JPH10172569A - Lithium secondary battery and manufacture of its positive electrode active material - Google Patents

Lithium secondary battery and manufacture of its positive electrode active material

Info

Publication number
JPH10172569A
JPH10172569A JP8353617A JP35361796A JPH10172569A JP H10172569 A JPH10172569 A JP H10172569A JP 8353617 A JP8353617 A JP 8353617A JP 35361796 A JP35361796 A JP 35361796A JP H10172569 A JPH10172569 A JP H10172569A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
lithium
electrode active
primary particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8353617A
Other languages
Japanese (ja)
Inventor
Akihiko Murakami
彰彦 村上
Takashi Kajino
隆 梶野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP8353617A priority Critical patent/JPH10172569A/en
Publication of JPH10172569A publication Critical patent/JPH10172569A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a lithium secondary battery and its positive electrode active material, with which a high initial capacity per unit volume of positive electrode can be obtained along with an excellent cyclic characteristics. SOLUTION: A lithium secondary battery is composed of a negative electrode using an active material capable of occluding and emitting lithium ions, a positive electrode using active material consisting of lithium-manganese oxide having spinel structure, a separator interposed between the two electrodes, and an organic electrolytic solution. The lithium-manganese oxide consists of secondary particles having a mean particle size between 20 and 100μm produced through coaguration of primary particles having a mean particle size between 0.01 and 3.0μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は,リチウム二次電池,特に優れた
特性を示す正極活物質を用いたリチウム二次電池,及び
その正極活物質の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly to a lithium secondary battery using a positive electrode active material having excellent characteristics, and a method for producing the positive electrode active material.

【0002】[0002]

【従来技術】種々の二次電池のうち,特にリチウム二次
電池は,電圧が高いうえ,自己放電が少なく保存性に優
れている。そのため,多くの分野において有望な二次電
池として期待されている。従来のリチウム二次電池とし
ては,正極活物質にスピネル構造のLiMn2 4 等の
金属酸化物を用いたものがある。
2. Description of the Related Art Among various secondary batteries, lithium secondary batteries, in particular, have high voltage, low self-discharge, and excellent storage stability. Therefore, it is expected as a promising secondary battery in many fields. As a conventional lithium secondary battery, there is one using a metal oxide such as LiMn 2 O 4 having a spinel structure as a positive electrode active material.

【0003】[0003]

【解決しようとする課題】しかしながら,上記従来のリ
チウム二次電池においては,次の問題がある。即ち,二
次電池においては,初期の放電容量(初期容量)が高
く,かつ,充放電サイクルの繰り返しによる放電容量の
劣化(サイクル特性)が少ないものが求められている。
さらには,上記初期容量に関しては,電池の小型化の観
点から,正極の単位体積当たりの放電容量が大きいもの
が求められている。この点において,上記従来のリチウ
ム二次電池は,未だ,正極の単位体積当たりの高い初期
容量特性と,優れたサイクル特性の両方を兼ね備えてい
るとはいえない。
However, the above-mentioned conventional lithium secondary battery has the following problems. That is, a secondary battery is required to have a high initial discharge capacity (initial capacity) and a small deterioration in discharge capacity (cycle characteristics) due to repeated charge / discharge cycles.
Further, as for the initial capacity, a battery having a large discharge capacity per unit volume of the positive electrode is required from the viewpoint of miniaturization of the battery. In this respect, the conventional lithium secondary battery cannot be said to have both high initial capacity characteristics per unit volume of the positive electrode and excellent cycle characteristics.

【0004】この問題を解決すべく,例えば,特開平6
−325791号公報に示されているごとく,正極活物
質として,平均粒径が0.01〜5μmの一次粒子が凝
集してなる平均粒径0.1〜15μmの二次粒子からな
る活物質を用いた非水二次電池が提案されている。
In order to solve this problem, for example, Japanese Patent Application Laid-Open
As disclosed in Japanese Unexamined Patent Publication No. 3-25791, an active material composed of secondary particles having an average particle size of 0.1 to 15 μm formed by aggregating primary particles having an average particle size of 0.01 to 5 μm is used as a positive electrode active material. A non-aqueous secondary battery used has been proposed.

【0005】しかしながら,上記非水二次電池において
は,上記二次粒子からなる正極活物質により構成した正
極が,見掛け密度の低いものとなってしまう。そのた
め,正極の単位体積あたりのLiイオンの吸蔵・放出の
絶対量が少なくなり,正極体積を大きくしない限りは高
い初期容量を確保することが困難である。
However, in the non-aqueous secondary battery, the positive electrode composed of the positive electrode active material including the secondary particles has a low apparent density. Therefore, the absolute amount of insertion and extraction of Li ions per unit volume of the positive electrode decreases, and it is difficult to secure a high initial capacity unless the volume of the positive electrode is increased.

【0006】本発明は,かかる従来の問題に鑑みてなさ
れたもので,正極体積当たりの初期容量が高く,かつ,
サイクル特性に優れた,リチウム二次電池及びその正極
活物質の製造方法を提供しようとするものである。
The present invention has been made in view of such conventional problems, and has a high initial capacity per positive electrode volume, and
An object of the present invention is to provide a method for producing a lithium secondary battery and its positive electrode active material having excellent cycle characteristics.

