinel-type lithium manganese composite oxide,
Li: Mn: Al was weighed so as to be 1.04: 1.84: 0.12 (molar ratio), and pure water was added thereto to prepare a slurry having a solid concentration of 30% by weight. While stirring this slurry, using a circulating medium stirring wet pulverizer,
After pulverizing until the average particle diameter of the solid content in the slurry becomes 0.5 μm, the slurry is spray-dried using a two-fluid nozzle spray type spray dryer, and further dried in an air atmosphere.
Baking was performed at 00 ° C. for 10 hours. As a result, substantially spherical granulated particles having an average particle diameter of about 8 μm were obtained. X-ray diffraction measurement confirmed that the powder had a cubic spinel-type lithium manganese composite oxide structure. In addition,
The particle size distribution was measured using a laser diffraction scattering type particle size distribution analyzer (LA910 manufactured by HORIBA). 1 g of the composite oxide powder thus obtained was dissolved in an acid, and the composition was analyzed by atomic absorption spectrometry.
The composition was n: Al = 1.04: 1.85: 0.11 (molar ratio).

【0025】次に、走査型電子顕微鏡(SEM)観察の
結果、この複合酸化物造粒粒子を構成している一次粒子
の粒子径は0.2〜1.0μmであった。この一次粒子
におけるAl含有量に関して、以下の通り、Auger
電子分光分析法により測定を行った。計4個の造粒粒子
につき、各造粒粒子毎に、それを構成している一次粒子
3点を選択し、合計12個の一次粒子について、Aug
er電子分光分析を行った(測定装置:VG社製MIC
ROLAB310−F)。情報としてはAl及びMnに
関する信号強度値が得られるが、Alの信号強度値/M
nの信号強度値の値を、Al含有量の尺度として表−1
に示した。これら測定値の平均値に対する標準偏差は、
24.5%であった。
Next, as a result of observation with a scanning electron microscope (SEM), the primary particles constituting the composite oxide granulated particles had a particle diameter of 0.2 to 1.0 μm. Regarding the Al content in the primary particles, Auger
The measurement was performed by electron spectroscopy. With respect to a total of four granulated particles, for each granulated particle, three primary particles constituting the granulated particle were selected, and for a total of 12 primary particles, Aug was determined.
er electron spectroscopy (measuring device: MIC manufactured by VG)
ROLAB310-F). As the information, the signal strength value for Al and Mn can be obtained, and the signal strength value of Al / M
n as a measure of Al content in Table 1
It was shown to. The standard deviation of these measurements from the mean is
It was 24.5%.

