JPH0676824A - Manufacture of nonaqueous electrolyte secondary battery - Google Patents

Manufacture of nonaqueous electrolyte secondary battery

Info

Publication number
JPH0676824A
JPH0676824A JP4252039A JP25203992A JPH0676824A JP H0676824 A JPH0676824 A JP H0676824A JP 4252039 A JP4252039 A JP 4252039A JP 25203992 A JP25203992 A JP 25203992A JP H0676824 A JPH0676824 A JP H0676824A
Authority
JP
Japan
Prior art keywords
secondary battery
positive electrode
manganese oxide
electrolyte secondary
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4252039A
Other languages
Japanese (ja)
Inventor
Satoru Suzuki
覚 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP4252039A priority Critical patent/JPH0676824A/en
Publication of JPH0676824A publication Critical patent/JPH0676824A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain the manufacture of nonaqueous electrolyte secondary battery, which can improve the discharge capacity. CONSTITUTION:Lithium hydroxide particles and manganese oxide particles are mixed and crushed, and this crushed material is heated for burning to obtain LiMn2O4 burned material, and this LiMn2O4 burned material is used as the positive electrode active material to manufacture a secondary battery. The mean particle diameter of this crushed material is in a range of 1-2m, and as a method for crushing the mixture of lithium hydroxide and manganese oxide, dry type crushing, which uses an automatic mortar, a ball mill, a stamp mill and an epicyclic mill or the like, is desirable.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,放電容量の向上を図る
ことができる非水電解質二次電池の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a non-aqueous electrolyte secondary battery capable of improving discharge capacity.

【0002】[0002]

【従来技術】リチウムまたはリチウム合金を負極とする
非水電解質二次電池の正極活物質として,従来より,M
nO2 ,V2 5 が検討されている。MnO2 は充放電
による結晶構造の破壊のため容量減少が著しいため,こ
の対策として予めLiイオンを含んだLiMn2 4
成物を正極活物質に用いることが報告されている(Ma
terials Research Bulletin
18 (1983)461−472)。このLiMn
2 4 焼成物は,リチウム塩粒子とマンガン酸化物粒子
との混合物を焼成して得られる。
2. Description of the Related Art As a positive electrode active material for a non-aqueous electrolyte secondary battery using lithium or a lithium alloy as a negative electrode, M has been conventionally used.
nO 2 and V 2 O 5 are being investigated. Since the capacity of MnO 2 is significantly reduced due to the destruction of the crystal structure due to charge and discharge, it has been reported that a LiMn 2 O 4 calcined product containing Li ions is used as a positive electrode active material in advance as a countermeasure (Ma.
terials Research Bulletin
18 (1983) 461-472). This LiMn
The 2 O 4 fired product is obtained by firing a mixture of lithium salt particles and manganese oxide particles.

【0003】[0003]

【解決しようとする課題】しかしながら,上記正極活物
質を用いた場合には,正極の放電容量が小さくなるとい
う問題がある。即ち,上記従来の正極活物質において
は,リチウム塩粒子またはマンガン酸化物粒子が偏り,
両者の反応が不均一になることがある。そのため,リチ
ウム濃度が高い部分では電気的に不活性なLi2 MnO
3 が形成されてしまう。一方,マンガン濃度が高い部分
では未反応のMnO2 などの残留未反応物が残存してし
まう。そのため,正極活物質の一部が放電不能部とな
り,正極の放電容量が小さくなる。本発明はかかる問題
点に鑑み,放電容量の向上を図ることができる非水電解
質二次電池の製造方法を提供しようとするものである。
However, when the above positive electrode active material is used, there is a problem that the discharge capacity of the positive electrode becomes small. That is, in the above-mentioned conventional positive electrode active material, lithium salt particles or manganese oxide particles are unevenly distributed,
The reaction between the two may be non-uniform. Therefore, in a portion where the lithium concentration is high, electrically inactive Li 2 MnO 2
3 will be formed. On the other hand, residual unreacted substances such as unreacted MnO 2 remain in the portion where the manganese concentration is high. Therefore, a part of the positive electrode active material becomes a non-dischargeable portion, and the discharge capacity of the positive electrode becomes small. In view of such problems, the present invention aims to provide a method for manufacturing a non-aqueous electrolyte secondary battery capable of improving the discharge capacity.