【0007】[0007]

【課題の解決手段】請求項1の発明は,リチウムイオン
を吸蔵・放出可能な負極活物質を用いた負極と,スピネ
ル構造を有するリチウムマンガン酸化物よりなる正極活
物質を用いた正極と,両者間に介設されるセパレータ
と,有機電解液とを有するリチウム二次電池において,
上記リチウムマンガン酸化物は,平均粒径が0.01〜
3.0μmの一次粒子が凝集してなる平均粒径20〜1
00μmの二次粒子からなることを特徴とするリチウム
二次電池にある。
The invention of claim 1 comprises a negative electrode using a negative electrode active material capable of inserting and extracting lithium ions and a positive electrode using a positive electrode active material comprising lithium manganese oxide having a spinel structure. In a lithium secondary battery having a separator interposed and an organic electrolyte,
The lithium manganese oxide has an average particle size of 0.01 to
Average particle diameter of 20 to 1 in which primary particles of 3.0 μm are aggregated.
A lithium secondary battery comprising secondary particles of 00 μm.

【0008】本発明において最も注目すべきことは,上
記正極活物質として,スピネル構造のリチウムマンガン
酸化物を用い,かつ,該リチウムマンガン酸化物はその
平均粒径が0.01〜3.0μmの一次粒子が凝集して
なる平均粒径20〜100μmの二次粒子からなること
である。
The most remarkable point in the present invention is that a lithium manganese oxide having a spinel structure is used as the positive electrode active material, and the lithium manganese oxide has an average particle size of 0.01 to 3.0 μm. It consists of secondary particles having an average particle diameter of 20 to 100 μm formed by agglomeration of primary particles.

【0009】上記一次粒子の平均粒径が0.01μm未
満の場合には,一次粒子の見掛け密度(嵩密度)が低く
なり,凝集させて正極を構成する際,十分な見掛け密度
の正極が得られないという問題があり,一方,3.0μ
mを超える場合には,これを2次粒子に凝集させた場合
の比表面積の増加効果が少なくなるという問題がある。
When the average particle size of the primary particles is less than 0.01 μm, the apparent density (bulk density) of the primary particles becomes low, and a positive electrode having a sufficient apparent density is obtained when forming a positive electrode by agglomeration. On the other hand, 3.0 μm
If it exceeds m, there is a problem that the effect of increasing the specific surface area when the particles are aggregated into secondary particles is reduced.

【0010】また,上記二次粒子の平均粒径が20μm
未満の場合には,二次粒子を集めて正極を構成する際の
見掛け密度が低くなるという問題があり,一方,100
μmを超える場合には,電極の厚みよりも大きな粒子に
なるおそれがあるという問題がある。
The average particle size of the secondary particles is 20 μm.
If it is less than 50%, there is a problem that the apparent density at the time of forming the positive electrode by collecting the secondary particles is low.
If the thickness exceeds μm, there is a problem that particles may become larger than the thickness of the electrode.

【0011】次に,上記二次粒子よりなる正極活物質を
用いて正極を作製するに当たっては,上記二次粒子の他
に,例えばアセチレンブラック等の導電材と,例えばP
TFE等の結着材とを用いる。また,上記負極として
は,リチウムイオンを吸蔵・放出可能な負極活物質を用
いて作製する。負極活物質としては,例えばLi,Li
合金,炭素体等を用いる。
Next, in producing a positive electrode using the positive electrode active material composed of the secondary particles, a conductive material such as acetylene black and the like
A binder such as TFE is used. The negative electrode is formed using a negative electrode active material capable of inserting and extracting lithium ions. As the negative electrode active material, for example, Li, Li
Use alloys, carbon bodies, etc.

【0012】また,両極間に介設されるセパレータとし
ては,例えば,ポリプロピレンの多孔質フィルムやガラ
スフィルタ等が用いられる。そして,上記セパレータに
含浸させる有機電解液としては,有機溶媒に適量の電解
質を溶解したものがある。上記有機溶媒としてはエチレ
ンカーボネート,ジエチルカーボネート,プロビレンカ
ーボネート,ブチレンカーボネート,テトラヒドロフラ
ン,2−メチルテトラヒドロフラン,ジメトキシエタ
ン,ジオキソラン及びγ−ブチロラクトンから選ばれた
1種又は2種以上の溶媒が好適である。また,上記電解
質としては,LiPF6 ,LiClO4 ,LiBF4
LiAsF6 等がある。このうち,特に,EC+DEC
/1M LiPF6 ,またはPC+DMC/1M Li
ClO4 の組み合わせが望ましい。
As a separator interposed between the two electrodes, for example, a porous film of polypropylene or a glass filter is used. As the organic electrolyte to be impregnated in the separator, there is a solution obtained by dissolving an appropriate amount of electrolyte in an organic solvent. As the above organic solvent, one or more solvents selected from ethylene carbonate, diethyl carbonate, propylene carbonate, butylene carbonate, tetrahydrofuran, 2-methyltetrahydrofuran, dimethoxyethane, dioxolan and γ-butyrolactone are preferred. As the electrolyte, LiPF 6 , LiClO 4 , LiBF 4 ,
LiAsF 6 and the like. Among them, especially EC + DEC
/ 1M LiPF 6 or PC + DMC / 1M Li
A combination of ClO 4 is preferred.

【0013】次に,本発明の作用につき説明する。本発
明のリチウム二次電池においては,正極を構成する正極
活物質として,上記の二次粒子よりなるリチウムマンガ
ン酸化物を用いている。即ち,上記活物質は,通常の単
一粒子ではなく,上記特定の粒径の一次粒子を上記特定
の粒径の二次粒子に凝集して構成されている。
Next, the operation of the present invention will be described. In the lithium secondary battery of the present invention, the lithium manganese oxide composed of the above secondary particles is used as a positive electrode active material constituting a positive electrode. That is, the active material is not formed of ordinary single particles, but is formed by aggregating primary particles of the specific particle size into secondary particles of the specific particle size.