【0026】上記のリチウムマンガン複合酸化物粉末を
アセチレンブラック粉末及びポリテトラフルオロエチレ
ン粉末と、75:20:5の重量比で混合し、乳鉢中で
混練してシート化した後、12mmφのポンチで打ち抜
き、17.0mgの円盤形正極合剤シートを作製した。
この正極合剤シートは16mmφのアルミメッシュにハ
ンドプレス機を用いて圧着して正極電極とした。また、
負極剤として、微小黒鉛粉末をポリフッ化ビニリデン
(PVDF)及びN−メチル−2−ピロリドン(NM
P)と混合して塗液とし、この塗液をCuシート上に塗
布して、乾燥後、12mmφのポンチで円盤状に打ち抜
き、負極電極とした。負極電極中の負極活物質正味重量
は4.80mgであった。この様にして作製した電極
を、ポリエチレン製のセパレーターを介してCR203
2型(直径20mm×厚さ3.2mm)のコイン電池に
組み立てた。その際、電解液として、エチレンカーボネ
ート(EC):ジエチルカーボネート(DEC)=3:
7組成溶液1リットルに1M−LiPF6 を溶解したも
のを使用した。この電池を4個作製し、そのうち1個の
電池について4.2V迄充電し、充電状態のまま80℃
の恒温槽中に7日間保存した。保存終了後、電池を解体
して電解液を回収し、この電解液中に含まれるMnの量
を測定したところ、0.18μmol/mlであった。
一方、残り3個の電池に関しては、50℃の恒温槽中
で、3.0〜4.2Vの範囲での1C充放電サイクル試
験を実施した。この3個の電池試験の1サイクル目の初
期放電容量は95mAh/gであり、50サイクル経過
時の容量維持率(50サイクル目の放電容量/1サイク
ル目の放電容量)の平均値は89%であった。
The above-mentioned lithium manganese composite oxide powder is mixed with acetylene black powder and polytetrafluoroethylene powder in a weight ratio of 75: 20: 5, kneaded in a mortar to form a sheet, and then with a 12 mmφ punch. Punching was performed to produce a 17.0 mg disk-shaped positive electrode mixture sheet.
This positive electrode mixture sheet was pressure-bonded to a 16 mmφ aluminum mesh using a hand press to form a positive electrode. Also,
As the negative electrode agent, fine graphite powder was prepared by mixing polyvinylidene fluoride (PVDF) and N-methyl-2-pyrrolidone (NM
This was mixed with P) to form a coating solution. This coating solution was applied on a Cu sheet, dried, and punched into a disk shape with a 12 mmφ punch to obtain a negative electrode. The net weight of the negative electrode active material in the negative electrode was 4.80 mg. The electrode produced in this manner was connected to CR203 via a polyethylene separator.
It was assembled into a type 2 (diameter 20 mm × thickness 3.2 mm) coin battery. At that time, ethylene carbonate (EC): diethyl carbonate (DEC) = 3:
A solution obtained by dissolving 1M-LiPF 6 in 1 liter of the 7 composition solution was used. Four batteries were prepared, and one of the batteries was charged to 4.2 V, and the battery was charged at 80 ° C.
For 7 days. After the storage was completed, the battery was disassembled to collect the electrolytic solution, and the amount of Mn contained in the electrolytic solution was measured to be 0.18 μmol / ml.
On the other hand, for the remaining three batteries, a 1C charge / discharge cycle test in a range of 3.0 to 4.2 V was performed in a thermostat at 50 ° C. The initial discharge capacity in the first cycle of the three battery tests was 95 mAh / g, and the average value of the capacity retention rate after 50 cycles (discharge capacity in the 50th cycle / discharge capacity in the first cycle) was 89%. Met.

【0027】実施例2 Mn2 3 、AlOOH、LiOHを、それぞれ最終的
なスピネル型リチウムマンガン複合酸化物中の組成が、
Li:Mn:Al=1.04:1.84:0.12(モ
ル比)となるように秤量し、これに純水を加えて固形分
濃度30重量%のスラリーを調整した。このスラリーを
攪拌しながら、循環式媒体攪拌型湿式粉砕器を用いて、
スラリー中の固形分の平均粒子径が1.2μmになる
迄、粉砕した後、二流体ノズル噴霧型のスプレードライ
ヤーを用いて、噴霧乾燥を行い、更に大気雰囲気中で9
00℃にて10時間焼成した。その結果、平均粒子径約
8μmのほぼ球状の造粒粒子が得られ、X線回折を測定
したところ、立方晶のスピネル型リチウムマンガン複合
酸化物の構造を有していることが確認された。なお、粒
度分布の測定は、レーザー回折・散乱式粒度分布測定装
置(HORIBA製LA910)を用いて行った。この
様にして得られた複合酸化物粉末1gを酸で溶解し、原
子吸光分析法にて組成分析を行ったところ、Li:M
n:Al=1.04:1.85:0.11(モル比)の
組成であった。
Example 2 Mn 2 O 3 , AlOOH, and LiOH were combined with each other in the final spinel-type lithium manganese composite oxide by the following composition:
Li: Mn: Al was weighed so as to be 1.04: 1.84: 0.12 (molar ratio), and pure water was added thereto to prepare a slurry having a solid concentration of 30% by weight. While stirring this slurry, using a circulating medium stirring wet pulverizer,
After pulverizing until the average particle diameter of the solid content in the slurry becomes 1.2 μm, the slurry is spray-dried using a two-fluid nozzle spray type spray dryer, and further dried in an air atmosphere.
Baking was performed at 00 ° C. for 10 hours. As a result, substantially spherical granulated particles having an average particle diameter of about 8 μm were obtained. X-ray diffraction measurement confirmed that the particles had a cubic spinel-type lithium manganese composite oxide structure. The particle size distribution was measured using a laser diffraction / scattering particle size distribution analyzer (LA910 manufactured by HORIBA). 1 g of the composite oxide powder thus obtained was dissolved in an acid, and the composition was analyzed by atomic absorption spectrometry.
The composition was n: Al = 1.04: 1.85: 0.11 (molar ratio).

