KR100364659B1 - CATHODE MATERIAL, Li(Mn1-δCoδ)2O4 FOR LITHIUM-ION SECONDARY BATTERY AND METHOD FOR PREPARING THE SAME - Google Patents
CATHODE MATERIAL, Li(Mn1-δCoδ)2O4 FOR LITHIUM-ION SECONDARY BATTERY AND METHOD FOR PREPARING THE SAME Download PDFInfo
- Publication number
- KR100364659B1 KR100364659B1 KR1020000049798A KR20000049798A KR100364659B1 KR 100364659 B1 KR100364659 B1 KR 100364659B1 KR 1020000049798 A KR1020000049798 A KR 1020000049798A KR 20000049798 A KR20000049798 A KR 20000049798A KR 100364659 B1 KR100364659 B1 KR 100364659B1
- Authority
- KR
- South Korea
- Prior art keywords
- lithium
- active material
- discharge
- charge
- secondary battery
- Prior art date
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
본 발명은 안정한 결정구조를 가지며, 고용량, 안정성, 저cost, 무공해 등을 만족시킬 수 있는 4V급 리튬이차전지용 양극활물질인 리튬망간산화물에서 망간대신에 소량의 코발트를 치환시킨 조성물을 고상반응법으로 간단하게 제조하는 방법에 관한 것으로서, 종래에 사용되는 리튬코발트산화물의 단점을 제거하고, 망간대신에 코발트를 소량 치환함으로써 순수한 리튬망간산화물의 낮은 방전용량과 싸이클 성능을 크게 향상시키는 기술이다.The present invention has a stable crystal structure, and a composition in which a small amount of cobalt is substituted for manganese oxide instead of manganese in lithium manganese oxide, which is a positive electrode active material for 4V lithium secondary batteries, which can satisfy high capacity, stability, low cost, and pollution-free. The present invention relates to a simple manufacturing method, which eliminates the disadvantages of lithium cobalt oxide used in the related art and greatly improves the low discharge capacity and cycle performance of pure lithium manganese oxide by substituting a small amount of cobalt instead of manganese.
Description
본 발명은 리튬이차전지의 핵심소재인 양극(cathode)활물질 조성 및 그 제조방법에 관한 기술로서, 리튬이차전지용 양극활물질인 AB2O4(A, B=금속) 스피넬 (spinel) 구조의 리튬망간산화물(LiMn2O4)에서 망간대신에 소량의 코발트를 치환시킨 조성물을 고상반응법으로 간단하게 제조하는 방법에 관한 것이다.The present invention relates to the composition of a cathode active material, which is a core material of a lithium secondary battery, and a manufacturing method thereof, and a lithium manganese having an AB 2 O 4 (A, B = metal) spinel structure, which is a cathode active material for a lithium secondary battery. The present invention relates to a method of simply preparing a composition in which a small amount of cobalt is substituted for manganese in an oxide (LiMn 2 O 4 ) by a solid phase reaction method.
LiMn2O4는 리튬이차전지의 양극재료로 상용화되어 있는 LiCoO2를 대체할 물질로 LiNiO2와 함께 많은 연구가 이루어지고 있는 물질이다. LiCoO2와 LiNiO2는 과충전시 산소의 발생으로 폭발 위험성을 가지고 있으며 전지에 vent cap의 설치가 필요하지만, LiMn2O4는 과충전시 산소의 발생이 없고 Co에 비하여 상대적으로 풍부한 원소인 Mn의 가격이 저렴하다는 장점이 있다. 그러나, LiMn2O4는 이론 충전용량이 148 mAh/g으로 LiCoO2(274 mAh/g)에 비해 낮고 충방전 싸이클이 반복됨에 따라 방전용량이 급격히 감소하는 단점을 가지고 있다. W. Liu 등(J. Electrchem. Soc., Vol. 143, No. 11, pp. 3590-3596, 1996)에 의하면, 이러한 싸이클 성능이 좋지 않은 이유는 충방전이 계속됨에 따라 양극에서 리튬이온의 삽입으로 인하여 Li2Mn2O4가 형성되어 정방정(tetragonal)으로 상전이가 일어나기 때문인 것으로 알려져 있다. 리튬삽입으로 인하여 Mn이온의 평균 원자가가 3.5 이하로 떨어지고, 강한 Jahn-Teller 변형(G. Pistoia 등, Solid State Ionics, Vol. 78, pp. 115-122, 1995)이 작용하여 결정구조가 입방정(cubic)에서 정방정으로 변형되어 그 결과 더 이상의 탈·삽입이 어려워진다. 즉, 3가 Mn이온(스피넬에서)의 배열(t32g·e1g, high spin)이 팔면체의 강한 신장으로 c/a 비율이 단위세포당 16% 증가하고 그 증가로 인해 충방전이 반복되는 동안 양극의 구조적 평형을 유지할 수 없다. 