JPH10172571A - Lithium secondary battery and manufacture of its positive electrode active material - Google Patents

Lithium secondary battery and manufacture of its positive electrode active material

Info

Publication number
JPH10172571A
JPH10172571A JP8353619A JP35361996A JPH10172571A JP H10172571 A JPH10172571 A JP H10172571A JP 8353619 A JP8353619 A JP 8353619A JP 35361996 A JP35361996 A JP 35361996A JP H10172571 A JPH10172571 A JP H10172571A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
secondary battery
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8353619A
Other languages
Japanese (ja)
Inventor
Masahiko Kato
雅彦 加藤
Seiji Yasui
政治 安井
Akihiko Murakami
彰彦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP8353619A priority Critical patent/JPH10172571A/en
Publication of JPH10172571A publication Critical patent/JPH10172571A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a lithium secondary battery and its positive electrode active material, with which a high initial capacity is assured along with an excellent cyclic characteristic. SOLUTION: A lithium secondary battery is composed of a negative electrode, positive electrode, and organic electrolytic solution, wherein the negative electrode contains an active material capable of occluding and emitting lithium ions, while the positive electrode contains active material consisting of a powder of LiXMnYOZ or LiX(Mn+M)YOZ having spinel structure, (where M is one or more among Co, Ni, Cr, Fe, Ti, V, Mo, B, C), and the powder is of two-layer structure consisting of a center layer and facial layer having different Mn valency.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は,リチウム二次電池,特に優れた
特性を示す正極活物質を用いたリチウム二次電池,及び
その正極活物質の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly to a lithium secondary battery using a positive electrode active material having excellent characteristics, and a method for producing the positive electrode active material.

【0002】[0002]

【従来技術】種々の二次電池のうち,特にリチウム二次
電池は,電圧が高いうえ,自己放電が少なく保存性に優
れている。そのため,多くの分野において有望な二次電
池として期待されている。従来のリチウム二次電池とし
ては,例えば,特開昭63−114065号公報,特開
昭63−274059号公報,特開平2−37665号
公報,特開平2−139860号公報,特開平2−27
069号公報,特開平3−250563号公報,特開平
4−240117号公報に示されているごとく,正極活
物質にスピネル構造のLiMn2O4等の金属酸化物を
用いたものがある。
2. Description of the Related Art Among various secondary batteries, lithium secondary batteries, in particular, have high voltage, low self-discharge, and excellent storage stability. Therefore, it is expected as a promising secondary battery in many fields. Conventional lithium secondary batteries are disclosed in, for example, JP-A-63-114065, JP-A-63-274059, JP-A-2-37665, JP-A-2-139860, and JP-A-2-27.
As disclosed in Japanese Patent Application Laid-Open Nos. 069, 3-250563 and 4-240117, there is a material using a metal oxide such as LiMn2O4 having a spinel structure as a positive electrode active material.

【0003】[0003]

【解決しようとする課題】しかしながら,上記従来のリ
チウム二次電池においては,次の問題がある。即ち,二
次電池においては,初期の放電容量(初期容量)が高
く,かつ,充放電サイクルの繰り返しによる放電容量の
劣化(サイクル特性)が少ないものが求められている。
この点において,上記従来のリチウム二次電池は,未
だ,高い初期容量特性と,優れたサイクル特性の両方を
兼ね備えているとはいえない。
However, the above-mentioned conventional lithium secondary battery has the following problems. That is, a secondary battery is required to have a high initial discharge capacity (initial capacity) and a small deterioration in discharge capacity (cycle characteristics) due to repeated charge / discharge cycles.
In this regard, the conventional lithium secondary battery cannot be said to have both high initial capacity characteristics and excellent cycle characteristics.

【0004】本発明は,かかる従来の問題に鑑みてなさ
れたもので,初期容量が高く,かつ,サイクル特性に優
れた,リチウム二次電池及びその正極活物質の製造方法
を提供しようとするものである。
The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide a lithium secondary battery having a high initial capacity and excellent cycle characteristics, and a method for producing the positive electrode active material thereof. It is.

【0005】[0005]

【課題の解決手段】請求項1の発明は,負極と,正極
と,両極間に介設されるセパレータと,有機電解液とを
有するリチウム二次電池において,上記負極は,リチウ
ムイオンを吸蔵・放出可能な負極活物質を含有してお
り,一方,上記正極は,スピネル構造を有するLiX
Y Z 又はLiX (Mn+M)Y Z (ここで,Mは
Co,Ni,Cr,Fe,Ti,V,Mo,B,Cのう
ちの1種以上である)の粉末からなる正極活物質を含有
しており,かつ,上記粉末は,中心層と表面層とからな
る2層構造であると共に,そのMn価数は,上記中心層
と上記表面層とにおいて異なることを特徴とするリチウ
ム二次電池にある。
According to a first aspect of the present invention, there is provided a lithium secondary battery having a negative electrode, a positive electrode, a separator interposed between the two electrodes, and an organic electrolyte, wherein the negative electrode stores and stores lithium ions. It contains a releasable negative electrode active material, while the positive electrode has a spinel Li x M
n Y O Z or Li X (Mn + M) Y O Z ( wherein, M is Co, Ni, Cr, Fe, Ti, V, Mo, B, in which one or more of C) positive electrode made of powder It contains an active material, and the powder has a two-layer structure composed of a center layer and a surface layer, and its Mn valence is different between the center layer and the surface layer. It is in a lithium secondary battery.

【0006】本発明において最も注目すべきことは,上
記正極活物質は2層構造であり,これを構成する上記中
心層と上記表面層とにおける上記正極活物質の組成が相
異し,そのMn価数が異なることである。ただし,いず
れの層もスピネル構造のLiX MnY Z 又はLi
X (Mn+M)Y Z である。
The most remarkable point in the present invention is that the positive electrode active material has a two-layer structure, and the composition of the positive electrode active material in the central layer and the surface layer constituting the positive electrode active material is different. The valences are different. However, any layer also having a spinel structure Li X Mn Y O Z or Li
Is X (Mn + M) Y O Z.

【0007】上記の中心層と表面層とにおける上記Mn
価数の相異は,上記LiX MnY Z における,X/
Y,X/Z,Y/Zのうち一つ以上の値を変えることに
より実現することができる。スピネル構造のLiX Mn
Y Z におけるMn価数は,化学的量論組成(以下,ス
トイキ値という)において3.5である。
The above Mn in the center layer and the surface layer
The difference in the valence is represented by X / M in the above Li x Mn Y O Z.
It can be realized by changing one or more values of Y, X / Z and Y / Z. Li x Mn with spinel structure
The Mn valence of Y O Z is 3.5 in stoichiometric composition (hereinafter referred to as stoichiometric value).