【0028】次に、SEM観察の結果、この複合酸化物
造粒粒子を構成している一次粒子の粒子径は0.2〜
2.0μmであることが判ったが、この一次粒子におけ
るAl含有量に関して、実施例1と同様に、Auger
電子分光分析法による測定を行った。結果を表−1に示
した。これら測定値の平均値に対する標準偏差は、43
%であった。
Next, as a result of SEM observation, the primary particles constituting the composite oxide granulated particles have a particle diameter of 0.2 to 0.2.
It was found to be 2.0 μm, but the Al content in the primary particles was similar to that of Example 1 except for Auger.
Measurements were made by electron spectroscopy. The results are shown in Table 1. The standard deviation of these measurements from the mean is 43
%Met.

【0029】一方、上記の複合酸化物粉末を用いて、実
施例1と同様の手法で、コイン型電池を4個作製し、そ
のうち1個の電池について4.2V迄充電し、充電状態
のまま80℃の恒温槽中に7日間保存した。保存終了
後、電池を解体して電解液を回収し、この電解液中に含
まれるMnの量を測定したところ、0.22μmol/
mlであった。一方、残り3個の電池に関しては、50
℃の恒温槽中で、3.0〜4.2Vの範囲での1C充放
電サイクル試験を実施した。この3個の電池試験の1サ
イクル目の初期放電容量は95mAh/gであり、50
サイクル経過時の容量維持率(50サイクル目の放電容
量/1サイクル目の放電容量)の平均値は、87%であ
った。
On the other hand, using the composite oxide powder, four coin-type batteries were prepared in the same manner as in Example 1, and one of the batteries was charged to 4.2 V, and the charged state was maintained. It was stored in a thermostat at 80 ° C. for 7 days. After the storage was completed, the battery was disassembled to collect the electrolytic solution, and the amount of Mn contained in the electrolytic solution was measured.
ml. On the other hand, for the remaining three batteries, 50
A 1C charge / discharge cycle test in the range of 3.0 to 4.2 V was carried out in a constant temperature bath at ℃. The initial discharge capacity in the first cycle of these three battery tests was 95 mAh / g,
The average value of the capacity retention ratio (discharge capacity at the 50th cycle / discharge capacity at the first cycle) at the end of the cycle was 87%.