【0004】[0004]

【課題の解決手段】本発明は,水酸化リチウムと酸化マ
ンガンとを混合,粉砕し,その粉砕物を加熱焼成し,得
られたLiMn2 4 焼成物を正極活物質として用いる
非水電解質二次電池の製造方法において,上記粉砕物の
平均粒径は1〜2μmの範囲にあることを特徴とする非
水電解質二次電池の製造方法にある。
According to the present invention, lithium hydroxide and manganese oxide are mixed and pulverized, the pulverized product is heated and calcined, and the obtained LiMn 2 O 4 calcined product is used as a positive electrode active material. The method for producing a secondary battery is the method for producing a non-aqueous electrolyte secondary battery, characterized in that the crushed material has an average particle size in the range of 1 to 2 μm.

【0005】本発明において,上記粉砕物の平均粒径が
2μmを越える場合には,リチウム塩粒子とマンガン酸
化物粒子との接触面積が減少し,両者の反応が均一に行
われなくなり,また反応に長時間を要する。一方,粉砕
物の平均粒径が1μm未満の場合には,混合粉砕時のリ
チウム塩粒子への水分の吸着や炭酸ガスとの反応が進行
し,マンガン酸化物粒子との反応活性の低いLi2 CO
3 が生成される。そのため,正極の放電効率が低下す
る。上記水酸化リチウムと酸化マンガンとを混合した混
合物を粉砕する方法としては,自動乳鉢,ボールミル,
スタンプミル,遊星式ミル等を用いる乾式粉砕方法が好
ましい。
In the present invention, when the average particle size of the pulverized product exceeds 2 μm, the contact area between the lithium salt particles and the manganese oxide particles decreases, and the reaction between the two does not occur uniformly, and the reaction Takes a long time. On the other hand, when the average particle size of the pulverized product is less than 1 μm, the adsorption of water to the lithium salt particles during the mixed pulverization and the reaction with carbon dioxide proceed, and Li 2 which has a low reaction activity with the manganese oxide particles. CO
3 is generated. Therefore, the discharge efficiency of the positive electrode decreases. As a method for pulverizing the mixture of the above lithium hydroxide and manganese oxide, an automatic mortar, a ball mill,
A dry crushing method using a stamp mill, a planetary mill or the like is preferable.

【0006】[0006]

【作用及び効果】本発明においては,水酸化リチウムと
酸化マンガンとを混合,粉砕して得られた粉砕物の平均
粒径は,2μm以下である。そのため,粉砕物中のリチ
ウム塩粒子とマンガン酸化物粒子との接触箇所が多く,
両者の接触総面積が大きくなる。それ故,両者の反応を
短時間で,かつ均一に進行させることができる。従っ
て,焼成により得られたLiMn2 4 焼成物は単相と
なる。
In the present invention, the average particle size of the pulverized product obtained by mixing and pulverizing lithium hydroxide and manganese oxide is 2 μm or less. Therefore, there are many contact points between lithium salt particles and manganese oxide particles in the pulverized product,
The total area of contact between the two becomes large. Therefore, the reaction between the both can proceed uniformly in a short time. Therefore, the LiMn 2 O 4 fired product obtained by firing becomes a single phase.