【0008】また,上記のMn価数分析値m(以下,適
宜,m値という)は,Mnの平均イオン価数を示す指標
であって,次のヨードメトリ法により測定することがで
きる。即ち,試料にKIを加えて塩酸で溶解し,ヨウ素
イオン(I- )によって全Mnを2価に還元して,これ
によって生じるI2 の量をNa2 2 3 による酸化還
元滴定により定量する。このI2 の量がMnの還元に必
要となった電子の移動量と等しくなるので,これをIC
P発光分光分析によって得られた試料中のMn濃度で割
り,還元されたMnの価数2を加えることで平均価数を
求める。この平均価数が上記のMn価数分析値mであ
る。
The Mn valence analysis value m (hereinafter, appropriately referred to as m value) is an index indicating the average ionic valence of Mn, and can be measured by the following iodometry method. That is, KI is added to a sample, dissolved in hydrochloric acid, all Mn is reduced to divalent by iodine ion (I ), and the amount of I 2 generated thereby is determined by redox titration with Na 2 S 2 O 3. I do. Since the amount of I 2 is equal to the amount of electron transfer required for Mn reduction,
The average valence is obtained by dividing by the Mn concentration in the sample obtained by P emission spectroscopy and adding the valence of reduced Mn to 2. This average valence is the above-mentioned Mn valence analysis value m.

【0009】正極活物質における上記Mn価数は,Li
量を確保するため,上記ストイキ値におけるMn価数
(3.5)よりも大きいことが必要とされる。そして,
正極活物質は,Mn価数が上記範囲において小さいほど
(3.5に近いほど)放電容量が高く,かつ,Liイオ
ンの吸蔵・放出に伴う膨張・収縮が大きくなるという特
性がある。一方,Mn価数が大きいほど放電容量は低い
が,Liイオンの吸蔵・放出に伴う膨張・収縮が少なく
なり,サイクル特性が向上するという特性がある。
The Mn valence of the positive electrode active material is Li
In order to secure the amount, it is necessary that the Mn valence (3.5) is larger than the stoichiometric value. And
The positive electrode active material has such characteristics that the smaller the Mn valence in the above range (closer to 3.5), the higher the discharge capacity, and the larger the expansion / contraction accompanying occlusion / release of Li ions. On the other hand, although the discharge capacity is lower as the Mn valence number is larger, expansion and contraction due to occlusion and release of Li ions are reduced, and the cycle characteristics are improved.

【0010】また,上記正極活物質としては,LiX
Y Z 又はLiX (Mn+M)YZ 用いることがで
きる。そして,上記LiX (Mn+M)Y Z における
Mは,上記のごとくCo,Ni,Cr,Fe,Ti,
V,Mo,B,Cのうちの1種以上である。これらの元
素の添加は,Mn単体の場合と同様の効果を維持するこ
とができる。
Further, as the positive electrode active material, Li X M
n Y O Z or Li X (Mn + M) can be used Y O Z. M in the Li x (Mn + M) Y O Z is Co, Ni, Cr, Fe, Ti,
V, Mo, B, or C. The addition of these elements can maintain the same effect as in the case of Mn alone.

【0011】また,特にCoを添加した場合には,容量
のサイクル劣化率の改善に有効であるという効果が得ら
れる。その他,Coに限らず,Mn3+に近いイオン半径
を持ったFe,Ni,Mgなどの低価数イオンでもサイ
クル特性の改善効果が得られる。
In particular, when Co is added, an effect is obtained that is effective in improving the cycle deterioration rate of the capacity. In addition, not only Co but also low-valent ions such as Fe, Ni, and Mg having an ionic radius close to Mn 3+ can obtain the effect of improving the cycle characteristics.

【0012】次に,上記2層構造の粒子よりなる正極活
物質を用いて正極を作製するに当たっては,正極活物質
の他に,例えば,導電材としてのアセチレンブラック
と,結着材としてのPTFEとを用いる。また,上記負
極に用いる活物質としては,リチウムイオンを吸蔵・放
出可能な物質を用いることが必要であり,例えば,リチ
ウム,リチウム合金,炭素体等を用いることができる。
Next, in producing a positive electrode using the positive electrode active material comprising the two-layered particles, in addition to the positive electrode active material, for example, acetylene black as a conductive material and PTFE as a binder are used. Is used. As the active material used for the negative electrode, it is necessary to use a material capable of occluding and releasing lithium ions. For example, lithium, a lithium alloy, a carbon body, or the like can be used.

【0013】また,両極間に介設されるセパレータとし
ては,例えば,ポリプロピレンの多孔質フィルム,ガラ
スフィルタ等がある。そして,上記セパレータに含浸さ
せる有機電解液としては,有機溶媒に適量の電解質を溶
解したものがある。上記有機溶媒としてはエチレンカー
ボネート,ジエチルカーボネート,プロビレンカーボネ
ート,ブチレンカーボネート,テトラヒドロフラン,2
−メチルテトラヒドロフラン,ジメトキシエタン,ジオ
キソラン及びγ−ブチロラクトンから選ばれた1種又は
2種以上の溶媒が好適である。また,上記電解質として
は,LiPF6 ,LiClO4 ,LiBF4 ,LiAs
6 等がある。
Further, examples of the separator interposed between the two electrodes include a porous film of polypropylene and a glass filter. As the organic electrolyte to be impregnated in the separator, there is a solution obtained by dissolving an appropriate amount of electrolyte in an organic solvent. Examples of the organic solvent include ethylene carbonate, diethyl carbonate, propylene carbonate, butylene carbonate, tetrahydrofuran,
One or more solvents selected from -methyltetrahydrofuran, dimethoxyethane, dioxolane and γ-butyrolactone are preferred. Further, as the electrolyte, LiPF 6 , LiClO 4 , LiBF 4 , LiAs
There is F 6 and the like.

【0014】次に,本発明の作用につき説明する。本発
明のリチウム二次電池は,上記の2層構造の粒子よりな
る正極活物質を有しており,かつ,2層構造を構成する
中心層と表面層とのMn価数は上記のごとく異なってい
る。
Next, the operation of the present invention will be described. The lithium secondary battery of the present invention has a positive electrode active material comprising the above-mentioned two-layer structure particles, and the Mn valence of the center layer and the surface layer constituting the two-layer structure is different as described above. ing.

【0015】そのため,例えば,上記中心層のMn価数
を小さく,表面層のMn価数を大きくした場合には,中
心層が高放電容量組織となり,表面層が高サイクル特性
組織となる。即ち,この場合には,中心層が高い放電容
量特性を発揮し,一方,表面層が優れたサイクル特性を
発揮し,粒子全体において,高い初期容量と優れたサイ
クル特性とを両立させることができる。
Therefore, for example, when the Mn valence of the center layer is small and the Mn valence of the surface layer is large, the center layer has a high discharge capacity structure and the surface layer has a high cycle characteristic structure. In other words, in this case, the central layer exhibits high discharge capacity characteristics, while the surface layer exhibits excellent cycle characteristics, and thus both high initial capacity and excellent cycle characteristics can be achieved in the whole particles. .

