JP4654488B2 - Positive electrode material for lithium ion secondary battery, positive electrode and battery using the same - Google Patents
Positive electrode material for lithium ion secondary battery, positive electrode and battery using the same Download PDFInfo
- Publication number
- JP4654488B2 JP4654488B2 JP2000180980A JP2000180980A JP4654488B2 JP 4654488 B2 JP4654488 B2 JP 4654488B2 JP 2000180980 A JP2000180980 A JP 2000180980A JP 2000180980 A JP2000180980 A JP 2000180980A JP 4654488 B2 JP4654488 B2 JP 4654488B2
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- positive electrode
- composite oxide
- secondary battery
- ion secondary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】
【発明の属する技術分野】
本発明はリチウムイオン二次電池用正極材料に関するものである。詳しくは、リチウムマンガン複合酸化物を含有する正極材料に関する。
【0002】
【従来の技術】
正極及び負極が互いにリチウムイオンを吸蔵・放出することによって電池として機能するリチウムイオン二次電池は、高電圧、高エネルギー密度を有し、携帯電話、携帯用パソコン、ビデオカメラ、電気自動車等の用途に好適に用いることができる。
リチウムイオン二次電池の正極活物質として、既に実用化されている層状構造を有するリチウムコバルト複合酸化物は、4V級の高電圧を得ることができ、かつ、高いエネルギー密度を有する。しかし、原料であるコバルトは資源的にも乏しく高価であるため、今後、大幅に需用が拡大していく可能性を考慮すると原料供給の面で不安があると共に、更に価格が高騰することも予想される。
リチウムコバルト酸化物に代わる正極活物質として、安価なマンガンを原料としたスピネル型のリチウムマンガン複合酸化物を正極物質として利用することが考えられている。
しかしながら、リチウムマンガン複合酸化物は、上記リチウムコバルト複合酸化物に比し、サイクル特性が劣る、すなわち50〜60℃の温度で繰り返し充放電を行った際の容量劣化が大きい点が問題であった。この点に関しては、(1)リチウムマンガン複合酸化物の結晶性を改善する、或いは(2)結晶構造を安定化するために、マンガンサイトの一部を他の元素で置換することにより、容量劣化が抑制されることが明らかになっているが、係る改良のみでは、充分なサイクル特性を得るには至っていない。
【0003】
【発明が解決しようとする課題】
本発明は係る事情に鑑みなされたものであって、リチウムマンガン複合酸化物を含有し、サイクル特性が優れたリチウムイオン二次電池の正極活物質を提供することを目的とするものである。
【0004】
【課題を解決するための手段】
本発明者等は、スピネル型リチウムマンガン複合酸化物のMnサイトの一部を他元素で置換した場合、各一次結晶粒子間の置換元素含有量の分布状態がサイクル特性に影響することを見出し、分布状態が可及的均一なスピネル型リチウムマンガン複合酸化物を正極活物質とすることを提案(特願平11−332414)したが、係るスピネル型リチウムマンガン複合酸化物と他のリチウム遷移金属複合酸化物を組み合わせることにより更にサイクル特性を向上させることを見出し、本発明を達成した。すなわち本発明の要旨は、(a)Mnサイトの一部が他元素で置換されたスピネル型リチウムマンガン酸化物であって、各一次結晶粒子の置換元素含有量の平均値に対するその標準偏差σが50%以下となるように置換原子が分布しているリチウムマンガン複合酸化物と、(b)少なくとも1種類の(a)以外のリチウム遷移金属複合酸化物とを含有することを特徴とするリチウムイオン二次電池用正極材料に存する。本発明はまた、係る材料を用いたリチウムイオン二次電池用正極及び電池にも存する。
【0005】
【発明の実施の形態】
以下、本発明について詳細に説明する。
本発明者等の検討によれば、Mnサイトの一部を他元素で置換したスピネル型リチウムマンガン複合酸化物は、各一次結晶粒子間の置換元素(他元素)含有量が均一に分布している場合は、置換元素の平均含有量が同じであっても、一次粒子間の含有量分布が不均一な場合に比し、電解液中へのMn溶出量の抑制効果が大きく、その結果、サイクル特性が向上するという効果を奏する。
本発明の対象とする(a)のスピネル型リチウムマンガン複合酸化物としては、その化学式が下記一般式(1)で示される複合酸化物が好ましい。
【0006】
【化2】
Li1+XMn2-X-YMYO4+z (1)
【0007】
(但し、0<X<0.5、0<Y<0.5、−0.1≦Z≦0.1であり、Mは置換元素を表す。)
Mnサイトの一部を置換する他元素としては、B、Sn、Al、Ti、V、Cr、Fe、Co、Ni、Cu、Zn、Mg、Gaから選ばれる1種または2種以上の元素が挙げられ、好ましくはAlである。なお、上記他元素とともにMnサイトの一部がリチウムにより置換される場合もある。
本願発明は係るスピネル型リチウムマンガン複合酸化物の一次結晶粒子の置換元素含有量の平均値に対するその標準偏差σが50%以下となるように置換元素が分布していることを必要とする。
【0008】
他元素で置換したリチウムマンガン複合酸化物中の置換元素の平均含有量及び各一次粒子毎の置換元素含有量を求める方法は、特に限定されるものではない。例えば、平均含有量は、複合酸化物試料を少量(0.5〜5g程度)酸で溶解して原子吸光分析、ICP(誘導結合プラズマ)分析等により測定することができる。但し、この分析手法では、同時に各一次粒子毎の置換元素含有量を測定することはできない。一方、各一次粒子毎の置換元素含有量は、例えばAuger電子分光分析(AES)で測定することができる。AESは、電子顕微鏡で観察して、特定の一次粒子に電子線をスポット照射し、散乱電子のエネルギー分析により、オージェ効果による放出電子を検出する方法である。AESでは、電子線のビーム径を100nm以下に絞ることが出来、局所的な組成分析が可能となるので好ましい。従って、複数の二次粒子から選んだ数個〜数十個の一次粒子を対象として、それぞれの置換元素含有量を求めることができる。また、その測定値を平均して平均含有量を求めることができる。
そして、n個の一次粒子の中、i番目の置換元素含有量をXi、n個の一次粒子の平均置換元素含有量をXav.とした場合、変動(偏差の平方和)S、及び標準偏差σは下式に従って算出される。
【0009】
【数1】
【0010】
本発明の(A)のリチウムマンガン複合酸化物は、上記の様にして求めた標準偏差σが置換元素含有量の平均値に対して50%以下、好ましくは30%以下であることを必要とする。
【0011】
本発明の特定の標準偏差σを有するリチウムマンガン複合酸化物の製造方法は特に限定されるものではなく、公知の製法に準じ、生成複合酸化物の組成が可及的に均一となり、一次粒子間の置換元素の含有量分布が上記範囲となる様に、リチウム化合物、マンガン化合物、置換元素化合物を粉砕混合し、焼成することにより製造することができる。
原料のリチウム化合物としては、例えば、水酸化リチウム、炭酸リチウム、硝酸リチウム、酸化リチウム等あるいはこれらの水和物から選ばれる1種または2種以上に混合物が使用される。
マンガン化合物としては、例えば、MnO2、Mn2O3、Mn3O4、MnO等のマンガン酸化物、或いはMnCO3等の炭酸塩、MnOOH等から選ばれる1種または2種以上の混合物が使用される。
Mnサイトの一部を置換する他元素の化合物としては、前述の元素を含む酸化物、水酸化物、有機酸塩、塩化物、硝酸塩、硫酸塩等或いはその水和物が使用される。例えば置換元素がAlの場合は、Al2O3、AlOOH、Al(OH)3、Al(CH3COO)3、AlCl3、Al(NO3)3・9H2O、Al2(SO4)3等が挙げられ、好ましくはAl2O3、AlOOH、Al(OH)3である。
【0012】
これら原料化合物は、生成複合酸化物中のLi、Mn及び置換元素の所望の組成に対応する割合で使用される。
(a)のリチウムマンガン複合酸化物を製造するには、先ず原料化合物を混合する。原料が反応温度において溶融しない化合物の場合は、反応性を上げる目的で粉砕などの手段により、原料化合物の粒子径を10μm以下としておくのが好ましい。粉砕、混合の順序には特に制限はなく、任意の順序で粉砕、混合することができる。粉砕、混合の方法も均一な混合が可能であれは、特に限定されるものではなく、乾式でも湿式でも良く、例えばボールミル、振動ミル、ビーズミル等の装置を使用する混合方法が挙げられる。得られる複合酸化物の一次粒子間の置換元素含有量分布の均一性が良好であるという点からは、湿式混合が好ましい。湿式で混合した場合には、混合物を乾燥する際に、噴霧乾燥等の手段により、例えば1〜100μmに造粒しても良い。
【0013】
原料混合物は次いで、焼成される。焼成温度は通常500℃以上、好ましくは550℃以上であり、また通常1000℃以下、中でも950℃以下が好ましい。温度が低すぎると、結晶性の良いリチウムマンガン複合酸化物を得るために長時間の反応時間を要し好ましくない。また、温度が高すぎると、目的とするリチウムマンガン複合酸化物以外の相が生成するか、或いは欠陥が多いリチウムマンガン複合酸化物を生成する結果となり、二次電池とした際に容量の低下或いは充放電による結晶構造の崩壊による劣化を招き好ましくない。また、常温から上記の反応温度まで昇温する際には、反応をより均一に行うために、例えば毎分5℃以下の温度で徐々に昇温するか、或いは途中で一旦昇温を停止し一定温度での保持時間を入れることが好ましい。