또한 리튬 이탈시 원자가가 다시 3.5로 돌아오면서 일어나는 Mn3+(3d4)의 원자가 구조에 있어서 방전의 어려움으로 인하여 충방전 용량의 급격한 감소를 가져오는 것으로 알려졌다.LiMn 2 O 4 is a material to replace LiCoO 2 , which is commercialized as a cathode material of a lithium secondary battery, and a lot of research has been conducted with LiNiO 2 . LiCoO 2 and LiNiO 2 have a risk of explosion due to the generation of oxygen during overcharging and need to install vent cap in the battery, but LiMn 2 O 4 has no oxygen generation during overcharging and the price of Mn, which is a relatively rich element compared to Co This has the advantage of being cheap. However, LiMn 2 O 4 has a theoretical charge capacity of 148 mAh / g, which is lower than LiCoO 2 (274 mAh / g), and has a disadvantage in that the discharge capacity decreases rapidly as the charge and discharge cycles are repeated. According to W. Liu et al. (J. Electrchem. Soc., Vol. 143, No. 11, pp. 3590-3596, 1996), the reason why this cycle performance is poor is that lithium ion at the positive electrode as the charge and discharge continues. Li 2 Mn 2 O 4 is formed due to the insertion, it is known that the phase transition to tetragonal. Due to lithium insertion, the average valence of Mn ions falls below 3.5, and strong Jahn-Teller strains (G. Pistoia et al., Solid State Ionics, Vol. 78, pp. 115-122, 1995) act to crystallize the crystal structure. cubic) is transformed into tetragonal, and as a result, further removal and insertion becomes difficult. In other words, the array of trivalent Mn ions (in spinel) (t 3 2g · e 1 g, high spin) is a strong elongation of the octahedron, which increases the c / a ratio by 16% per unit cell and causes the charge and discharge to repeat While maintaining the structural equilibrium of the anode. In addition, in the valence structure of Mn 3+ (3d 4 ) which occurs when the valence returns to 3.5 when lithium is released, it is known that the charge and discharge capacity is drastically reduced due to the difficulty of discharge.
이 문제점을 개선하기 위해서는, Mn의 일부를 다른 원소로 치환하여 Jahn-Teller효과에 의한 결정구조 전이를 억제하거나, 소량의 Mn을 Li으로 치환(Li1+δMn2-δO4)하거나 양이온 결함 스피넬(Li1-δMn2-2δO4)을 형성하여 Mn 이온의 평균 원자가를 3.5이상으로 유지하는 방법이 있다.In order to improve this problem, a part of Mn is substituted with another element to suppress the crystal structure transition caused by the Jahn-Teller effect, a small amount of Mn is substituted with Li (Li 1 + δ Mn 2-δ O 4 ), or a cation There is a method of forming a defective spinel (Li 1-δ Mn 2-2δ O 4 ) to maintain an average valence of Mn ions of 3.5 or more.
본 발명은 많은 장점이 있지만 싸이클 성능이 좋지 않은 단점을 지닌 LiMn2O4의 문제점을 해결하기 위하여, Jahn-Teller 변형을 억제하여 상전이를 방지하며 Mn이온의 평균원자가를 3.5이상으로 유지시키고, 충방전 용량을 증가시키기 위해 Mn 대신에 소량의 Co를 치환시킨 새로운 조성물을, 가장 전형적인 제조공정으로서 간단하고 편리한 방법인 고상반응법으로 제조하는 방법을 제공하는데 주 목적이 있다.In order to solve the problem of LiMn 2 O 4 , which has many advantages but disadvantages of poor cycle performance, the Jahn-Teller strain is inhibited to prevent phase transition and the average valence of Mn ions is maintained at 3.5 or higher. It is a main object to provide a method for producing a new composition in which a small amount of Co is substituted for Mn in order to increase the discharge capacity by a solid phase reaction method, which is a simple and convenient method as the most typical manufacturing process.