【0016】逆に,上記中心層のMn価数を大きくし,
表面層のMn価数を小さくした場合には,中心層が少な
い膨張・収縮特性を示し,かつ,表面層が高い放電容量
を発揮すると共に大きな膨張・収縮特性を示す。したが
って,充放電サイクル時の膨張・収縮特性が中心層にお
いて緩和され,優れた耐久性が発揮される。また,表面
層は上記のごとく高い放電容量を発揮する。それ故,こ
の場合にも,高い初期容量と優れたサイクル特性とを両
立させることができる。
Conversely, increasing the Mn valence of the central layer,
When the Mn valence of the surface layer is reduced, the central layer exhibits a small expansion / contraction characteristic, and the surface layer exhibits a high discharge capacity and a large expansion / contraction characteristic. Therefore, the expansion / contraction characteristics during the charge / discharge cycle are reduced in the center layer, and excellent durability is exhibited. In addition, the surface layer exhibits a high discharge capacity as described above. Therefore, also in this case, both high initial capacity and excellent cycle characteristics can be achieved.

【0017】このように,本発明においては,正極活物
質を2層構造とし,各層のMn価数を異なったものとす
ることにより,高い放電容量特性と優れたサイクル特性
とを両立させることができる。それ故,かかる正極活物
質を用いたリチウム二次電池は,高い初期容量と優れた
サイクル特性を発揮することができる。
As described above, in the present invention, the positive electrode active material has a two-layer structure and the Mn valence of each layer is different, so that both high discharge capacity characteristics and excellent cycle characteristics can be achieved. it can. Therefore, a lithium secondary battery using such a positive electrode active material can exhibit high initial capacity and excellent cycle characteristics.

【0018】次に,請求項2の発明のように,上記中心
層と上記表面層とは,その一方がLiX MnY Z であ
り,他方がLiX (Mn+M)Y Z (ここで,MはC
o,Ni,Cr,Fe,Ti,V,Mo,B,Cのうち
の1種以上である)とすることができる。即ち,上記中
心層がLiX MnY Z であり,一方上記表面層がLi
X (Mn+M)Y Z としてもよいし,逆に,上記中心
層がLiX (Mn+M)Y Z であり,一方上記表面層
がLiX MnY Z としてもよい。この場合にも,請求
項1の発明と同様の効果が得られる。
Next, as the invention of claim 2, the above core layer and the surface layer, while is Li X Mn Y O Z, the other is Li X (Mn + M) Y O Z ( wherein , M is C
o, Ni, Cr, Fe, Ti, V, Mo, B, and C). That is the central layer of Li X Mn Y O Z, whereas the surface layer is Li
X (Mn + M) may be used as the Y O Z, conversely, the central layer is a Li X (Mn + M) Y O Z, whereas the surface layer may be a Li X Mn Y O Z. In this case, the same effect as the first aspect can be obtained.

【0019】次に,上記優れたリチウム二次電池におけ
る正極活物質を製造する方法としては,次の発明があ
る。即ち,請求項3の発明のように,中心層と表面層と
の2層構造の粉末よりなるリチウム二次電池用の正極活
物質を製造する方法であって,まずスピネル構造のLi
X MnY Z よりなる中心層用粉末を準備し,次いで,
該中心層用粉末をLiイオン及びMnイオンを含んだ溶
液に添加,混合して混合原料を作製し,次いで,該混合
原料を加熱処理することにより2層構造の粉末を得るこ
とを特徴とするリチウム二次電池用の正極活物質の製造
方法がある。
Next, there is the following invention as a method for producing the positive electrode active material in the excellent lithium secondary battery. That is, according to the third aspect of the present invention, there is provided a method for producing a positive electrode active material for a lithium secondary battery comprising a powder having a two-layer structure of a center layer and a surface layer.
Prepare a powder for the central layer consisting of X Mn Y O Z ,
The powder for the center layer is added to a solution containing Li ions and Mn ions and mixed to prepare a mixed raw material, and then the mixed raw material is heated to obtain a powder having a two-layer structure. There is a method for producing a positive electrode active material for a lithium secondary battery.

【0020】本製造方法において最も注目すべきこと
は,上記中心層用粉末と上記溶液とにより上記混合原料
を作製し,次いで,該混合原料を加熱処理することであ
る。上記中心層用粉末としては,例えば従来の種々の製
造方法により得ることができる。例えば,原料を固相状
態で反応させる固相法や,特開平8−236112号公
報に示されたごとく,液体状態の原料溶液を用いて噴霧
熱分解法により作製することもできる。
The most remarkable point in the present production method is that the mixed raw material is prepared from the center layer powder and the solution, and then the mixed raw material is heated. The powder for the center layer can be obtained, for example, by various conventional production methods. For example, it can be prepared by a solid phase method in which raw materials are reacted in a solid state, or a spray pyrolysis method using a raw material solution in a liquid state as shown in JP-A-8-236112.

【0021】また,上記溶液は,上記のごとく,Liイ
オン及びMnイオンを含んだ溶液であって,例えば,後
述する種々の化合物,及び種々の溶媒を用いて作製する
ことができる。また,この溶液は,上記中心層用粒子の
組成と異なる組成のLiX MnY Zが合成されるよう
に調製する。
As described above, the solution is a solution containing Li ions and Mn ions, and can be prepared using, for example, various compounds and various solvents described below. Further, this solution is prepared so that Li X Mn Y O Z having a composition different from the composition of the particles for the center layer is synthesized.

【0022】また,上記混合原料は,上記中心層用粒子
が上記溶液に十分に覆われるように混合する。また,上
記加熱処理は,酸素過剰の雰囲気において行うことが好
ましい。これにより,LiX MnY Z のスピネル構造
中のLi,Mnの一部を空位(欠損)としてLiイオン
の拡散を容易にするという効果が得られる。
The mixed raw materials are mixed so that the particles for the central layer are sufficiently covered with the solution. Further, the heat treatment is preferably performed in an oxygen-excess atmosphere. As a result, an effect is obtained in which part of Li and Mn in the spinel structure of Li x Mn Y O Z is vacant (deleted) to facilitate diffusion of Li ions.

【0023】また,上記加熱処理の温度は,300℃〜
1200℃において行うことが好ましい。300℃未満
の場合には加熱処理が不十分であり,一方,1200℃
を超える場合には安定した装置の稼働が困難になるなど
の問題がある。
The temperature of the heat treatment is 300 ° C.
It is preferably performed at 1200 ° C. If the temperature is lower than 300 ° C., the heat treatment is insufficient.
If the number exceeds the limit, there is a problem that stable operation of the apparatus becomes difficult.

【0024】本製造方法によれば,上記混合原料の加熱
処理により,上記中心層用粒子の周囲において新たにL
X MnY Z が合成されて表面層となるる。このLi
X MnY Z の組成は,上記溶液の調製によって容易に
変更することができる。それ故,中心層と表面層とのM
n価数が異なる2層構造の粒子からなる正極活物質を容
易に製造することができる。
According to the present production method, heat treatment of the mixed raw material causes a new amount of L around the center layer particles.
i X Mn Y O Z are combined surface layer and Naruru. This Li
The composition of the X Mn Y O Z can be easily changed by the preparation of the solution. Therefore, M between the central layer and the surface layer
A positive electrode active material composed of particles having a two-layer structure having different n valences can be easily produced.