【0014】そのため,上記二次粒子を集めて構成した
正極は,比表面積が大きくなり,Liイオンの吸蔵・放
出を容易にすることができる。それ故,充放電時におけ
る正極のダメージが少なくなり,サイクル特性を向上さ
せることができる。また,正極活物質が上記特性のサイ
ズの二次粒子よりなるため,見掛け密度を高くすること
ができ,同一体積内に多くの活物質を充填することがで
きるため,高い放電容量を得ることができる。それ故,
本発明のリチウム二次電池は,高い初期容量及び優れた
サイクル特性を発揮することができる。
Therefore, the positive electrode constituted by collecting the secondary particles has a large specific surface area, and can easily occlude and release Li ions. Therefore, damage to the positive electrode during charging and discharging is reduced, and cycle characteristics can be improved. Also, since the positive electrode active material is composed of secondary particles having the above-mentioned size, the apparent density can be increased, and a large amount of the active material can be filled in the same volume, so that a high discharge capacity can be obtained. it can. Therefore,
The lithium secondary battery of the present invention can exhibit high initial capacity and excellent cycle characteristics.

【0015】次に,請求項2の発明のように,,上記正
極活物質の嵩密度は,1.5〜3.5g/cm3 である
ことが好ましい。ここで,嵩密度とは,いわゆる見掛け
密度であり,正極活物質の質量をその見掛け上の体積で
単純に割ったものである。したがって,上記体積は,正
極活物質の集合体において残存する空隙等を含んだもの
である。そして,上記嵩密度が1.5g/cm3 未満の
場合には電池を構成する際,十分な容量が得られないと
いう問題があり,一方,3.5g/cm3 を超える場合
には電解液が浸透する空隙が十分に得られないという問
題がある。
Next, as in the second aspect of the present invention, it is preferable that the bulk density of the positive electrode active material is 1.5 to 3.5 g / cm 3 . Here, the bulk density is a so-called apparent density, which is obtained by simply dividing the mass of the positive electrode active material by its apparent volume. Therefore, the above-mentioned volume includes voids and the like remaining in the aggregate of the positive electrode active materials. When the bulk density is less than 1.5 g / cm 3 , there is a problem that a sufficient capacity cannot be obtained when constituting a battery. On the other hand, when the bulk density exceeds 3.5 g / cm 3 , However, there is a problem in that a space through which the water penetrates cannot be sufficiently obtained.

【0016】次に,上記優れた特性のリチウム二次電池
用の正極活物質を製造する方法としては,以下の発明が
ある。即ち,請求項3の発明のように,スピネル構造を
有するリチウムマンガン酸化物よりなると共に,一次粒
子が凝集した二次粒子から構成されるリチウム二次電池
用の正極活物質を製造する方法であって,上記リチウム
マンガン酸化物の原料を溶媒に溶解した原料溶液を液滴
状に噴霧し,次いで,該液滴を加熱処理して,該液滴中
の原料を反応させると共に該液滴中の上記溶媒を蒸発さ
せて一次粒子を作製し,次いで,該一次粒子と上記原料
溶液とを混合して熱処理を施すことにより上記一次粒子
が凝集してなる二次粒子を作製することを特徴とするリ
チウム二次電池用の正極活物質の製造方法がある。
Next, there are the following inventions as methods for producing the positive electrode active material for a lithium secondary battery having the above excellent characteristics. That is, a method for producing a positive electrode active material for a lithium secondary battery comprising lithium manganese oxide having a spinel structure and secondary particles in which primary particles are aggregated as in the invention of claim 3. Then, a raw material solution obtained by dissolving the raw material of the lithium manganese oxide in a solvent is sprayed in the form of droplets, and then the droplets are subjected to a heat treatment so that the raw materials in the droplets are reacted and the droplets are reacted. Evaporating the solvent to produce primary particles, and then mixing the primary particles with the raw material solution and subjecting the mixture to heat treatment to produce secondary particles formed by agglomeration of the primary particles. There is a method for producing a positive electrode active material for a lithium secondary battery.

【0017】本製造方法において最も注目すべきこと
は,まず上記原料溶液の噴霧及び上記加熱処理により上
記一次粒子を合成し,次いで,該一次粒子を上記原料溶
液と混合して再び熱処理することにより,一次粒子の凝
集体である二次粒子を作製することである。
The most remarkable point in this production method is that the primary particles are first synthesized by spraying the above-mentioned raw material solution and the above-mentioned heat treatment, and then the primary particles are mixed with the above-mentioned raw material solution and heat-treated again. To produce secondary particles which are aggregates of primary particles.

【0018】上記リチウムマンガン酸化物の上記原料
は,リチウム化合物と,マンガン又はマンガン化合物と
よりなり,上記リチウム化合物はLiの酸化物,水酸化
物,炭酸塩,硝酸塩,酢酸塩又は蓚酸塩のうちの1種以
上であることが好ましい。これらのものは,比較的,溶
液中でイオン化しやすく均一性向上の点で優れている。
The raw material of the lithium manganese oxide comprises a lithium compound and manganese or a manganese compound. The lithium compound is selected from the group consisting of oxides, hydroxides, carbonates, nitrates, acetates and oxalates of Li. It is preferable that at least one of the following is used. These are relatively easy to ionize in a solution and are excellent in improving uniformity.