도 1은 본 발명의 실시예에 따라 고상반응법으로 제조한 양극활물질의 제조공정도이다.1 is a manufacturing process chart of the positive electrode active material prepared by the solid-phase reaction method according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따라 제조한 양극활물질 분말의 X선회절도이다.2 is an X-ray diffraction diagram of the positive electrode active material powder prepared according to the embodiment of the present invention.
도 3은 본 발명의 실시예에 따라 제조한 양극활물질과 순수한 리튬망간산화물에 대한 충방전 전·후의 미세구조를 비교한 주사전자현미경사진[a. 충방전 실험전 LiMn2O4, b. 7회충방전 실험후 LiMn2O4, c. 충방전 실험전 Li(Mn0.9Co0.1)2O4, b. 7회 충방전 실험후 Li(Mn0.9Co0.1)2O4]이다.Figure 3 is a scanning electron micrograph comparing the microstructure before and after the charge and discharge for the positive electrode active material and pure lithium manganese oxide prepared according to an embodiment of the present invention [a. Before charging and discharging experiment LiMn 2 O 4 , b. After 7 charge and discharge experiments, LiMn 2 O 4 , c. Before charging / discharging experiments Li (Mn 0.9 Co 0.1 ) 2 O 4 , b. After 7 charge / discharge experiments, Li (Mn 0.9 Co 0.1 ) 2 O 4 ].
도 4는 본 발명의 실시예에 따라 제조한 양극활물질 Li(Mn0.9Co0.1)2O4에 대하여 충방전 실험을 하여 용량에 따른 전압의 변화를 비교한 그래프이다.Figure 4 is a graph comparing the change in voltage according to the charge and discharge experiments for the positive electrode active material Li (Mn 0.9 Co 0.1 ) 2 O 4 prepared according to an embodiment of the present invention.
도 5는 본 발명의 실시예에 따라 제조한 양극활물질과 순수한 리튬망간산화물에 대하여 20회 충방전 실험을 하여 싸이클수에 따른 방전용량의 변화를 나타낸 그래프이다.5 is a graph showing a change in discharge capacity according to the number of cycles by performing 20 charge and discharge experiments on the cathode active material and pure lithium manganese oxide prepared according to the embodiment of the present invention.
본 발명의 특징은 리튬이차전지 양극활물질 Li(Mn1-δCoδ)2O4를 고상반응법으로 제조하는 것인데, 일반적으로 고상합성법은 수열합성법, Pechini 프로세스, 침전법, 증발법 등의 습식제조방법에 비하여 합성된 분말의 입자 크기가 크며, 따라서 분말을 이용해 도포한 양극의 밀도 또한 작아 충방전 용량이 낮은 것으로 알려졌다. 그러나 합성 및 제조공정이 용이하여 그 비용 및 제조시간의 절약이 크기 때문에 산업 응용에 있어서의 경제성 및 경쟁력이 우월한 이점을 갖고 있다. 본 발명에서는 Co의 치환량과 제반 제조공정을 최적조건으로 하여 고상반응법으로도 우수한 성능을 지닌 리튬이차전지용 양극활물질의 제조방법을 제공한다.A feature of the present invention is to prepare a lithium secondary battery cathode active material Li (Mn 1-δ Co δ ) 2 O 4 by a solid phase reaction method. In general, the solid phase synthesis method is a hydrothermal synthesis method, a Pechini process, a precipitation method, a wet method such as an evaporation method, and the like. Compared with the production method, the synthesized powder has a larger particle size, and thus, the density of the anode coated with the powder is also small, and thus the charge and discharge capacity is low. However, since the synthesis and manufacturing process is easy, and the cost and manufacturing time are largely saved, it is advantageous in terms of economics and competitiveness in industrial applications. The present invention provides a method for producing a cathode active material for a lithium secondary battery having excellent performance even in a solid phase reaction method using the substitution amount of Co and all manufacturing processes as optimum conditions.