【0007】また,上記粉砕物の平均粒径は,1μm以
上である。そのため,混合粉砕時のリチウム塩粒子の表
面への水分の吸着や炭酸ガスとの反応が抑制され,マン
ガン酸化物粒子との反応活性の低いLi2 CO3 の生成
が抑制される。それ故,焼成により得られたLiMn2
4 焼成物は単相となる。従って,上記LiMn2 4
焼成物を正極活物質として用いることにより,正極活物
質粒子全体において放電反応が起こり,正極の放電容量
の向上を図ることができる。本発明によれば,放電容量
の向上を図ることができる非水電解質二次電池の製造方
法を提供することができる。
The average particle size of the pulverized product is 1 μm or more. Therefore, the adsorption of water on the surface of the lithium salt particles and the reaction with carbon dioxide at the time of mixed pulverization are suppressed, and the generation of Li 2 CO 3 having low reaction activity with the manganese oxide particles is suppressed. Therefore, LiMn 2 obtained by firing
The O 4 fired product becomes a single phase. Therefore, the above LiMn 2 O 4
By using the calcined material as the positive electrode active material, a discharge reaction occurs in the whole particles of the positive electrode active material, and the discharge capacity of the positive electrode can be improved. According to the present invention, it is possible to provide a method for manufacturing a non-aqueous electrolyte secondary battery that can improve the discharge capacity.

【0008】[0008]

【実施例】【Example】

実施例1 本発明にかかる実施例について図1〜図3を用いて説明
する。本例は,非水電解質二次電池を製造する方法であ
る。上記二次電池に用いられる正極活物質は,LiMn
2 4 焼成物である。該LiMn2 4 焼成物を作製す
るに当たっては,水酸化リチウムと酸化マンガンとを混
合,粉砕し,その粉砕物を加熱焼成する。該粉砕物の平
均粒径は1〜2μmの範囲にある。
Example 1 An example according to the present invention will be described with reference to FIGS. This example is a method of manufacturing a non-aqueous electrolyte secondary battery. The positive electrode active material used in the secondary battery is LiMn.
2 O 4 baked product. In producing the LiMn 2 O 4 fired product, lithium hydroxide and manganese oxide are mixed and pulverized, and the pulverized product is heated and fired. The average particle size of the pulverized product is in the range of 1 to 2 μm.

【0009】以下,上記製造方法を詳説する。まず,L
iOH・H2 OとMnO2 とをLi/Mn=1/2のモ
ル比でそれぞれ秤量し,自動乳鉢で混合しつつ,粉砕を
行った。粉砕時間は表1に示すごとく,1/6,1,
5,7,10時間とした。次に,得られた粉砕物の平均
粒径を測定した。測定装置は,マイクロトラックMod
el,7995−10を用いた。分散溶媒には,n−ヘ
キサンを用いた。測定の結果を表1に示す。同表より知
られるごとく,粉砕時間の増加に伴い,粉砕物の平均粒
径が減少した。
The above manufacturing method will be described in detail below. First, L
iOH.H 2 O and MnO 2 were weighed in a molar ratio of Li / Mn = 1/2, and pulverized while being mixed in an automatic mortar. The crushing time is 1/6, 1, 1, as shown in Table 1.
It was set to 5, 7, and 10 hours. Next, the average particle size of the obtained pulverized product was measured. The measuring device is Microtrac Mod
el, 7995-10 was used. N-Hexane was used as the dispersion solvent. The measurement results are shown in Table 1. As can be seen from the table, the average particle size of the pulverized product decreased as the pulverization time increased.

【0010】次に,この粉砕物を大気中で470℃で3
時間焼成した。次いで,得られたLiMn2 4 焼成物
を冷水中に投入して急冷した。その後,これを吸引濾過
器により濾過し,80℃で24時間乾燥した。次に,該
LiMn2 4 焼成物をX線回折法により調査した。そ
の結果を,平均粒径1〜2μmの粉砕物を用いた場合を
図1(A)に,平均粒径1μm未満及び2μmを越える
粉砕物を用いた場合を図1(B)に示した。
Next, this pulverized product was heated at 470 ° C. for 3 hours in air.
Burned for hours. Then, the obtained LiMn 2 O 4 fired product was put into cold water and rapidly cooled. Then, this was filtered with a suction filter and dried at 80 ° C. for 24 hours. Next, the LiMn 2 O 4 fired product was investigated by an X-ray diffraction method. The results are shown in FIG. 1 (A) when using a pulverized product having an average particle size of 1 to 2 μm, and in FIG. 1 (B) when using a pulverized product having an average particle size of less than 1 μm and exceeding 2 μm.