【0019】また,上記マンガン化合物はMnの酸化
物,水酸化物,炭酸塩,硝酸塩,酢酸塩又は蓚酸塩のう
ちの1種以上であることが好ましい。これらのものは,
上記の場合と同様に,比較的,溶液中でイオン化しやす
く均一性向上の点で優れている。また,上記溶媒は,
水,酸水溶液,アルカリ水溶液,有機溶媒のうちの1種
以上を用いることができる。
The manganese compound is preferably at least one of oxides, hydroxides, carbonates, nitrates, acetates and oxalates of Mn. These are
As in the above case, it is relatively easily ionized in the solution, and is excellent in improving the uniformity. The above solvent is
One or more of water, an aqueous acid solution, an aqueous alkali solution, and an organic solvent can be used.

【0020】また,上記一次粒子を合成するための加熱
処理とは,噴霧した液滴を加熱することにより熱分解し
て,該液滴中の原料成分を溶液反応させると共に,液滴
中の溶媒を蒸発させる操作をいう。これにより,反応に
より生じた粉末状の一次粒子と溶媒蒸気とが発生する。
この両者は,例えば,捕集器において分離され,一次粒
子を得ることができる。
The heat treatment for synthesizing the above-mentioned primary particles means that the sprayed droplets are thermally decomposed by heating to cause a solution reaction of the raw material components in the droplets and a solvent in the droplets. Refers to the operation of evaporating. As a result, powdery primary particles generated by the reaction and solvent vapor are generated.
The two can be separated, for example, in a collector to obtain primary particles.

【0021】また,上記加熱処理は,上記原料を液滴状
に噴霧する容器内において,次の種々の方法により加熱
することができる。即ち,上記一次粒子作製のための上
記加熱処理は,上記原料の噴霧容器の外部からの加熱,
上記噴霧容器への加熱したガスの注入による加熱,溶媒
の燃焼熱による加熱のうちいずれか1種以上を用いるこ
とができる。
In the heat treatment, the raw material can be heated in the following various methods in a container for spraying the raw material in the form of droplets. That is, the heat treatment for producing the primary particles is performed by heating the raw material from outside the spray container,
One or more of heating by injection of a heated gas into the spray container and heating by combustion heat of a solvent can be used.

【0022】上記噴霧容器の外部からの加熱の場合に
は,加熱温度の調整を容易に行うことができる。また,
上記容器への加熱ガスの注入の場合には加熱効率を向上
させることができる。また,溶媒の燃焼による加熱の場
合には,一次粒子を瞬時に合成することができ組成の均
一性が向上するという効果が得られる。
In the case of external heating of the spray container, the heating temperature can be easily adjusted. Also,
In the case of injecting the heating gas into the container, the heating efficiency can be improved. In addition, in the case of heating by burning the solvent, an effect is obtained that primary particles can be synthesized instantaneously, and the uniformity of the composition is improved.

【0023】また,上記原料溶液を液滴状に噴霧する方
法としては,原料溶液に超音波振動を付与する方法,圧
縮した溶液をノズルから噴霧する方法,二流体ノズルを
用いて溶液とガスを噴霧する方法などがある。
The method of spraying the raw material solution in the form of droplets includes a method of applying ultrasonic vibration to the raw material solution, a method of spraying a compressed solution from a nozzle, and a method of spraying a solution and gas using a two-fluid nozzle. There is a method of spraying.

【0024】次に,上記二次粒子を作製するための上記
熱処理は,上記一次粒子と原料溶液とを十分に混合し,
一次粒子間に原料溶液を介在させた状態で行う。即ち,
上記原料溶液の反応が隣り合う一次粒子の間隙において
行われるようにする。これにより,一次粒子間において
新たに反応して合成されたリチウムマンガン酸化物が,
複数の一次粒子を連結する。これにより,多数の一次粒
子が凝集した二次粒子が形成される。
Next, in the heat treatment for producing the secondary particles, the primary particles and the raw material solution are sufficiently mixed.
This is performed in a state where the raw material solution is interposed between the primary particles. That is,
The reaction of the raw material solution is performed in the gap between the adjacent primary particles. As a result, lithium manganese oxide newly synthesized by reacting between primary particles becomes
Connects multiple primary particles. Thereby, secondary particles in which many primary particles are aggregated are formed.

【0025】このように,本製造方法においては,上記
一次粒子を作製するに当たり,上記のごとき噴霧熱分解
法により行うため,組成が均一で,かつ粒径が比較的揃
った一次粒子を得ることができる。さらに,上記二次粒
子を作製するに当たっては,上記一次粒子と上記原料溶
液を混合した状態で熱処理する。そのため,一次粒子間
においてこれと同じ組成のリチウムマンガン酸化物がバ
インダーとして合成され,一次粒子が凝集される。それ
ゆえ,組成が均一な二次粒子を容易に得ることができ
る。
As described above, in the present production method, since the primary particles are produced by the spray pyrolysis method as described above, primary particles having a uniform composition and a relatively uniform particle size can be obtained. Can be. Further, in producing the secondary particles, heat treatment is performed in a state where the primary particles and the raw material solution are mixed. Therefore, between the primary particles, a lithium manganese oxide having the same composition is synthesized as a binder, and the primary particles are aggregated. Therefore, secondary particles having a uniform composition can be easily obtained.

【0026】また,得られた上記二次粒子は,上述した
ごとく,リチウム二次電池における正極活物質として優
れた効果を発揮する。
Further, as described above, the obtained secondary particles exhibit an excellent effect as a positive electrode active material in a lithium secondary battery.