【0030】比較例1Mn2 3 、AlOOH、LiO
Hを、それぞれ最終的なスピネル型リチウムマンガン複
合酸化物中の組成が、Li:Mn:Al=1.04:
1.84:0.12(モル比)となるように秤量し、ボ
ールミルで乾式混合を行った。混合後の粉末を、最終的
に900℃にて10時間焼成した。得られた正極活物質
粉末は、X線回折では、立方晶スピネル型のマンガン酸
リチウムの構造を有していた。また、粒度分布測定及び
SEM観察の結果から、1.0μm前後の一次粒子が凝
集し、凝集物の平均粒子径は、10μmであった。さら
に、この様にして得られた複合酸化物粉末1gを酸に溶
解し、原子吸光法にて組成分析を行ったところ、Li:
Mn:Al=1.04:1.85:0.11(モル比)
の組成であった。次に、この複合酸化物粉末の一次粒子
中のAl含有量に関して、4個の凝集粒子から選んだ、
計12個の一次粒子について実施例1と同様の方法で、
Auger電子分光分析法により測定を行った。結果を
表−1に示した。これら測定値に対する標準偏差は10
2.7%であった。
Comparative Example 1 Mn 2 O 3 , AlOOH, LiO
H is represented by the formula: Li: Mn: Al = 1.04:
The mixture was weighed so as to be 1.84: 0.12 (molar ratio), and was dry-mixed with a ball mill. The mixed powder was finally fired at 900 ° C. for 10 hours. The obtained positive electrode active material powder had a cubic spinel-type lithium manganate structure by X-ray diffraction. From the results of the particle size distribution measurement and the SEM observation, the primary particles of about 1.0 μm were aggregated, and the average particle diameter of the aggregate was 10 μm. Further, 1 g of the composite oxide powder thus obtained was dissolved in an acid, and the composition was analyzed by an atomic absorption method.
Mn: Al = 1.04: 1.85: 0.11 (molar ratio)
The composition was as follows. Next, with respect to the Al content in the primary particles of the composite oxide powder, selected from four aggregated particles,
In the same manner as in Example 1 for a total of 12 primary particles,
The measurement was performed by Auger electron spectroscopy. The results are shown in Table 1. The standard deviation for these measurements is 10
2.7%.

【0031】一方、本複合酸化物を正極活物質として、
実施例と同様の手順でCR2032型のコイン電池を4
個組立て、そのうち1個の電池について4.2V迄充電
し、充電状態のまま80℃の恒温槽中に7日間保存し
た。保存終了後、電池を解体して電解液を回収し、この
電解液中に含まれるMnの量を測定したところ、0.3
2μmol/mlであった。一方、残り3個の電池に関
しては、50℃の恒温槽中で、3.0〜4.2Vの範囲
での1C充放電サイクル試験を実施した。この3個の電
池試験の1サイクル目の初期放電容量は94mAh/g
と実施例と有意差が見られなかったが、50サイクル経
過時の容量維持率(50サイクル目の放電容量/1サイ
クル目の放電容量)の平均値は、81%と低かった。
On the other hand, using the present composite oxide as a positive electrode active material,
Insert a CR2032 type coin battery in the same procedure as in the embodiment.
Each of the batteries was assembled, and one of the batteries was charged up to 4.2 V, and stored in a constant temperature bath at 80 ° C. for 7 days in a charged state. After the storage was completed, the battery was disassembled to collect the electrolytic solution, and the amount of Mn contained in the electrolytic solution was measured.
It was 2 μmol / ml. On the other hand, the remaining three batteries were subjected to a 1C charge / discharge cycle test in a range of 3.0 to 4.2 V in a constant temperature bath at 50 ° C. The initial discharge capacity in the first cycle of these three battery tests was 94 mAh / g.
Although there was no significant difference from the Example and Example, the average value of the capacity retention rate after 50 cycles (discharge capacity at 50th cycle / discharge capacity at 1st cycle) was as low as 81%.