【0011】同図より知られるごとく,粉砕物の平均粒
径が1〜2μmの場合では単相のLiMn2 4 焼成物
が得られた。一方,図1(B)より知られるごとく,2
μmを越える場合及び1μm未満の場合では,LiMn
2 4 焼成物の他に副生成物や残留未反応物が生成して
いた。(図中△で示す強度)。
As is known from the figure, a single-phase LiMn 2 O 4 calcined product was obtained when the crushed product had an average particle size of 1 to 2 μm. On the other hand, as is known from FIG.
If it exceeds 1 μm or is less than 1 μm, LiMn
In addition to the 2 O 4 calcined product, by-products and residual unreacted products were produced. (Strength indicated by Δ in the figure).

【0012】次に,上記生成物をそれぞれ正極活物質と
して図3に示すようなコイン型電池を作製した。コイン
型電池は非水電解質二次電池である。該二次電池8は,
正極1と負極2とを有し,両者の間にはセパレータ3が
介在している。正極1及び負極2は,正極缶4及び負極
缶5内にガスケット6を介して密封されている。上記正
極1として,上記製法により得た正極活物質を用いる。
即ち,上記正極1としては,上記正極活物質90重量
部,導電剤としてのケッチエンブラック6重量部,及び
結着剤としてのポリテトラフルオロエチレン4重量部を
混合した正極合剤50mgが用いられている。
Next, a coin type battery as shown in FIG. 3 was prepared by using the above products as a positive electrode active material. The coin type battery is a non-aqueous electrolyte secondary battery. The secondary battery 8 is
It has a positive electrode 1 and a negative electrode 2, and a separator 3 is interposed between them. The positive electrode 1 and the negative electrode 2 are sealed in the positive electrode can 4 and the negative electrode can 5 via a gasket 6. As the positive electrode 1, the positive electrode active material obtained by the above manufacturing method is used.
That is, as the positive electrode 1, 50 mg of a positive electrode mixture prepared by mixing 90 parts by weight of the positive electrode active material, 6 parts by weight of Ketchen black as a conductive agent, and 4 parts by weight of polytetrafluoroethylene as a binder is used. ing.

【0013】正極缶4の内側には,直径14mmのステ
ンレス網がスポット溶接されていて,正極1が圧力3t
/cm2 で加圧成形されている。一方,負極缶5の内側
にはニッケルエキスパンドメタルの集電体が薄層状にス
ポット溶接されている。該集電体には直径15mmのリ
チウム片よりなる負極2が,圧着されている。
A stainless steel net having a diameter of 14 mm is spot-welded inside the positive electrode can 4, and the positive electrode 1 has a pressure of 3 t.
/ Cm 2 is pressure-molded. On the other hand, a nickel expanded metal current collector is spot-welded in a thin layer inside the negative electrode can 5. The negative electrode 2 made of a lithium piece having a diameter of 15 mm is pressure-bonded to the current collector.

【0014】セパレータ3としては,ポリプロピレン製
の不織布を用いている。また,二次電池8内には,電解
液が充填されている。該電解液としては,炭酸プロピレ
ン中に過塩素酸リチウム0.7モル/リットルを溶解し
たものを用いている。
As the separator 3, a polypropylene non-woven fabric is used. Further, the secondary battery 8 is filled with an electrolytic solution. As the electrolytic solution, a solution prepared by dissolving 0.7 mol / liter of lithium perchlorate in propylene carbonate is used.