【0014】
焼成時間は、通常1時間以上、100時間以下である。時間が短過ぎると結晶性の良いリチウムマンガン複合酸化物が得られず、長すぎる反応時間は実用的ではない。結晶欠陥が少ないリチウムマンガン複合酸化物を得るためには、上記の反応後、ある程度の温度迄はゆっくり冷却することが好ましく、800℃、好ましくは600℃迄は5℃/分以下の冷却速度で徐冷することが好ましい。
焼成に使用する加熱装置は、上記の温度、雰囲気を達成できるものであれば特に制限はなく、例えば箱形炉、管状炉、トンネル炉、ロータリーキルン等を使用することができる。
この様にして製造したリチウムマンガン酸化物は、粒子径0.1〜3μmの一次粒子が凝集した粒子径1〜100μmの二次粒子からなり、かつ、窒素吸着による比表面積が0.1〜5m2/gであることが好ましい。一次粒子の大きさは、原料の粉砕の程度、焼成温度、焼成時間等により制御することが可能である。二次粒子の粒子径は、原料の粉砕条件、噴霧乾燥を行う場合は噴霧乾燥条件、焼成後の粉砕、分級条件等により制御することが可能である。比表面積は一次粒子の粒径及び二次粒子の粒径により制御することが可能であり、一次粒子の粒径及び/又は二次粒子の粒径を大きくすることにより減少する。
【0015】
本発明の正極材料の成分である(b)のリチウム遷移金属複合酸化物に含まれる遷移金属としては、ニッケル、コバルト、マンガン、イリジウム等が挙げられ、好ましくはニッケル、コバルトであり、特に好ましくはニッケルである。(b)のリチウム遷移金属複合酸化物の具体例としては、LiNiO2、LiCoO2、LiMnO2、Li2IrO3等が挙げられ、好ましくは、LiNiO2、LiCoO2であり、特に好ましくはLiNiO2である。またこれら化合物の遷移金属の一部を他の元素で置換した化合物であっても良く、酸素量が不定比なものであっても良い。複合酸化物(b)の結晶構造安定化という観点から、遷移金属の一部が他元素で置換されていることが好ましい。置換する他元素としては、通常、Al、Ti、V、Cr、Fe、Co、Mn、Ni、Cu、Zn、Mg、Ga、Zr等が挙げられ、好ましくはAl、Cr、Fe,Co、Ni、Mg、Ga、更に好ましくはAlである。なお、2種以上の他元素で置換されていても良い。
【0016】
置換元素による置換割合は通常、遷移金属の5モル%以上、好ましくは10モル%以上であり、通常、遷移金属の60モル%以下、好ましくは40モル%以下である。置換割合が少なすぎるとサイクル特性が低下する場合があり、多すぎると容量が低下する場合がある。
また(b)の複合酸化物の平均粒径と比表面積は、通常、正極に用いる活物質の平均粒径や比表面積から大きく逸脱するものでなければ特に問題ないが、(a)の複合酸化物との接触効率を良くするという観点から、平均粒径は(a)の複合酸化物の平均粒径より小さく、比表面積は(a)の比表面積より大きい方が好ましい。(b)の複合酸化物の好ましい比表面積は、2m2/g以上、より好ましくは3m2/g以上、特に好ましくは5m2/g以上である。比表面積を余りに大きくすることは製造上困難でもあり、通常100m2/g以下、好ましくは30m2/g以下である。なお、ここで比表面積とは、窒素を吸着種としたBET法で測定した比表面積をいう。比表面積の大きい粒子は、複合酸化物製造時の焼成条件等を制御する方法によっても得られるが、形成された粒子をジェットミルや、乾式ボールミル等で粉砕して粒径を制御することによっても得ることができる。
【0017】
(a)の複合酸化物と(b)の複合酸化物との複合の形態は特に制限はなく、物理的な混合とすることもでき、一方の粒子表面に他方の粒子の皮膜を形成させても良い。
好ましい(b)の酸化物であるLiNiO2の層状化合物は従来公知の各種の方法にて製造することが出来る。例えば、リチウム、ニッケル、置換元素を含有する出発原料を混合後、酸素雰囲気下で加熱焼成することによって製造することが出来る。
なお上記製造方法において、置換元素を含有する原料を使用せず、Niサイトが置換されていないリチウムニッケル酸化物を製造し、これに置換元素含有する化合物の水溶液、溶融塩或いは蒸気中で反応させた後、必要に応じて置換元素をリチウムニッケル複合酸化物粒子内に拡散させるため再度加熱処理を行うことによりNiサイトを置換元素で置換してもよい。
【0018】
原料として用いるリチウム化合物、置換元素の化合物としては、(a)の製造法で説明したものと同様の化合物が挙げられる。
原料として用いられるニッケル化合物としては、NiO等の酸化物、NiCO3、Ni(NO3)2、NiSO4、酢酸ニッケル、ジカルボン酸ニッケル、クエン酸ニッケル、脂肪酸ニッケル等のニッケル塩、水酸化ニッケル、ハロゲン化物等が挙げられ、好ましくは、NiO、NiCO3、ジカルボン酸ニッケル、クエン酸ニッケル、水酸化ニッケルである。
これら原料化合物は(a)の製造の場合と同様の方法で混合、焼成される。層状リチウムニッケル酸化物の焼成は、例えば、酸素雰囲気下で600〜1000℃の温度範囲で行われる。なお、特開平9−320598号公報に記載されるように、焼成雰囲気としては炭酸ガスを除去した大気も好適に使用出来る。
正極材料中における(a)の複合酸化物と(b)の複合酸化物の割合は、重量比で(a):(b)=30:70〜99:1の範囲、より好ましくは、50:50〜95:5の範囲である。(b)の複合酸化物が上記範囲を逸脱して多くなると安全性低下の怖れが生じ、逆に少なくなると容量向上効果を得難くなる。
【0019】
(a)及び(b)の複合酸化物を含有する正極材料を用いて、二次電池を作成することが出来る、二次電池の一例としては、正極、負極、電解液、セパレーターからなる二次電池が挙げられ、正極と負極の間には電解質が存在し、かつ、セパレーターが正極と負極が接触しない様にそれらの間に配置される。
正極としては、上記の割合の(a)及び(b)の混合物に、導電材、結着剤並びにこれらを均一に分散させるための溶媒を一定量混合した後、集電体上に塗布することにより製造される。ここで用いられる導電材としては、天然黒鉛、人造黒鉛、アセチレンブラック等が、結着剤としてはポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン、ニトロセルロース等が、分散用の溶媒としてはN−メチルピロリドン、テトラヒドロフラン、ジメチルホルムアミド等が挙げられるがこれらに限定されるものではない。集電体の材質としてはアルミニウム、ステンレス等が挙げられる。集電体上に塗布後、乾燥し、通常ローラープレス、その他により圧密する。
一方、負極としては、カーボン系材料、例えば天然黒鉛、熱分解炭素等を、Cu等の集電体上に塗布したもの、或いはリチウム金属箔、リチウムーアルミニウム合金等が使用できる。
【0020】
電解液としては、非水電解液であり、具体的には、電解質としてLiCLO4、LiAsF6、LiPF6 、LiBF4、LiBr、LiCF3SO3等が挙げられ、電解液を構成する溶媒としては、テトラヒドロフラン、1、4−ジオキサン、ジメチルホルムアミド、アセトニトリル、ベンゾニトリル、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等が挙げられるが、これらに限定されるものではない。またこれら溶媒は単独で使用しても、或いは2種以上混合して使用しても良い。
【0021】
セパレーターとしては、テフロン、ポリエチレン、ポリプロピレン、ポリエステル等の高分子、又はガラス繊維等の不織布フィルター、或いはガラス繊維と高分子繊維の複合不織布フィルター等が挙げられる。
この様な本発明の正極材料を用いることにより、実施例から明らかなように、高温での充放電サイクル後の容量維持率が高い二次電池を得ることが出来る。
【0022】
【実施例】
以下本発明を実施例を用いて更に具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に制約されるものではない。
実施例1
Mn2O3、AlOOH、LiOHを、それぞれ最終的なスピネル型マンガン酸リチウム中の組成で、Li:Mn:Al=1.04:1.84:0.12(モル比)となるように秤量し、これに純水を加えて固形分濃度30wt%のスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕器を用いて、スラリー中の固形分の平均粒子径が0.5μmになる迄、粉砕した後、二流体ノズル噴霧型のスプレードライヤーを用いて、噴霧乾燥を行い、更に大気雰囲気中で900℃で10時間焼成した。その結果、平均粒子径約8μmのほぼ球状の造粒粒子が得られ、X線回折を測定したところ、立方晶のスピネル型マンガン酸リチウムの構造を有していることが確認された。なお、粒度分布の測定は、レーザー回折・散乱式粒度分布測定装置(HORIBA製 LA910)を用いて行った。この様にして得られたスピネル型マンガン酸リチウム粉末1gを酸で溶解し、原子吸光分析法にて組成分析を行ったところ、Li:Mn:Al=1.04:1.85:0.11(モル比)の組成比であった。
【0023】
次に、走査電子顕微鏡(SEM)観察の結果、この正極活物質造粒粒子を構成している一次粒子の粒子径は0.2〜1.0μmであることが判った。この一次粒子におけるAl含有量に関して、Auger電子分光分析法により測定を行った。先ず、計4個の造粒粒子につき、各造粒粒子毎に、それを構成している一次粒子3点を選択し、合計12個の一次粒子について、Auger電子分光分析を行った(測定装置:VG社製MICROLAB310-F)。情報としてはAl及びMnに関する信号強度値が得られるが、Alの信号強度値/Mnの信号強度値の値を、Al含有量の尺度として表−1に示した。これら測定値の平均値に対する標準偏差は、24.5%であった。
【0024】
