WO2011021481A1 - Process for production of positive electrode material for secondary batteries - Google Patents

Process for production of positive electrode material for secondary batteries Download PDF

Info

Publication number
WO2011021481A1
WO2011021481A1 PCT/JP2010/062622 JP2010062622W WO2011021481A1 WO 2011021481 A1 WO2011021481 A1 WO 2011021481A1 JP 2010062622 W JP2010062622 W JP 2010062622W WO 2011021481 A1 WO2011021481 A1 WO 2011021481A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
particle size
positive electrode
mno
electrode material
Prior art date
Application number
PCT/JP2010/062622
Other languages
French (fr)
Japanese (ja)
Inventor
晶弘 木下
藤井 隆司
Original Assignee
日清エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日清エンジニアリング株式会社 filed Critical 日清エンジニアリング株式会社
Publication of WO2011021481A1 publication Critical patent/WO2011021481A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1242Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]-, e.g. LiMn2O4, Li[MxMn2-x]O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a positive electrode material of a secondary battery used for a power source of a portable device such as a notebook computer, a mobile phone, and a video camera, an electric vehicle, and a hybrid electric vehicle, and more particularly, a secondary battery having excellent efficiency.
  • the present invention relates to a method for producing a positive electrode material.
  • lithium ion secondary batteries are excellent in energy density and output density, etc., and are effective for miniaturization and weight reduction, so they are used as power sources for portable devices such as notebook computers, mobile phones, and video cameras.
  • Lithium ion secondary batteries are also attracting attention as power sources for electric vehicles and power load leveling, and are also used as power sources for hybrid electric vehicles.
  • the positive electrode material of the lithium ion secondary battery examples include lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), and lithium manganate (LiMn 2 O 4 ).
  • the positive electrode material of a lithium ion secondary battery is a mixture of a lithium compound, which is a raw material, and a compound such as an oxide or hydroxide, such as nickel, manganese, cobalt, etc., and the mixed powder is placed in a container. , And calcined at 700 to 1100 ° C., and then pulverized into a powder.
  • various methods for producing a positive electrode material for a lithium ion secondary battery have been proposed (see Patent Document 1).
  • Patent Document 1 based on the chemical formula of lithium manganese oxide, lithium hydroxide or decomposable lithium salt and manganese oxide or decomposable manganese salt are homogeneously mixed by a theoretical amount, and this homogeneous mixing is performed.
  • the compound is fed to the reactor, the mixed compound is continuously stirred in the reactor, and a gas body rich in air or oxygen is flowed into the reactor and is in the range of about 650 ° C. to about 800 ° C.
  • a gas body rich in air or oxygen is flowed into the reactor and is in the range of about 650 ° C. to about 800 ° C.
  • Patent Document 1 also synthesizes a substantially single-phase lithium manganese oxide having a cubic spinel crystal structure having a chemical formula of Li 1 + x Mn 2 ⁇ x O 4 and 0 ⁇ X ⁇ 0.125. It also describes how to do it.
  • An object of the present invention is to provide a method for producing a positive electrode material for a secondary battery that eliminates the problems based on the above-described conventional technology and has excellent efficiency.
  • the present invention provides a method for producing a positive electrode material for a secondary battery, wherein the maximum particle size of a lithium compound as a raw material is DL max and the maximum particle size of a metal compound is Dm max .
  • the DL max is 19.8 ⁇ m or less and the Dm max is 35.5 ⁇ m or less
  • the lithium compound powder and the metal compound powder are mixed to obtain a mixed powder.
  • a step of obtaining the mixed powder in a temperature range of 650 ° C. or higher and 1000 ° C.
  • the present invention provides a method for producing a positive electrode material for a secondary battery, comprising a step of obtaining a composite oxide as a positive electrode material for a secondary battery.
  • the lithium compound is, for example, LiOH, Li 2 O, or Li 2 CO 3
  • the metal compound is, for example, MnO, MnO 2 , Mn 2 O 3 , Mn 3 O 4 , or MnCO 3 and the composite oxide is preferably LiMn 2 O 4 .
  • the DL max is 19.8 ⁇ m or less
  • the Dm max is 35.
  • (A) is a graph showing the particle size distribution of Li 2 CO 3 used to verify the size of the MnO 2
  • (B) shows the particle size distribution of MnO 2 used to verify the size of the Li 2 CO 3 It is a graph.
  • (A) is a graph showing a first example of the particle size distribution of MnO 2 powder, and (B) is a mixture of this and the Li 2 CO 3 powder shown in FIG. It is a graph which shows the diffraction pattern of what was obtained.
  • (A) is a graph showing a second example of the particle size distribution of the MnO 2 powder, and (B) is a mixture of this and the Li 2 CO 3 powder shown in FIG. It is a graph which shows the diffraction pattern of what was obtained.
  • (A) is a graph showing a third example of the particle size distribution of the MnO 2 powder, and (B) is a mixture of this and the Li 2 CO 3 powder shown in FIG. It is a graph which shows the diffraction pattern of what was obtained.
  • (A) is a graph showing a fourth example of the particle size distribution of the MnO 2 powder, and (B) is a mixture of this and the Li 2 CO 3 powder shown in FIG. It is a graph which shows the diffraction pattern of what was obtained.
  • (A) is a graph showing a fifth example of the particle size distribution of MnO 2 powder, and (B) is a mixture of this and the Li 2 CO 3 powder shown in FIG. It is a graph which shows the diffraction pattern of what was obtained.
  • (A) is a graph showing a first example of the particle size distribution of Li 2 CO 3 powder, and (B) is a mixture of this and the MnO 2 powder shown in FIG. It is a graph which shows the diffraction pattern of what was obtained.
  • (A) is a graph showing a second example of the particle size distribution of the Li 2 CO 3 powder, and (B) is a mixture of this and the MnO 2 powder shown in FIG. It is a graph which shows the diffraction pattern of what was obtained.
  • (A) is a graph showing a third example of the particle size distribution of the Li 2 CO 3 powder, and (B) is a mixture of this and the MnO 2 powder shown in FIG. It is a graph which shows the diffraction pattern of what was obtained.
  • LiMn 2 O 4 complex oxide
  • the lithium content is such that the range of x is 0.95 ⁇ x ⁇ 1.20. Is preferably adjusted.
  • FIG. 1A is a graph showing the particle size distribution of Li 2 CO 3 used for verification of the particle size of MnO 2
  • FIG. 1B is the particle size distribution of MnO 2 used for verification of the particle size of Li 2 CO 3. It is a graph which shows. Li 2 CO 3 in FIG. 1 (A) has an average particle size D 50 of 2.8 ⁇ m, and MnO 2 in FIG. 1 (B) has an average particle size D 50 of 1.8 ⁇ m.
  • the firing conditions shown below are those fired at a firing temperature of 800 ° C. and a firing time of 60 minutes. The temperature rising time to 800 ° C. is 40 minutes and the holding time at 800 ° C. is 20 minutes.
  • the powder was mixed and fired under the above-mentioned firing conditions.
  • the diffraction pattern was measured using XRD (X-ray diffraction method).
  • XRD X-ray diffraction method
  • FIG. 4 has a particle size distribution shown in the graph of (A), the average particle diameter D 50 of 39.8 ⁇ m MnO 2
  • the powder was mixed and fired under the above-mentioned firing conditions.
  • the diffraction pattern was measured using XRD (X-ray diffraction method).
  • FIG. 4B there were diffraction peaks indicating unreacted substances and impurities, and the reaction was incomplete.
  • FIG. 5 has a particle size distribution shown in the graph of (A), the average particle diameter D 50 of 35.5 ⁇ m MnO 2
  • the powder was mixed and fired under the above-mentioned firing conditions.
  • the diffraction pattern was measured using XRD (X-ray diffraction method).
  • XRD X-ray diffraction method
  • FIG. 1 and powder of Li 2 CO 3 having a particle size distribution shown in the graph of (A) has a particle size distribution shown in the graph of FIG. 6 (A), the average particle diameter D 50 of MnO of 31.8Myuemu 2
  • the powder was mixed and fired under the above-mentioned firing conditions.
  • the diffraction pattern was measured using XRD (X-ray diffraction method).
  • XRD X-ray diffraction method
  • the powder was mixed and fired under the above-mentioned firing conditions.
  • the diffraction pattern was measured using XRD (X-ray diffraction method).
  • XRD X-ray diffraction method
  • the powder was mixed and fired under the above-mentioned firing conditions.
  • the diffraction pattern was measured using XRD (X-ray diffraction method).
  • FIG. 9B there was no diffraction peak indicating unreacted substances and impurities, and the reaction occurred completely.
  • FIG. 9B there was no diffraction peak indicating unreacted substances and impurities, and the reaction occurred completely.
  • the particle size distributions shown in (A) and FIG. 9 (A) are each measured using Microtrac HRA (manufactured by Nikkiso Co., Ltd.).
  • the maximum particle size of the lithium compound as a raw material and DL max when the maximum particle size of the metal compound and Dm max, 19.8 below DL max And when Dm max is set to 35.5 ⁇ m or less, when these two are mixed and fired, it has been found that unreacted substances are not left and firing can be performed in a shorter time than before.
  • DL max when the maximum particle size of the lithium compound as a raw material is DL max and the maximum particle size of the metal compound is Dm max , DL max is 19.8 ⁇ m or less, and Dm max is 35.5 ⁇ m or less. .
  • MnO 2 has an average particle size D 50 of 35.5 ⁇ m or less
  • Li 2 CO 3 has a complete reaction when the average particle size D 50 is 19.8 ⁇ m or less.
  • the lithium compound is, for example, LiOH, Li 2 O, or Li 2 CO 3
  • the metal compound is, for example, MnO, MnO 2 , Mn 2 O 3 , Mn 3 O 4 , or MnCO 3
  • An example of a composite oxide obtained as a positive electrode material for a secondary battery is LiMn 2 O 4 .
  • the above findings of the present invention have been obtained using XRD.
  • this XRD it is difficult to detect a trace amount of contaminants due to the nature of the measurement. For this reason, a raw material having a sharp particle size distribution was prepared, a firing test was performed, and the average particle size when unreacted substances were detected was used as a threshold value. Particles larger than the threshold are considered unreacted.
  • the particle size at which the reaction occurs completely is set such that the maximum particle size is 35.5 ⁇ m or less for MnO 2 and the maximum particle size is 19.8 ⁇ m or less for Li 2 CO 3 .
  • the mixed powder obtained by mixing the powder of the lithium compound and the powder of the metal compound is heated from the temperature rising start time in the temperature range of 650 ° C. to 1000 ° C. Bake for no more than 1 hour.
  • the firing temperature is less than 650 ° C., the reaction does not proceed sufficiently, and the target LiMn 2 O 4 may not be completely fired.
  • the firing temperature exceeds 1000 ° C., the electrical characteristics of the material to be fired itself may be lowered, and the durability of the material used for firing (eg, mortar, heater) may be significantly reduced.
  • the temperature rising start time and the total temperature holding exceeds 1 hour, it is not preferable from the viewpoint of production efficiency.
  • a MnO 2 powder having a maximum particle size of 35.5 ⁇ m or less and a Li 2 CO 3 powder having a maximum particle size of 19.8 ⁇ m or less first, a MnO 2 powder having a maximum particle size of 35.5 ⁇ m or less and a Li 2 CO 3 powder having a maximum particle size of 19.8 ⁇ m or less.
  • a mixed powder To obtain a mixed powder.
  • the MnO 2 powder having a maximum particle size of 35.5 ⁇ m or less is obtained by pulverizing the MnO 2 powder with a pulverizer or classifying it with a classifier.
  • Li 2 CO 3 powder having a maximum particle size of 19.8 ⁇ m or less is also obtained by pulverizing Li 2 CO 3 powder with a pulverizer or classifying with a classifier.
  • the maximum particle size of both the MnO 2 powder and the Li 2 CO 3 powder is measured by, for example, Microtrac HRA (manufactured by Nikkiso Co., Ltd.).
  • the mixed powder is baked using a box furnace under the conditions of, for example, a baking temperature of 800 ° C. and a time until the reaction is completed for 60 minutes. Note that the temperature rising time to 800 ° C. is 40 minutes, and the holding time at 800 ° C. is 20 minutes.
  • the fired body of LiMn 2 O 4 is pulverized using a pulverizer such as a super jet mill (manufactured by Nisshin Engineering Co., Ltd.), and further, a classifier such as a turbo classifier (manufactured by Nisshin Engineering Co., Ltd.). ) Or aero fine classifier (manufactured by Nissin Engineering Co., Ltd.).
  • a pulverizer such as a super jet mill (manufactured by Nisshin Engineering Co., Ltd.)
  • a classifier such as a turbo classifier (manufactured by Nisshin Engineering Co., Ltd.).
  • aero fine classifier manufactured by Nissin Engineering Co., Ltd.
  • mixed powder maximum particle diameter D max and the following MnO 2 powder 35.5Myuemu the maximum particle diameter D max is obtained by mixing a powder of the following Li 2 CO 3 19.8
  • the reaction occurs without remaining unreacted material, and a positive electrode material for a secondary battery can be obtained with high efficiency.
  • the box furnace it is not limited to this.
  • a continuous heating furnace such as a rotary kiln or a semi-batch heating furnace such as a roller hearth kiln is used, the reaction occurs without remaining unreacted materials, and a positive electrode material for a secondary battery can be obtained with high efficiency. it can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