【0032】比較例2 Mn2 3 、AlOOH、LiOHを、それぞれ最終的
なスピネル型リチウムマンガン複合酸化物中の組成が、
Li:Mn:Al=1.04:1.84:0.12(モ
ル比)となるように秤量し、これに純水を加えて固形分
濃度30重量%のスラリーを調整した。このスラリーを
湿式粉砕は行わずに、攪拌翼で30min攪拌処理を施
した後、噴霧乾燥を行い、更に大気雰囲気中で900℃
にて10時間焼成した。その結果、真球度は非常に悪い
ものの、平均粒子径約8μmの造粒粒子が得られた、X
線回折を測定したところ、立方晶のスピネル型リチウム
マンガン複合酸化物の構造を有していることが確認され
た。この様にして得られた複合酸化物粉末1gを酸で溶
解し、原子吸光分析法にて組成分析を行ったところ、L
i:Mn:Al=1.04:1.85:0.11(モル
比)の組成であった。
Comparative Example 2 The compositions of Mn 2 O 3 , AlOOH and LiOH in the final spinel type lithium manganese composite oxide were as follows:
Li: Mn: Al was weighed so as to be 1.04: 1.84: 0.12 (molar ratio), and pure water was added thereto to prepare a slurry having a solid concentration of 30% by weight. This slurry was not subjected to wet pulverization, but was subjected to a stirring treatment with a stirring blade for 30 minutes, followed by spray drying, and further at 900 ° C. in the air atmosphere.
For 10 hours. As a result, although the sphericity was very poor, granulated particles having an average particle size of about 8 μm were obtained.
As a result of measuring the line diffraction, it was confirmed that it had a structure of a cubic spinel-type lithium manganese composite oxide. 1 g of the composite oxide powder thus obtained was dissolved in an acid, and the composition was analyzed by atomic absorption spectrometry.
The composition was i: Mn: Al = 1.04: 1.85: 0.11 (molar ratio).

【0033】次に、SEM観察の結果、この複合酸化物
造粒粒子を構成している一次粒子の粒子径は0.5〜
3.0μmであることが判った。この一次粒子における
Al含有量に関して、実施例1と同様に、Auger電
子分光分析法による測定を行った。結果を表−1に示し
た。これら測定値の平均値に対する標準偏差は、72%
であった。
Next, as a result of the SEM observation, the particle diameter of the primary particles constituting the composite oxide granulated particles was 0.5 to 0.5%.
It was found to be 3.0 μm. The Al content in the primary particles was measured by Auger electron spectroscopy in the same manner as in Example 1. The results are shown in Table 1. The standard deviation of these measurements from the mean is 72%
Met.

【0034】一方、複合酸化物粉末を正極活物質として
実施例1と同様の手法で、コイン型電池を4個作製し、
そのうち1個の電池について4.2V迄充電し、充電状
態のまま80℃の恒温槽中に7日間保存した。保存終了
後、電池を解体して電解液を回収し、この電解液中に含
まれるMnの量を測定したところ、0.28μmol/
mlであった。一方、残り3個の電池に関しては、50
℃の恒温槽中で、3.0〜4.2Vの範囲での1C充放
電サイクル試験を実施した。この3個の電池試験のサイ
クル目の初期放電容量は95mAh/gであり、50サ
イクル経過時の容量維持率(50サイクル目の放電容量
/1サイクル目の放電容量)の平均値は、83%であっ
た。
On the other hand, using the composite oxide powder as the positive electrode active material, four coin-type batteries were produced in the same manner as in Example 1,
One of the batteries was charged to 4.2 V, and stored in a constant temperature bath at 80 ° C. for 7 days while being charged. After the storage was completed, the battery was disassembled to collect the electrolytic solution, and the amount of Mn contained in the electrolytic solution was measured.
ml. On the other hand, for the remaining three batteries, 50
A 1C charge / discharge cycle test in the range of 3.0 to 4.2 V was carried out in a constant temperature bath at ℃. The initial discharge capacity in the cycle of these three battery tests was 95 mAh / g, and the average value of the capacity retention rate after 50 cycles (discharge capacity in the 50th cycle / discharge capacity in the first cycle) was 83%. Met.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【発明の効果】実施例から明らかなように、Mnサイト
の一部を置換したAlの含有量が、均一に分布した本願
発明に係わるリチウムマンガン複合酸化物を活物質とし
たリチウム二次電池は、Al含有量の分布が不均一な比
較例の複合酸化物を用いた電池に比し、充放電を繰り返
した際の電解液中へのMn溶解量が抑制され、50℃に
おける50サイクル経過時の容量維持率が優れている。
As is clear from the examples, the lithium secondary battery using the lithium manganese composite oxide according to the present invention as an active material, in which the content of Al partially substituted for Mn sites is uniformly distributed, according to the present invention. In comparison with the battery using the composite oxide of the comparative example in which the distribution of the Al content was non-uniform, the amount of Mn dissolved in the electrolytic solution when charging and discharging were repeated was suppressed, and after 50 cycles at 50 ° C. The capacity retention rate is excellent.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山原 圭二 神奈川県横浜市青葉区鴨志田町1000番地 三菱化学株式会社横浜総合研究所内 Fターム(参考) 4G048 AA04 AA05 AC06 AD06 5H003 AA04 BB05 BC01 BC06 BD00 5H014 AA01 AA06 EE10 HH00 5H029 AJ05 AK03 AL06 AM03 AM04 AM05 AM07 DJ16 DJ17 HJ00 HJ02  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Keiji Yamahara 1000-term Kamoshida-cho, Aoba-ku, Yokohama-shi, Kanagawa Prefecture Mitsubishi Chemical Corporation Yokohama Research Laboratory F-term (reference) 4G048 AA04 AA05 AC06 AD06 5H003 AA04 BB05 BC01 BC06 BD00 5H014 AA01 AA06 EE10 HH00 5H029 AJ05 AK03 AL06 AM03 AM04 AM05 AM07 DJ16 DJ17 HJ00 HJ02