【0027】[0027]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施形態例1 本発明の実施形態例にかかるリチウム二次電池及びその
正極活物質の製造方法につき説明する。本例において
は,表1に示すごとく,本発明の製造方法及び従来の製
造方法により種々の正極活物質を製造し,次いで,これ
らの正極活物質を用いたリチウム二次電池を作製して性
能をテストした。
Embodiment 1 A method for producing a lithium secondary battery and a cathode active material thereof according to an embodiment of the present invention will be described. In this example, as shown in Table 1, various positive electrode active materials were manufactured by the manufacturing method of the present invention and the conventional manufacturing method, and then, a lithium secondary battery using these positive electrode active materials was manufactured. Tested.

【0028】まず,本発明の製造方法により,3種類の
正極活物質(試料No.E1〜E3)を製造した。即
ち,上記リチウムマンガン酸化物の原料を溶媒に溶解し
た原料溶液を液滴状に噴霧し,次いで,該液滴を加熱処
理して,該液滴中の原料を反応させると共に該液滴中の
上記溶媒を蒸発させて一次粒子を作製した。
First, three types of positive electrode active materials (Sample Nos. E1 to E3) were manufactured by the manufacturing method of the present invention. That is, a raw material solution obtained by dissolving the raw material of the lithium manganese oxide in a solvent is sprayed in the form of droplets, and then the droplets are subjected to a heat treatment so that the raw materials in the droplets react and the droplets are reacted. The solvent was evaporated to produce primary particles.

【0029】次いで,該一次粒子と上記原料溶液とを混
合して熱処理を施すことにより上記一次粒子が凝集して
なる二次粒子を作製した。なお,二次粒子を構成するリ
チウムマンガン酸化物は,スピネル構造を有するもので
ある。以下,具体的に説明する。
Next, the primary particles and the raw material solution were mixed and subjected to a heat treatment to prepare secondary particles formed by agglomeration of the primary particles. Note that the lithium manganese oxide constituting the secondary particles has a spinel structure. Hereinafter, a specific description will be given.

【0030】まず,硝酸リチウムと硝酸マンガンとをL
i:Mnが1:2となるように混合した水溶液を作製
し,これを原料溶液とした。この場合の溶媒は水であ
る。次いで,特開平8−236112号公報に示された
方法と同様にして,原料溶液を,加熱炉内に液滴状に噴
霧し,加熱処理する。上記加熱炉としては,電気炉を用
いた。
First, lithium nitrate and manganese nitrate are
An aqueous solution mixed so that i: Mn was 1: 2 was prepared and used as a raw material solution. The solvent in this case is water. Next, the raw material solution is sprayed into a heating furnace in the form of droplets in a manner similar to the method disclosed in Japanese Patent Application Laid-Open No. 8-236112, and is heated. An electric furnace was used as the heating furnace.

【0031】また,原料溶液の液滴状の噴霧は,原料溶
液を超音波振動させながら電気炉内に吸引させることに
より行った。具体的には,電気炉に連結された溶液タン
ク内に原料溶液を入れ,超音波を1.63MHzの条件
で作動させると共に,減圧装置の操作により加熱炉内に
原料溶液を液滴状に吸引した。
The droplets of the raw material solution were sprayed into the electric furnace while ultrasonically vibrating the raw material solution. Specifically, the raw material solution is put into a solution tank connected to an electric furnace, ultrasonic waves are operated under the condition of 1.63 MHz, and the raw material solution is sucked into the heating furnace in the form of droplets by operating a decompression device. did.

【0032】このときの電気炉の温度は800℃とし
た。これにより,液滴は加熱炉内において急速に加熱さ
れ一次粒子が合成される。また,電気炉に接続され約8
0〜220℃に保持された補修器により,合成された一
次粒子を捕集した。得られた一次粒子の図面代用写真を
図1に示す。図1は,倍率1000倍のSEM写真であ
る。同図より知られるごとく,本例により得られた一次
粒子は,平均粒径が約2μmの粒子である。
At this time, the temperature of the electric furnace was 800 ° C. As a result, the droplets are rapidly heated in the heating furnace, and primary particles are synthesized. In addition, about 8
The synthesized primary particles were collected by a repairer maintained at 0 to 220 ° C. FIG. 1 shows a drawing substitute photograph of the obtained primary particles. FIG. 1 is an SEM photograph at a magnification of 1000 times. As can be seen from the figure, the primary particles obtained in this example are particles having an average particle size of about 2 μm.

【0033】次に,得られた一次粒子と上記原料溶液と
を混合する。このときの混合割合は3種類に変化させ
た。即ち,一次粒子と原料溶液とにそれぞれ含有されて
いるLi量を基準とし,その量が,一次粒子と原料溶液
とにおいて,10:1のものを試料No.E1,10:
2のものを試料No.E2,10:3のものを試料N
o.E3とした。
Next, the obtained primary particles and the raw material solution are mixed. The mixing ratio at this time was changed to three types. That is, based on the amount of Li contained in each of the primary particles and the raw material solution, a sample No. having the amount of 10: 1 between the primary particles and the raw material solution was used. E1, 10:
Sample No. 2 E2, 10: 3 sample N
o. It was set to E3.