A process for producing a positive electrode material for secondary batteries, comprising the steps of: mixing a powder of a lithium compound (which is a raw material) having a maximum particle diameter (DLmax) of 19.8 μm or less with a powder of a metal compound having a maximum particle diameter (Dmmax) of 35.5 μm or less to produce a mixed powder; and causing a reaction in the mixed powder by burning the mixed powder at a temperature of 650 to 1000˚C inclusive for a period between a time point at which the rising of the temperature is started and a time point at which the temperature reaches a desired temperature and at which the total time period of the retention of the temperature at the desired temperature does not exceed 1 hour, thereby obtaining a composite oxide of lithium and the metal.

Description

二次電池用正極材料の製造方法Method for producing positive electrode material for secondary battery
 本発明は、ノート型パソコン、携帯電話、ビデオカメラ等の携帯機器、電気自動車、ハイブリッド電気自動車等の電源に用いられる二次電池の正極材料の製造方法に関し、特に、効率が優れた二次電池用正極材料の製造方法に関する。 The present invention relates to a method for producing a positive electrode material of a secondary battery used for a power source of a portable device such as a notebook computer, a mobile phone, and a video camera, an electric vehicle, and a hybrid electric vehicle, and more particularly, a secondary battery having excellent efficiency. The present invention relates to a method for producing a positive electrode material.
 現在、二次電池のうち、リチウムイオン二次電池は、エネルギー密度及び出力密度等に優れ、小型、軽量化に有効なため、ノート型パソコン、携帯電話、ビデオカメラ等の携帯機器の電源として利用されている。また、リチウムイオン二次電池は、電気自動車、電力のロードレベリング等の電源としても注目されており、ハイブリッド電気自動車の電源としても利用されている。 Currently, among secondary batteries, lithium ion secondary batteries are excellent in energy density and output density, etc., and are effective for miniaturization and weight reduction, so they are used as power sources for portable devices such as notebook computers, mobile phones, and video cameras. Has been. Lithium ion secondary batteries are also attracting attention as power sources for electric vehicles and power load leveling, and are also used as power sources for hybrid electric vehicles.
 リチウムイオン二次電池の正極材料としてはコバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)等がある。
 リチウムイオン二次電池の正極材料は、一般的に、原材料であるリチウム化合物とニッケル、マンガン、コバルトなどの酸化物や水酸化物などの化合物を粉体で混合し、その混合粉を容器に入れ、700~1100℃で焼成した後に、これを粉砕し、粉体にすることにより製造されている。上記以外にも、リチウムイオン二次電池の正極材料の製造方法が種々提案されている(特許文献1参照)。
Examples of the positive electrode material of the lithium ion secondary battery include lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), and lithium manganate (LiMn 2 O 4 ).
In general, the positive electrode material of a lithium ion secondary battery is a mixture of a lithium compound, which is a raw material, and a compound such as an oxide or hydroxide, such as nickel, manganese, cobalt, etc., and the mixed powder is placed in a container. , And calcined at 700 to 1100 ° C., and then pulverized into a powder. In addition to the above, various methods for producing a positive electrode material for a lithium ion secondary battery have been proposed (see Patent Document 1).
 特許文献1には、リチウムマンガン酸化物の化学式に基づいて、リチウム水酸化物または分解性リチウム塩とマンガン酸化物または分解性マンガン塩とを理論量によって均質に混合し、この均質に混合された化合物を反応装置に供給し、混合された化合物を反応装置内で連続的に攪拌し、空気または酸素に富んだガス体を反応装置内に流し込み、約650℃から約800℃までの範囲にある温度で約4時間を超えない時間だけ加熱し、そして、好ましくは2時間を超えない時間だけ約100℃以下の条件下で、反応した生成物を冷却することによって、0≦X≦0.125である化学式Li1+xMn2-xの単一相のリチオ化されたマンガン酸化物の層間化合物を連続的に製造する方法が記載されている。
 また、特許文献1には、化学式がLi1+xMn2-xであって、0≦X≦0.125である、立方スピネル型結晶構造を有するほぼ単一相のリチウムマンガン酸化物を合成する方法についても記載されている。
In Patent Document 1, based on the chemical formula of lithium manganese oxide, lithium hydroxide or decomposable lithium salt and manganese oxide or decomposable manganese salt are homogeneously mixed by a theoretical amount, and this homogeneous mixing is performed. The compound is fed to the reactor, the mixed compound is continuously stirred in the reactor, and a gas body rich in air or oxygen is flowed into the reactor and is in the range of about 650 ° C. to about 800 ° C. By heating the reacted product at a temperature for no more than about 4 hours, and preferably cooling the reacted product under conditions of no more than about 100 ° C. for no more than 2 hours, 0 ≦ X ≦ 0.125 A process for continuously producing a single-phase lithiated manganese oxide intercalation compound of the formula Li 1 + x Mn 2−x O 4 is described.
Patent Document 1 also synthesizes a substantially single-phase lithium manganese oxide having a cubic spinel crystal structure having a chemical formula of Li 1 + x Mn 2−x O 4 and 0 ≦ X ≦ 0.125. It also describes how to do it.
特許第4074662号公報Japanese Patent No. 4074662
 しかしながら、上述の一般的なリチウムイオン二次電池の正極材料の製造方法、および特許文献1等に記載されている正極材料の製造方法のいずれにおいても、正極材料を得るために原料を焼成しても、未反応の原料が残るという問題点がある。また、未反応の原料をなくすためには、焼成時間がより多く必要であり、製造効率が低いという問題点もある。 However, in any of the above-described method for producing a positive electrode material for a general lithium ion secondary battery and the method for producing a positive electrode material described in Patent Document 1, etc., the raw material is fired to obtain the positive electrode material. However, there is a problem that unreacted raw materials remain. Moreover, in order to eliminate unreacted raw materials, more firing time is required and there is a problem that the production efficiency is low.
 本発明の目的は、前記従来技術に基づく問題点を解消し、効率が優れた二次電池用正極材料の製造方法を提供することにある。 An object of the present invention is to provide a method for producing a positive electrode material for a secondary battery that eliminates the problems based on the above-described conventional technology and has excellent efficiency.