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 Mnサイトの一部が他元素で置換された
スピネル型リチウムマンガン複合酸化物であって、各一
次結晶粒子の置換元素含有量の平均値に対するその標準
偏差σが、50%以下となるように置換元素が分布して
いることを特徴とするリチウムマンガン複合酸化物。
1. A spinel-type lithium-manganese composite oxide in which a part of an Mn site is substituted with another element, wherein a standard deviation σ of the average value of the substituted element content of each primary crystal particle is 50% or less. A lithium manganese composite oxide characterized in that the substitution elements are distributed such that
【請求項2】 リチウムマンガン複合酸化物が、下記一
般式(1) 【化1】 Li1+X Mn2-X-Y Y 4 (1) (但し、0<X<0.5、0<Y<0.5、Mは置換元
素を示す。)で表されることを特徴とする請求項1記載
のリチウムマンガン複合酸化物。
2. A lithium-manganese composite oxide is represented by the following general formula (1) ## STR1 ## Li 1 + X Mn 2-XY M Y O 4 (1) ( where, 0 <X <0.5,0 < 2. The lithium manganese composite oxide according to claim 1, wherein Y <0.5 and M represents a substitution element.
【請求項3】 置換元素が、B、Sn、Al、Ti、
V、Cr、Fe、Co、Ni、Cu、Zn、Mg、Ga
から選ばれる元素であることを特徴とする請求項1又は
2に記載のリチウムマンガン複合酸化物。
3. The method according to claim 1, wherein the substitution element is B, Sn, Al, Ti,
V, Cr, Fe, Co, Ni, Cu, Zn, Mg, Ga
The lithium manganese composite oxide according to claim 1, wherein the lithium manganese composite oxide is an element selected from the group consisting of:
【請求項4】 置換元素が、Alであることを特徴とす
る請求項3に記載のリチウムマンガン複合酸化物。
4. The lithium-manganese composite oxide according to claim 3, wherein the substitution element is Al.
【請求項5】 請求項1乃至4の何れかに記載のリチウ
ムマンガン複合酸化物を活物質として用いることを特徴
とするリチウムイオン二次電池用正極。
5. A positive electrode for a lithium ion secondary battery, wherein the lithium manganese composite oxide according to claim 1 is used as an active material.
【請求項6】 請求項5記載の正極を用いることを特徴
とするリチウムイオン二次電池。
6. A lithium ion secondary battery using the positive electrode according to claim 5.
JP33241499A 1999-11-24 1999-11-24 Lithium manganese double oxide and lithium secondary battery using the same Pending JP2001151511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33241499A JP2001151511A (en) 1999-11-24 1999-11-24 Lithium manganese double oxide and lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33241499A JP2001151511A (en) 1999-11-24 1999-11-24 Lithium manganese double oxide and lithium secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2001151511A true JP2001151511A (en) 2001-06-05