이하 다음과 같이 본 발명의 실시예에서 첨부된 도면과 함께 상세히 설명한다.Hereinafter, with reference to the accompanying drawings in the embodiment of the present invention will be described in detail.
(실시예)(Example)
(가) 양극활물질의 제조(A) Preparation of positive electrode active material
리튬이차전지용 양극활물질 Li(Mn1-δCoδ)2O4의 출발원료로 고순도 시약인 Li2CO3, MnO2, CoO를 사용한다. 이때 δ가 각각 0, 0.05, 0.1, 0.2가 되도록 화학양론 조성비에 따라 칭량한다. 그리고 혼합과 분쇄공정으로 알루미나 볼을 사용하여 24시간 동안 볼밀링한 다음 건조시킨 후, 펠렛형태로 가압성형하여 780℃에서 48시간 동안 공기분위기 중에서 하소(calcination)한 다음 미분쇄하여 양극활물질을 제조한다. 제반 제조공정은 도 1에 나타내었다. 합성된 분말에 대하여 X-선회절분석기로 분석한 상분석 결과를 도 2에 나타내었다. δ=0일 때, 즉 순수한 LiMn2O4의 경우, (111), (311), (222), (400), (511), (440)과 (511)면의 회절피크가 각각 나타났으며, 공간군(space group)이 Fd3m(입방정, no. 227)으로 스피넬 구조를 갖는 것으로 나타났다.As a starting material for the cathode active material Li (Mn 1-δ Co δ ) 2 O 4 for a lithium secondary battery, high purity reagents Li 2 CO 3 , MnO 2 , and CoO are used. At this time, δ is measured according to the stoichiometric composition ratio such that 0, 0.05, 0.1, and 0.2, respectively. In the mixing and grinding process, the ball mill was used for 24 hours using alumina balls, followed by drying. Then, the resultant was press-molded into pellets, calcined in an air atmosphere at 780 ° C. for 48 hours, and then pulverized to prepare a cathode active material. do. The general manufacturing process is shown in FIG. Fig. 2 shows the results of phase analysis analyzed by the X-ray diffractometer for the synthesized powder. At δ = 0, i.e. for pure LiMn 2 O 4 , diffraction peaks of (111), (311), (222), (400), (511), (440) and (511) planes were observed, respectively. The space group was found to have a spinel structure with Fd3m (cubic, no. 227).
Co로 치환한 샘플은 δ=0.05, 0.1, 0.2의 재료에서 모두 순수한 LiMn2O4와 같은 패턴으로 그 피크가 일치하고 있어서 위 조성비 내에서는 모두 완전히 치환된 고용체를 형성하였음을 알 수 있다.The samples substituted with Co all have the same pattern of pure LiMn 2 O 4 in the materials of δ = 0.05, 0.1, and 0.2, and the peaks coincide with each other to form a completely substituted solid solution in the above composition ratio.
(나) 반쪽전지의 제조(B) Manufacture of half cell
충방전용 양극의 제조를 위하여 93 중량%의 Li(Mn1-δMδ)2O4과 5 중량%의 카본(acetylenized carbon black)의 혼합 분말을 2 중량% PVDF(polyvilylidene fluoride)가 용해된 NMP(n-methyl-pyrrolidinone)용액에 분산시켜 슬러리로 만든 후, 1.5cm2의 ex-met(SUS 316, 325 mesh)에 도포하여 진공내의 120℃에서 1시간 동안 건조시켜 전극을 제조한다. 충방전 실험은 Li 금속을 음극과 기준전극 (reference electrode)으로 하는 반쪽 전지를 구성하여 2시간 step으로 측정한다. 이 때, 음극과 기준전극 사이의 간격은 1.5 cm, 양극과 기준전극 사이의 간격은 1.0 cm로 한다.NMP containing 2% by weight of polyvilylidene fluoride (PVDF) in a mixed powder of 93% by weight of Li (Mn 1-δ M δ ) 2 O 4 and 5% by weight of acetylenized carbon black for the production of a charge / discharge positive electrode After dispersing in a (n-methyl-pyrrolidinone) solution to make a slurry, it is applied to ex-met (SUS 316, 325 mesh) of 1.5cm 2 and dried for 1 hour at 120 ℃ in vacuum to prepare an electrode. In the charge / discharge experiment, a half cell including Li metal as a negative electrode and a reference electrode was measured in a 2 hour step. In this case, the distance between the cathode and the reference electrode is 1.5 cm, and the distance between the anode and the reference electrode is 1.0 cm.