 上記目的を達成するために、本発明は、二次電池用正極材料の製造方法であって、原料となるリチウム化合物の最大粒径をDLmaxとし、金属化合物の最大粒径をDmmaxとするとき、前記DLmaxが19.8μm以下のものを用い、前記Dmmaxが35.5μm以下のものを用いて、前記リチウム化合物の粉体と前記金属化合物の粉体とを混合して混合粉を得る工程と、前記混合粉を650℃以上1000℃以下の温度範囲で、昇温開始から達温して温度保持の合計が1時間を超えない時間焼成して反応させ、リチウムと前記金属との複合酸化物を二次電池用正極材料として得る工程とを有することを特徴とする二次電池用正極材料の製造方法を提供するものである。 In order to achieve the above object, the present invention provides a method for producing a positive electrode material for a secondary battery, wherein the maximum particle size of a lithium compound as a raw material is DL max and the maximum particle size of a metal compound is Dm max . When the DL max is 19.8 μm or less and the Dm max is 35.5 μm or less, the lithium compound powder and the metal compound powder are mixed to obtain a mixed powder. And a step of obtaining the mixed powder in a temperature range of 650 ° C. or higher and 1000 ° C. or lower from the start of the temperature increase and firing and reacting for a time not exceeding 1 hour, so that lithium and the metal The present invention provides a method for producing a positive electrode material for a secondary battery, comprising a step of obtaining a composite oxide as a positive electrode material for a secondary battery.
 本発明においては、前記リチウム化合物は、例えば、LiOH、LiO、またはLiCOであり、前記金属化合物は、例えば、MnO、MnO、Mn、Mn、またはMnCOであり、前記複合酸化物は、LiMnであることが好ましい。
 なお、本発明においては、ハンドリングの容易さや原料コスト等の観点より、リチウム化合物はLiCO、金属化合物はMnO、Mnを使用することが好ましい。
In the present invention, the lithium compound is, for example, LiOH, Li 2 O, or Li 2 CO 3 , and the metal compound is, for example, MnO, MnO 2 , Mn 2 O 3 , Mn 3 O 4 , or MnCO 3 and the composite oxide is preferably LiMn 2 O 4 .
In the present invention, it is preferable to use Li 2 CO 3 as the lithium compound and MnO 2 or Mn 2 O 3 as the metal compound from the viewpoint of ease of handling and raw material costs.
 本発明によれば、原料となるリチウム化合物の最大粒径をDLmaxとし、金属化合物の最大粒径をDmmaxとするとき、DLmaxが19.8μm以下のものを用い、Dmmaxが35.5μm以下のものを用いることにより、焼成時間が短い場合でも未反応物が残ることなく反応が起り、高い効率で二次電池用正極材料を得ることができる。 According to the present invention, when the maximum particle size of the lithium compound as a raw material is DL max and the maximum particle size of the metal compound is Dm max , the DL max is 19.8 μm or less, and the Dm max is 35. By using a material having a thickness of 5 μm or less, the reaction occurs without remaining unreacted materials even when the firing time is short, and a positive electrode material for a secondary battery can be obtained with high efficiency.
(A)は、MnOの粒度の検証に用いられるLiCOの粒度分布を示すグラフであり、(B)は、LiCOの粒度の検証に用いられるMnOの粒度分布を示すグラフである。(A) is a graph showing the particle size distribution of Li 2 CO 3 used to verify the size of the MnO 2, (B) shows the particle size distribution of MnO 2 used to verify the size of the Li 2 CO 3 It is a graph. (A)は、MnOの粉末の粒度分布の第1の例を示すグラフであり、(B)は、これと図1(A)に示すLiCOの粉末とを混合し焼成して得られたものの回折パターンを示すグラフである。(A) is a graph showing a first example of the particle size distribution of MnO 2 powder, and (B) is a mixture of this and the Li 2 CO 3 powder shown in FIG. It is a graph which shows the diffraction pattern of what was obtained. (A)は、MnOの粉末の粒度分布の第2の例を示すグラフであり、(B)は、これと図1(A)に示すLiCOの粉末とを混合し焼成して得られたものの回折パターンを示すグラフである。(A) is a graph showing a second example of the particle size distribution of the MnO 2 powder, and (B) is a mixture of this and the Li 2 CO 3 powder shown in FIG. It is a graph which shows the diffraction pattern of what was obtained. (A)は、MnOの粉末の粒度分布の第3の例を示すグラフであり、(B)は、これと図1(A)に示すLiCOの粉末とを混合し焼成して得られたものの回折パターンを示すグラフである。(A) is a graph showing a third example of the particle size distribution of the MnO 2 powder, and (B) is a mixture of this and the Li 2 CO 3 powder shown in FIG. It is a graph which shows the diffraction pattern of what was obtained. (A)は、MnOの粉末の粒度分布の第4の例を示すグラフであり、(B)は、これと図1(A)に示すLiCOの粉末とを混合し焼成して得られたものの回折パターンを示すグラフである。(A) is a graph showing a fourth example of the particle size distribution of the MnO 2 powder, and (B) is a mixture of this and the Li 2 CO 3 powder shown in FIG. It is a graph which shows the diffraction pattern of what was obtained. (A)は、MnOの粉末の粒度分布の第5の例を示すグラフであり、(B)は、これと図1(A)に示すLiCOの粉末とを混合し焼成して得られたものの回折パターンを示すグラフである。(A) is a graph showing a fifth example of the particle size distribution of MnO 2 powder, and (B) is a mixture of this and the Li 2 CO 3 powder shown in FIG. It is a graph which shows the diffraction pattern of what was obtained. (A)は、LiCOの粉末の粒度分布の第1の例を示すグラフであり、(B)は、これと図1(B)に示すMnOの粉末とを混合し焼成して得られたものの回折パターンを示すグラフである。(A) is a graph showing a first example of the particle size distribution of Li 2 CO 3 powder, and (B) is a mixture of this and the MnO 2 powder shown in FIG. It is a graph which shows the diffraction pattern of what was obtained. (A)は、LiCOの粉末の粒度分布の第2の例を示すグラフであり、(B)は、これと図1(B)に示すMnOの粉末とを混合し焼成して得られたものの回折パターンを示すグラフである。(A) is a graph showing a second example of the particle size distribution of the Li 2 CO 3 powder, and (B) is a mixture of this and the MnO 2 powder shown in FIG. It is a graph which shows the diffraction pattern of what was obtained. (A)は、LiCOの粉末の粒度分布の第3の例を示すグラフであり、(B)は、これと図1(B)に示すMnOの粉末とを混合し焼成して得られたものの回折パターンを示すグラフである。(A) is a graph showing a third example of the particle size distribution of the Li 2 CO 3 powder, and (B) is a mixture of this and the MnO 2 powder shown in FIG. It is a graph which shows the diffraction pattern of what was obtained.
 以下に、添付の図面に示す実施形態に基づいて、本発明の二次電池用正極材料の製造方法を詳細に説明する。 Hereinafter, a method for producing a positive electrode material for a secondary battery of the present invention will be described in detail based on embodiments shown in the accompanying drawings.
 従来のリチウムイオン二次電池用正極材料の製造方法においては、リチウム化合物と、ニッケル、マンガン、コバルトなどの酸化物や水酸化物などの化合物との混合原料における固相反応を利用するため、未反応物が残り、高い効率で製造することができなかった。
 そこで、本願発明者等は、二次電池用正極材料の原料であるLiCO(リチウム化合物)とMnO(金属化合物)とを用いて、それぞれ一方の粒度分布を固定し、他方の粒度分布を変えたものと組み合わせ、これらを組み合わせたものの混合粉をセラミックス製の匣鉢に詰めて焼成を行い、反応が完全に起こるか、すなわち、未反応物がないかを調べた。なお、LiCOとMnOとの焼成・反応により、二次電池用正極材料として、LiMn(複合酸化物)が得られる。LiCOとMnOの混合割合は、LiMnが生成するための量論比であり、基本的には、Li:Mn=1:2(モル比)となるように設定すべきであるが、結晶構造中の酸素欠損が発生しやすいため、生成物をLiMnと表した場合、xの範囲を0.95≦x≦1.20となるようにリチウム含有量を調整することが好ましい。
In the conventional method for producing a positive electrode material for a lithium ion secondary battery, a solid-phase reaction in a mixed raw material of a lithium compound and a compound such as an oxide such as nickel, manganese, cobalt, or a hydroxide is used. The reactant remained and could not be produced with high efficiency.