Family

ID=18254711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33241499A Pending JP2001151511A (en) 1999-11-24 1999-11-24 Lithium manganese double oxide and lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JP2001151511A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134110A (en) * 2000-10-23 2002-05-10 Sony Corp Method of producing positive electrode active material and method of producing nonaqueous electrolyte battery
JP2008251390A (en) * 2007-03-30 2008-10-16 Toda Kogyo Corp Nonaqueous electrolyte secondary battery, manganate lithium therefor, and manufacturing method thereof
JP2010137996A (en) * 2007-11-12 2010-06-24 Toda Kogyo Corp Lithium manganate particle powder for nonaqueous electrolyte secondary battery, producing method of the same and nonaqueous electrolyte secondary battery
JP2021048070A (en) * 2019-09-19 2021-03-25 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
WO2023127358A1 (en) * 2021-12-27 2023-07-06 Tdk株式会社 Substance and lithium ion secondary battery
WO2024051499A1 (en) * 2022-09-09 2024-03-14 宁德时代新能源科技股份有限公司 Spinel-type lithium-manganese-containing composite oxide and preparation method therefor, positive electrode sheet, secondary battery, and electric device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10509683A (en) * 1994-09-30 1998-09-22 ツェントゥルム フューア ゾンネンエネルギー−ウント ヴァッサーシュトッフ−フォルシュング バーデン−ヴュルテムベルク ゲマインニュッツィヒ シュティフトゥング Ternary mixed lithium oxides, their preparation and their use
JPH11171551A (en) * 1997-10-08 1999-06-29 Nikki Chemcal Co Ltd Lithium manganese multiple oxide, its production and use
JPH11265717A (en) * 1998-03-18 1999-09-28 Japan Metals & Chem Co Ltd Spinel type lithium manganese oxide for secondary battery and its manufacture
JPH11312522A (en) * 1998-02-16 1999-11-09 Mitsubishi Chemical Corp Positive electrode material for lithium secondary battery and the lithium secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10509683A (en) * 1994-09-30 1998-09-22 ツェントゥルム フューア ゾンネンエネルギー−ウント ヴァッサーシュトッフ−フォルシュング バーデン−ヴュルテムベルク ゲマインニュッツィヒ シュティフトゥング Ternary mixed lithium oxides, their preparation and their use
JPH11171551A (en) * 1997-10-08 1999-06-29 Nikki Chemcal Co Ltd Lithium manganese multiple oxide, its production and use
JPH11312522A (en) * 1998-02-16 1999-11-09 Mitsubishi Chemical Corp Positive electrode material for lithium secondary battery and the lithium secondary battery
JPH11265717A (en) * 1998-03-18 1999-09-28 Japan Metals & Chem Co Ltd Spinel type lithium manganese oxide for secondary battery and its manufacture

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134110A (en) * 2000-10-23 2002-05-10 Sony Corp Method of producing positive electrode active material and method of producing nonaqueous electrolyte battery
JP2008251390A (en) * 2007-03-30 2008-10-16 Toda Kogyo Corp Nonaqueous electrolyte secondary battery, manganate lithium therefor, and manufacturing method thereof
WO2008126364A1 (en) * 2007-03-30 2008-10-23 Toda Kogyo Corporation Lithium manganese for non-aqueous electrolyte secondary battery, method for production thereof, and non-aqueous electrolyte secondary battery
US8440113B2 (en) 2007-03-30 2013-05-14 Toda Kogyo Corporation Lithium manganate for non-aqueous electrolyte secondary battery, process for producing the same, and non-aqueous electrolyte secondary battery
US8821766B2 (en) 2007-03-30 2014-09-02 Toda Kogyo Corporation Lithium manganate for non-aqueous electrolyte secondary battery, process for producing the same, and non-aqueous electrolyte secondary battery
JP2010137996A (en) * 2007-11-12 2010-06-24 Toda Kogyo Corp Lithium manganate particle powder for nonaqueous electrolyte secondary battery, producing method of the same and nonaqueous electrolyte secondary battery
JP2021048070A (en) * 2019-09-19 2021-03-25 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
JP7347061B2 (en) 2019-09-19 2023-09-20 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary batteries and lithium ion secondary batteries
WO2023127358A1 (en) * 2021-12-27 2023-07-06 Tdk株式会社 Substance and lithium ion secondary battery
WO2024051499A1 (en) * 2022-09-09 2024-03-14 宁德时代新能源科技股份有限公司 Spinel-type lithium-manganese-containing composite oxide and preparation method therefor, positive electrode sheet, secondary battery, and electric device