【0025】次に,請求項4の発明のように,上記混合
原料の加熱処理は,液滴状に噴霧した状態で行うことが
好ましい。即ち,上記中心層用粒子と溶液とを混合した
上記混合原料を用いて噴霧熱分解することが好ましい。
この場合には,上記液滴の形成によって,表面層の組成
が均一で,かつ,粒径が比較的揃った2層粒子を容易に
得ることができる。
Next, as in the invention of claim 4, it is preferable that the heat treatment of the mixed raw material is performed in a state of being sprayed in the form of droplets. That is, it is preferable to perform spray pyrolysis using the mixed raw material obtained by mixing the particles for the center layer and the solution.
In this case, the formation of the droplets makes it possible to easily obtain two-layer particles having a uniform surface layer composition and a relatively uniform particle size.

【0026】また,請求項5の発明のように,上記混合
原料の上記加熱処理は,上記原料を噴霧する容器の外部
からの加熱,上記噴霧容器への加熱したガスの注入によ
る加熱,溶媒の燃焼熱による加熱のうちいずれか1種以
上を用いることができる。
According to a fifth aspect of the present invention, the heating of the mixed raw material is performed by heating the container from which the raw material is sprayed from the outside, heating by injecting a heated gas into the spray container, and removing the solvent. Any one or more of heating by combustion heat can be used.

【0027】上記噴霧容器の外部からの加熱の場合に
は,加熱温度の調整を容易に行うことができる。また,
上記容器への加熱ガスの注入の場合には加熱効率を向上
させることができる。また,溶媒の燃焼による加熱の場
合には,一次粒子を瞬時に合成することができ,組成の
均一性が向上するという効果が得られる。
In the case of heating from outside the spray container, the heating temperature can be easily adjusted. Also,
In the case of injecting the heating gas into the container, the heating efficiency can be improved. In the case of heating by burning of the solvent, the primary particles can be synthesized instantaneously, and the effect of improving the uniformity of the composition can be obtained.

【0028】また,請求項6の発明のように,上記Li
イオン及びMnイオンを含んだ溶液は,リチウム化合物
と,マンガン又はマンガン化合物とよりなり,上記リチ
ウム化合物はLiの酸化物,水酸化物,炭酸塩,硝酸
塩,酢酸塩又は蓚酸塩のうちの1種以上の化合物である
ことが好ましい。これらのものは,比較的,溶液中でイ
オン化しやすく均一性向上の点で優れている。
Further, according to the present invention, the Li
The solution containing ions and Mn ions comprises a lithium compound and manganese or a manganese compound, wherein the lithium compound is one of the oxides, hydroxides, carbonates, nitrates, acetates or oxalates of Li. The compounds are preferably the above compounds. These are relatively easy to ionize in a solution and are excellent in improving uniformity.

【0029】また,請求項7の発明のように,上記マン
ガン化合物は,Mnの酸化物,水酸化物,炭酸塩,硝酸
塩,酢酸塩又は蓚酸塩のうちの1種以上であることが好
ましい。これらのものは,上記と同様に,比較的,溶液
中でイオン化しやすく均一性向上の点で優れている。
Further, as in the invention of claim 7, the manganese compound is preferably at least one of oxides, hydroxides, carbonates, nitrates, acetates and oxalates of Mn. As described above, these are relatively easily ionized in a solution and are excellent in improving uniformity.

【0030】また,請求項8の発明のように,上記溶液
の溶媒は,例えば,水,酸水溶液,アルカリ水溶液,有
機溶媒のうちの1種以上を用いることができる。
Further, as in the invention of claim 8, as the solvent of the solution, for example, one or more of water, an aqueous acid solution, an aqueous alkali solution, and an organic solvent can be used.

【0031】[0031]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施形態例1 本発明の実施形態例にかかるリチウム二次電池及びその
正極活物質の製造方法につき説明する。本例において
は,表1に示すごとく,本発明の製造方法及び従来の製
造方法により種々の正極活物質を製造し,次いで,これ
らの正極活物質を用いたリチウム二次電池を作製して性
能をテストした。
Embodiment 1 A method for producing a lithium secondary battery and a cathode active material thereof according to an embodiment of the present invention will be described. In this example, as shown in Table 1, various positive electrode active materials were manufactured by the manufacturing method of the present invention and the conventional manufacturing method, and then, a lithium secondary battery using these positive electrode active materials was manufactured. Tested.

【0032】まず,本発明品としての正極活物質は,表
1に示すごとく4種類製造した(試料No.E1〜E
4)。試料No.E1,E2は,予めスピネル構造のL
X MnY Z よりなる中心層用粉末を準備し,次い
で,該中心層用粉末をLiイオン及びMnイオンを含ん
だ溶液に添加,混合して混合原料を作製し,次いで,該
混合原料を液滴状に噴霧して加熱処理することにより作
製した。即ち,上記混合原料を噴霧熱分解法により処理
した。
First, as shown in Table 1, four types of positive electrode active materials as the product of the present invention were produced (Sample Nos. E1 to E).
4). Sample No. E1 and E2 are L values of the spinel structure in advance.
i X Mn Y O Z , a powder for the center layer is prepared, and then the powder for the center layer is added to and mixed with a solution containing Li ions and Mn ions to produce a mixed raw material. Was sprayed in the form of droplets and heat-treated. That is, the mixed raw material was treated by the spray pyrolysis method.

【0033】具体的には,試料No.E1の正極活物質
を作製するに当たっては,中心層用粉末としてMn価数
が3.56のものを準備し,また,上記溶液としては,
硝酸リチウムと硝酸マンガンとをLi:Mnが0.53
6:1となるように調製した水溶液を準備した。そし
て,上記中心層用粉末と溶液とを混合して混合原料とし
た。この場合の溶媒は水である。
Specifically, the sample No. In preparing the positive electrode active material of E1, a powder having a Mn valence of 3.56 was prepared as the powder for the center layer.
Lithium nitrate and manganese nitrate have a Li: Mn of 0.53
An aqueous solution prepared to be 6: 1 was prepared. The powder for the center layer and the solution were mixed to obtain a mixed raw material. The solvent in this case is water.

【0034】次いで,特開平8−236112号公報に
示された方法と同様にして,混合原料を加熱炉内に液滴
状に噴霧し,加熱処理する。上記加熱炉としては,電気
炉を用いた。また,原料溶液の液滴状の噴霧は,原料溶
液を超音波振動させながら電気炉内に吸引させることに
より行った。具体的には,電気炉に連結された溶液タン
ク内に原料溶液を入れ,超音波を1.63MHzの条件
で作動させると共に,減圧装置の操作により加熱炉内に
原料溶液を液滴状に吸引した。
Next, the mixed raw material is sprayed into a heating furnace in the form of droplets in a manner similar to the method disclosed in Japanese Patent Application Laid-Open No. 8-236112, and is heated. An electric furnace was used as the heating furnace. The droplet spray of the raw material solution was performed by sucking the raw material solution into an electric furnace while ultrasonically vibrating. Specifically, the raw material solution is put into a solution tank connected to an electric furnace, ultrasonic waves are operated under the condition of 1.63 MHz, and the raw material solution is sucked into the heating furnace in the form of droplets by operating a decompression device. did.