Therefore, the inventors of the present application fixed one particle size distribution using Li 2 CO 3 (lithium compound) and MnO 2 (metal compound), which are raw materials of the positive electrode material for secondary batteries, and the other particle size distribution. Combined with those having different distributions, mixed powders of these combinations were packed in a ceramic mortar and fired, and it was examined whether the reaction occurred completely, that is, there were no unreacted substances. Incidentally, the firing-reaction with Li 2 CO 3 and MnO 2, as a positive electrode material for a secondary battery, LiMn 2 O 4 (complex oxide) are obtained. The mixing ratio of Li 2 CO 3 and MnO 2 is a stoichiometric ratio for generating LiMn 2 O 4 and should basically be set so that Li: Mn = 1: 2 (molar ratio). However, since oxygen vacancies are likely to occur in the crystal structure, when the product is expressed as Li x Mn 2 O 4 , the lithium content is such that the range of x is 0.95 ≦ x ≦ 1.20. Is preferably adjusted.
 図1(A)は、MnOの粒度の検証に用いられるLiCOの粒度分布を示すグラフであり、(B)は、LiCOの粒度の検証に用いられるMnOの粒度分布を示すグラフである。図1(A)のLiCOは平均粒径D50が2.8μmであり、図1(B)のMnOは平均粒径D50が1.8μmである。なお、以下に示す焼成条件とは、焼成温度800℃、焼成時間60分で焼成したものであり、800℃までの昇温時間が40分、800℃の保持時間が20分である。 1A is a graph showing the particle size distribution of Li 2 CO 3 used for verification of the particle size of MnO 2 , and FIG. 1B is the particle size distribution of MnO 2 used for verification of the particle size of Li 2 CO 3. It is a graph which shows. Li 2 CO 3 in FIG. 1 (A) has an average particle size D 50 of 2.8 μm, and MnO 2 in FIG. 1 (B) has an average particle size D 50 of 1.8 μm. The firing conditions shown below are those fired at a firing temperature of 800 ° C. and a firing time of 60 minutes. The temperature rising time to 800 ° C. is 40 minutes and the holding time at 800 ° C. is 20 minutes.
 まず、図1(A)のグラフに示す粒度分布を有するLiCOの粉末と、図2(A)のグラフに示す粒度分布を有し、平均粒径D50が53.8μmのMnOの粉末とを混合し、上述の焼成条件で焼成した。焼成後のものについて、XRD(X線回折法)を用いて回折パターンを測定した。その結果、図2(B)に示すように、未反応物および不純物を示す回折ピークがあり、反応が不完全であった。 First, the powder of Li 2 CO 3 having the particle size distribution shown in the graph of FIG. 1A and the MnO 2 having the particle size distribution shown in the graph of FIG. 2A and an average particle size D 50 of 53.8 μm. The powder was mixed and fired under the above-mentioned firing conditions. About the thing after baking, the diffraction pattern was measured using XRD (X-ray diffraction method). As a result, as shown in FIG. 2B, there were diffraction peaks indicating unreacted substances and impurities, and the reaction was incomplete.
 次に、図1(A)のグラフに示す粒度分布を有するLiCOの粉末と、図3(A)のグラフに示す粒度分布を有し、平均粒径D50が42.0μmのMnOの粉末とを混合し、上述の焼成条件で焼成した。焼成後のものについて、XRD(X線回折法)を用いて回折パターンを測定した。その結果、図3(B)に示すように、未反応物および不純物を示す回折ピークがあり、反応が不完全であった。 Next, Li 2 CO 3 powder having the particle size distribution shown in the graph of FIG. 1A and MnO having the particle size distribution shown in the graph of FIG. 3A and an average particle size D 50 of 42.0 μm. 2 powder was mixed and fired under the above-mentioned firing conditions. About the thing after baking, the diffraction pattern was measured using XRD (X-ray diffraction method). As a result, as shown in FIG. 3 (B), there were diffraction peaks indicating unreacted substances and impurities, and the reaction was incomplete.
 また、図1(A)のグラフに示す粒度分布を有するLiCOの粉末と、図4(A)のグラフに示す粒度分布を有し、平均粒径D50が39.8μmのMnOの粉末とを混合し、上述の焼成条件で焼成した。焼成後のものについて、XRD(X線回折法)を用いて回折パターンを測定した。その結果、図4(B)に示すように、未反応物および不純物を示す回折ピークがあり、反応が不完全であった。 Further, FIG. 1 and powder of Li 2 CO 3 having a particle size distribution shown in the graph of (A), FIG. 4 has a particle size distribution shown in the graph of (A), the average particle diameter D 50 of 39.8μm MnO 2 The powder was mixed and fired under the above-mentioned firing conditions. About the thing after baking, the diffraction pattern was measured using XRD (X-ray diffraction method). As a result, as shown in FIG. 4B, there were diffraction peaks indicating unreacted substances and impurities, and the reaction was incomplete.
 また、図1(A)のグラフに示す粒度分布を有するLiCOの粉末と、図5(A)のグラフに示す粒度分布を有し、平均粒径D50が35.5μmのMnOの粉末とを混合し、上述の焼成条件で焼成した。焼成後のものについて、XRD(X線回折法)を用いて回折パターンを測定した。その結果、図5(B)に示すように、未反応物および不純物を示す回折ピークがなく、反応が完全に起こっていた。 Further, FIG. 1 and powder of Li 2 CO 3 having a particle size distribution shown in the graph of (A), FIG. 5 has a particle size distribution shown in the graph of (A), the average particle diameter D 50 of 35.5μm MnO 2 The powder was mixed and fired under the above-mentioned firing conditions. About the thing after baking, the diffraction pattern was measured using XRD (X-ray diffraction method). As a result, as shown in FIG. 5B, there was no diffraction peak indicating unreacted substances and impurities, and the reaction occurred completely.
 また、図1(A)のグラフに示す粒度分布を有するLiCOの粉末と、図6(A)のグラフに示す粒度分布を有し、平均粒径D50が31.8μmのMnOの粉末とを混合し、上述の焼成条件で焼成した。焼成後のものについて、XRD(X線回折法)を用いて回折パターンを測定した。その結果、図6(B)に示すように、未反応物および不純物を示す回折ピークがなく、反応が完全に起こっていた。 Further, FIG. 1 and powder of Li 2 CO 3 having a particle size distribution shown in the graph of (A), has a particle size distribution shown in the graph of FIG. 6 (A), the average particle diameter D 50 of MnO of 31.8Myuemu 2 The powder was mixed and fired under the above-mentioned firing conditions. About the thing after baking, the diffraction pattern was measured using XRD (X-ray diffraction method). As a result, as shown in FIG. 6 (B), there was no diffraction peak indicating unreacted substances and impurities, and the reaction occurred completely.
 以上のことから、MnOにおいては、平均粒径D50が35.5μm以下の場合には、反応が完全に起こっていたことがわかる。
 一方、図1(B)のグラフに示す粒度分布を有するMnOの粉末と、図7(A)のグラフに示す粒度分布を有し、平均粒径D50が26.9μmのLiCOの粉末とを混合し、上述の焼成条件で焼成した。焼成後のものについて、XRD(X線回折法)を用いて回折パターンを測定した。その結果、図7(B)に示すように、未反応物および不純物を示す回折ピークがあり、反応が不完全であった。