リチウム遷移金属複合酸化物として、市販の組成Li1.05Ni0.80Co0.15Al0.05O2なる層状リチウムニッケル酸化物を使用した。重量比で上記のスピネル型リチウムマンガン酸化物/層状リチウムニッケル酸化物=3/1となるように混合した。得られた、混合活物質粉末をアセチレンブラック粉末及びポリテトラフルオロエチレン粉末と、75:20:5の重量比で混合し、乳鉢中で混練してシート化した後、12mmφのポンチで打ち抜き、17.0mgの円盤形正極合剤シートを作製した。この正極合剤シートを16mmφのアルミメッシュにハンドプレス機を用いて圧着して正極電極とした。また、負極剤としては、微小黒鉛粉末をポリフッ化ビニリデン及びN−メチル−2−ピロリドンと混合して塗液とし、この塗液をCuシート上に塗布して、乾燥後、12mmφのポンチで円盤状に打ち抜き、負極電極とした。
【0025】
負極電極中の負極活物質正味重量は4.80mgであった。この様にして作製した電極を、ポリエチレン製のセパレーターを介してCR2032型(直径20mm×厚さ3.2mm)のコイン電池に組み立てた。その際、電解液としては、0.75M−LiPF6のエチレンカーボネート(EC):ジエチルカーボネート(DEC)=3:7組成のものを使用した。この電池を4個作製し、そのうち1個の電池について4.2V迄充電し、充電状態のまま50℃の恒温槽中に7日間保存した。保存終了後、電池を解体して電解液を回収し、この電解液中に含まれるMnの量を測定したところ、0.38μmol/5mlであった。一方、残り3個の電池に関しては、50℃の恒温槽中で、3.0〜4.2Vの範囲での1C充放電サイクル試験を実施した。この3個の電池試験の1C-1サイクル目の放電容量及び、50サイクル経過時の容量維持率(50サイクル目の放電容量/1サイクル目の放電容量)の平均値は、初期放電容量で95mAh/g、容量維持率で93%であった。
【0026】
実施例2
リチウム遷移金属複合酸化物として、実施例1で用いたLi1.05Ni0.80Co0.15Al0.05O2なる層状リチウムニッケル酸化物を、気流衝突式粉砕機(セイシン企業製:ジェットミル)を用いて粉砕し、平均粒子径:0.5μm、比表面積6.9m2 の粒子とした。
この層状リチウムニッケル酸化物と、実施例1で調製したスピネル型リチウムマンガン複合酸化物を、重量比でリチウムマンガン酸化物/リチウムニッケル酸化物=3/1となるように混合した。
【0027】
この様にして得られた、混合活物質粉末を正極活物質として用い、実施例1と同様にして正極電極を作成した。また、負極剤としては、微小黒鉛粉末をポリフッ化ビニリデン及びN−メチル−2−ピロリドンと混合して塗液とし、実施例1と同様にして負極電極を作成した。負極電極中の負極活物質正味重量は4.80mgであった。この様にして作製した電極を、ポリエチレン製のセパレーターを介して実施例1と同様にCR2032型(直径20mm×厚さ3.2mm)のコイン電池に組み立てた。この電池を4個作製し、そのうち1個の電池について4.2V迄充電し、充電状態のまま50℃の恒温槽中に7日間保存した。保存終了後、電池を解体して電解液を回収し、この電解液中に含まれるMnの量を測定したところ、0.13μmol/5mlであった。一方、残り3個の電池に関しては、50℃の恒温槽中で、3.0〜4.2Vの範囲での1C充放電サイクル試験を実施した。この3個の電池試験の1C-1サイクル目の放電容量及び、50サイクル経過時の容量維持率(50サイクル目の放電容量/1サイクル目の放電容量)の平均値は、初期放電容量で95mAh/g、容量維持率で96%であった。
【0028】
比較例1
Mn2O3、AlOOH、Li2CO3粉末を、それぞれ最終的なスピネル型マンガン酸リチウム中の組成で、Li:Mn:Al=1.04:1.84:0.12(モル比)となるように秤量し、ボールミルで乾式混合を行った。混合後の粉末を、最終的に900℃で10時間焼成した。生成物粉末は、X線回折では、立方晶スピネル型のマンガン酸リチウムの構造を有していた。また、粒度分布測定及びSEM観察の結果から、1.0μm前後の一次粒子が凝集し、凝集物の平均粒子径は、10μmであった。さらに、この様にして得られたリチウムマンガン酸化物粉末1gを酸に溶解し、原子吸光法にて組成分析を行ったところ、Li:Mn:Al=1.04:1.85:0.11(molR)の組成比であった。次に、この粉末の一次粒子中のAl含有量に関して、実施例1と同様の方法で、計4個の凝集粒子を選択し、各凝集粒子毎にそれを構成している一次粒子3個ずつ、計12個の一次粒子について、Auger電子分光分析法により測定を行った。結果を表−1に示す。これら測定値に対する標準偏差は102.7%であった。
【0029】
リチウム遷移金属複合酸化物として、市販の組成Li1.05Ni0.80Co0.15Al0.05O2なる層状リチウムニッケル酸化物を用い、重量比でリチウムマンガン複合酸化物/リチウムニッケル酸化物=3/1となるように添加し混合した。
得られた混合物を用いて、実施例1と同様の手順でCR2032型のコイン電池を4個組立て、そのうち1個の電池について4.2V迄充電し、充電状態のまま50℃の恒温槽中に7日間保存した。保存終了後、電池を解体して電解液を回収し、この電解液中に含まれるMnの量を測定したところ、0.63μmolであった。一方、残り3個の電池に関しては、50℃の恒温槽中で、3.0〜402Vの範囲での1C充放電サイクル試験を実施した。この3個の電池試験の1サイクル目の初期放電容量及び、50サイクル経過時の容量維持率(50サイクル目の放電容量/1サイクル目の放電容量)の平均値は、初期放電容量では94mAh/gと実施例1と有意差が見られなかったが、容量維持率では90%であった。
【0030】
比較例2
比較例1と同じリチウムマンガン複合酸化物と、実施例2と同じジェットミルで粉砕したリチウムニッケル酸化物を、重量比でリチウムマンガン複合酸化物/リチウムニッケル酸化物=3/1となるように混合した。
得られた混合物を用いて、実施例1と同様の手順でCR2032型のコイン電池を4個組立て、そのうち1個の電池について4.2V迄充電し、充電状態のまま50℃の恒温槽中に7日間保存した。保存終了後、電池を解体して電解液を回収し、この電解液中に含まれるMnの量を測定したところ、0.25μmol/5mlであった。一方、残り3個の電池に関しては、50℃の恒温槽中で、3.0〜402Vの範囲での1C充放電サイクル試験を実施した。この3個の電池試験の1サイクル目の初期放電容量及び、50サイクル経過時の容量維持率(50サイクル目の放電容量/1サイクル目の放電容量)の平均値は、初期放電容量では94mAh/gと実施例2と有意差が見られなかったが、容量維持率では93%であった。
【0031】
比較例3
実施例1と同じリチウムマンガン複合酸化物をリチウム遷移金属複合酸化物と混合すること無く単独で正極活物質として用い、実施例1と同様の手順でCR2032型のコイン電池を4個組立て、そのうち1個の電池について4.2V迄充電し、充電状態のまま50℃の恒温槽中に7日間保存した。保存終了後、電池を解体して電解液を回収し、この電解液中に含まれるMnの量を測定したところ、0.90μmol/5mlであった。一方、残り3個の電池に関しては、50℃の恒温槽中で、3.0〜4.2Vの範囲での1C充放電サイクル試験を実施した。この3個の電池試験の1サイクル目の初期放電容量及び、50サイクル経過時の容量維持率(50サイクル目の放電容量/1サイクル目の放電容量)の平均値は、初期放電容量では95mAh/g、容量維持率では89%であった。
【0032】
比較例4
比較例1と同じリチウムマンガン複合酸化物をリチウム遷移金属複合酸化物と混合すること無く単独で正極活物質として用い、実施例1と同様の手順でCR2032型のコイン電池を4個組立て、そのうち1個の電池について4.2V迄充電し、充電状態のまま50℃の恒温槽中に7日間保存した。保存終了後、電池を解体して電解液を回収し、この電解液中に含まれるMnの量を測定したところ、1.60μmol/5mlであった。一方、残り3個の電池に関しては、50℃の恒温槽中で、3.0〜4.2Vの範囲での1C充放電サイクル試験を実施した。この3個の電池試験の1サイクル目の初期放電容量及び、50サイクル経過時の容量維持率(50サイクル目の放電容量/1サイクル目の放電容量)の平均値は、初期放電容量では94mAh/g、容量維持率では81%であった。
【0033】
【表1】
【0034】
【発明の効果】
実施例から明らかなように、本発明に係わる置換元素の分布が制御されたスピネル型リチウムマンガン複合酸化物と他のリチウム遷移金属複合酸化物を含有する正極材料を用いることにより、サイクル特性に優れたリチウムイオン二次電池を得ることが出来る。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a positive electrode material for a lithium ion secondary battery. Specifically, the present invention relates to a positive electrode material containing a lithium manganese composite oxide.
[0002]
[Prior art]
A lithium ion secondary battery that functions as a battery by the positive electrode and the negative electrode inserting and extracting lithium ions from each other has high voltage and high energy density, and is used for mobile phones, portable personal computers, video cameras, electric vehicles, etc. Can be suitably used.