【0015】次に,上記二次電池8の放電容量について
実験を行った。二次電池8の正極1には,前記したごと
く,粉砕時間を種々に変えて作製した正極活物質が用い
られている。上記放電容量の測定方法について説明す
る。二次電池を電流密度1mA/cm2 で,上限電圧
4.1Vで,5時間充電する。その後,2Vまで放電す
る充放電試験を行い,二次電池の5サイクル目の放電容
量を測定した。その結果を表1に示す。
Next, an experiment was conducted on the discharge capacity of the secondary battery 8. As the positive electrode 1 of the secondary battery 8, as described above, the positive electrode active material produced by changing the grinding time variously is used. The method for measuring the discharge capacity will be described. The secondary battery is charged at a current density of 1 mA / cm 2 and an upper limit voltage of 4.1 V for 5 hours. After that, a charge / discharge test of discharging up to 2 V was performed, and the discharge capacity at the 5th cycle of the secondary battery was measured. The results are shown in Table 1.

【0016】[0016]

【表1】 [Table 1]

【0017】表1より知られるごとく,平均粒径1〜2
μmの粉砕物を焼成して得たLiMn2 4 焼成物を正
極活物質に用いた二次電池は,大きな放電容量を示し,
正極活物質として優れていることが分かる。
As is known from Table 1, average particle diameters of 1-2
A secondary battery using a LiMn 2 O 4 fired product obtained by firing a pulverized product of μm as a positive electrode active material shows a large discharge capacity,
It turns out that it is excellent as a positive electrode active material.

【0018】このことは,以下の理由によるものであ
る。即ち,図2(A)に示すごとく,粉砕物10の平均
粒径は2μm以下であるため,粉砕物10中のリチウム
塩粒子11とマンガン酸化物粒子12との接触箇所が多
く,両者の接触総面積が大きくなる。それ故,両者の反
応を短時間で,かつ均一に進行させることができる。従
って,焼成により得られたLiMn2 4 焼成物は単相
となる。
This is due to the following reasons. That is, as shown in FIG. 2 (A), since the average particle size of the pulverized material 10 is 2 μm or less, there are many contact points between the lithium salt particles 11 and the manganese oxide particles 12 in the pulverized material 10, and the contact between them is large. The total area becomes large. Therefore, the reaction between the both can proceed uniformly in a short time. Therefore, the LiMn 2 O 4 fired product obtained by firing becomes a single phase.

【0019】また,上記粉砕物10の平均粒径は1μm
以上であるため,混合粉砕時のリチウム塩粒子11の表
面への水分の吸着や炭酸ガスとの反応が抑制され,マン
ガン酸化物粒子12との反応活性の低いLi2 CO3
生成が抑制される。それ故,焼成により得られたLiM
2 4 焼成物は単相となる。従って,上記LiMn2
4 焼成物を正極活物質として用いることにより,正極
活物質粒子全体において放電反応が起こり,正極の放電
容量の向上を図ることができる。
The crushed product 10 has an average particle size of 1 μm.
As described above, the adsorption of water on the surface of the lithium salt particles 11 and the reaction with carbon dioxide during the mixed pulverization are suppressed, and the generation of Li 2 CO 3 having a low reaction activity with the manganese oxide particles 12 is suppressed. It Therefore, LiM obtained by firing
The n 2 O 4 fired product becomes a single phase. Therefore, the above LiMn 2
By using the O 4 calcined product as the positive electrode active material, a discharge reaction occurs in the whole positive electrode active material particles, and the discharge capacity of the positive electrode can be improved.

【0020】一方,粉砕物の平均粒径が2μmを越える
場合,或いは1μm未満の場合には,放電容量が3.6
mAh以下である。これは,以下の理由によるものであ
る。即ち,粉砕物の平均粒径が2μmを越える場合に
は,図2(B)に示すごとく,粉砕物100中のリチウ
ム塩粒子110とマンガン酸化物粒子120との接触面
積が減少し,両者の反応が均一に行われなくなる。その
ため,電気的に不活性な未反応部分が残存する。
On the other hand, when the average particle size of the pulverized product exceeds 2 μm or is less than 1 μm, the discharge capacity is 3.6.
It is mAh or less. This is due to the following reasons. That is, when the average particle size of the pulverized product exceeds 2 μm, the contact area between the lithium salt particles 110 and the manganese oxide particles 120 in the pulverized product 100 decreases as shown in FIG. The reaction is not uniform. Therefore, an electrically inactive unreacted part remains.