(다) 충방전 실험 전·후의 양극활물질 표면 사진(C) Photograph of the surface of the positive electrode active material before and after the charge and discharge test
도 3에 LiMn2O4와 Li(Mn0.9Co0.1)2O4의 충방전 실험전과 7회 충방전후의 각 양극시편 표면의 주사전자현미경(SEM)사진이다. 사진에서 보는 바와 같이 최초 제작한 시편, 도 3a와 c에서는 둘 다 결정화된 분말 입자들을 볼 수 있다. 그러나 충전 실험으로 인한 리튬 이탈로 인하여 약한 결정성을 가진 Li 이온이 양극의 결정으로부터 완전히 이탈해 나가지 못하고 그 표면에 금속 층을 생성하기 시작하는 것을 확인하였으며, 방전시에는 리튬의 삽입이 일어나면서 표면 층에 쌓였던 Li 금속층과 만나 다시 석출되는 현상이 나타나고 있다. 즉, 음극으로부터 이탈해 나온 리튬이온이 양극에 삽입되면서 그 중의 일부가 표면 층에 형성된 Li 수지상(dendrite) 층에 걸려 재 석출됨에 따라 각각 양극 표면의 Li층이 더욱 두꺼워진 것을 볼 수 있는데, 이러한 Li층은 양극과 음극내로의 Li이온의 확산을 방해하며 양극의 표면만으로의 왕복을 되풀이하면서 더 이상의 충방전에 제대로 기여하지 못하는 소위 dead metal로 되어간다고 사료된다(M. Water 등, J. Electrochem. Soc., Vol. 145, No. 2, pp. 428-435, 1998). 7회 충방전 실험 후의 시편 사진인 도 3b와 d를 보면, 그 결정표면을 찾아보기 힘들 정도로 금속 Li층이 덥고 있는 것을 볼 수 있다. 순수한 LiMn2O4표면의 Li층이 Li(Mn0.9Co0.1)2O4표면의 Li층 보다 훨씬 더 많이 쌓여 있음을 볼 수 있는데, 이것은 Li의 탈삽입이 순수한 LiMn2O4에서 보다 Li(Mn0.9Co0.1)2O4에서 더 원활하기 때문으로 보여진다. 이 현상은 처음에 예상했던 바와 같이 리튬의 삽입에 의하여 Mn이온의 평균 원자가가 3.5 이하로 떨어지고, 강한 Jahn-Teller 변형이 작용하여 결정구조가 입방정에서 정방정으로 변형되어 더 이상의 탈삽입이 어려워지며, 또한 리튬 이탈시 원자가가 다시 3.5로 돌아오는데 대한 Mn3+(3d4) 원자가 구조로 인한 방전의 어려움으로 효과적인 Li 이탈이 방해되었기 때문인 것으로 생각된다. 그리고, 이러한 Li 수지상 층의 형성은 특히 음극에서 용량 및 싸이클성능을 감소시키는 결정적 원인이 되지만 양극에서 또한 그 영향이 적지 않음을 예측할 수 있다.3 is a scanning electron microscope (SEM) photograph of the surface of each positive electrode specimen before and after 7 charge / discharge tests of LiMn 2 O 4 and Li (Mn 0.9 Co 0.1 ) 2 O 4 . As shown in the photograph, in the first specimen, the crystallized powder particles can be seen in FIGS. 3a and c. However, it was confirmed that Li ions with weak crystallinity did not completely escape from the crystals of the anode due to lithium dissociation due to the charging experiments, and began to form metal layers on the surface thereof. Reaction with the Li metal layer accumulated in the layer is occurring. That is, as the lithium ions released from the cathode are inserted into the anode, some of them are caught in the Li dendrite layer formed on the surface layer and reprecipitated, thereby increasing the thickness of the Li layer on the anode surface. It is believed that the Li layer becomes a so-called dead metal that prevents the diffusion of Li ions into the anode and cathode and does not contribute to further charging and discharging while repeating reciprocation only on the surface of the anode (M. Water et al., J. Electrochem). Soc., Vol. 145, No. 2, pp. 428-435, 1998). 3b and d, which are photographs of the specimens after seven charge and discharge experiments, show that the metal Li layer is hot enough to be difficult to find the crystal surface. Can be seen that the Li layer of pure LiMn 2 O 4 surface Li (Mn 0.9 Co 0.1) 2 O 4 stacked much more than Li layer on the surface, this Li than that in pure LiMn 2 O 4 de-insertion of Li ( Mn 0.9 Co 0.1 ) 2 O 4 It seems to be because it is smoother. As expected, this phenomenon is due to the insertion of lithium, the average valence of Mn ions falls below 3.5, and the strong Jahn-Teller strain acts to transform the crystal structure from cubic to tetragonal, making it more difficult to remove. In addition, it is thought that the effective Li elimination was prevented by the difficulty of discharge due to the Mn 3+ (3d 4 ) valence structure when the valence returns to 3.5 upon lithium elimination. And, it can be predicted that the formation of such a Li dendritic layer is a decisive cause of reducing the capacity and cycle performance, especially at the cathode, but also the effect is not small at the anode.