As a positive electrode active material of a lithium ion secondary battery, a lithium cobalt composite oxide having a layered structure that has already been put into practical use can obtain a high voltage of 4 V class and has a high energy density. However, since cobalt, which is a raw material, is scarce in terms of resources and is expensive, considering the possibility that demand will expand significantly in the future, there are concerns about the supply of raw materials, and the price may rise further. is expected.
As a positive electrode active material that replaces lithium cobalt oxide, it has been considered to use a spinel-type lithium manganese composite oxide made of inexpensive manganese as a positive electrode material.
However, the lithium manganese composite oxide has a problem in that the cycle characteristics are inferior to the above lithium cobalt composite oxide, that is, the capacity deterioration is large when repeated charge / discharge is performed at a temperature of 50 to 60 ° C. . In this regard, (1) to improve the crystallinity of the lithium manganese composite oxide, or (2) to reduce the capacity by substituting some of the manganese sites with other elements in order to stabilize the crystal structure. However, it has been clarified that the cycle characteristics are suppressed, but such improvement alone does not provide sufficient cycle characteristics.
[0003]
[Problems to be solved by the invention]
This invention is made | formed in view of the situation which concerns, Comprising: It aims at providing the positive electrode active material of the lithium ion secondary battery which contained lithium manganese complex oxide and was excellent in cycling characteristics.
[0004]
[Means for Solving the Problems]
The present inventors have found that when a part of the Mn site of the spinel type lithium manganese composite oxide is substituted with another element, the distribution state of the substitution element content between the primary crystal particles affects the cycle characteristics, It has been proposed (Japanese Patent Application No. 11-332414) to use a spinel-type lithium-manganese composite oxide whose distribution state is as uniform as possible as a positive electrode active material. However, the spinel-type lithium-manganese composite oxide and other lithium transition metal composites have been proposed. It has been found that the cycle characteristics can be further improved by combining oxides, and the present invention has been achieved. That is, the gist of the present invention is (a) a spinel type lithium manganese oxide in which a part of the Mn site is substituted with another element, and the standard deviation σ with respect to the average value of the substitution element content of each primary crystal particle is Lithium ion containing lithium manganese composite oxide in which substitution atoms are distributed so as to be 50% or less, and (b) at least one lithium transition metal composite oxide other than (a) It exists in the positive electrode material for secondary batteries. The present invention also resides in a positive electrode for lithium ion secondary batteries and a battery using such materials.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
According to the study by the present inventors, in the spinel-type lithium manganese composite oxide in which a part of the Mn site is substituted with another element, the content of the substitution element (other element) between the primary crystal particles is uniformly distributed. If the average content of the substitution element is the same, the effect of suppressing the elution amount of Mn into the electrolyte is larger than when the content distribution between the primary particles is non-uniform. There is an effect that the cycle characteristics are improved.
As the spinel type lithium manganese composite oxide (a) which is the subject of the present invention, a composite oxide whose chemical formula is represented by the following general formula (1) is preferable.
[0006]
[Chemical 2]
Li 1 + X Mn 2-XY M Y O 4 + z (1)
[0007]
(However, 0 <X <0.5, 0 <Y <0.5, −0.1 ≦ Z ≦ 0.1, and M represents a substitution element.)
As other elements for substituting a part of the Mn site, one or more elements selected from B, Sn, Al, Ti, V, Cr, Fe, Co, Ni, Cu, Zn, Mg, and Ga are included. Preferably, it is Al. Note that some of the Mn sites may be replaced by lithium together with the other elements.