【0035】このときの電気炉の温度は800℃とし
た。これにより,液滴は加熱炉内において急速に加熱さ
れ,上記中心層用粉末の周囲に表面層が合成され,2層
構造の粒子よりなる正極活物質が得られる。そして,電
気炉に接続され約80〜220℃に保持された補修器に
より,正極活物質を捕集した。
At this time, the temperature of the electric furnace was 800 ° C. As a result, the droplet is rapidly heated in the heating furnace, a surface layer is synthesized around the powder for the center layer, and a positive electrode active material composed of particles having a two-layer structure is obtained. Then, the positive electrode active material was collected by a repairer connected to an electric furnace and maintained at about 80 to 220 ° C.

【0036】得られた正極活物質(試料No.E1)
は,表1に示すごとく,中心層のMn価数が3.56,
表面層のMn価数が3.51となった。また,LiX
Y Z のX/Zの値は,中心層において0.25,表
面層において0.24となっていた。
The obtained positive electrode active material (sample No. E1)
As shown in Table 1, the Mn valence of the central layer is 3.56,
The Mn valence of the surface layer was 3.51. In addition, Li X M
The value of n Y O Z of X / Z is 0.25 in the center layer had the surface layer becomes 0.24.

【0037】次に,試料No.E2の正極活物質を作製
するに当たっては,中心層用粉末としてMn価数が3.
52のものを準備し,また,溶液としは,硝酸リチウム
と硝酸マンガンとをLi:Mnが0.512:1となる
ように調製した水溶液を準備した。その他は,試料N
o.E1の場合と同様にした。
Next, the sample no. In producing the positive electrode active material of E2, the Mn valence was 3.
52 were prepared, and as the solution, an aqueous solution prepared by preparing lithium nitrate and manganese nitrate so that Li: Mn was 0.512: 1 was prepared. For others, sample N
o. Same as E1.

【0038】これにより,得られた正極活物質(試料N
o.E2)は,表1に示すごとく,中心層のMn価数が
3.52,表面層のMn価数が3.65となった。ま
た,LiX MnY Z のX/Zの値は,中心層において
0.25,表面層において0.26となっていた。
Thus, the obtained positive electrode active material (sample N
o. In E2), as shown in Table 1, the Mn valence of the central layer was 3.52, and the Mn valence of the surface layer was 3.65. The value of Li X Mn Y O Z of X / Z is 0.25 in the center layer had the surface layer becomes 0.26.

【0039】次に,試料No.E3,E4は,まずスピ
ネル構造のLiX MnY Z の中心層用粉末を準備し,
次いで,該中心層用粉末をLiイオン及びMnイオンを
含んだ溶液に添加,混合して混合原料を作製し,次い
で,該混合原料を加熱処理することにより作製した。こ
の場合の加熱処理は酸素(又は大気)雰囲気において単
純に加熱することにより行った。
Next, the sample no. In E3 and E4, first, a powder for the center layer of Li x Mn Y O Z having a spinel structure was prepared.
Next, the powder for the center layer was added to and mixed with a solution containing Li ions and Mn ions to prepare a mixed raw material, and then the mixed raw material was heat-treated. The heat treatment in this case was performed by simply heating in an oxygen (or air) atmosphere.

【0040】具体的には,試料No.E3の正極活物質
を作製するに当たっては,中心層用粉末としてMn価数
が3.6のものを準備し,また,上記溶液としては,硝
酸リチウムと硝酸マンガンとをLi:Mnが0.56:
1となるように調製した水溶液を準備した。そして,上
記中心層用粉末と溶液とを混合して混合原料とした。こ
の場合の溶媒も水である。
Specifically, the sample No. In preparing the cathode active material of E3, a powder having a Mn valence of 3.6 was prepared as the powder for the center layer, and the above solution was prepared by mixing lithium nitrate and manganese nitrate with Li: Mn of 0.56. :
An aqueous solution prepared to be 1 was prepared. The powder for the center layer and the solution were mixed to obtain a mixed raw material. The solvent in this case is also water.

【0041】次いで,上記混合原料を,温度800℃で
酸素雰囲気の加熱炉内に2時間保持することにより加熱
処理した。これにより,上記中心層用粉末の周囲の溶液
が反応してLiX MnY Z よりなる表面層が合成さ
れ,2層構造の粒子よりなる正極活物質が得られた。
Next, the mixed raw material was subjected to a heat treatment by keeping it in a heating furnace at a temperature of 800 ° C. in an oxygen atmosphere for 2 hours. As a result, the solution around the center layer powder reacted to synthesize a surface layer composed of Li x Mn Y O Z , and a positive electrode active material composed of particles having a two-layer structure was obtained.

【0042】得られた正極活物質(試料No.E3)
は,表1に示すごとく,中心層のMn価数が3.6,表
面層のMn価数が3.64となった。また,LiX Mn
Y ZのX/Zの値は,中心層において0.24,表面
層において0.25となっていた。
The obtained positive electrode active material (Sample No. E3)
As shown in Table 1, the Mn valence of the central layer was 3.6, and the Mn valence of the surface layer was 3.64. Li X Mn
The X / Z value of Y O Z was 0.24 in the center layer and 0.25 in the surface layer.

【0043】次に,試料No.E4の正極活物質を作製
するに当たっては,中心層用粉末としてMn価数が3.
62のものを準備し,また,溶液としては,硝酸リチウ
ムと硝酸マンガンとをLi:Mnが0.572:1とな
るように調製した水溶液を準備した。その他は,試料N
o.E3の場合と同様にした。
Next, the sample no. In producing the positive electrode active material of E4, the powder for the center layer had an Mn valence of 3.
62 were prepared, and as a solution, an aqueous solution prepared by preparing lithium nitrate and manganese nitrate such that Li: Mn was 0.572: 1 was prepared. For others, sample N
o. Same as E3.

【0044】これにより,得られた正極活物質(試料N
o.E4)は,表1に示すごとく,中心層のMn価数が
3.62,表面層のMn価数が3.58となった。ま
た,LiX MnY Z のX/Zの値は,中心層において
0.25,表面層において0.25となっていた。な
お,上記試料No.E1〜E4までの中心層用粉末は,
いずれも,所望の組成になるように原料溶液を調製し,
これを噴霧熱分解法により処理して作製したものを用い
た。
Thus, the obtained positive electrode active material (sample N
o. In E4), as shown in Table 1, the Mn valence of the central layer was 3.62, and the Mn valence of the surface layer was 3.58. The value of Li X Mn Y O Z of X / Z is 0.25 in the center layer had the surface layer becomes 0.25. The sample No. The powder for the center layer from E1 to E4
In each case, a raw material solution is prepared to have a desired composition,
This was processed by a spray pyrolysis method and used.

【0045】次に,比較のために3種類の正極活物質を
作製した(試料No.C5〜C7)。試料No.C5の
正極活物質は,上記溶液を噴霧熱分解法により粒子を作
製し,これをそのまま正極活物質としたものである。即
ち,2層構造でなく,単一粒子構造の粒子である。
Next, three types of positive electrode active materials were prepared for comparison (Sample Nos. C5 to C7). Sample No. As the positive electrode active material of C5, particles were produced from the above solution by a spray pyrolysis method, and this was used as it was as a positive electrode active material. That is, the particles have a single particle structure instead of a two-layer structure.