Similar Documents

Publication Publication Date Title
JP4949561B2 (en) Titanium dioxide powder as lithium ion secondary battery electrode active material production raw material, lithium titanate as lithium ion secondary battery electrode active material, and method for producing the same
JP3033899B1 (en) Positive electrode active material for lithium secondary battery, method for producing the same and use thereof
KR100995255B1 (en) Positive electrode active material for lithium secondary battery and method for producing same
JP5257272B2 (en) Positive electrode material for lithium secondary battery, secondary battery using the same, and method for producing positive electrode material for lithium secondary battery
JP2003051311A (en) Lithium transition metal compound oxide, manufacturing method of positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
WO2001036334A1 (en) Lithium-manganese composite oxide, positive electrode material for lithium secondary cell, positive electrode and lithium secondary cell, and method for preparing lithium-manganese composite oxide
KR20160055138A (en) Positive electrode material for lithium-ion cell
JP2004311297A (en) Powdered lithium secondary battery positive electrode material, lithium secondary battery positive electrode, and lithium secondary battery
JPWO2018003929A1 (en) Lithium titanate powder and electrode active material for electrode of electric storage device, and electrode sheet and electric storage device using the same
JP4655453B2 (en) Positive electrode material for lithium secondary battery, secondary battery using the same, and method for producing positive electrode material for lithium secondary battery
JP2001048545A (en) Production of lithium-manganese multiple oxide and secondary battery using the same
JP2003068306A (en) Lithium nickel manganese layered composite oxide
JP4543474B2 (en) Positive electrode active material, method for producing the same, and non-aqueous secondary battery using the same
JP4114314B2 (en) Lithium manganese composite oxide, positive electrode material for lithium secondary battery, positive electrode, lithium secondary battery, and method for producing lithium manganese composite oxide
JP2001146426A (en) Method for producing lithium manganese compound oxide and lithium ion secondary battery using the same
JP2002145619A (en) Lithium manganese multiple oxide, positive electrode material for lithium secondary cell, positive electrode for lithium secondary cell and manufacturing method of lithium secondary cell and lithium manganese multiple oxide
JP2003123742A (en) Method of manufacturing electrode plate for nonaqueous electrolyte secondary battery
JP2001151511A (en) Lithium manganese double oxide and lithium secondary battery using the same
JP4654488B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode and battery using the same
JP2005038629A (en) Lithium secondary battery positive electrode active material, lithium secondary battery positive electrode, and lithium secondary battery using same
JP2006273620A (en) Lithium transition metal complex oxide, its manufacturing method, fired precursor for lithium transition metal complex oxide and lithium secondary battery
JP2004155631A (en) Lithium-manganese-based double oxide particle for non-aqueous lithium secondary battery, method for producing the same and non-aqueous lithium secondary battery
JP2002068747A (en) Lithium manganese complex oxide, positive electrode material for lithium secondary battery, positive electrode, and lithium secondary battery
JP2003002663A (en) Layered lithium nickel manganese composite oxide
JP2003297358A (en) Manufacturing method for composite oxide of lithium transition metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061108

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100608