【0034】一次粒子と原料溶液との混合物の熱処理
は,700℃に加熱した炉内に24時間保持することに
より行った。これにより,一次粒子が凝集した二次粒子
が得られた。例として,上記試料No.E1の二次粒子
の図面代用写真を図2に示す。図2は,倍率1000倍
のSEM写真である。同図より知られるごとく,本例の
二次粒子は,一次粒子が多数凝集して構成されている。
The heat treatment of the mixture of the primary particles and the raw material solution was performed by holding the mixture in a furnace heated to 700 ° C. for 24 hours. As a result, secondary particles in which the primary particles were aggregated were obtained. As an example, the above sample No. FIG. 2 is a drawing substitute photograph of the secondary particles of E1. FIG. 2 is an SEM photograph at a magnification of 1000 times. As is known from the figure, the secondary particles of this example are formed by aggregating a large number of primary particles.

【0035】また,表1に示すごとく,得られた二次粒
子の平均粒径は,試料No.E1は約30μm,試料N
o.E2は約50μm,試料No.E3は約70μmと
なった。これは,上記の一次粒子と原料溶液との混合割
合の差に起因していると考えられる。また,各二次粒子
の見掛け密度(嵩密度)は,表1に示すごとく,1.9
〜2.2g/cm3 となり,比較的高い値となった。ま
た,平均粒径が大きいほど見掛け密度も高いという傾向
が示された。
Further, as shown in Table 1, the average particle size of the obtained secondary particles was as follows: E1 is about 30 μm, sample N
o. E2 is about 50 μm, sample No. E3 was about 70 μm. This is thought to be due to the difference in the mixing ratio between the primary particles and the raw material solution. As shown in Table 1, the apparent density (bulk density) of each secondary particle was 1.9.
22.2 g / cm 3 , which was a relatively high value. In addition, the larger the average particle size, the higher the apparent density.

【0036】次に,比較のため,本発明の製造方法以外
の方法により種々の正極活物質を製造した。まず第1の
比較材は,上記製造方法により得られた一次粒子をその
まま活物質として用いたものである(試料No.C
4)。この場合の見掛け密度は,表1に示すごとく1.
3g/cm3 と小さい値を示した。
Next, for comparison, various cathode active materials were produced by a method other than the production method of the present invention. First, the first comparative material uses the primary particles obtained by the above manufacturing method as an active material as it is (Sample No. C).
4). The apparent density in this case is as shown in Table 1.
The value was as small as 3 g / cm 3 .

【0037】第2の比較材は,リチウムマンガン酸化物
の原料を固相状態で反応させる固相法により製造したも
のである。具体的には,二酸化マンガン粉末と炭酸リチ
ウムとを,これらに含有されるMn:Liが2:1にな
るように混合し,700℃に加熱した炉内に48時間保
持した。これにより,正極活物質としてのリチウムマン
ガン酸化物を得た。
The second comparative material was manufactured by a solid phase method in which a raw material of lithium manganese oxide was reacted in a solid state. Specifically, manganese dioxide powder and lithium carbonate were mixed so that Mn: Li contained in them was 2: 1 and kept in a furnace heated to 700 ° C. for 48 hours. Thus, a lithium manganese oxide as a positive electrode active material was obtained.

【0038】なお,この比較材としては,上記二酸化マ
ンガン粒子の平均粒径が40μmのものと10μmのも
のとを用いた。これにより,表1に示すごとく,得られ
たリチウムマンガン酸化物も40μmのもの(試料N
o.C5)と,10μmのもの(試料No.C6)とが
得られた。また,このときの見掛け密度は,上記40μ
mのものが2.1g/cm3 と比較的大きな値となり,
一方,上記10μmのものは1.6g/cm3 であっ
た。
As the comparative material, those having an average particle size of the manganese dioxide particles of 40 μm and 10 μm were used. Thus, as shown in Table 1, the obtained lithium manganese oxide was also 40 μm (sample N
o. C5) and 10 μm (sample No. C6) were obtained. The apparent density at this time is 40 μm above.
m is a relatively large value of 2.1 g / cm 3 ,
On the other hand, that of the above 10 μm was 1.6 g / cm 3 .

【0039】次に,上記6種類の正極活物質を用いて,
それぞれリチウム二次電池を作製した。正極は,上記各
正極活物質と,導電材としてのアセチレンブラックと,
結着剤としてのPTFEとを用いて作製した。
Next, using the above six kinds of positive electrode active materials,
Each produced a lithium secondary battery. The positive electrode is composed of the above positive electrode active materials, acetylene black as a conductive material,
It was produced using PTFE as a binder.

【0040】また,負極は,Li金属を負極活物質とし
て用いた。また,セパレータとしては,ガラスフィルタ
を用いた。そしてこれに含浸させる有機電解液として
は,EC(エチレンカーボネート)とDEC(ジエチル
カーボネート)を1:1の割合で混合した溶媒に電解質
として1MのLiPF6 を溶解したものを用いた。得ら
れた,6種類のリチウム二次電池は,説明の便宜上,そ
れぞれ,上記正極活物質の試料No.と同じ試料No.
とする。
For the negative electrode, Li metal was used as a negative electrode active material. A glass filter was used as a separator. As an organic electrolytic solution to be impregnated therein, a solution obtained by dissolving 1M LiPF 6 as an electrolyte in a solvent in which EC (ethylene carbonate) and DEC (diethyl carbonate) were mixed at a ratio of 1: 1 was used. The obtained six types of lithium secondary batteries are respectively the same as the positive electrode active material sample Nos. The same sample No.
And

【0041】次に,上記6種類のリチウム二次電池を用
いて,充放電テストを行った。充放電条件は,カット・
オフ電圧3.5〜4.5V,電流密度1.0〜4.0m
A/cm2 とした。テスト結果を,表1に示す。
Next, a charge / discharge test was performed using the above-mentioned six types of lithium secondary batteries. The charge and discharge conditions are cut and
OFF voltage 3.5 to 4.5 V, current density 1.0 to 4.0 m
A / cm 2 . Table 1 shows the test results.