【0046】これにより,得られた正極活物質(試料N
o.C5)は,表1に示すごとく,中心部分と表面部分
のMn価数がいずれも3.54となった。また,LiX
MnY Z のX/Zの値は,中心部分及び表面部分のい
ずれにおいても0.25となっていた。
Thus, the obtained positive electrode active material (sample N
o. As for C5), as shown in Table 1, the Mn valence of the central portion and the surface portion were both 3.54. In addition, Li X
The value of Mn Y O Z of X / Z had also become 0.25 in both the central portion and the surface portion.

【0047】次に,試料No.C6の正極活物質は,い
わゆる固相法により作製した単層の粒子である。即ち,
原料として,LiCO3 (炭酸リチウム)とMnO
2 (二酸化マンガン)とをLi:Mnが0.548:1
になるように混合したものを用いる。そして,この原料
を温度800℃の酸素雰囲気において20時間加熱し,
その後粉砕した粉末をプレスし,再加熱反応させて組織
が均一になるよう繰り返し焼成することにより正極活物
質を合成した。
Next, the sample No. The C6 positive electrode active material is a single-layer particle produced by a so-called solid phase method. That is,
As raw materials, LiCO 3 (lithium carbonate) and MnO
2 (manganese dioxide) and Li: Mn 0.548: 1
Use the mixture so that Then, this raw material is heated in an oxygen atmosphere at a temperature of 800 ° C. for 20 hours.
Thereafter, the pulverized powder was pressed and reacted by reheating, and repeatedly fired so that the structure became uniform, thereby synthesizing a positive electrode active material.

【0048】これにより,得られた正極活物質(試料N
o.C6)は,表1に示すごとく,中心部分と表層部分
のMn価数がいずれも3.58となった。また,LiX
MnY Z のX/Zの値は,中心部分及び表層部分のい
ずれにおいても0.26となっていた。
Thus, the obtained positive electrode active material (sample N
o. For C6), as shown in Table 1, the Mn valence of both the central portion and the surface layer portion was 3.58. In addition, Li X
The value of Mn Y O Z of X / Z had also become 0.26 in both the central portion and surface layer portion.

【0049】次に,試料No.C7の正極活物質を作製
するに当たっては,上記試料No.C6の原料の混合割
合を,Li:Mnが0.584:1になるように変更し
た。その他は,試料No.C6の場合と同様にした。こ
れにより,得られた正極活物質(試料No.C7)は,
表1に示すごとく,中心部分と表層部分のMn価数がい
ずれも3.64となった。また,LiX MnY Z のX
/Zの値は,中心部分及び表層部分のいずれにおいても
0.28となっていた。
Next, the sample No. In producing the positive electrode active material of C7, the above sample No. The mixing ratio of the C6 raw material was changed so that Li: Mn became 0.584: 1. For other samples, Same as C6. As a result, the obtained positive electrode active material (Sample No. C7)
As shown in Table 1, the Mn valence of the central portion and the surface portion both became 3.64. In addition, X of Li X Mn Y O Z
The value of / Z was 0.28 in both the central part and the surface part.

【0050】次に,上記7種類の正極活物質を用いて,
それぞれリチウム二次電池を作製した。正極は,上記各
正極活物質と,導電材としてのアセチレンブラックと,
結着剤としてのPTFE(ポリ四フッ化エチレン)とを
用いて作製した。
Next, using the above seven kinds of positive electrode active materials,
Each produced a lithium secondary battery. The positive electrode is composed of the above positive electrode active materials, acetylene black as a conductive material,
It was produced using PTFE (polytetrafluoroethylene) as a binder.

【0051】また,負極は,Li金属を負極活物質とし
て用いた。また,有機電解液としては,EC(エチレン
カーバイド)とDEC(ジエチレンカーボネート)を
1:1の割合で混合した溶液に1MのLiPF6 を溶解
したものを用いた。得られた7種類のリチウム二次電池
は,説明の便宜上,それぞれ,上記正極活物質の試料N
o.と同じ試料No.とする。
For the negative electrode, Li metal was used as a negative electrode active material. As the organic electrolyte, a solution obtained by dissolving 1M LiPF 6 in a solution obtained by mixing EC (ethylene carbide) and DEC (diethylene carbonate) at a ratio of 1: 1 was used. The obtained seven types of lithium secondary batteries are respectively referred to as the positive electrode active material sample N for convenience of explanation.
o. The same sample No. And

【0052】次に,上記7種類のリチウム二次電池を用
いて,充放電テストを行った。充放電条件は,カット・
オフ電圧3.5〜4.5V,電流密度1.0〜4.0m
A/cm2 とした。テスト結果を,表1に示す。
Next, a charge / discharge test was performed using the above seven types of lithium secondary batteries. The charge and discharge conditions are cut and
OFF voltage 3.5 to 4.5 V, current density 1.0 to 4.0 m
A / cm 2 . Table 1 shows the test results.

【0053】表1より知られるごとく,本発明品は(試
料No.E1〜E4)は,いずれも初期容量が高く,か
つ,充放電サイクルの100サイクル目の放電容量にお
いても約110mAh/gの高い値を維持する優れた結
果を示した。これに対し,比較品(試料No.C5〜C
7)は,初期容量に関しては良好であっても,100サ
イクル目の放電容量が大きく悪化するという結果となっ
た。
As can be seen from Table 1, the products of the present invention (Sample Nos. E1 to E4) all had high initial capacities and a discharge capacity of about 110 mAh / g even at the discharge capacity at the 100th charge / discharge cycle. Excellent results were maintained at high values. On the other hand, the comparative products (sample Nos. C5 to C5)
In 7), although the initial capacity was good, the discharge capacity at the 100th cycle was significantly deteriorated.

【0054】なお,本例においては正極活物質としてL
X MnY Z を用いた場合を示したが,正極活物質と
してLiX (Mn+M)Y Z を用いた場合について
も,同様にサイクル特性の良好な結果が得られることも
確認できた。
In this example, L was used as the positive electrode active material.
i X Mn was shown a case of using a Y O Z is, for the case of using the Li X (Mn + M) Y O Z as a positive active material also, it was confirmed similarly that good results of cycle characteristics are obtained .