The present invention requires that the substitution elements are distributed so that the standard deviation σ with respect to the average value of the substitution element content of the primary crystal particles of the spinel type lithium manganese composite oxide is 50% or less.
[0008]
The method for obtaining the average content of the substitution element in the lithium manganese composite oxide substituted with another element and the substitution element content for each primary particle is not particularly limited. For example, the average content can be measured by dissolving a complex oxide sample with a small amount (about 0.5 to 5 g) of acid and performing atomic absorption analysis, ICP (inductively coupled plasma) analysis, or the like. However, this analysis method cannot simultaneously measure the substitutional element content for each primary particle. On the other hand, the substitutional element content for each primary particle can be measured, for example, by Auger electron spectroscopy (AES). AES is a method of observing with an electron microscope, spot-irradiating specific primary particles with an electron beam, and detecting emitted electrons due to the Auger effect by energy analysis of scattered electrons. AES is preferable because the beam diameter of the electron beam can be reduced to 100 nm or less, and local composition analysis is possible. Therefore, it is possible to obtain the content of each substitution element for several to several tens of primary particles selected from a plurality of secondary particles. Moreover, the average value can be calculated by averaging the measured values.
Then, among the n primary particles, the i-th substitution element content is Xi, and the average substitution element content of the n primary particles is Xav. In this case, the fluctuation (sum of squares of deviation) S and the standard deviation σ are calculated according to the following equations.
[0009]
[Expression 1]
[0010]
The lithium manganese composite oxide (A) of the present invention requires that the standard deviation σ determined as described above is 50% or less, preferably 30% or less, with respect to the average value of the substitutional element content. To do.
[0011]
The production method of the lithium manganese composite oxide having a specific standard deviation σ of the present invention is not particularly limited, and according to a known production method, the composition of the produced composite oxide is made as uniform as possible, and between the primary particles. The lithium compound, the manganese compound, and the substitution element compound can be pulverized, mixed and fired so that the content distribution of the substitution element is in the above range.
As the raw material lithium compound, for example, lithium hydroxide, lithium carbonate, lithium nitrate, lithium oxide and the like, or a mixture of one or more selected from these hydrates are used.
Examples of manganese compounds include MnO. 2 , Mn 2 O Three , Mn Three O Four , Manganese oxides such as MnO, or MnCO Three 1 type, or 2 or more types of mixtures chosen from carbonates, such as MnOOH, etc. are used.
As the compound of the other element that substitutes a part of the Mn site, oxides, hydroxides, organic acid salts, chlorides, nitrates, sulfates or the like containing the aforementioned elements or hydrates thereof are used. For example, when the substitution element is Al, Al 2 O Three , AlOOH, Al (OH) Three , Al (CH Three COO) Three AlCl Three , Al (NO Three ) Three ・ 9H 2 O, Al 2 (SO Four ) Three Etc., preferably Al 2 O Three , AlOOH, Al (OH) Three It is.
[0012]
These raw material compounds are used in proportions corresponding to the desired compositions of Li, Mn and substitution elements in the resulting composite oxide.
In order to produce the lithium manganese composite oxide (a), first, raw material compounds are mixed. When the raw material is a compound that does not melt at the reaction temperature, the particle diameter of the raw material compound is preferably set to 10 μm or less by means such as pulverization for the purpose of increasing the reactivity. There is no restriction | limiting in particular in the order of a grinding | pulverization and mixing, It can grind | pulverize and mix in arbitrary orders. The method of pulverization and mixing is not particularly limited as long as uniform mixing is possible, and may be dry or wet. Examples thereof include a mixing method using an apparatus such as a ball mill, a vibration mill, and a bead mill. Wet mixing is preferable from the viewpoint that the uniformity of the distribution of the content of substitution elements between the primary particles of the obtained composite oxide is good. In the case of wet mixing, when the mixture is dried, it may be granulated to, for example, 1 to 100 μm by means such as spray drying.
[0013]
The raw material mixture is then fired. The firing temperature is usually 500 ° C. or higher, preferably 550 ° C. or higher, and usually 1000 ° C. or lower, preferably 950 ° C. or lower. If the temperature is too low, a long reaction time is required to obtain a lithium-manganese composite oxide with good crystallinity, which is not preferable. Further, if the temperature is too high, a phase other than the target lithium manganese composite oxide is produced, or a lithium manganese composite oxide having many defects is produced. Deterioration due to the collapse of the crystal structure due to charge / discharge is not preferable. Further, when raising the temperature from room temperature to the above reaction temperature, in order to carry out the reaction more uniformly, for example, the temperature is gradually raised at a temperature of 5 ° C. or less per minute, or the temperature rise is stopped once in the middle. It is preferable to include a holding time at a constant temperature.
[0014]
The firing time is usually 1 hour or more and 100 hours or less. If the time is too short, a lithium-manganese composite oxide with good crystallinity cannot be obtained, and a reaction time that is too long is not practical. In order to obtain a lithium manganese composite oxide with few crystal defects, it is preferable to cool slowly to a certain temperature after the above reaction, and at a cooling rate of 5 ° C./min or less to 800 ° C., preferably 600 ° C. Slow cooling is preferred.
The heating device used for firing is not particularly limited as long as the above temperature and atmosphere can be achieved. For example, a box furnace, a tubular furnace, a tunnel furnace, a rotary kiln or the like can be used.
The lithium manganese oxide thus produced is composed of secondary particles having a particle diameter of 1 to 100 μm in which primary particles having a particle diameter of 0.1 to 3 μm are aggregated, and has a specific surface area of 0.1 to 5 m by nitrogen adsorption. 2 / G is preferable. The size of the primary particles can be controlled by the degree of pulverization of the raw material, the firing temperature, the firing time, and the like. The particle size of the secondary particles can be controlled by the raw material pulverization conditions, and when spray drying is performed, the spray drying conditions, pulverization after firing, classification conditions, and the like. The specific surface area can be controlled by the particle size of the primary particles and the particle size of the secondary particles, and decreases by increasing the particle size of the primary particles and / or the particle size of the secondary particles.
[0015]
Examples of the transition metal contained in the lithium transition metal composite oxide (b) that is a component of the positive electrode material of the present invention include nickel, cobalt, manganese, iridium, and the like, preferably nickel and cobalt, particularly preferably. Nickel. Specific examples of the lithium transition metal complex oxide (b) include LiNiO. 2 LiCoO 2 LiMnO 2 , Li 2 IrO Three Etc., preferably LiNiO 2 LiCoO 2 And particularly preferably LiNiO 2 It is. Moreover, the compound which substituted some transition metals of these compounds with the other element may be sufficient, and the amount of oxygen may be non-stoichiometric. From the viewpoint of stabilizing the crystal structure of the composite oxide (b), it is preferable that a part of the transition metal is substituted with another element. Other elements to be substituted usually include Al, Ti, V, Cr, Fe, Co, Mn, Ni, Cu, Zn, Mg, Ga, Zr, etc., preferably Al, Cr, Fe, Co, Ni Mg, Ga, and more preferably Al. It may be substituted with two or more other elements.
[0016]
The substitution ratio by the substitution element is usually 5 mol% or more, preferably 10 mol% or more of the transition metal, and is usually 60 mol% or less, preferably 40 mol% or less of the transition metal. If the substitution ratio is too small, the cycle characteristics may be lowered, and if it is too much, the capacity may be lowered.
Further, the average particle size and specific surface area of the composite oxide (b) are not particularly problematic as long as the average particle size and specific surface area of the active material used for the positive electrode are not greatly deviated. From the viewpoint of improving the contact efficiency with the product, the average particle size is preferably smaller than the average particle size of the composite oxide (a), and the specific surface area is preferably larger than the specific surface area of (a). A preferable specific surface area of the composite oxide (b) is 2 m. 2 / G or more, more preferably 3 m 2 / G or more, particularly preferably 5 m 2 / G or more. To make the specific surface area too large is also difficult to manufacture, usually 100 m 2 / G or less, preferably 30 m 2 / G or less. Here, the specific surface area means a specific surface area measured by a BET method using nitrogen as an adsorbing species. Particles having a large specific surface area can also be obtained by a method of controlling the firing conditions at the time of producing the composite oxide, but also by controlling the particle size by pulverizing the formed particles with a jet mill, a dry ball mill or the like. Obtainable.