【0042】表1より知られるごとく,初期放電容量に
ついては,試料No.C5を除き,すべて約130mA
h/gの高い値を示した。一方,充放電サイクルを繰り
返し,その100サイクル目における放電容量は,試料
No.E1〜E3及びC4については,いずれも110
mAh/gを超える高い放電容量を維持していた。しか
しながら,試料No.C5,C6については大幅に放電
容量が低下し,サイクル特性が悪い結果となった。
As can be seen from Table 1, the initial discharge capacity of the sample No. All about 130mA except C5
It showed a high value of h / g. On the other hand, the charge / discharge cycle was repeated. E1 to E3 and C4 are all 110
A high discharge capacity exceeding mAh / g was maintained. However, sample no. For C5 and C6, the discharge capacity was significantly reduced, and the cycle characteristics were poor.

【0043】上記の結果を,正極に用いた正極活物質の
単位体積当たりに換算して評価すると,表1に示すごと
く,試料No.C4は初期容量,100サイクル目の容
量が共に非常に低く,試料No.C6も100サイクル
目の容量が劣る結果となった。これは,試料No.C4
については正極活物質の見掛け密度が低いためであり,
試料No.C6については,本発明との製造方法の違い
によりサイクル劣化率が劣るためであると考えられる。
When the above results were converted and evaluated per unit volume of the positive electrode active material used for the positive electrode, as shown in Table 1, Sample No. C4 has a very low initial capacity and a very low capacity at the 100th cycle. C6 also had a poor capacity at the 100th cycle. This corresponds to sample no. C4
Is because the apparent density of the positive electrode active material is low.
Sample No. It is considered that the cycle deterioration rate of C6 is inferior due to the difference in the manufacturing method from the present invention.

【0044】また,試料No.C5は本発明品と正極活
物質の見掛け密度が同等であるが,活物質の単位重量当
たりの容量が若干低いため,本発明品に比べ若干劣る結
果となっている。このように,比較材の試料No.C4
〜C6は,いずれかの評価項目において欠点を示した
が,本発明品である試料No.E1〜E3は,初期放電
容量,サイクル特性,さらには正極に用いた正極活物質
の単位体積当たりの初期放電容量,100サイクル目の
放電容量のいずれにおいても優れた特性を示すことが分
かる。
The sample No. C5 has the same apparent density as that of the product of the present invention and the positive electrode active material, but has a slightly inferior result to the product of the present invention because the capacity per unit weight of the active material is slightly lower. Thus, the comparative material sample No. C4
-C6 showed a defect in any of the evaluation items, however, Sample No. It can be seen that E1 to E3 show excellent characteristics in any of the initial discharge capacity and cycle characteristics, the initial discharge capacity per unit volume of the positive electrode active material used for the positive electrode, and the discharge capacity at the 100th cycle.

【0045】[0045]

【表1】 [Table 1]

【0046】[0046]

【発明の効果】上述のごとく,本発明によれば,正極体
積当たりの初期容量が高く,かつ,サイクル特性に優れ
た,リチウム二次電池及びその正極活物質の製造方法を
提供することができる。
As described above, according to the present invention, it is possible to provide a lithium secondary battery having a high initial capacity per positive electrode volume and excellent cycle characteristics, and a method for producing the positive electrode active material thereof. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態例1における,一次粒子の粒子構造を
示す図面代用写真。
FIG. 1 is a photograph as a drawing showing the particle structure of primary particles in the first embodiment.

【図2】実施形態例1における,二次粒子の粒子構造を
示す図面代用写真。
FIG. 2 is a drawing-substitute photograph showing the particle structure of secondary particles in the first embodiment.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンを吸蔵・放出可能な負極
活物質を用いた負極と,スピネル構造を有するリチウム
マンガン酸化物よりなる正極活物質を用いた正極と,両
者間に介設されるセパレータと,有機電解液とを有する
リチウム二次電池において,上記リチウムマンガン酸化
物は,平均粒径が0.01〜3.0μmの一次粒子が凝
集してなる平均粒径20〜100μmの二次粒子からな
ることを特徴とするリチウム二次電池。
1. A negative electrode using a negative electrode active material capable of inserting and extracting lithium ions, a positive electrode using a positive electrode active material made of lithium manganese oxide having a spinel structure, and a separator interposed therebetween. And a lithium secondary battery having an organic electrolyte, the lithium manganese oxide is formed from secondary particles having an average particle size of 20 to 100 μm, which are formed by aggregating primary particles having an average particle size of 0.01 to 3.0 μm. A rechargeable lithium battery.
【請求項2】 請求項1において,上記正極活物質の嵩
密度は,1.5〜3.5g/cm3 であることを特徴と
するリチウム二次電池。
2. The lithium secondary battery according to claim 1, wherein the positive electrode active material has a bulk density of 1.5 to 3.5 g / cm 3 .
【請求項3】 スピネル構造を有するリチウムマンガン
酸化物よりなると共に,一次粒子が凝集した二次粒子か
ら構成されるリチウム二次電池用の正極活物質を製造す
る方法であって,上記リチウムマンガン酸化物の原料を
溶媒に溶解した原料溶液を液滴状に噴霧し,次いで,該
液滴を加熱処理して,該液滴中の原料を反応させると共
に該液滴中の上記溶媒を蒸発させて一次粒子を作製し,
次いで,該一次粒子と上記原料溶液とを混合して熱処理
を施すことにより上記一次粒子が凝集してなる二次粒子
を作製することを特徴とするリチウム二次電池用の正極
活物質の製造方法。
3. A method for producing a positive electrode active material for a lithium secondary battery, comprising a lithium manganese oxide having a spinel structure and secondary particles in which primary particles are aggregated, comprising the steps of: The raw material solution obtained by dissolving the raw material of the product in a solvent is sprayed in the form of droplets, and then the droplets are heat-treated to react the raw materials in the droplets and evaporate the solvent in the droplets. Make primary particles,
Next, a method for producing a positive electrode active material for a lithium secondary battery, comprising mixing the primary particles and the raw material solution and subjecting the mixture to heat treatment to produce secondary particles formed by agglomeration of the primary particles. .
JP8353617A 1996-12-16 1996-12-16 Lithium secondary battery and manufacture of its positive electrode active material Pending JPH10172569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8353617A JPH10172569A (en) 1996-12-16 1996-12-16 Lithium secondary battery and manufacture of its positive electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8353617A JPH10172569A (en) 1996-12-16 1996-12-16 Lithium secondary battery and manufacture of its positive electrode active material