(라) 충방전 특성(D) Charging and discharging characteristics
Li(Mn1-δCoδ)2O4조성물에서 충방전 용량은 δ=0.1에서 가장 높았다. cut-off 전압을 3.5 V에서 4.5 V로 하였을 때 Li(Mn0.9Co0.1)2O4의 충방전 특성을 도 4에 나타내었는데, 초기 충방전용량은 각각 118.76 mAh/g과 112.69 mAh/g으로 이론 용량의 80%와 76% 정도를 보였다. 또한 충전시 전위 평탄영역(potential plateau)은 4.05 V 에서 4.20 V 사이에서 나타났으며, 방전시에는 4.05 V에서 3.85 V사이에서 나타났다. 충전과 방전시 전위평탄영역인 4.05 V는 일반적인 리튬망간전지의 평탄영역과 일치하며 충전과 방전시 평탄전위 사이가 거의 대칭적이며 안정한 것임을 알 수 있다.In Li (Mn 1-δ Co δ ) 2 O 4 compositions, the charge and discharge capacity was highest at δ = 0.1. Charging and discharging characteristics of Li (Mn 0.9 Co 0.1 ) 2 O 4 at cut-off voltage of 3.5 V to 4.5 V are shown in FIG. 4, and initial charge and discharge capacities were 118.76 mAh / g and 112.69 mAh / g, respectively. 80% and 76% of theoretical capacity were shown. In addition, the potential plateau during charging was found to be between 4.05 V and 4.20 V, and during discharge, between 4.05 V and 3.85 V. The potential flatness area of 4.05 V during charging and discharging coincides with the flat area of a typical lithium manganese battery, and the flat potential between charging and discharging is almost symmetrical and stable.
도 5에는 cut-off 전압을 3.0 V에서 4.2 V로 하여 충방전 실험을 하였을 때 싸이클 수에 따른 방전용량의 변화를 나타내었다. 순수한 LiMn2O4의 불안정한 방전용량의 변화나 낮은 방전용량에 비하여 Li(Mn0.9Co0.1)2O4의 싸이클 성능이 월등히 높음을 알 수 있다. 순수한 LiMn2O4의 싸이클 성능이 좋지 않은 이유는 앞의 SEM 관찰에서 알 수 있듯이 순물질의 경우 충방전이 일어나는 동안 결정성의 무너짐으로 인한 변형의 영향과 양극표면에 두꺼운 Li층 형성 때문인 것으로 생각된다. 본 발명의 실시예에서와 같이 제조한, Mn의 일부를 Co로 치환한 양극활물질Li(Mn0.9Co0.1)2O4의 용량 및 싸이클 성능은 기존의 여러 가지 습식제조방법으로 제작한 LiMn2O4계 리튬이차전지용 양극재료의 용량 및 싸이클 성능보다 우수하거나 그에 상당한 것으로 생각된다(W. Liu 등, J. Electrchem. Soc., Vol. 143, No. 11, pp. 3590-3596, 1996, W. Yang 등, Solid State Ionics, Vol. 121, pp. 79-84, 1999).5 shows the change in discharge capacity according to the number of cycles when the charge-discharge experiment was conducted with the cut-off voltage from 3.0 V to 4.2 V. FIG. It can be seen that the cycle performance of Li (Mn 0.9 Co 0.1 ) 2 O 4 is much higher than that of unstable discharge capacity or low discharge capacity of pure LiMn 2 O 4 . The cycle performance of pure LiMn 2 O 4 is poor due to the effect of deformation due to the collapse of crystallinity during charging and discharging and the formation of thick Li layer on the anode surface. Prepared as shown in the embodiment of the present invention, a substituted anode a part of Mn by Co active material, Li (Mn 0.9 Co 0.1) 2 capacity and cycle performance of the O 4 is LiMn 2 O produced in a number of conventional types of wet production method It is thought to be superior to or equivalent to the capacity and cycle performance of the positive electrode material for a four -phase lithium secondary battery (W. Liu et al., J. Electrchem. Soc., Vol. 143, No. 11, pp. 3590-3596, 1996, W Yang et al., Solid State Ionics, Vol. 121, pp. 79-84, 1999).