From the above, it can be seen that in MnO 2 , the reaction occurred completely when the average particle diameter D 50 was 35.5 μm or less.
On the other hand, MnO 2 powder having the particle size distribution shown in the graph of FIG. 1B and Li 2 CO 3 having the particle size distribution shown in the graph of FIG. 7A and an average particle size D 50 of 26.9 μm. The powder was mixed and fired under the above-mentioned firing conditions. About the thing after baking, the diffraction pattern was measured using XRD (X-ray diffraction method). As a result, as shown in FIG. 7B, there were diffraction peaks indicating unreacted substances and impurities, and the reaction was incomplete.
 また、図1(B)のグラフに示す粒度分布を有するMnOの粉末と、図8(A)のグラフに示す粒度分布を有し、平均粒径D50が21.0μmのLiCOの粉末とを混合し、上述の焼成条件で焼成した。焼成後のものについて、XRD(X線回折法)を用いて回折パターンを測定した。その結果、図8(B)に示すように、未反応物および不純物を示す回折ピークがあり、反応が不完全であった。 Moreover, the powder of MnO 2 having the particle size distribution shown in the graph of FIG. 1 (B) and Li 2 CO 3 having the particle size distribution shown in the graph of FIG. 8 (A) and an average particle size D 50 of 21.0 μm. The powder was mixed and fired under the above-mentioned firing conditions. About the thing after baking, the diffraction pattern was measured using XRD (X-ray diffraction method). As a result, as shown in FIG. 8B, there were diffraction peaks indicating unreacted substances and impurities, and the reaction was incomplete.
 また、図1(B)のグラフに示す粒度分布を有するMnOの粉末と、図9(A)のグラフに示す粒度分布を有し、平均粒径D50が19.8μmのLiCOの粉末とを混合し、上述の焼成条件で焼成した。焼成後のものについて、XRD(X線回折法)を用いて回折パターンを測定した。その結果、図9(B)に示すように、未反応物および不純物を示す回折ピークがなく、反応が完全に起こっていた。
 なお、図1(A)、(B)、図2(A)、図3(A)、図4(A)、図5(A)、図6(A)、図7(A)、図8(A)および図9(A)に示す粒度分布は、それぞれ、Microtrac HRA(日機装社製)を用いて測定したものである。
Moreover, the powder of MnO 2 having the particle size distribution shown in the graph of FIG. 1 (B) and Li 2 CO 3 having the particle size distribution shown in the graph of FIG. 9 (A) and an average particle size D 50 of 19.8 μm. The powder was mixed and fired under the above-mentioned firing conditions. About the thing after baking, the diffraction pattern was measured using XRD (X-ray diffraction method). As a result, as shown in FIG. 9B, there was no diffraction peak indicating unreacted substances and impurities, and the reaction occurred completely.
1 (A), (B), FIG. 2 (A), FIG. 3 (A), FIG. 4 (A), FIG. 5 (A), FIG. 6 (A), FIG. The particle size distributions shown in (A) and FIG. 9 (A) are each measured using Microtrac HRA (manufactured by Nikkiso Co., Ltd.).
 以上のことから、LiCOにおいては、平均粒径D50が19.8μm以下の場合には、反応が完全に起こっていたことがわかる。
 以上のように、本願発明者は、二次電池用正極材料の原料であるLiCOとMnOとを用いて、それぞれ一方の粒度分布を固定し、他方の粒度分布を変えて焼成を行い、反応が完全に起こるか、すなわち、未反応物がないかを調べた結果、MnOにおいては平均粒径D50が35.5μm以下の場合、LiCOにおいては平均粒径D50が19.8μm以下の場合に反応が完全に起こるという知見を得た。
 本発明においては、二次電池用正極材料の製造方法において、原料となるリチウム化合物の最大粒径をDLmaxとし、金属化合物の最大粒径をDmmaxとするとき、DLmaxを19.8μm以下とし、Dmmaxを35.5μm以下とすることにより、これら二者を混合して焼成した場合、未反応物が残ることなく、従来よりも短い時間で焼成することができることを見出した。
From the above, it can be seen that, in Li 2 CO 3 , the reaction occurred completely when the average particle diameter D 50 was 19.8 μm or less.
As described above, the inventor of the present invention uses Li 2 CO 3 and MnO 2 which are raw materials of the positive electrode material for secondary batteries, respectively, to fix one particle size distribution and change the other particle size distribution to perform firing. As a result of investigating whether or not the reaction occurred completely, that is, whether or not there was an unreacted product, when MnO 2 had an average particle diameter D 50 of 35.5 μm or less, Li 2 CO 3 had an average particle diameter D 50 It was found that the reaction occurred completely when 1 was 19.8 μm or less.
In the present invention, in the method for producing a cathode material for a secondary battery, the maximum particle size of the lithium compound as a raw material and DL max, when the maximum particle size of the metal compound and Dm max, 19.8 below DL max And when Dm max is set to 35.5 μm or less, when these two are mixed and fired, it has been found that unreacted substances are not left and firing can be performed in a shorter time than before.
 以下、本発明の二次電池用正極材料の製造方法の数値限定理由について説明する。 Hereinafter, the reason for limiting the numerical value of the method for producing the positive electrode material for the secondary battery of the present invention will be described.
 本発明においては、原料となるリチウム化合物の最大粒径をDLmaxとし、金属化合物の最大粒径をDmmaxとするとき、DLmaxを19.8μm以下とし、Dmmaxを35.5μm以下とする。
 本発明においては、上述のように、MnOにおいては平均粒径D50が35.5μm以下の場合、LiCOにおいては平均粒径D50が19.8μm以下の場合に反応が完全に起こるという知見を得ている。これにより、リチウム化合物と金属化合物との反応性が更に高まり、未反応物の残留が抑制される。
 また、本発明においては、リチウム化合物は、例えば、LiOH、LiO、またはLiCOであり、金属化合物は、例えば、MnO、MnO、Mn、Mn、またはMnCOである。二次電池用正極材料として得られる複合酸化物としては、例えば、LiMnである。
In the present invention, when the maximum particle size of the lithium compound as a raw material is DL max and the maximum particle size of the metal compound is Dm max , DL max is 19.8 μm or less, and Dm max is 35.5 μm or less. .
In the present invention, as described above, when MnO 2 has an average particle size D 50 of 35.5 μm or less, Li 2 CO 3 has a complete reaction when the average particle size D 50 is 19.8 μm or less. We have the knowledge that it will happen. Thereby, the reactivity of a lithium compound and a metal compound further increases, and the residue of an unreacted substance is suppressed.
In the present invention, the lithium compound is, for example, LiOH, Li 2 O, or Li 2 CO 3 , and the metal compound is, for example, MnO, MnO 2 , Mn 2 O 3 , Mn 3 O 4 , or MnCO 3 . An example of a composite oxide obtained as a positive electrode material for a secondary battery is LiMn 2 O 4 .
 本発明の上述の知見は、XRDを用いて得られたものである。このXRDにおいては、その測定の性質上、微量の混入物の検出は困難である。このため、シャープな粒度分布を持つ原料を作成し、焼成試験を行い、未反応物が検出されたときの平均粒径を閾値とした。その閾値よりも大きい粒子は反応していないと考える。このため、本発明においては、反応が完全に生じる粒径の規定は、MnOについては最大粒径を35.5μm以下とし、LiCOについては最大粒径を19.8μm以下とした。
 MnOについて最大粒径が35.5μmを超えたものを用いて焼成した場合、未反応物が多く残留する虞があり、効率が悪くなる。
 また、同様に、LiCOについて最大粒径が19.8μmを超えたものを用いて焼成した場合も、未反応物が多く残留する虞があり、効率が悪くなる。
The above findings of the present invention have been obtained using XRD. In this XRD, it is difficult to detect a trace amount of contaminants due to the nature of the measurement. For this reason, a raw material having a sharp particle size distribution was prepared, a firing test was performed, and the average particle size when unreacted substances were detected was used as a threshold value. Particles larger than the threshold are considered unreacted. For this reason, in the present invention, the particle size at which the reaction occurs completely is set such that the maximum particle size is 35.5 μm or less for MnO 2 and the maximum particle size is 19.8 μm or less for Li 2 CO 3 .
When firing with MnO 2 having a maximum particle size exceeding 35.5 μm, a large amount of unreacted material may remain, resulting in poor efficiency.
Similarly, when firing using Li 2 CO 3 having a maximum particle size exceeding 19.8 μm, a large amount of unreacted substances may remain, resulting in poor efficiency.
 本発明においては、リチウム化合物の粉体と金属化合物の粉体とを混合してなる混合粉を650℃以上1000℃以下の温度範囲で、昇温開始時間から達温して温度保持の合計が1時間を超えない時間焼成する。
 焼成温度が650℃未満では、反応が十分に進行せず、目的のLiMnを完全に焼成できないという虞がある。
 焼成温度が1000℃を超えると、焼成される材料自身の電気特性が低下し、焼成に使用する(匣鉢、ヒータ等)の耐久性も著しく低下するという虞がある。
 また、昇温開始時間から達温して温度保持の合計が1時間を超えると、生産効率の観点から好ましくないものとなる。
In the present invention, the mixed powder obtained by mixing the powder of the lithium compound and the powder of the metal compound is heated from the temperature rising start time in the temperature range of 650 ° C. to 1000 ° C. Bake for no more than 1 hour.
When the firing temperature is less than 650 ° C., the reaction does not proceed sufficiently, and the target LiMn 2 O 4 may not be completely fired.
If the firing temperature exceeds 1000 ° C., the electrical characteristics of the material to be fired itself may be lowered, and the durability of the material used for firing (eg, mortar, heater) may be significantly reduced.
In addition, when the temperature is reached from the temperature rising start time and the total temperature holding exceeds 1 hour, it is not preferable from the viewpoint of production efficiency.
 本実施形態のリチウムイオン二次電池用正極材料の製造方法においては、まず、最大粒径が35.5μm以下のMnOの粉末と、最大粒径が19.8μm以下のLiCOの粉末とを混合し、混合粉を得る。 In the method for producing a positive electrode material for a lithium ion secondary battery of the present embodiment, first, a MnO 2 powder having a maximum particle size of 35.5 μm or less and a Li 2 CO 3 powder having a maximum particle size of 19.8 μm or less. To obtain a mixed powder.
 なお、最大粒径が35.5μm以下のMnOの粉末は、MnOの粉末を粉砕機で粉砕したり、分級機で分級したりして得られるものである。また、同様に、最大粒径が19.8μm以下のLiCOの粉末も、LiCOの粉末を粉砕機で粉砕したり、分級機で分級したりして得られるものである。
 なお、MnOの粉末とLiCOの粉末は、いずれも、例えば、Microtrac HRA(日機装社製)により、その最大粒径が測定される。
The MnO 2 powder having a maximum particle size of 35.5 μm or less is obtained by pulverizing the MnO 2 powder with a pulverizer or classifying it with a classifier. Similarly, Li 2 CO 3 powder having a maximum particle size of 19.8 μm or less is also obtained by pulverizing Li 2 CO 3 powder with a pulverizer or classifying with a classifier.
Note that the maximum particle size of both the MnO 2 powder and the Li 2 CO 3 powder is measured by, for example, Microtrac HRA (manufactured by Nikkiso Co., Ltd.).
 次に、箱型炉を用いて混合粉を、例えば、焼成温度800℃、反応が終了するまでの時間を60分とした条件で焼成する。なお、800℃までの昇温時間を40分とし、800℃の保持時間を20分とする。 Next, the mixed powder is baked using a box furnace under the conditions of, for example, a baking temperature of 800 ° C. and a time until the reaction is completed for 60 minutes. Note that the temperature rising time to 800 ° C. is 40 minutes, and the holding time at 800 ° C. is 20 minutes.
 次に、このLiMnの焼成体を、粉砕機、例えば、スーパージェットミル(日清エンジニアリング社製)を用いて粉砕し、更には、分級機、例えば、ターボクラシファイア(日清エンジニアリング社製)またはエアロファインクラシファイア(日清エンジニアリング社製)を用いて分級する。これにより、所定の粒径を備える二次電池用正極材料を得ることができる。 Next, the fired body of LiMn 2 O 4 is pulverized using a pulverizer such as a super jet mill (manufactured by Nisshin Engineering Co., Ltd.), and further, a classifier such as a turbo classifier (manufactured by Nisshin Engineering Co., Ltd.). ) Or aero fine classifier (manufactured by Nissin Engineering Co., Ltd.). Thereby, the positive electrode material for secondary batteries provided with a predetermined particle diameter can be obtained.
 このように、本実施形態においては、最大粒径Dmaxが35.5μm以下のMnOの粉末と、最大粒径Dmaxが19.8μm以下のLiCOの粉末とを混合した混合粉を用いることにより、比較的焼成時間が短くても、未反応物が残ることなく反応が起り、高い効率で、二次電池用正極材料を得ることができる。
 なお、本実施形態においては、箱型炉を用いて焼成したが、これに限定されるものではない。例えば、ロータリーキルン等の連続式加熱炉やローラーハースキルン等の半バッチ式加熱炉を用いても、未反応物が残ることなく反応が起り、高い効率で、二次電池用正極材料を得ることができる。
Thus, in this embodiment, mixed powder maximum particle diameter D max and the following MnO 2 powder 35.5Myuemu, the maximum particle diameter D max is obtained by mixing a powder of the following Li 2 CO 3 19.8 By using, even if the firing time is relatively short, the reaction occurs without remaining unreacted material, and a positive electrode material for a secondary battery can be obtained with high efficiency.
In addition, in this embodiment, although it baked using the box furnace, it is not limited to this. For example, even when a continuous heating furnace such as a rotary kiln or a semi-batch heating furnace such as a roller hearth kiln is used, the reaction occurs without remaining unreacted materials, and a positive electrode material for a secondary battery can be obtained with high efficiency. it can.
 以上、本発明の二次電池用正極材料の製造方法について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良または変更をしてもよいのはもちろんである。 As mentioned above, although the manufacturing method of the positive electrode material for secondary batteries of this invention was demonstrated in detail, this invention is not limited to the said embodiment, In the range which does not deviate from the main point of this invention, various improvement or a change is carried out. Of course it is also good.

Claims (2)

  1.  二次電池用正極材料の製造方法であって、
     原料となるリチウム化合物の最大粒径をDLmaxとし、金属化合物の最大粒径をDmmaxとするとき、前記DLmaxが19.8μm以下のものを用い、前記Dmmaxが35.5μm以下のものを用いて、前記リチウム化合物の粉体と前記金属化合物の粉体とを混合して混合粉を得る工程と、
     前記混合粉を650℃以上1000℃以下の温度範囲で、昇温開始から達温して温度保持の合計が1時間を超えない時間焼成して反応させ、リチウムと前記金属との複合酸化物を二次電池用正極材料として得る工程とを有することを特徴とする二次電池用正極材料の製造方法。
    A method for producing a positive electrode material for a secondary battery, comprising:
    When the maximum particle size of the lithium compound used as a raw material is DL max and the maximum particle size of the metal compound is Dm max , the DL max is 19.8 μm or less, and the Dm max is 35.5 μm or less. A step of mixing the lithium compound powder and the metal compound powder to obtain a mixed powder;
    The mixed powder is baked and reacted in a temperature range of 650 ° C. to 1000 ° C. from the start of temperature rise and the total temperature holding does not exceed 1 hour, and the composite oxide of lithium and the metal is reacted. And a process for obtaining a positive electrode material for a secondary battery.
  2.  前記リチウム化合物は、LiOH、LiO、またはLiCOであり、前記金属化合物は、MnO、MnO、Mn、Mn、またはMnCOであり、前記複合酸化物は、LiMnである請求項1に記載の二次電池用正極材料の製造方法。 The lithium compound is LiOH, Li 2 O, or Li 2 CO 3 , the metal compound is MnO, MnO 2 , Mn 2 O 3 , Mn 3 O 4 , or MnCO 3 , and the composite oxide is the method of the positive electrode material for a secondary battery according to claim 1 which is LiMn 2 O 4.
PCT/JP2010/062622 2009-08-21 2010-07-27 Process for production of positive electrode material for secondary batteries WO2011021481A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009192173A JP2011044347A (en) 2009-08-21 2009-08-21 Method of manufacturing positive electrode material for secondary battery
JP2009-192173 2009-08-21

Publications (1)

Publication Number Publication Date
WO2011021481A1 true WO2011021481A1 (en) 2011-02-24

Family

ID=43606936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062622 WO2011021481A1 (en) 2009-08-21 2010-07-27 Process for production of positive electrode material for secondary batteries

Country Status (2)

Country Link
JP (1) JP2011044347A (en)
WO (1) WO2011021481A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9238812B2 (en) 2010-09-30 2016-01-19 Lsip, Llc Agent for suppressing expression of dominant mutant gene
KR102377093B1 (en) 2016-07-28 2022-03-21 스미또모 가가꾸 가부시끼가이샤 Manufacturing method of lithium nickel composite oxide

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676824A (en) * 1992-08-27 1994-03-18 Nippondenso Co Ltd Manufacture of nonaqueous electrolyte secondary battery
JPH09147859A (en) * 1995-11-27 1997-06-06 Nec Corp Positive electrode active material for organic electrolyte secondary battery, its preparation and organic electrolyte secondary battery
JPH10130025A (en) * 1996-10-29 1998-05-19 Honjiyou Chem Kk Production of lithium-manganese double oxide having spinel structure
JP2001206721A (en) * 2000-01-21 2001-07-31 Nippon Chem Ind Co Ltd Method of manufacturing lithium manganese multiple oxide, lithium secondary cell positive electrode plate and lithium secondary cell
JP2007238436A (en) * 2007-04-20 2007-09-20 Mitsubishi Chemicals Corp Method for manufacturing lithium manganate, and nonaqueous solvent secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676824A (en) * 1992-08-27 1994-03-18 Nippondenso Co Ltd Manufacture of nonaqueous electrolyte secondary battery
JPH09147859A (en) * 1995-11-27 1997-06-06 Nec Corp Positive electrode active material for organic electrolyte secondary battery, its preparation and organic electrolyte secondary battery
JPH10130025A (en) * 1996-10-29 1998-05-19 Honjiyou Chem Kk Production of lithium-manganese double oxide having spinel structure
JP2001206721A (en) * 2000-01-21 2001-07-31 Nippon Chem Ind Co Ltd Method of manufacturing lithium manganese multiple oxide, lithium secondary cell positive electrode plate and lithium secondary cell
JP2007238436A (en) * 2007-04-20 2007-09-20 Mitsubishi Chemicals Corp Method for manufacturing lithium manganate, and nonaqueous solvent secondary battery

Also Published As

Publication number Publication date
JP2011044347A (en) 2011-03-03

Similar Documents

Publication Publication Date Title
KR101746187B1 (en) Positive electrode active material for rechargable lithium battery, and rechargable lithium battery including the same
CN106575761B (en) Positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same
JP5401211B2 (en) Method for producing positive electrode material for secondary battery
CN102341941B (en) Positive electrode active material for lithium ion battery
JP5479096B2 (en) Method for producing lithium metal phosphate
KR101378580B1 (en) Cathod active material, lithium rechargeble battery including the same, and method of activiting the same
JP4096754B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
KR101409191B1 (en) Manufacturing method of cathode active material for lithium secondary battery
CN107406274B (en) Method for producing lithium metal composite oxide having layer structure
JP2006107845A (en) Cathode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using this, and its manufacturing method
KR20120017004A (en) Positive electrode materials combining high safety and high power in a li rechargeable battery
JP2006107818A (en) Cathode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using this and its manufacturing method
CN105938901B (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP7468590B2 (en) Lithium Compound Powder
US10236512B2 (en) Preparation method of battery composite material and precursor thereof
KR102086100B1 (en) Manufacturing method of metal coated cathode active material And cathode active material made by the same
JP2008156163A (en) Spinel type lithium manganese oxide and method for manufacturing the same
KR20110061204A (en) Positive active material for lithium secondary battery and lithium secondary battery comprising the same
JP3007859B2 (en) Method for preparing high capacity LiMn2O4 secondary battery anode compound
US20160260968A1 (en) "B" AND "O" SITE DOPED AB2O4 SPINEL CATHODE MATERIAL, METHOD OF PREPARING THE SAME, AND RECHARGEABLE LITHIUM AND Li-ION ELECTROCHEMICAL SYSTEMS CONTAINING THE SAME
JP4628704B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP2012230810A (en) Lithium titanate, electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
WO2011021481A1 (en) Process for production of positive electrode material for secondary batteries
JP2001122626A (en) Lithium-manganese multi-component oxide, method for manufacturing the same, lithium secondary battery positive electrode active material and lithium secondary battery
WO2014185548A1 (en) Positive electrode active material for lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10809826

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10809826

Country of ref document: EP

Kind code of ref document: A1