Publications (1)

Publication Number Publication Date
JPH10172569A true JPH10172569A (en) 1998-06-26

Family

ID=18432064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8353617A Pending JPH10172569A (en) 1996-12-16 1996-12-16 Lithium secondary battery and manufacture of its positive electrode active material

Country Status (1)

Country Link
JP (1) JPH10172569A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001143702A (en) * 1999-11-10 2001-05-25 Sumitomo Electric Ind Ltd Non-aqueous secondary battery
WO2002073717A1 (en) * 2001-03-13 2002-09-19 Lg Chem, Ltd. A positive active material for lithium secondary battery and a method of preparing the same
WO2006095594A1 (en) * 2005-03-09 2006-09-14 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
WO2008018634A1 (en) * 2006-08-09 2008-02-14 Kanto Denka Kogyo Co., Ltd. Spinel lithium manganate, method for producing the same, positive electrode active material using spinel lithium manganate, and nonaqueous electrolyte battery
US9023530B2 (en) 2005-03-09 2015-05-05 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001143702A (en) * 1999-11-10 2001-05-25 Sumitomo Electric Ind Ltd Non-aqueous secondary battery
JP4623786B2 (en) * 1999-11-10 2011-02-02 住友電気工業株式会社 Non-aqueous secondary battery
WO2002073717A1 (en) * 2001-03-13 2002-09-19 Lg Chem, Ltd. A positive active material for lithium secondary battery and a method of preparing the same
WO2006095594A1 (en) * 2005-03-09 2006-09-14 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
US9023530B2 (en) 2005-03-09 2015-05-05 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte secondary battery
WO2008018634A1 (en) * 2006-08-09 2008-02-14 Kanto Denka Kogyo Co., Ltd. Spinel lithium manganate, method for producing the same, positive electrode active material using spinel lithium manganate, and nonaqueous electrolyte battery
JP2008041577A (en) * 2006-08-09 2008-02-21 Kanto Denka Kogyo Co Ltd Spinel type manganate lithium and its manufacturing method, and cathode active material using spinel type manganate lithium and nonaqueous electrolyte battery

Similar Documents

Publication Publication Date Title
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
CN109155413B (en) Positive electrode active material, method for producing same, paste, and secondary battery
JP2002075364A (en) Positive electrode active material, its manufacturing method, nonaqueous electrolyte battery, and manufacturing method of battery
KR100660949B1 (en) Self-healing gallium alloy electrode, lithium secondary battery using thereof and manufacturing method of gallium alloy electrode
CN107834102B (en) Lithium ion secondary battery and method for manufacturing same
JP6981338B2 (en) Negative electrode materials, non-aqueous electrolyte secondary batteries and their manufacturing methods
JP7262998B2 (en) Positive electrode active material, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing positive electrode active material
JPH10172571A (en) Lithium secondary battery and manufacture of its positive electrode active material
JP4245219B2 (en) Lithium secondary battery
JP2018195419A (en) Positive electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery arranged by use thereof, and method for manufacturing positive electrode material for nonaqueous electrolyte secondary battery
JP2000128546A (en) Production of positive electrode active material nickel acid lithium for nun-aqueous secondary battery and non- aqueous secondary battery
JPH10172569A (en) Lithium secondary battery and manufacture of its positive electrode active material
JP7060336B2 (en) Method for manufacturing positive electrode active material, lithium ion secondary battery and positive electrode active material
JP3289256B2 (en) Method for producing positive electrode active material for lithium battery
JP2001297750A (en) Power-generating element for lithium secondary battery and lithium secondary battery using same
JP3625630B2 (en) Method for producing cobalt oxide positive electrode material, and battery using cobalt oxide positive electrode material produced by the method
JP2004220898A (en) Positive active material for lithium secondary battery, its manufacturing method, and lithium secondary battery
JP4479874B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP3793054B2 (en) Nonaqueous electrolyte secondary battery
JPH10172570A (en) Lithium secondary battery and its positive electrode active material
JPH1116567A (en) Nonaqueous electrolyte battery, and manufacture thereof
JP2001216965A (en) Positive electrode for lithium secondary battery
JPH11213986A (en) Nonaqueous electrolyte battery
JP4385430B2 (en) Method for producing secondary battery negative electrode material
JP3144832B2 (en) Non-aqueous solvent secondary battery