【0021】また部分的にリチウム塩粒子110または
マンガン酸化物粒子120が偏りやすく,両者の反応が
不均一になり,電気的に不活性なLi2 MnO3 や残留
未反応物が存在し,充分な放電容量が得られないと考え
られる。また,1μm未満の場合には,混合粉砕時のリ
チウム塩粒子の表面への水分の吸着や炭酸ガスとの反応
が進行し,マンガン酸化物粒子との反応活性の低いLi
2 CO3 が生成されるため,正極の放電効率が低下す
る。
In addition, the lithium salt particles 110 or the manganese oxide particles 120 are likely to be partially biased, the reaction between the two becomes non-uniform, and electrically inactive Li 2 MnO 3 and residual unreacted substances are present. It is considered that a sufficient discharge capacity cannot be obtained. On the other hand, when the particle size is less than 1 μm, the adsorption of water on the surface of the lithium salt particles during the mixing and pulverization and the reaction with carbon dioxide proceed, and Li having a low reaction activity with the manganese oxide particles is used.
Since 2 CO 3 is produced, the discharge efficiency of the positive electrode is reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例にかかる,LiMn2 4 焼成物のX線
回折図。
FIG. 1 is an X-ray diffraction diagram of a LiMn 2 O 4 fired product according to an example.

【図2】実施例にかかる,粉砕物中の粒子構造の説明
図。
FIG. 2 is an explanatory view of a particle structure in a pulverized product according to an example.

【図3】実施例の非水電解質二次電池の断面図。FIG. 3 is a cross-sectional view of a non-aqueous electrolyte secondary battery of an example.

【符号の説明】 1...正極, 10...粉砕物, 11...リチウム塩粒子, 12...マンガン酸化物粒子, 2...負極, 8...非水電解質二次電池,[Explanation of symbols] 1. . . Positive electrode, 10. . . Crushed product, 11. . . Lithium salt particles, 12. . . Manganese oxide particles, 2. . . Negative electrode, 8. . . Non-aqueous electrolyte secondary battery,

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水酸化リチウムと酸化マンガンとを混
合,粉砕し,その粉砕物を加熱焼成し,得られたLiM
2 4 焼成物を正極活物質として用いる非水電解質二
次電池の製造方法において,上記粉砕物の平均粒径は1
〜2μmの範囲にあることを特徴とする非水電解質二次
電池の製造方法。
1. LiM obtained by mixing and crushing lithium hydroxide and manganese oxide and heating and calcination of the crushed product.
In the method for producing a non-aqueous electrolyte secondary battery using a calcined product of n 2 O 4 as a positive electrode active material, the average particle size of the pulverized product is 1
The method for producing a non-aqueous electrolyte secondary battery is characterized by being in the range of ˜2 μm.
JP4252039A 1992-08-27 1992-08-27 Manufacture of nonaqueous electrolyte secondary battery Pending JPH0676824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4252039A JPH0676824A (en) 1992-08-27 1992-08-27 Manufacture of nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4252039A JPH0676824A (en) 1992-08-27 1992-08-27 Manufacture of nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH0676824A true JPH0676824A (en) 1994-03-18

Family

ID=17231728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4252039A Pending JPH0676824A (en) 1992-08-27 1992-08-27 Manufacture of nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH0676824A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996012676A1 (en) * 1994-10-19 1996-05-02 Valence Technology, Inc. Lithium manganese oxide, method of preparation and uses thereof
US6136476A (en) * 1999-01-29 2000-10-24 Hydro-Quebec Corporation Methods for making lithium vanadium oxide electrode materials
JP2006173095A (en) * 2004-11-22 2006-06-29 Nissan Motor Co Ltd Battery structure
US7341805B2 (en) 2000-11-16 2008-03-11 Hitachi Maxell, Ltd. Lithium-containing complex oxide, non-aqueous secondary battery using the lithium-containing complex oxide, and method for producing the lithium-containing complex oxide
WO2011021481A1 (en) * 2009-08-21 2011-02-24 日清エンジニアリング株式会社 Process for production of positive electrode material for secondary batteries
US8954247B2 (en) 2011-11-29 2015-02-10 Honda Motor Co., Ltd. Power transmission apparatus and method for controlling power transmission apparatus
US8962173B1 (en) * 2010-04-14 2015-02-24 Hrl Laboratories, Llc Lithium battery structures