[0017]
The composite form of the composite oxide of (a) and the composite oxide of (b) is not particularly limited and can be a physical mixture, and a film of the other particle is formed on one particle surface. Also good.
LiNiO which is a preferred oxide of (b) 2 The layered compound can be produced by various conventionally known methods. For example, it can be manufactured by mixing starting materials containing lithium, nickel, and a substitution element, and then heating and firing in an oxygen atmosphere.
In the above production method, a lithium nickel oxide in which Ni sites are not substituted is produced without using a raw material containing a substitution element, and this is reacted in an aqueous solution, molten salt or steam of a compound containing the substitution element. After that, if necessary, the Ni site may be replaced with the replacement element by performing heat treatment again to diffuse the replacement element into the lithium nickel composite oxide particles.
[0018]
Examples of the lithium compound and the substitution element compound used as the raw material include the same compounds as described in the production method (a).
Nickel compounds used as raw materials include oxides such as NiO, NiCO Three , Ni (NO Three ) 2 , NiSO Four Nickel acetate such as nickel acetate, nickel dicarboxylate, nickel citrate, nickel fatty acid, nickel hydroxide, halide, etc., preferably NiO, NiCO Three , Nickel dicarboxylate, nickel citrate, nickel hydroxide.
These raw material compounds are mixed and fired in the same manner as in the production of (a). Firing of the layered lithium nickel oxide is performed, for example, in a temperature range of 600 to 1000 ° C. in an oxygen atmosphere. As described in JP-A-9-320598, air from which carbon dioxide gas has been removed can be suitably used as the firing atmosphere.
The ratio of the composite oxide of (a) to the composite oxide of (b) in the positive electrode material is in the range of (a) :( b) = 30: 70 to 99: 1, more preferably 50: It is in the range of 50 to 95: 5. When the composite oxide of (b) increases beyond the above range, there is a fear that the safety is lowered, and when it is decreased, it is difficult to obtain the capacity improvement effect.
[0019]
As an example of the secondary battery, a secondary battery comprising a positive electrode, a negative electrode, an electrolytic solution, and a separator can be prepared using a positive electrode material containing the composite oxide of (a) and (b). Examples of the battery include an electrolyte between the positive electrode and the negative electrode, and a separator is disposed between the positive electrode and the negative electrode so that they do not contact each other.
As a positive electrode, a mixture of the above ratios (a) and (b) is mixed with a certain amount of a conductive material, a binder, and a solvent for uniformly dispersing them, and then applied onto a current collector. Manufactured by. The conductive material used here is natural graphite, artificial graphite, acetylene black, etc., and the binder is polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl acetate, polymethyl methacrylate, polyethylene, nitrocellulose, etc. Examples of the solvent include, but are not limited to, N-methylpyrrolidone, tetrahydrofuran, dimethylformamide and the like. Examples of the material of the current collector include aluminum and stainless steel. After coating on the current collector, it is dried and usually compacted by a roller press or the like.
On the other hand, as the negative electrode, a carbon-based material such as natural graphite or pyrolytic carbon coated on a current collector such as Cu, or a lithium metal foil or a lithium-aluminum alloy can be used.
[0020]
The electrolyte is a non-aqueous electrolyte, specifically, LiCLO as the electrolyte. Four , LiAsF 6 , LiPF 6 , LiBF Four , LiBr, LiCF Three SO Three Examples of the solvent constituting the electrolyte include tetrahydrofuran, 1,4-dioxane, dimethylformamide, acetonitrile, benzonitrile, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, and the like. Although it is mentioned, it is not limited to these. These solvents may be used alone or in combination of two or more.
[0021]
Examples of the separator include non-woven filters such as polymers such as Teflon, polyethylene, polypropylene, and polyester, or glass fibers, or composite non-woven filters composed of glass fibers and polymer fibers.
By using such a positive electrode material of the present invention, a secondary battery having a high capacity retention rate after a charge / discharge cycle at a high temperature can be obtained as is apparent from the examples.
[0022]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist.
Example 1
Mn 2 O Three , AlOOH and LiOH are weighed in the final spinel-type lithium manganate composition so that Li: Mn: Al = 1.04: 1.84: 0.12 (molar ratio). A slurry with a partial concentration of 30 wt% was prepared. While stirring this slurry, using a circulating medium agitation type wet pulverizer, the slurry is pulverized until the average particle size of solids in the slurry becomes 0.5 μm, and then a two-fluid nozzle spray type spray dryer is used. Then, spray drying was carried out, and further, baking was performed at 900 ° C. for 10 hours in an air atmosphere. As a result, almost spherical granulated particles having an average particle diameter of about 8 μm were obtained, and when X-ray diffraction was measured, it was confirmed to have a cubic spinel-type lithium manganate structure. The particle size distribution was measured using a laser diffraction / scattering particle size distribution measuring apparatus (LA910 manufactured by HORIBA). When 1 g of the spinel type lithium manganate powder thus obtained was dissolved with an acid and the composition was analyzed by atomic absorption spectrometry, the composition was Li: Mn: Al = 1.04: 1.85: 0.11 (molar ratio). It was a ratio.
[0023]
Next, as a result of observation with a scanning electron microscope (SEM), it was found that the particle diameter of the primary particles constituting the positive electrode active material granulated particles was 0.2 to 1.0 μm. The Al content in the primary particles was measured by Auger electron spectroscopy. First, for a total of 4 granulated particles, 3 primary particles constituting the granulated particles were selected for each granulated particle, and Auger electron spectroscopic analysis was performed on a total of 12 primary particles (measurement apparatus). : VG MICROLAB310-F). As information, signal intensity values regarding Al and Mn are obtained, and the signal intensity value of Al / signal intensity value of Mn is shown in Table 1 as a measure of Al content. The standard deviation of the average value of these measured values was 24.5%.
[0024]
As a lithium transition metal composite oxide, a commercially available composition Li 1.05 Ni 0.80 Co 0.15 Al 0.05 O 2 A layered lithium nickel oxide was used. The spinel lithium manganese oxide / layered lithium nickel oxide was mixed at a weight ratio of 3/1. The obtained mixed active material powder was mixed with acetylene black powder and polytetrafluoroethylene powder at a weight ratio of 75: 20: 5, kneaded in a mortar to form a sheet, and then punched with a 12 mmφ punch. mg disc-shaped positive electrode mixture sheet was prepared. This positive electrode mixture sheet was pressure-bonded to a 16 mmφ aluminum mesh using a hand press to obtain a positive electrode. In addition, as a negative electrode agent, a fine graphite powder is mixed with polyvinylidene fluoride and N-methyl-2-pyrrolidone to form a coating liquid, this coating liquid is coated on a Cu sheet, dried, and then a disk with a 12 mmφ punch. This was punched into a negative electrode.
[0025]
The net weight of the negative electrode active material in the negative electrode was 4.80 mg. The electrode thus produced was assembled into a CR2032 type (diameter 20 mm × thickness 3.2 mm) coin battery through a polyethylene separator. At that time, 0.75M-LiPF as electrolyte 6 Of ethylene carbonate (EC): diethyl carbonate (DEC) = 3: 7. Four of these batteries were prepared, and one of the batteries was charged to 4.2 V and stored in a constant temperature bath at 50 ° C. for 7 days while being charged. After storage, the battery was disassembled and the electrolyte solution was recovered. The amount of Mn contained in the electrolyte solution was measured and found to be 0.38 μmol / 5 ml. On the other hand, the remaining three batteries were subjected to a 1C charge / discharge cycle test in the range of 3.0 to 4.2 V in a thermostatic chamber at 50 ° C. The average value of the discharge capacity at the 1C-1 cycle and the capacity retention rate after 50 cycles (discharge capacity at the 50th cycle / discharge capacity at the 1st cycle) of these three battery tests is 95 mAh at the initial discharge capacity. / g, capacity retention rate was 93%.