【0055】[0055]

【表1】 [Table 1]

【0056】[0056]

【発明の効果】上述のごとく,本発明によれば,初期容
量が高く,かつ,サイクル特性に優れた,リチウム二次
電池及びその正極活物質の製造方法を提供することがで
きる。
As described above, according to the present invention, it is possible to provide a lithium secondary battery having a high initial capacity and excellent cycle characteristics and a method for producing the positive electrode active material thereof.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 負極と,正極と,両極間に介設されるセ
パレータと,有機電解液とを有するリチウム二次電池に
おいて,上記負極は,リチウムイオンを吸蔵・放出可能
な負極活物質を含有しており,一方,上記正極は,スピ
ネル構造を有するLiX MnY Z 又はLiX (Mn+
M)Y Z (ここで,MはCo,Ni,Cr,Fe,T
i,V,Mo,B,Cのうちの1種以上である)の粉末
からなる正極活物質を含有しており,かつ,上記粉末
は,中心層と表面層とからなる2層構造であると共に,
そのMn価数は,上記中心層と上記表面層とにおいて異
なることを特徴とするリチウム二次電池。
1. A lithium secondary battery comprising a negative electrode, a positive electrode, a separator interposed between the two electrodes, and an organic electrolyte, wherein the negative electrode contains a negative electrode active material capable of inserting and extracting lithium ions. and which, on the other hand, the positive electrode, Li X Mn Y O Z or Li X (Mn having a spinel structure +
M) Y O Z (where M is Co, Ni, Cr, Fe, T
i, V, Mo, B, and C), and the powder has a two-layer structure including a center layer and a surface layer. With
A lithium secondary battery, wherein the Mn valence is different between the center layer and the surface layer.
【請求項2】 請求項1において,上記中心層と上記表
面層とは,その一方がLiX MnY Z であり,他方が
LiX (Mn+M)Y Z (ここで,MはCo,Ni,
Cr,Fe,Ti,V,Mo,B,Cのうちの1種以上
である)であることを特徴とするリチウム二次電池。
2. The method according to claim 1, wherein one of the center layer and the surface layer is Li x Mn Y O Z , and the other is Li x (Mn + M) Y O Z (where M is Co, Ni,
And at least one of Cr, Fe, Ti, V, Mo, B, and C).
【請求項3】 中心層と表面層との2層構造の粉末より
なるリチウム二次電池用の正極活物質を製造する方法で
あって,まずスピネル構造のLiX MnY Z よりなる
中心層用粉末を準備し,次いで,該中心層用粉末をLi
イオン及びMnイオンを含んだ溶液に添加,混合して混
合原料を作製し,次いで,該混合原料を加熱処理するこ
とにより2層構造の粉末を得ることを特徴とするリチウ
ム二次電池用の正極活物質の製造方法。
3. A method for producing a positive electrode active material for a lithium secondary battery comprising a powder having a two-layer structure of a center layer and a surface layer, wherein a center layer comprising Li x Mn Y O Z having a spinel structure is provided. Powder for the center layer, and then the powder for the center layer is Li
A positive electrode for a lithium secondary battery, characterized by adding and mixing a solution containing ions and Mn ions to produce a mixed material, and then subjecting the mixed material to heat treatment to obtain a powder having a two-layer structure. Active material manufacturing method.
【請求項4】 請求項3において,上記混合原料の加熱
処理は,液滴状に噴霧した状態で行うことを特徴とする
リチウム二次電池用の正極活物質の製造方法。
4. The method for producing a positive electrode active material for a lithium secondary battery according to claim 3, wherein the heat treatment of the mixed raw material is performed in a state of being sprayed in a droplet form.
【請求項5】 請求項4において,上記混合原料の上記
加熱処理は,上記原料を噴霧する容器の外部からの加
熱,上記噴霧容器への加熱したガスの注入による加熱,
溶媒の燃焼熱による加熱のうちいずれか1種以上を用い
ることを特徴とするリチウム二次電池用の正極活物質の
製造方法。
5. The method according to claim 4, wherein the heating of the mixed raw material is performed by externally heating a container for spraying the raw material, heating by injecting a heated gas into the spray container,
A method for producing a positive electrode active material for a lithium secondary battery, wherein at least one of heating by combustion heat of a solvent is used.
【請求項6】 請求項3〜5のいずれか1項において,
上記Liイオン及びMnイオンを含んだ溶液は,リチウ
ム化合物と,マンガン又はマンガン化合物とよりなり,
上記リチウム化合物はLiの酸化物,水酸化物,炭酸
塩,硝酸塩,酢酸塩又は蓚酸塩のうちの1種以上の化合
物であることを特徴とするリチウム二次電池用の正極活
物質の製造方法。
6. The method according to claim 3, wherein:
The solution containing the above-mentioned Li ion and Mn ion comprises a lithium compound and manganese or a manganese compound,
The method for producing a positive electrode active material for a lithium secondary battery, wherein the lithium compound is at least one compound among oxides, hydroxides, carbonates, nitrates, acetates, and oxalates of Li. .
【請求項7】 請求項6において,上記マンガン化合物
は,Mnの酸化物,水酸化物,炭酸塩,硝酸塩,酢酸塩
又は蓚酸塩のうちの1種以上であることを特徴とするリ
チウム二次電池用の正極活物質の製造方法。
7. The lithium secondary battery according to claim 6, wherein the manganese compound is one or more of oxides, hydroxides, carbonates, nitrates, acetates, and oxalates of Mn. A method for producing a positive electrode active material for a battery.
【請求項8】 請求項3〜7のいずれか1項において,
上記溶液の溶媒は,水,酸水溶液,アルカリ水溶液,有
機溶媒のうちの1種以上であることを特徴とするリチウ
ム二次電池用の正極活物質の製造方法。
8. The method according to claim 3, wherein:
A method for producing a positive electrode active material for a lithium secondary battery, wherein the solvent of the solution is at least one of water, an aqueous acid solution, an aqueous alkaline solution, and an organic solvent.
JP8353619A 1996-12-16 1996-12-16 Lithium secondary battery and manufacture of its positive electrode active material Pending JPH10172571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8353619A JPH10172571A (en) 1996-12-16 1996-12-16 Lithium secondary battery and manufacture of its positive electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8353619A JPH10172571A (en) 1996-12-16 1996-12-16 Lithium secondary battery and manufacture of its positive electrode active material

Publications (1)

Publication Number Publication Date
JPH10172571A true JPH10172571A (en) 1998-06-26

Family

ID=18432078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8353619A Pending JPH10172571A (en) 1996-12-16 1996-12-16 Lithium secondary battery and manufacture of its positive electrode active material

Country Status (1)

Country Link
JP (1) JPH10172571A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999005734A1 (en) * 1997-07-25 1999-02-04 Kabushiki Kaisha Toshiba Positive active material and non-aqueous secondary cell made by using the same
JP2000030709A (en) * 1998-07-15 2000-01-28 Nissan Motor Co Ltd Manganese-lithium ion battery
JP2002068745A (en) * 2000-08-28 2002-03-08 Nippon Chem Ind Co Ltd Lithium manganese complex oxide composite body, method of producing it, positive-electrode active substance for lithium secondary battery and lithium secondary battery
KR100364659B1 (en) * 2000-08-25 2002-12-16 유광수 CATHODE MATERIAL, Li(Mn1-δCoδ)2O4 FOR LITHIUM-ION SECONDARY BATTERY AND METHOD FOR PREPARING THE SAME
WO2003015198A2 (en) * 2001-08-07 2003-02-20 3M Innovative Properties Company Cathode compositions for lithium ion batteries
US6673491B2 (en) 2000-01-21 2004-01-06 Showa Denko Kabushiki Kaisha Cathode electroactive material, production method therefor, and nonaqueous secondary cell using the same
KR100598491B1 (en) 2004-10-21 2006-07-10 한양대학교 산학협력단 Double-layer cathode active materials and their preparing method for lithium secondary batteries
KR100723973B1 (en) 2005-11-09 2007-06-04 한양대학교 산학협력단 Core-shell cathode active materials with high safety and high capacity for lithium secondary batteries, Method of preparing thereof And the product thereby
KR100744759B1 (en) 2006-06-07 2007-08-01 한양대학교 산학협력단 A method for preparing cathode active materials for lithium secondary batteries
WO2008069351A1 (en) * 2006-12-05 2008-06-12 Sk Energy Co., Ltd. Core-shell spinel cathode active materials for lithium secondary batteries, lithium secondary batteries using the same and method for preparing thereof
JP2008288213A (en) * 2008-07-14 2008-11-27 Panasonic Corp Positive electrode active material for nonaqueous electrolyte secondary battery and the nonaqueous electrolyte secondary battery
US7972729B2 (en) 2007-07-10 2011-07-05 Panasonic Corporation Positive electrode material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing positive electrode material for non-aqueous electrolyte secondary battery
JP2012033279A (en) * 2010-07-28 2012-02-16 Nec Energy Devices Ltd Lithium ion secondary battery
WO2014155496A1 (en) * 2013-03-25 2014-10-02 株式会社日立製作所 Lithium-ion cell, and electrode for lithium-ion cell
JP2016064966A (en) * 2013-11-29 2016-04-28 株式会社半導体エネルギー研究所 Lithium-manganese composite oxide and secondary battery
US9391322B2 (en) 2013-03-15 2016-07-12 E I Du Pont De Nemours And Company Cathode material and battery
US10454106B2 (en) 2004-12-31 2019-10-22 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Double-layer cathode active materials for lithium secondary batteries, method for preparing the active materials, and lithium secondary batteries using the active materials

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6458487B1 (en) 1997-07-25 2002-10-01 Kabushiki Kaisha Toshiba Positive active material and non-aqueous secondary cell made by using the same
WO1999005734A1 (en) * 1997-07-25 1999-02-04 Kabushiki Kaisha Toshiba Positive active material and non-aqueous secondary cell made by using the same
JP2000030709A (en) * 1998-07-15 2000-01-28 Nissan Motor Co Ltd Manganese-lithium ion battery
US6673491B2 (en) 2000-01-21 2004-01-06 Showa Denko Kabushiki Kaisha Cathode electroactive material, production method therefor, and nonaqueous secondary cell using the same
KR100364659B1 (en) * 2000-08-25 2002-12-16 유광수 CATHODE MATERIAL, Li(Mn1-δCoδ)2O4 FOR LITHIUM-ION SECONDARY BATTERY AND METHOD FOR PREPARING THE SAME
JP4683509B2 (en) * 2000-08-28 2011-05-18 日本化学工業株式会社 Lithium manganese composite oxide composite, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery
JP2002068745A (en) * 2000-08-28 2002-03-08 Nippon Chem Ind Co Ltd Lithium manganese complex oxide composite body, method of producing it, positive-electrode active substance for lithium secondary battery and lithium secondary battery
WO2003015198A2 (en) * 2001-08-07 2003-02-20 3M Innovative Properties Company Cathode compositions for lithium ion batteries
WO2003015198A3 (en) * 2001-08-07 2004-04-01 3M Innovative Properties Co Cathode compositions for lithium ion batteries
KR100598491B1 (en) 2004-10-21 2006-07-10 한양대학교 산학협력단 Double-layer cathode active materials and their preparing method for lithium secondary batteries
US10454106B2 (en) 2004-12-31 2019-10-22 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Double-layer cathode active materials for lithium secondary batteries, method for preparing the active materials, and lithium secondary batteries using the active materials
KR100723973B1 (en) 2005-11-09 2007-06-04 한양대학교 산학협력단 Core-shell cathode active materials with high safety and high capacity for lithium secondary batteries, Method of preparing thereof And the product thereby
KR100744759B1 (en) 2006-06-07 2007-08-01 한양대학교 산학협력단 A method for preparing cathode active materials for lithium secondary batteries
WO2008069351A1 (en) * 2006-12-05 2008-06-12 Sk Energy Co., Ltd. Core-shell spinel cathode active materials for lithium secondary batteries, lithium secondary batteries using the same and method for preparing thereof
US7972729B2 (en) 2007-07-10 2011-07-05 Panasonic Corporation Positive electrode material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing positive electrode material for non-aqueous electrolyte secondary battery
JP2008288213A (en) * 2008-07-14 2008-11-27 Panasonic Corp Positive electrode active material for nonaqueous electrolyte secondary battery and the nonaqueous electrolyte secondary battery
JP2012033279A (en) * 2010-07-28 2012-02-16 Nec Energy Devices Ltd Lithium ion secondary battery
US9391322B2 (en) 2013-03-15 2016-07-12 E I Du Pont De Nemours And Company Cathode material and battery
WO2014155496A1 (en) * 2013-03-25 2014-10-02 株式会社日立製作所 Lithium-ion cell, and electrode for lithium-ion cell
JPWO2014155496A1 (en) * 2013-03-25 2017-02-16 株式会社日立製作所 Lithium ion battery and electrode for lithium ion battery
JP2016064966A (en) * 2013-11-29 2016-04-28 株式会社半導体エネルギー研究所 Lithium-manganese composite oxide and secondary battery
KR20160091914A (en) * 2013-11-29 2016-08-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Lithium-manganese composite oxide and secondary battery

Similar Documents

Publication Publication Date Title
JP3221352B2 (en) Method for producing spinel-type lithium manganese composite oxide
JP6241349B2 (en) Precursor of positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, and positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same
JPH10172571A (en) Lithium secondary battery and manufacture of its positive electrode active material
JP3611189B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2004265806A (en) Lithium metal composite oxide particle, manufacturing method thereof, electrode structure containing the composite oxide, manufacturing method of the electrode structure and lithium secondary battery having the electrode structure
JPS63187569A (en) Nonaqueous secondary battery
JP7047251B2 (en) Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery
JP7028073B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary batteries
KR102539249B1 (en) Manufacturing method of cathode active material for lithium ion battery
JP2001250552A (en) Positive electrode active substance for nonaqueous electrolyte secondary cell and nonaqueous electrolyte secondary cell
JP7271848B2 (en) Method for producing positive electrode active material for lithium ion secondary battery
JPWO2019194150A1 (en) Positive electrode active material for lithium ion secondary batteries and its manufacturing method
JP3244227B2 (en) Non-aqueous electrolyte secondary battery
JP7271945B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP6919250B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries, its precursor, and their manufacturing method
JP3640545B2 (en) Method for producing positive electrode active material lithium nickelate for non-aqueous secondary battery
JP2001257003A (en) Lithium secondary battery
JP3407594B2 (en) Method for producing lithium nickel composite oxide
JPH10172570A (en) Lithium secondary battery and its positive electrode active material
JPH10321228A (en) Positive electrode active material for lithium battery, its manufacture, and lithium battery using it
JP3793054B2 (en) Nonaqueous electrolyte secondary battery
JP3625630B2 (en) Method for producing cobalt oxide positive electrode material, and battery using cobalt oxide positive electrode material produced by the method
JP2000044206A (en) Production of oxide powder
JP2001068113A (en) Positive electrode active material for lithium battery, its manufacturing method, and lithium battery
JP4803867B2 (en) Method for producing lithium manganate for positive electrode of lithium battery