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996012676A1 (en) * 1994-10-19 1996-05-02 Valence Technology, Inc. Lithium manganese oxide, method of preparation and uses thereof
US6136476A (en) * 1999-01-29 2000-10-24 Hydro-Quebec Corporation Methods for making lithium vanadium oxide electrode materials
US7341805B2 (en) 2000-11-16 2008-03-11 Hitachi Maxell, Ltd. Lithium-containing complex oxide, non-aqueous secondary battery using the lithium-containing complex oxide, and method for producing the lithium-containing complex oxide
JP2006173095A (en) * 2004-11-22 2006-06-29 Nissan Motor Co Ltd Battery structure
WO2011021481A1 (en) * 2009-08-21 2011-02-24 日清エンジニアリング株式会社 Process for production of positive electrode material for secondary batteries
JP2011044347A (en) * 2009-08-21 2011-03-03 Nisshin Engineering Co Ltd Method of manufacturing positive electrode material for secondary battery
US8962173B1 (en) * 2010-04-14 2015-02-24 Hrl Laboratories, Llc Lithium battery structures
US9843029B1 (en) 2010-04-14 2017-12-12 Hrl Laboratories, Llc Lithium battery structures
US8954247B2 (en) 2011-11-29 2015-02-10 Honda Motor Co., Ltd. Power transmission apparatus and method for controlling power transmission apparatus

Similar Documents

Publication Publication Date Title
KR101964726B1 (en) Spherical or spherical-like lithium ion battery cathode material and preparation method and application thereof
US8097363B2 (en) Positive electrode material, its manufacturing method and lithium secondary battery
CA2214199C (en) Lithium secondary battery
JP2903469B1 (en) Method for producing anode material for lithium ion battery
JPH10508141A (en) Method of manufacturing cathode components for use in electrochemical cells
JP2002279985A (en) Positive electrode active material for non-aqueous lithium secondary battery and the non-aqueous lithium secondary battery using the active material
WO2024046046A1 (en) Positive electrode active material and use thereof
CN111009656A (en) Preparation method of rare earth metal doped high-nickel ternary battery positive electrode material
CN109037660A (en) A kind of preparation method of composite lithium iron phosphate material
JP3048352B1 (en) Method for producing lithium manganate
JP3396076B2 (en) Method for producing lithium cobaltate-based positive electrode active material for lithium secondary battery
JP2001325950A (en) Nonaqueous electrolyte secondary cell and negative electrode of the same
JP2011060610A (en) Silicon oxide and anode material for lithium ion secondary battery
JPH0676824A (en) Manufacture of nonaqueous electrolyte secondary battery
JPH0644971A (en) Nonaqueous electrolyte lithium secondary battery
CN115863650A (en) Core-shell type sodium ion battery positive electrode active material and preparation method and application thereof
JP3182296B2 (en) Non-aqueous electrolyte secondary battery
JP3321541B2 (en) Lithium secondary battery
JP3620744B2 (en) Method for producing active material for lithium secondary battery
JP4058797B2 (en) Method for producing lithium cobalt oxide particle powder
JPH08236115A (en) Secondary battery
JP3344853B2 (en) Positive active material for non-aqueous lithium secondary battery and lithium secondary battery
CN110137482B (en) Carbon-coated negative electrode material, preparation method thereof and battery
JP6911221B1 (en) Carbonaceous material, manufacturing method of carbonaceous material, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP3610440B2 (en) Cathode active material for non-aqueous lithium secondary battery and lithium secondary battery