[0026]
Example 2
As the lithium transition metal composite oxide, Li used in Example 1 1.05 Ni 0.80 Co 0.15 Al 0.05 O 2 The resulting layered lithium nickel oxide is pulverized using an airflow collision pulverizer (manufactured by Seishin Enterprise: Jet Mill), and the average particle size is 0.5 μm and the specific surface area is 6.9 m. 2 Of particles.
This layered lithium nickel oxide and the spinel-type lithium manganese composite oxide prepared in Example 1 were mixed so that the weight ratio of lithium manganese oxide / lithium nickel oxide = 3/1.
[0027]
Using the mixed active material powder thus obtained as a positive electrode active material, a positive electrode was produced in the same manner as in Example 1. As the negative electrode agent, a fine graphite powder was mixed with polyvinylidene fluoride and N-methyl-2-pyrrolidone to obtain a coating solution, and a negative electrode was produced in the same manner as in Example 1. The net weight of the negative electrode active material in the negative electrode was 4.80 mg. The electrode thus produced was assembled into a CR2032 type (diameter 20 mm × thickness 3.2 mm) coin battery through a polyethylene separator in the same manner as in Example 1. Four of these batteries were prepared, and one of the batteries was charged to 4.2 V and stored in a constant temperature bath at 50 ° C. for 7 days while being charged. After storage, the battery was disassembled and the electrolyte solution was recovered. The amount of Mn contained in the electrolyte solution was measured and found to be 0.13 μmol / 5 ml. On the other hand, the remaining three batteries were subjected to a 1C charge / discharge cycle test in the range of 3.0 to 4.2 V in a thermostatic chamber at 50 ° C. The average value of the discharge capacity at the 1C-1 cycle and the capacity retention rate after 50 cycles (discharge capacity at the 50th cycle / discharge capacity at the 1st cycle) of these three battery tests is 95 mAh at the initial discharge capacity. / g, capacity retention rate was 96%.
[0028]
Comparative Example 1
Mn 2 O Three , AlOOH, Li 2 CO Three The powders were weighed so as to be Li: Mn: Al = 1.04: 1.84: 0.12 (molar ratio) with the composition in the final spinel type lithium manganate, and dry-mixed with a ball mill. The mixed powder was finally fired at 900 ° C. for 10 hours. The product powder had a cubic spinel type lithium manganate structure by X-ray diffraction. Further, from the results of particle size distribution measurement and SEM observation, primary particles of about 1.0 μm aggregated, and the average particle size of the aggregates was 10 μm. Further, 1 g of the lithium manganese oxide powder thus obtained was dissolved in an acid, and composition analysis was performed by atomic absorption. As a result, the composition ratio of Li: Mn: Al = 1.04: 1.85: 0.11 (molR) was obtained. Met. Next, regarding the Al content in the primary particles of this powder, a total of 4 aggregated particles were selected in the same manner as in Example 1, and 3 primary particles constituting each aggregated particle. A total of 12 primary particles were measured by Auger electron spectroscopy. The results are shown in Table-1. The standard deviation for these measurements was 102.7%.
[0029]
As a lithium transition metal composite oxide, a commercially available composition Li 1.05 Ni 0.80 Co 0.15 Al 0.05 O 2 The layered lithium nickel oxide was added and mixed so that the lithium manganese oxide / lithium nickel oxide = 3/1 by weight ratio.
Using the obtained mixture, four CR2032 type coin batteries were assembled in the same procedure as in Example 1, one of which was charged to 4.2 V, and charged in a 50 ° C. constant temperature bath. Stored for 7 days. After completion of the storage, the battery was disassembled and the electrolytic solution was recovered. The amount of Mn contained in the electrolytic solution was measured and found to be 0.63 μmol. On the other hand, the remaining three batteries were subjected to a 1C charge / discharge cycle test in the range of 3.0 to 402 V in a thermostatic chamber at 50 ° C. The average value of the initial discharge capacity at the first cycle of these three battery tests and the capacity retention rate after 50 cycles (discharge capacity at the 50th cycle / discharge capacity at the first cycle) is 94 mAh / Although no significant difference was observed between g and Example 1, the capacity retention rate was 90%.
[0030]
Comparative Example 2
The same lithium manganese composite oxide as in Comparative Example 1 and lithium nickel oxide pulverized by the same jet mill as in Example 2 were mixed so that the weight ratio of lithium manganese composite oxide / lithium nickel oxide = 3/1 did.
Using the obtained mixture, four CR2032 type coin batteries were assembled in the same procedure as in Example 1, one of which was charged to 4.2 V, and charged in a 50 ° C. constant temperature bath. Stored for 7 days. After storage, the battery was disassembled and the electrolyte solution was recovered. The amount of Mn contained in the electrolyte solution was measured and found to be 0.25 μmol / 5 ml. On the other hand, the remaining three batteries were subjected to a 1C charge / discharge cycle test in the range of 3.0 to 402 V in a thermostatic chamber at 50 ° C. The average value of the initial discharge capacity at the first cycle of these three battery tests and the capacity retention rate after 50 cycles (discharge capacity at the 50th cycle / discharge capacity at the first cycle) is 94 mAh / g and Example 2 were not significantly different, but the capacity retention rate was 93%.
[0031]
Comparative Example 3
The same lithium manganese composite oxide as in Example 1 was used alone as the positive electrode active material without mixing with the lithium transition metal composite oxide, and four CR2032 type coin batteries were assembled in the same procedure as in Example 1, of which 1 Each battery was charged to 4.2 V and stored in a constant temperature bath at 50 ° C. for 7 days while being charged. After storage, the battery was disassembled and the electrolyte solution was recovered. The amount of Mn contained in this electrolyte solution was measured and found to be 0.90 μmol / 5 ml. On the other hand, the remaining three batteries were subjected to a 1C charge / discharge cycle test in the range of 3.0 to 4.2 V in a thermostatic bath at 50 ° C. The average value of the initial discharge capacity at the first cycle of these three battery tests and the capacity retention ratio after 50 cycles (discharge capacity at 50th cycle / discharge capacity at the first cycle) is 95 mAh / g, Capacity retention was 89%.
[0032]
Comparative Example 4
The same lithium manganese composite oxide as in Comparative Example 1 was used alone as the positive electrode active material without mixing with the lithium transition metal composite oxide, and four CR2032 type coin batteries were assembled in the same procedure as in Example 1, of which 1 Each battery was charged to 4.2 V and stored in a constant temperature bath at 50 ° C. for 7 days while being charged. After storage, the battery was disassembled and the electrolyte solution was recovered. The amount of Mn contained in the electrolyte solution was measured and found to be 1.60 μmol / 5 ml. On the other hand, the remaining three batteries were subjected to a 1C charge / discharge cycle test in the range of 3.0 to 4.2 V in a thermostatic chamber at 50 ° C. The average value of the initial discharge capacity at the first cycle of these three battery tests and the capacity retention rate after 50 cycles (discharge capacity at the 50th cycle / discharge capacity at the first cycle) is 94 mAh / g, Capacity retention was 81%.
[0033]
[Table 1]
[0034]
【The invention's effect】
As is clear from the examples, the use of a positive electrode material containing a spinel-type lithium manganese composite oxide and other lithium transition metal composite oxides with controlled distribution of substitution elements according to the present invention provides excellent cycle characteristics. A lithium ion secondary battery can be obtained.