현재 상용화되어 있는 리튬이차전지용 양극활물질인 LiCoO2대체재료인 리튬망간산화물계중에서 순수한 리튬망간산화물이나 Mn 일부를 Ni, Ti, Nb 등의 다른 원소로 치환한 조성물보다 Li(Mn1-δCoδ)2O4(0<δ<0.2) 조성물이 충방전 용량이나 싸이클 성능이 우수하다. 양극활물질 합성공정이 복잡한 습식제조방법보다 간단하고 용이한 본 발명에서 제시한 고상반응법으로도 충방전 특성이 우수한 양극활물질을 제조할 수 있다.Li (Mn 1-δ Co δ) in the lithium manganese oxide based LiCoO 2 alternative material, which is a commercially available cathode active material for lithium secondary batteries, is replaced with Li (Mn 1-δ Co δ) , in which a pure lithium manganese oxide or a part of Mn is substituted with other elements such as Ni, Ti, and Nb. ) 2 O 4 (0 <δ <0.2) The composition has excellent charge / discharge capacity and cycle performance. The cathode active material synthesis process is simpler and easier than the complicated wet manufacturing method, and thus the cathode active material having excellent charge and discharge characteristics can be produced by the solid phase reaction method proposed in the present invention.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000049798A KR100364659B1 (en) | 2000-08-25 | 2000-08-25 | CATHODE MATERIAL, Li(Mn1-δCoδ)2O4 FOR LITHIUM-ION SECONDARY BATTERY AND METHOD FOR PREPARING THE SAME |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000049798A KR100364659B1 (en) | 2000-08-25 | 2000-08-25 | CATHODE MATERIAL, Li(Mn1-δCoδ)2O4 FOR LITHIUM-ION SECONDARY BATTERY AND METHOD FOR PREPARING THE SAME |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20020016477A KR20020016477A (en) | 2002-03-04 |
KR100364659B1 true KR100364659B1 (en) | 2002-12-16 |
Family
ID=19685362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020000049798A KR100364659B1 (en) | 2000-08-25 | 2000-08-25 | CATHODE MATERIAL, Li(Mn1-δCoδ)2O4 FOR LITHIUM-ION SECONDARY BATTERY AND METHOD FOR PREPARING THE SAME |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100364659B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100564744B1 (en) | 2003-05-07 | 2006-03-27 | 한국전자통신연구원 | Li-Co-Mn oxides as cathode material for lithium batteries and synthesis of the same |
JP5479096B2 (en) | 2006-08-21 | 2014-04-23 | エルジー・ケム・リミテッド | Method for producing lithium metal phosphate |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10172571A (en) * | 1996-12-16 | 1998-06-26 | Aichi Steel Works Ltd | Lithium secondary battery and manufacture of its positive electrode active material |
KR19990048820A (en) * | 1997-12-11 | 1999-07-05 | 유현식 | LixMyMn-₂-yO₄ powder, a cathode active material for lithium secondary battery, and its manufacturing method |
JPH11213986A (en) * | 1998-01-30 | 1999-08-06 | Yuasa Corp | Nonaqueous electrolyte battery |
JPH11273679A (en) * | 1998-01-21 | 1999-10-08 | Mitsubishi Chemical Corp | Lithium secondary battery |
KR20000032033A (en) * | 1998-11-12 | 2000-06-05 | 김순택 | Active material for lithium secondary battery and fabrication method of the same |
-
2000
- 2000-08-25 KR KR1020000049798A patent/KR100364659B1/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10172571A (en) * | 1996-12-16 | 1998-06-26 | Aichi Steel Works Ltd | Lithium secondary battery and manufacture of its positive electrode active material |
KR19990048820A (en) * | 1997-12-11 | 1999-07-05 | 유현식 | LixMyMn-₂-yO₄ powder, a cathode active material for lithium secondary battery, and its manufacturing method |
JPH11273679A (en) * | 1998-01-21 | 1999-10-08 | Mitsubishi Chemical Corp | Lithium secondary battery |
JPH11213986A (en) * | 1998-01-30 | 1999-08-06 | Yuasa Corp | Nonaqueous electrolyte battery |
KR20000032033A (en) * | 1998-11-12 | 2000-06-05 | 김순택 | Active material for lithium secondary battery and fabrication method of the same |
Also Published As
Publication number | Publication date |
---|---|
KR20020016477A (en) | 2002-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20150249248A1 (en) | Li-Ni COMPOSITE OXIDE PARTICLES AND PROCESS FOR PRODUCING THE SAME, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY | |
CN110993903B (en) | Tantalum modified high-nickel cathode material and preparation method and application thereof | |
CN112262109A (en) | O3/P2 mixed phase sodium-containing doped layered oxide material | |
KR101409191B1 (en) | Manufacturing method of cathode active material for lithium secondary battery | |
US20150280211A1 (en) | Li-Ni COMPOSITE OXIDE PARTICLES AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY | |
US7829045B2 (en) | Method for producing lithium composite oxide for use as positive electrode active material for lithium secondary batteries | |
KR20160075404A (en) | Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same | |
US9269948B2 (en) | Positive electrode active material, process for producing same, and lithium secondary battery using same | |
CN113571679A (en) | Spinel oxide coated lithium-rich manganese-based positive electrode material | |
Wei et al. | High power LiMn2O4 hollow microsphere cathode materials for lithium ion batteries | |
KR101338371B1 (en) | Manufacturing method of lithium nickel cobalt aluminium composite oxide, lithium nickel cobalt aluminium composite oxide made by the same, lithium secondary battery comprising the same | |
CN117096331B (en) | Sodium ion battery positive electrode material and preparation method and application thereof | |
Song et al. | Variations in the electrochemical properties of metallic elements-substituted LiNiO 2 cathodes with preparation and cathode fabrication conditions | |
CN113764638A (en) | Cathode material, preparation method thereof, cathode comprising cathode material and lithium ion battery | |
CN111509219B (en) | Lithium manganate battery material and preparation method thereof | |
CN111634961A (en) | Positive electrode material for lithium ion battery and preparation method thereof | |
KR100364659B1 (en) | CATHODE MATERIAL, Li(Mn1-δCoδ)2O4 FOR LITHIUM-ION SECONDARY BATTERY AND METHOD FOR PREPARING THE SAME | |
CN115148970A (en) | Olivine NaMPO 4 High-nickel-coated ternary or lithium-rich manganese-based positive electrode material and preparation method thereof | |
KR101224618B1 (en) | Positive active material for rechargeable lithium battery, cathod for rechargeable lithium battery, rechargeable lithium battery and method for manufacturing thereof | |
JP4553095B2 (en) | Cobalt oxide particle powder and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery | |
CN113851623A (en) | High-nickel multi-element positive electrode material, preparation method thereof and lithium ion battery | |
KR101588358B1 (en) | Manufacturing method of lithium titanium composite oxide and lithium titanium composite oxide made by same | |
CN112242510A (en) | Preparation method and application of epitaxial growth layer and sulfur-sodium lattice modified lithium-rich manganese-based positive electrode material | |
CN107204432B (en) | Positive electrode active material, method for producing same, and lithium secondary battery comprising same | |
CA2298095C (en) | Lithium secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20111117 Year of fee payment: 10 |
|
LAPS | Lapse due to unpaid annual fee |