Claims (11)
【化1】
Li1+XMn2-X-YMYO4+z (1)
(但し、0<X<0.5、0<Y<0.5、−0.1≦Z≦0.1、Mは置換元素を表す。)で表されるリチウムマンガン複合酸化物から選ばれることを特徴とする請求項1記載のリチウムイオン二次電池用正極材料。(A) is represented by the following general formula (1)
[Chemical 1]
Li 1 + X Mn 2-XY MY O 4 + z (1)
(However, 0 <X <0.5, 0 <Y <0.5, −0.1 ≦ Z ≦ 0.1, M represents a substituted element.) The positive electrode material for a lithium ion secondary battery according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000180980A JP4654488B2 (en) | 2000-06-16 | 2000-06-16 | Positive electrode material for lithium ion secondary battery, positive electrode and battery using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000180980A JP4654488B2 (en) | 2000-06-16 | 2000-06-16 | Positive electrode material for lithium ion secondary battery, positive electrode and battery using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002003220A JP2002003220A (en) | 2002-01-09 |
JP4654488B2 true JP4654488B2 (en) | 2011-03-23 |
Family
ID=18681974
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000180980A Expired - Fee Related JP4654488B2 (en) | 2000-06-16 | 2000-06-16 | Positive electrode material for lithium ion secondary battery, positive electrode and battery using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4654488B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101463881B1 (en) * | 2012-04-27 | 2014-11-20 | 미쓰이금속광업주식회사 | Manganese spinel-type lithium transition metal oxide |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002164049A (en) * | 2000-11-22 | 2002-06-07 | Matsushita Electric Ind Co Ltd | Lithium ion secondary battery |
JP5605867B2 (en) * | 2013-01-29 | 2014-10-15 | Necエナジーデバイス株式会社 | Positive electrode for secondary battery and lithium secondary battery using the same |
KR101613101B1 (en) * | 2013-04-30 | 2016-04-19 | 주식회사 엘지화학 | The Method for Preparing Secondary Battery and Secondary Battery Using the Same |
TWI736105B (en) | 2020-01-16 | 2021-08-11 | 國立清華大學 | Anode material for secondary battery, anode for secondary battery and secondary battery |
CN114824248B (en) * | 2020-01-16 | 2023-08-15 | 游萃蓉 | Negative electrode material for secondary battery, negative electrode, and secondary battery |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09293512A (en) * | 1996-02-23 | 1997-11-11 | Fuji Photo Film Co Ltd | Lithium ion secondary battery and positive pole active material precursor |
JPH11171551A (en) * | 1997-10-08 | 1999-06-29 | Nikki Chemcal Co Ltd | Lithium manganese multiple oxide, its production and use |
JPH11288713A (en) * | 1998-04-02 | 1999-10-19 | Yuasa Corp | Lithium secondary battery |
JPH11345614A (en) * | 1998-06-01 | 1999-12-14 | Yuasa Corp | Nonaqueous electrolyte battery |
JP2000077071A (en) * | 1998-08-27 | 2000-03-14 | Nec Corp | Nonaqueous electrolyte secondary battery |
JP2000138072A (en) * | 1998-08-28 | 2000-05-16 | Toyota Central Res & Dev Lab Inc | Nonaqueous electrolyte secondary battery |
JP2000195513A (en) * | 1998-12-24 | 2000-07-14 | Asahi Chem Ind Co Ltd | Nonaqueous electrolyte secondary battery |
JP2000251892A (en) * | 1999-03-02 | 2000-09-14 | Toyota Central Res & Dev Lab Inc | Positive electrode active material for lithium secondary battery, and the lithium secondary battery using the same |
JP2000315503A (en) * | 1999-03-01 | 2000-11-14 | Sanyo Electric Co Ltd | Non-aqueous electrolyte secondary battery |
JP2001297762A (en) * | 2000-04-12 | 2001-10-26 | Japan Storage Battery Co Ltd | Secondary cell with nonaqueous electrolyte |
-
2000
- 2000-06-16 JP JP2000180980A patent/JP4654488B2/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09293512A (en) * | 1996-02-23 | 1997-11-11 | Fuji Photo Film Co Ltd | Lithium ion secondary battery and positive pole active material precursor |
JPH11171551A (en) * | 1997-10-08 | 1999-06-29 | Nikki Chemcal Co Ltd | Lithium manganese multiple oxide, its production and use |
JPH11288713A (en) * | 1998-04-02 | 1999-10-19 | Yuasa Corp | Lithium secondary battery |
JPH11345614A (en) * | 1998-06-01 | 1999-12-14 | Yuasa Corp | Nonaqueous electrolyte battery |
JP2000077071A (en) * | 1998-08-27 | 2000-03-14 | Nec Corp | Nonaqueous electrolyte secondary battery |
JP2000138072A (en) * | 1998-08-28 | 2000-05-16 | Toyota Central Res & Dev Lab Inc | Nonaqueous electrolyte secondary battery |
JP2000195513A (en) * | 1998-12-24 | 2000-07-14 | Asahi Chem Ind Co Ltd | Nonaqueous electrolyte secondary battery |
JP2000315503A (en) * | 1999-03-01 | 2000-11-14 | Sanyo Electric Co Ltd | Non-aqueous electrolyte secondary battery |
JP2000251892A (en) * | 1999-03-02 | 2000-09-14 | Toyota Central Res & Dev Lab Inc | Positive electrode active material for lithium secondary battery, and the lithium secondary battery using the same |
JP2001297762A (en) * | 2000-04-12 | 2001-10-26 | Japan Storage Battery Co Ltd | Secondary cell with nonaqueous electrolyte |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101463881B1 (en) * | 2012-04-27 | 2014-11-20 | 미쓰이금속광업주식회사 | Manganese spinel-type lithium transition metal oxide |
Also Published As
Publication number | Publication date |
---|---|
JP2002003220A (en) | 2002-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4644895B2 (en) | Lithium secondary battery | |
JP3033899B1 (en) | Positive electrode active material for lithium secondary battery, method for producing the same and use thereof | |
JP5257272B2 (en) | Positive electrode material for lithium secondary battery, secondary battery using the same, and method for producing positive electrode material for lithium secondary battery | |
EP1142834A1 (en) | Lithium-manganese composite oxide, positive electrode material for lithium secondary cell, positive electrode and lithium secondary cell, and method for preparing lithium-manganese composite oxide | |
US9437873B2 (en) | Spinel-type lithium manganese-based composite oxide | |
JP6090661B2 (en) | Positive electrode active material for lithium secondary battery, precursor of the positive electrode active material, electrode for lithium secondary battery, lithium secondary battery | |
JP5758721B2 (en) | Method for producing spinel-type lithium manganese nickel-based composite oxide, positive electrode mixture for lithium secondary battery, and lithium secondary battery | |
JP2003092108A (en) | Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery | |
JP2003051311A (en) | Lithium transition metal compound oxide, manufacturing method of positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery | |
KR20110044936A (en) | Process for the production of lithium-manganese double oxide for lithium ion batteries and lithium-manganese double oxide for lithium ion batteries made by the same, and lithium ion batteries cotaining the same | |
JP2006151707A (en) | Anhydride of lithium hydroxide for manufacturing lithium transition metal complex oxide and its manufacturing method, and method for manufacturing lithium transition metal complex oxide using it | |
JP2022179554A (en) | lithium compound | |
JP4144317B2 (en) | Method for producing lithium transition metal composite oxide | |
JP2004006277A (en) | Positive electrode material for lithium secondary batteries, rechargeable battery therewith and manufacturing process thereof | |
JP4114314B2 (en) | Lithium manganese composite oxide, positive electrode material for lithium secondary battery, positive electrode, lithium secondary battery, and method for producing lithium manganese composite oxide | |
JP2001146426A (en) | Method for producing lithium manganese compound oxide and lithium ion secondary battery using the same | |
JP4543474B2 (en) | Positive electrode active material, method for producing the same, and non-aqueous secondary battery using the same | |
JP2003123742A (en) | Method of manufacturing electrode plate for nonaqueous electrolyte secondary battery | |
JP4654488B2 (en) | Positive electrode material for lithium ion secondary battery, positive electrode and battery using the same | |
JP2022504835A (en) | Lithium transition metal composite oxide and its manufacturing method | |
JP2006273620A (en) | Lithium transition metal complex oxide, its manufacturing method, fired precursor for lithium transition metal complex oxide and lithium secondary battery | |
JP2003183029A (en) | Method for purifying lithium transition metal complex oxide | |
JP2004155631A (en) | Lithium-manganese-based double oxide particle for non-aqueous lithium secondary battery, method for producing the same and non-aqueous lithium secondary battery | |
JP2001151511A (en) | Lithium manganese double oxide and lithium secondary battery using the same | |
JP2003297358A (en) | Manufacturing method for composite oxide of lithium transition metal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070612 |
|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7425 Effective date: 20090609 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100113 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100126 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100319 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100413 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101124 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101207 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140107 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4654488 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |