JP3613869B2 - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery Download PDF

Info

Publication number
JP3613869B2
JP3613869B2 JP00706496A JP706496A JP3613869B2 JP 3613869 B2 JP3613869 B2 JP 3613869B2 JP 00706496 A JP00706496 A JP 00706496A JP 706496 A JP706496 A JP 706496A JP 3613869 B2 JP3613869 B2 JP 3613869B2
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
composite oxide
active material
electrolyte battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP00706496A
Other languages
Japanese (ja)
Other versions
JPH09199127A (en
Inventor
定幸 浅岡
庄一郎 渡邊
茂雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP00706496A priority Critical patent/JP3613869B2/en
Publication of JPH09199127A publication Critical patent/JPH09199127A/en
Application granted granted Critical
Publication of JP3613869B2 publication Critical patent/JP3613869B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解液二次電池の、特にその正極活物質の結晶構造に関するものである。
【0002】
【従来の技術】
近年、民生用電子機器のポータブル化、コードレス化が急速に進んでいる。現在、これら電子機器の駆動用電源としての役割をニッケル−カドミウム電池あるいは密閉型小型鉛蓄電池が担っているが、ポータブル化、コードレス化が進展し定着するに従い、駆動用電源となる二次電池の高エネルギー密度化、小型軽量化の要望が強くなっている。
【0003】
このような状況から、例えば特開昭63−59507号公報に示されているように、高い作動電圧を示すリチウム複合遷移金属酸化物例えばLiCoOを正極活物質に用い、リチウムイオンの挿入・離脱を利用した非水電解液二次電池が提案されている。
【0004】
【発明が解決しようとする課題】
リチウムコバルト複合酸化物は作動電圧は高いものの資源的に稀少でコストの面で割高となり、また放電容量も小さい。これに対してリチウムニッケル複合酸化物は資源的には豊富であるが放電容量は十分であるとはいえず、充放電サイクルを繰り返し行うことにより容量が徐々に低下するサイクル劣化の問題がある。
【0005】
これらの問題を解決するために、粉末X線回折法によりリチウムニッケル複合酸化物の結晶状態と放電容量との相関について様々な検討がなされている。線源にCuKαを用いた粉末X線回折における2θ=18°〜20°付近の(003)面の回折ピーク及び2θ=44°〜46°付近の(104)面の回折ピークの強度比(特開平6−60887号公報、特開平5−290845号公報、特開平6−215773号公報)や半価幅(特開平6−267539号公報)と放電容量との間に一定の相関があることが報告されている。
【0006】
またLiNiOは電池の充放電に伴い結晶相が変化することが報告されており(W.Li,J.N.Reimers and J.R.Dahn,Solid State Ionics,123−130,67(1993))、特に充電終止電圧に対応する0.18≦x≦0.32の領域では、いずれもR−3mに帰属されるC軸長の異なる2種類の結晶相が混在することが知られている。
【0007】
結晶中に上述の様な2種類の結晶相が存在することにより結晶に歪みが生じ、充放電サイクルを繰り返すうちに構造破壊が生じ一部が可逆性を失って充放電容量が低下するものと考えられる。
【0008】
一方、米国特許第4,980,080号、特開平5−325966号公報に示されているように、リチウムニッケル複合酸化物のニッケルの一部をコバルトで置換したLiNi(1−y)Coが合成され、サイクル特性の改善が報告されている。
【0009】
本発明の目的は上記正極活物質に関する問題点の解決を図るものであり、充電終了時において正極活物質中に2種類の結晶相が混在することにより結晶構造が破壊されることを防止して、充放電サイクル特性の優れた非水電解液二次電池を提供するものである。
【0010】
【課題を解決するための手段】
本発明は一般式LixNi(1-y)y2(0≦x≦1.2,0<y≦0.5,MはTi,V,Cr,Mn,Fe,Co,Cu,Zn,Al,Bの金属元素のうち一種類以上)で表されるリチウムニッケル複合酸化物(ただし、下記の一般式(I)
LixNi1-yMey2 (I)
(式中、MeはNi以外の遷移金属元素、0<x<1.1、0≦y<0.6を表す)で表されるリチウム複合酸化物において、X線回折によるリートベルト解析法による3aサイトに占めるリチウム含有率が90%以上で、かつ六方晶の層状化合物(空間群R−3m)に属する上記リチウム複合酸化物の純度が90%以上であることを特徴とするリチウム複合酸化物を除く)、
を主材とする正極と、リチウム、リチウム合金またはリチウムイオンを吸蔵・放出する化合物を主材とする負極とを備えたリチウム電池に関するものであって、前記リチウムニッケル複合酸化物が、充電終了時において単一の結晶相のみから成り、R−3mに帰属される結晶相となることを特徴とする。
【0011】
ここで、充電終了時とは、充電時の電池の開回路電圧がリチウムに対して3.9〜4.3Vで、かつ正極活物質のXの値が0.1≦X≦0.5である場合である。
【0012】
【発明の実施の形態】
具体的には、リチウムニッケル複合酸化物のニッケルの一部を異種元素で置換すると共に、その置換元素の添加方法は、ニッケル水酸化物と置換元素水酸化物を濃度を限定すると共に同時に析出させる共沈法により生成したNi(1−y)(OH)を原料とし、リチウム化合物と共に焼成することによるものである。
【0013】
前記の方法で合成したLiNi(1−y)は、充電終了時の正極板のCuKα線を使用したX線回折において、2θ=18°〜20°付近の回折ピークおよび2θ=44°〜46°付近の回折ピークが単一ピークであることを特徴とする。
【0014】
なお、正極板そのもののX線回折の測定は、正極板の平面をX線装置の試料台に平行に設置して行った。
【0015】
LiNiOには充電終止電圧に対応する0.18≦x≦0.32の領域では、いずれもR−3mに帰属されるC軸長の異なる2種類の結晶相が混在することが知られている。
【0016】
このため充放電サイクルを繰り返すたびに結晶に歪みが生じ、構造破壊により一部が可逆性を失って充放電容量が低下するものと考えられる。
【0017】
本発明のLiNi(1−y)で表されるリチウムニッケル複合酸化物のうち、充電終了時の正極板のCuKα線を使用したX線回折において、2θ=18°〜20°付近の回折ピークおよび2θ=44°〜46°付近の回折ピークがともに単一ピークとなるものは、R−3mまたはC2/mに帰属される単一の結晶相のみを有するため、充電終止電圧付近における結晶格子の歪みが小さく構造破壊を防止でき、電池の充放電サイクル特性を向上させることができる。
【0018】
なお、このような特性は単にニッケルの一部を異種元素で置換するだけでは得られないものである。
【0019】
【実施例】
以下、本発明の実施例を図面を参照しながら説明する。
【0020】
なお、試作電池の充電は4.2Vまで定電流500mAで行った後、さらに4.2Vの定電圧でトータル2時間行い、放電は3.0Vまで定電流750mAで行った。
【0021】
充電状態の正極板のX線回折の測定は、5サイクル目の充電状態の電池を分解して正極板を取り出し、正極板の平面をX線装置の試料台に平行に設置し、CuKα線を使用して行った。本発明の実施例および比較例の電池の充電終了時における正極板のX線回折図を図1(a)〜(c)に示す。また比較として充電前の電池の正極板のX線回折図を図1(d)に示す。
【0022】
(実施例1)
図2に本実施例で用いた円筒形電池の縦断面図を示す。図2において1は耐有機電解液性のステンレス鋼板を加工した電池ケース、2は安全弁を設けた封口板、3は絶縁パッキングを示す。4は極板群であり、正極板5及び負極板6がセパレーター7を介して複数回渦巻状に巻回されてケース内に収納されている。そして上記正極板5からは正極アルミリード5aが引き出されて封口板2に接続され、負極板6からは負極ニッケルリード6aが引き出されて電池ケース1の底部に接続されている。8は絶縁リングで極板群4の上下部にそれぞれ設けられている。
【0023】
負極合剤は、コークスを加熱処理した炭素粉100重量部に、スチレンブタジエンゴム3.5重量部を混合し、カルボキシメチルセルロース水溶液に懸濁させたペースト状ものを用いた。このペーストを厚さ0.015mmの銅箔の両面に塗着し、乾燥後0.2mmに圧延し、幅39mm、長さ425mmの大きさに切り出して負極板6とした。
【0024】
正極活物質の合成には共沈法により合成した水酸化ニッケルを用いた。すなわち、硫酸ニッケル(NiSO)水溶液と硫酸コバルト(CoSO)水溶液を混合し、温度及びpHを制御して沈殿を析出させ、ニッケルの一部をCoで置換した一般式Ni(1−y)Co(OH)で表される水酸化ニッケルのうち、y=0.10、0.15、0.20、0.30および0.50のものを合成した。但し、他のコバルト塩(例えばCo(NO)を用いた場合にも同様の合成が可能であった。
【0025】
水酸化リチウム−水和物(LiOH・HO)と上記水酸化ニッケル(Ni(1−y)Co(OH))とのLi:Ni+Co原子比1:1混合物を空気雰囲気下、700℃で5時間熱処理してリチウムニッケル複合酸化物粉末LiNi(1−y)Coを得た。
【0026】
正極合剤は、前記正極活物質粉末100重量部に、アセチレンブラック5重量部、ポリフッ化ビニリデン(PVDF)5重量部を混合し、N−メチルピロリジノンに懸濁させたペースト状のものを用いた。このペーストを厚さ0.020mmのアルミニウム(Al)箔の両面に塗着し、乾燥後0.13mmに圧延し、幅37mm、長さ380mmの大きさに切り出して正極板5とした。
【0027】
炭酸エチレン(EC)と炭酸ジエチル(DEC)の等容積混合溶媒に、六フッ化リン酸リチウム(LiPF)を1.5mol/lの割合で溶解させ電解液とした。
【0028】
正極板5と負極板6をセパレーター7を介して渦巻状に巻回し、直径16.3mm、高さ50.7mmの電池ケースに収納した。電解液を極板群4に注入した後、電池を密封口し、試験電池とした。
【0029】
この様にして作製した電池のうち、y=0.10のものを電池A、y=0.15のものを電池B、y=0.20のものを電池C、y=0.30のものを電池D、y=0.50のものを電池Eとした。
【0030】
電池A,B,C,D,Eの充電終了時の正極板のX線回折図はいずれも図1(a)と同様の特徴を有していた。すなわち、2θ=18°〜20°付近の回折ピークおよび2θ=44°〜46°付近の回折ピークが共に単一ピークであった。このX線回折図により、R−3mに帰属される単一の結晶相のみを有する。
【0031】
(実施例2)
ニッケルの一部をMnで置換した一般式Ni(1−y)Mn(OH)で表される水酸化ニッケルのうち、y=0.11および0.16のものを共沈法により合成した。水酸化リチウム−水和物(LiOH・HO)と前記水酸化ニッケル(Ni(1−y)Mn(OH))とのLi:Ni+Mn原子比1:1混合物を空気雰囲気下、800℃で24時間熱処理してリチウムニッケル複合酸化物粉末LiNi(1−y)Mnを得た。
【0032】
y=0.11のものを電池F、y=0.16のものを電池Gとした。
電池FおよびGの充電終了時の正極板のX線回折図はいずれも図1(a)と同様の特徴を有していた。すなわち、2θ=18°〜20°付近の回折ピークおよび2θ=44°〜46°付近の回折ピークが共に単一ピークであった。このX線回折図により、R−3mに帰属される単一の結晶相のみを有する。
【0033】
(実施例3)
ニッケルの一部をAlで置換した一般式Ni(1−y)Al(OH)で表される水酸化ニッケルのうち、y=0.10のものを共沈法により合成した。水酸化リチウム−水和物(LiOH・HO)と前記水酸化ニッケル(Ni(1−y)Al(OH))とのLi:Ni+Al原子比1:1混合物を空気雰囲気下、700℃で5時間熱処理してリチウムニッケル複合酸化物粉末LiNi(1−y)Alを得た。
【0034】
前記正極活物質粉末を用いた他は(実施例1)と同様に電池を作製し、この電池を電池Hとした。
【0035】
電池Hの充電終了時の正極板のX線回折図はいずれも図1(a)と同様の特徴を有していた。すなわち、2θ=18°〜20°付近の回折ピークおよび2θ=44°〜46°付近の回折ピークが共に単一ピークであった。このX線回折図により、R−3mに帰属される単一の結晶相のみを有する。
【0036】
(比較例1)
水酸化リチウム−水和物(LiOH・HO)と水酸化ニッケル(Ni(OH))とのLi:Ni原子比1:1混合物を酸素雰囲気下、700℃で13時間熱処理してリチウムニッケル複合酸化物粉末LiNiOを得た。
【0037】
前記正極活物質粉末を用いた他は(実施例1)と同様に電池を作製し、この電池を電池Iとした。
【0038】
電池Iの充電状態の正極板のX線回折図は図1(b)に示すように2θ=18°〜20°付近の回折ピークおよび2θ=44°〜46°付近の回折ピークが共に分裂している。このX線回折図により、いずれもR−3mに帰属されるC軸長の異なる2種類の結晶相が混在することが分かる。
【0039】
(比較例2)
水酸化ニッケル(Ni(OH))と酸化コバルト(Co)のNi/Co比0.95/0.05、0.90/0.10、0.85/0.15、0.80/0.20および0.50/0.50混合物に、それぞれ水酸化リチウム−水和物(LiOH・HO)をLi:Ni+Co原子比1:1で混合し、酸素雰囲気下、700℃で5時間熱処理してリチウムニッケル複合酸化物粉末LiNi(1−y)Co(y=0.05,0.10,0.15,0.20,0.50)を得た。
【0040】
前記正極活物質粉末を用いた他は(実施例1)と同様に電池を作製し、このうち、y=0.05のものを電池J、y=0.10のものを電池K、y=0.15のものを電池L、y=0.20のものを電池M、y=0.50のものを電池Nとした。
【0041】
電池J,K,L,M,Nの充電状態の正極板のX線回折図はいずれも図1(c)と同様の特徴を有していた。すなわち、2θ=18°〜20°付近の回折ピークの低角側にわずかに分裂ピークが見られ、回折ピーク自体が広幅化している。このX線回折図により、わずかに複数の結晶相が混在し結晶相が乱れていることが分かる。
【0042】
本発明の実施例および比較例の電池のサイクル試験結果を(表1)に示す。なお、電池A〜Nはそれぞれ30個組み立てて試験を行い、(表1)には平均値を示した。
【0043】
【表1】

Figure 0003613869
【0044】
この試験結果から以下のことが分かる。
LiNiOを正極活物質として用いた電池Iでは、X線回折図により、活物質中にいずれもR−3mに帰属されるC軸長の異なる2種類の結晶相が混在することが分かる。結晶中にこの様な2種類の結晶相が存在することにより結晶に歪みが生じ、充放電サイクルを繰り返すうちに構造破壊が生じ一部が可逆性を失って充放電容量が低下するため、電池Iはサイクル特性が極端に悪いことが分かる。
【0045】
LiOH・HO、Ni(OH)およびCoから成る混合物を熱処理することによって得られたLiNi(1−y)Coを正極活物質として用いた電池J,K,L,M,Nでは、X線回折図により、わずかに複数の結晶相が混在し結晶相が乱れていることが分かる。これらの電池の場合にも結晶の歪みにより構造破壊が生じるため、電池J,K,L,M,Nはサイクル特性が悪いことが分かる。
【0046】
共沈法により生成したNi(1−y)Co(OH)(0<y≦0.5)から合成したリチウムニッケル複合酸化物LiNi(1−y)Coを正極活物質として用いた電池A,B,C,D,Eでは、X線回折図により、活物質中にR−3mに帰属される単一の結晶相のみを有する。この様なリチウムニッケル複合酸化物では充電終止電圧付近における結晶格子の歪みが小さく構造破壊を生じないため、電池A,B,C,D,Eは良好なサイクル特性を示す。
【0047】
但し、電池Aの充電状態の正極板のX線回折図は、2θ=18°〜20°付近の回折ピークおよび2θ=44°〜46°付近の回折ピークが共にわずかに非対称であり、わずかに結晶相が乱れている。このため電池B,Cは電池Aに比べサイクル特性が優れており、Coによる置換量はy>0.10が好ましい。
【0048】
また、y=0.5の電池Eは初期容量が低く好ましくない。従って、Coによる置換量は0.10<y≦0.30が好ましい。
【0049】
共沈法により生成したM=Mn,AlであるNi(1−y)(OH)(0<y≦0.3)から合成したリチウムニッケル複合酸化物LiNi(1−y)を正極活物質として用いた電池F,G,Hの充電状態の正極板のX線回折図もまた図1(a)に類似したものとなり、初期放電容量は上記のM=Coである電池A,B,Cに比べて低いものの、良好なサイクル特性を示す。
【0050】
その他の置換元素(M=Ti,V,Cr,Fe,Cu,Zn,B等)についても同様の効果が得られた。また、上記実施例においては水酸化リチウムを用いて正極活物質を合成したが、炭酸リチウムや硝酸リチウム等のリチウム塩を用いても同様の効果が得られた。
【0051】
上記実施例においては円筒形の電池を用いて評価を行ったが、角形など電池形状が異なっても同様の効果が得られる。
【0052】
さらに、上記実施例において負極には炭素材料を用いたが、本発明における効果は正極板において作用するため、リチウムイオンを吸蔵・放出可能な物質であれば特に制限なく用いることができる。例えばリチウムやリチウム合金、Fe、WO等の酸化物、TiS等の硫化物など、他の負極材料を用いても同様の効果が得られる。
【0053】
また、上記実施例において電解液として六フッ化リン酸リチウム(LiPF)を使用したが、他のリチウム含有塩、例えば過塩素酸リチウム(LiCiO)、トリフルオロメチルスルホン酸リチウム(CFSOLi)、六フッ化砒酸リチウム(LiAsF)等でも同様の効果が得られた。
【0054】
さらに、上記実施例では炭酸エチレン(EC)と炭酸ジエチル(DEC)の混合溶媒を用いたが、他の非水溶媒、例えば炭酸プロピレン(PC)等の環状エステル、テトラヒドロフラン(THF)等の環状エーテル、ジメトキシエタン(DME)等の鎖状エーテル、プロピオン酸メチル(MP)等の鎖状エステルなどの非水溶媒や、これらの多元系混合溶媒を用いても同様の効果が得られた。
【0055】
【発明の効果】
以上の説明から明らかなように、本発明は充電終了時にR−3mに帰属される単一の結晶相のみを有するリチウムニッケル複合酸化物を正極活物質に用いることにより、充電終止電圧付近における結晶格子の歪みが小さく構造破壊を防止でき、電池の充放電サイクル特性を向上させることができる。
【0056】
充放電サイクル特性の優れた非水電解液二次電池を提供することができる。
【図面の簡単な説明】
【図1】(a) 充電後の電池A〜Hの正極板のX線回折図
(b) 充電後の電池Iの正極板のX線回折図
(c) 充電後の電池J〜Nの正極板のX線回折図
(d) 充電前の電池A〜Eの正極板のX線回折図
【図2】円筒形電池の縦断面図
【符号の説明】
1 電池ケース
2 封口板
3 絶縁パッキング
4 極板群
5 正極板
5a 正極リード
6 負極板
6b 負極リード
7 セパレーター
8 絶縁リング[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a crystal structure of a non-aqueous electrolyte secondary battery, particularly a positive electrode active material thereof.
[0002]
[Prior art]
In recent years, consumer electronic devices have become increasingly portable and cordless. Currently, nickel-cadmium batteries or sealed small lead-acid batteries play a role as power sources for driving these electronic devices. However, as portable and cordless devices become more established and established, secondary batteries that serve as power sources for drive The demand for higher energy density and smaller and lighter weight is increasing.
[0003]
Under such circumstances, for example, as disclosed in Japanese Patent Laid-Open No. 63-59507, lithium composite transition metal oxide showing a high operating voltage, for example, LiCoO 2 is used as a positive electrode active material, and lithium ion insertion / extraction is performed. A non-aqueous electrolyte secondary battery using the above has been proposed.
[0004]
[Problems to be solved by the invention]
Although the lithium cobalt composite oxide has a high operating voltage, it is rare in terms of resources, is expensive in terms of cost, and has a small discharge capacity. On the other hand, lithium nickel composite oxide is abundant in terms of resources, but it cannot be said that the discharge capacity is sufficient, and there is a problem of cycle deterioration in which the capacity gradually decreases by repeatedly performing the charge / discharge cycle.
[0005]
In order to solve these problems, various studies have been made on the correlation between the crystalline state of the lithium nickel composite oxide and the discharge capacity by powder X-ray diffraction. Intensity ratio of diffraction peak of (003) plane near 2θ = 18 ° to 20 ° and diffraction peak of (104) plane near 2θ = 44 ° to 46 ° in powder X-ray diffraction using CuKα as a radiation source (special There is a certain correlation between the discharge capacity and the half-value width (Japanese Patent Laid-Open No. 6-267539) and the half-width (Japanese Patent Laid-Open No. 6-267539), and It has been reported.
[0006]
Li x NiO 2 has also been reported to change in crystal phase as the battery is charged and discharged (W. Li, JN Reimers and JR Dahn, Solid State Ionics, 123-130, 67 ( 1993)), in particular, in the region of 0.18 ≦ x ≦ 0.32 corresponding to the end-of-charge voltage, it is known that two types of crystal phases with different C-axis lengths belonging to R-3m are mixed. ing.
[0007]
Due to the presence of the two types of crystal phases as described above in the crystal, the crystal is distorted, the structure is destroyed while repeating the charge / discharge cycle, and part of it loses reversibility and the charge / discharge capacity decreases. Conceivable.
[0008]
On the other hand, as shown in US Pat. No. 4,980,080 and JP-A-5-325966, Li x Ni (1-y) in which a part of nickel in the lithium nickel composite oxide is substituted with cobalt. Co y O 2 has been synthesized and improved cycle characteristics have been reported.
[0009]
The object of the present invention is to solve the above-mentioned problems related to the positive electrode active material, and prevents the crystal structure from being destroyed by the mixture of two types of crystal phases in the positive electrode active material at the end of charging. The present invention provides a non-aqueous electrolyte secondary battery having excellent charge / discharge cycle characteristics.
[0010]
[Means for Solving the Problems]
The present invention has the general formula Li x Ni (1-y) M y O 2 (0 ≦ x ≦ 1.2,0 <y ≦ 0.5, M is Ti, V, Cr, Mn, Fe, Co, Cu, Lithium nickel composite oxide represented by one or more metal elements of Zn, Al, and B (however, the following general formula (I)
Li x Ni 1-y Me y O 2 (I)
(In the formula, Me represents a transition metal element other than Ni, 0 <x <1.1, 0 ≦ y <0.6). According to the Rietveld analysis method by X-ray diffraction, Lithium composite oxide characterized in that the lithium content in the 3a site is 90% or more and the purity of the lithium composite oxide belonging to the hexagonal layered compound (space group R-3m) is 90% or more except for),
And a lithium battery comprising a negative electrode mainly composed of lithium, a lithium alloy or a compound that absorbs and releases lithium ions, wherein the lithium nickel composite oxide is at the end of charging. It comprises only a single crystal phase in, characterized in that the crystalline phase to be assigned to R-3 m.
[0011]
Here, at the end of charging, the open circuit voltage of the battery at the time of charging is 3.9 to 4.3 V with respect to lithium, and the value of X of the positive electrode active material is 0.1 ≦ X ≦ 0.5. This is the case.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Specifically, a part of nickel in the lithium nickel composite oxide is replaced with a different element, and the addition method of the replacement element is to simultaneously deposit nickel hydroxide and the replacement element hydroxide while limiting the concentration. This is because Ni (1-y) M y (OH) 2 produced by the coprecipitation method is used as a raw material and calcined with a lithium compound.
[0013]
Li x Ni (1-y) M y O 2 synthesized by the above method has a diffraction peak around 2θ = 18 ° to 20 ° and 2θ in X-ray diffraction using CuKα rays of the positive electrode plate at the end of charging. A diffraction peak near 44 ° to 46 ° is a single peak.
[0014]
The X-ray diffraction measurement of the positive electrode plate itself was performed with the plane of the positive electrode plate placed parallel to the sample stage of the X-ray apparatus.
[0015]
It is known that Li x NiO 2 contains two types of crystal phases having different C-axis lengths belonging to R-3m in the region of 0.18 ≦ x ≦ 0.32 corresponding to the end-of-charge voltage. It has been.
[0016]
For this reason, it is considered that each time the charge / discharge cycle is repeated, the crystal is distorted, and part of the crystal loses reversibility due to structural destruction, resulting in a decrease in charge / discharge capacity.
[0017]
Among the lithium nickel composite oxides represented by Li x Ni (1-y) M y O 2 of the present invention, in X-ray diffraction using CuKα rays of the positive electrode plate at the end of charging, 2θ = 18 ° to 20 ° When the diffraction peak in the vicinity of ° C and the diffraction peak in the vicinity of 2θ = 44 ° to 46 ° both have a single peak have only a single crystal phase attributed to R-3m or C2 / m, the charging is terminated. The distortion of the crystal lattice in the vicinity of the voltage is small, structural breakdown can be prevented, and the charge / discharge cycle characteristics of the battery can be improved.
[0018]
Such characteristics cannot be obtained simply by replacing a part of nickel with a different element.
[0019]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0020]
The prototype battery was charged at a constant current of 500 mA up to 4.2 V, then further charged at a constant voltage of 4.2 V for a total of 2 hours, and discharged at a constant current of 750 mA up to 3.0 V.
[0021]
The X-ray diffraction measurement of the charged positive electrode plate is performed by disassembling the charged battery in the fifth cycle, taking out the positive electrode plate, placing the plane of the positive electrode plate parallel to the sample stage of the X-ray apparatus, and Done using. 1A to 1C show X-ray diffraction patterns of the positive electrode plate at the end of charging of the batteries of the examples and comparative examples of the present invention. For comparison, an X-ray diffraction diagram of the positive electrode plate of the battery before charging is shown in FIG.
[0022]
(Example 1)
FIG. 2 shows a longitudinal sectional view of the cylindrical battery used in this example. In FIG. 2, 1 is a battery case obtained by processing an organic electrolyte resistant stainless steel plate, 2 is a sealing plate provided with a safety valve, and 3 is an insulating packing. Reference numeral 4 denotes an electrode plate group, in which a positive electrode plate 5 and a negative electrode plate 6 are wound in a spiral shape through a separator 7 and accommodated in a case. A positive electrode aluminum lead 5 a is drawn from the positive electrode plate 5 and connected to the sealing plate 2, and a negative electrode nickel lead 6 a is drawn from the negative electrode plate 6 and connected to the bottom of the battery case 1. Insulating rings 8 are provided at the upper and lower portions of the electrode plate group 4, respectively.
[0023]
As the negative electrode mixture, a paste was used in which 3.5 parts by weight of styrene butadiene rubber was mixed with 100 parts by weight of carbon powder obtained by heat-treating coke and suspended in an aqueous carboxymethyl cellulose solution. This paste was applied to both sides of a 0.015 mm thick copper foil, dried and rolled to 0.2 mm, and cut into a size of 39 mm width and 425 mm length to obtain a negative electrode plate 6.
[0024]
Nickel hydroxide synthesized by a coprecipitation method was used for the synthesis of the positive electrode active material. That is, nickel sulfate (NiSO 4) aqueous cobalt sulfate (CoSO 4) aqueous solution were mixed to precipitate precipitated by controlling the temperature and pH, generally a portion of the nickel has been replaced by Co formula Ni (1-y) Among nickel hydroxides represented by Co y (OH) 2 , those having y = 0.10, 0.15, 0.20, 0.30 and 0.50 were synthesized. However, the same synthesis was possible when other cobalt salts (for example, Co (NO 3 ) 2 ) were used.
[0025]
A Li: Ni + Co atomic ratio 1: 1 mixture of lithium hydroxide-hydrate (LiOH.H 2 O) and the above nickel hydroxide (Ni (1-y) Co y (OH) 2 ) was added in an air atmosphere to 700 ° C. 5 hours heat treatment to at obtain a lithium nickel composite oxide powder LiNi (1-y) Co y O 2.
[0026]
The positive electrode mixture used was a paste in which 100 parts by weight of the positive electrode active material powder was mixed with 5 parts by weight of acetylene black and 5 parts by weight of polyvinylidene fluoride (PVDF) and suspended in N-methylpyrrolidinone. . This paste was applied to both surfaces of an aluminum (Al) foil having a thickness of 0.020 mm, dried and rolled to 0.13 mm, cut into a size of 37 mm in width and 380 mm in length to obtain a positive electrode plate 5.
[0027]
Lithium hexafluorophosphate (LiPF 6 ) was dissolved in an equal volume mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) at a rate of 1.5 mol / l to obtain an electrolytic solution.
[0028]
The positive electrode plate 5 and the negative electrode plate 6 were spirally wound through a separator 7 and stored in a battery case having a diameter of 16.3 mm and a height of 50.7 mm. After injecting the electrolyte solution into the electrode plate group 4, the battery was sealed and used as a test battery.
[0029]
Of the batteries thus produced, those with y = 0.10 are batteries A, those with y = 0.15 are batteries B, those with y = 0.20 are batteries C, and those with y = 0.30. Was designated as battery D, and battery E was designated as y = 0.50.
[0030]
All of the X-ray diffraction patterns of the positive electrode plate at the end of charging of the batteries A, B, C, D, and E had the same characteristics as in FIG. That is, the diffraction peak around 2θ = 18 ° to 20 ° and the diffraction peak around 2θ = 44 ° to 46 ° were both single peaks. According to this X-ray diffraction pattern, it has only a single crystal phase attributed to R-3m.
[0031]
(Example 2)
Of the nickel hydroxide represented by the general formula Ni (1-y) Mn y (OH) 2 to a portion of the nickel has been replaced by Mn, synthesized by coprecipitation those y = 0.11 and 0.16 did. Lithium hydroxide - Li of a hydrate (LiOH · H 2 O) and the nickel hydroxide (Ni (1-y) Mn y (OH) 2): Ni + Mn atomic ratio of 1: 1 mixture under an air atmosphere, 800 ℃ in and heat-treated for 24 hours to obtain a lithium nickel composite oxide powder LiNi (1-y) Mn y O 2.
[0032]
The battery with y = 0.11 was designated as battery F, and the battery with y = 0.16 was designated as battery G.
The X-ray diffraction pattern of the positive electrode plate at the end of the charging of the batteries F and G had the same characteristics as in FIG. That is, the diffraction peak around 2θ = 18 ° to 20 ° and the diffraction peak around 2θ = 44 ° to 46 ° were both single peaks. According to this X-ray diffraction pattern, it has only a single crystal phase attributed to R-3m.
[0033]
(Example 3)
Among nickel hydroxides represented by the general formula Ni (1-y) Al y (OH) 2 in which a part of nickel was substituted with Al, those having y = 0.10 were synthesized by a coprecipitation method. A Li: Ni + Al atomic ratio 1: 1 mixture of lithium hydroxide-hydrate (LiOH.H 2 O) and the nickel hydroxide (Ni (1-y) Al y (OH) 2 ) was added in an air atmosphere to 700 ° C. 5 hours heat treatment to at obtain a lithium nickel composite oxide powder LiNi (1-y) Al y O 2.
[0034]
A battery was produced in the same manner as in Example 1 except that the positive electrode active material powder was used.
[0035]
The X-ray diffraction pattern of the positive electrode plate at the end of charging of the battery H had the same characteristics as in FIG. That is, the diffraction peak around 2θ = 18 ° to 20 ° and the diffraction peak around 2θ = 44 ° to 46 ° were both single peaks. According to this X-ray diffraction pattern, it has only a single crystal phase attributed to R-3m.
[0036]
(Comparative Example 1)
Lithium hydroxide-hydrate (LiOH.H 2 O) and nickel hydroxide (Ni (OH) 2 ) in a Li: Ni atomic ratio 1: 1 mixture were heat-treated at 700 ° C. for 13 hours in an oxygen atmosphere. Nickel composite oxide powder LiNiO 2 was obtained.
[0037]
A battery was produced in the same manner as in Example 1 except that the positive electrode active material powder was used, and this battery was designated as Battery I.
[0038]
As shown in FIG. 1B, the X-ray diffraction diagram of the positive electrode plate in the charged state of the battery I shows that both the diffraction peak around 2θ = 18 ° to 20 ° and the diffraction peak around 2θ = 44 ° to 46 ° are split. ing. It can be seen from this X-ray diffraction diagram that two types of crystal phases having different C-axis lengths belonging to R-3m are mixed.
[0039]
(Comparative Example 2)
Ni / Co ratio of nickel hydroxide (Ni (OH) 2 ) to cobalt oxide (Co 3 O 4 ) 0.95 / 0.05, 0.90 / 0.10, 0.85 / 0.15,. Lithium hydroxide-hydrate (LiOH.H 2 O) was mixed with the 80 / 0.20 and 0.50 / 0.50 mixtures at a Li: Ni + Co atomic ratio of 1: 1, respectively, and 700 ° C. in an oxygen atmosphere. Then, a lithium nickel composite oxide powder LiNi (1-y) Co y O 2 (y = 0.05, 0.10, 0.15, 0.20, 0.50) was obtained.
[0040]
Batteries were prepared in the same manner as in Example 1 except that the positive electrode active material powder was used. Among them, batteries with y = 0.05 were batteries J, batteries with y = 0.10 were batteries K, and y = The battery with 0.15 was designated as battery L, the battery with y = 0.20 was designated as battery M, and the battery with y = 0.50 was designated as battery N.
[0041]
The X-ray diffraction patterns of the positive plates of the batteries J, K, L, M, and N in the charged state all had the same characteristics as in FIG. That is, a split peak is slightly seen on the low angle side of the diffraction peak near 2θ = 18 ° to 20 °, and the diffraction peak itself is broadened. From this X-ray diffraction diagram, it can be seen that a plurality of crystal phases are slightly mixed and the crystal phases are disordered.
[0042]
Table 1 shows the cycle test results of the batteries of Examples and Comparative Examples of the present invention. Each of the batteries A to N was assembled and tested, and (Table 1) shows an average value.
[0043]
[Table 1]
Figure 0003613869
[0044]
From the test results, the following can be understood.
In the battery I using LiNiO 2 as the positive electrode active material, it can be seen from the X-ray diffraction diagram that two types of crystal phases having different C-axis lengths belonging to R-3m are mixed in the active material. The presence of these two types of crystal phases in the crystal causes distortion in the crystal, which causes structural destruction during repeated charge / discharge cycles, and partly loses reversibility, thus reducing the charge / discharge capacity. It can be seen that I has extremely poor cycle characteristics.
[0045]
Batteries J, K, and L using LiNi (1-y) Co y O 2 obtained by heat-treating a mixture of LiOH.H 2 O, Ni (OH) 2 and Co 3 O 4 as a positive electrode active material , M, and N, it can be seen from the X-ray diffraction diagram that a plurality of crystal phases are slightly mixed and the crystal phases are disordered. In these batteries as well, structural breakdown occurs due to crystal distortion, so that it can be seen that batteries J, K, L, M, and N have poor cycle characteristics.
[0046]
Lithium nickel composite oxide LiNi (1-y) Co y O 2 synthesized from Ni (1-y) Co y (OH) 2 (0 <y ≦ 0.5) produced by the coprecipitation method is used as the positive electrode active material. The batteries A, B, C, D, and E used have only a single crystal phase belonging to R-3m in the active material according to an X-ray diffraction diagram. In such a lithium nickel composite oxide, since the distortion of the crystal lattice near the end-of-charge voltage is small and structural breakdown does not occur, the batteries A, B, C, D, and E exhibit good cycle characteristics.
[0047]
However, the X-ray diffraction diagram of the positive electrode plate in the charged state of the battery A shows that the diffraction peak around 2θ = 18 ° to 20 ° and the diffraction peak around 2θ = 44 ° to 46 ° are both slightly asymmetric, The crystal phase is disordered. Therefore, the batteries B and C have better cycle characteristics than the battery A, and the substitution amount by Co is preferably y> 0.10.
[0048]
Further, the battery E with y = 0.5 is not preferable because of its low initial capacity. Therefore, the substitution amount by Co is preferably 0.10 <y ≦ 0.30.
[0049]
Li-nickel composite oxide LiNi (1-y) M y synthesized from Ni (1-y) M y (OH) 2 (0 <y ≦ 0.3) where M = Mn, Al produced by the coprecipitation method The X-ray diffraction pattern of the positive electrode plates in the charged state of the batteries F, G, and H using O 2 as the positive electrode active material is also similar to FIG. 1A, and the initial discharge capacity is M = Co described above. Although it is lower than batteries A, B and C, it shows good cycle characteristics.
[0050]
Similar effects were obtained with other substitution elements (M = Ti, V, Cr, Fe, Cu, Zn, B, etc.). In the above examples, the positive electrode active material was synthesized using lithium hydroxide, but the same effect was obtained even when lithium salts such as lithium carbonate and lithium nitrate were used.
[0051]
In the above examples, evaluation was performed using a cylindrical battery, but the same effect can be obtained even if the battery shape is different, such as a square.
[0052]
Furthermore, although a carbon material is used for the negative electrode in the above-described examples, the effect of the present invention is that the positive electrode plate acts, so that any material that can occlude / release lithium ions can be used without particular limitation. For example, the same effect can be obtained by using other negative electrode materials such as lithium, lithium alloy, oxides such as Fe 2 O 3 and WO 2 , and sulfides such as TiS 2 .
[0053]
Moreover, although lithium hexafluorophosphate (LiPF 6 ) was used as the electrolytic solution in the above examples, other lithium-containing salts such as lithium perchlorate (LiCiO 4 ), lithium trifluoromethylsulfonate (CF 3 SO) 3 Li), lithium hexafluoroarsenate (LiAsF 6 ), and the like, the same effect was obtained.
[0054]
Further, in the above examples, a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) was used, but other non-aqueous solvents, for example, cyclic esters such as propylene carbonate (PC), cyclic ethers such as tetrahydrofuran (THF), etc. The same effect was obtained even when a non-aqueous solvent such as a chain ether such as dimethoxyethane (DME) or a chain ester such as methyl propionate (MP), or a multicomponent mixed solvent thereof was used.
[0055]
【The invention's effect】
As apparent from the above description, the present invention is by using the lithium nickel composite oxide having only a single crystal phase to be assigned to R-3 m at the end of charge in the positive electrode active material, in the vicinity of the charge end voltage The distortion of the crystal lattice is small and structural breakdown can be prevented, and the charge / discharge cycle characteristics of the battery can be improved.
[0056]
A nonaqueous electrolyte secondary battery having excellent charge / discharge cycle characteristics can be provided.
[Brief description of the drawings]
FIG. 1 (a) X-ray diffraction pattern of positive plates of batteries A to H after charging (b) X-ray diffraction pattern of positive plates of battery I after charging (c) Positive electrodes of batteries J to N after charging X-ray diffraction pattern of the plate (d) X-ray diffraction pattern of the positive electrode plates of the batteries A to E before charging [FIG. 2] Longitudinal sectional view of the cylindrical battery [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Battery case 2 Sealing plate 3 Insulation packing 4 Electrode plate group 5 Positive electrode plate 5a Positive electrode lead 6 Negative electrode plate 6b Negative electrode lead 7 Separator 8 Insulation ring

Claims (5)

リチウム、リチウム合金またはリチウムイオンを吸蔵・放出する化合物からなる負極と、正極と、非水溶媒に電解質を溶解した電解液とからなる非水電解液電池において、
前記正極活物質が一般式LixNi(1-y)y2(0≦x≦1.2,0<y≦0.5,MはTi,V,Cr,Mn,Fe,Co,Cu,Zn,Al,Bの金属元素のうち一種類以上)で表されるリチウム複合酸化物であり、
前記リチウム複合酸化物が、充電終了時において単一の結晶相のみから成り、R−3mに帰属される結晶相となることを特徴とする非水電解液電池(ただし、正極活物質が下記の一般式(I)
LixNi1-yMey2 (I)
(式中、MeはNi以外の遷移金属元素、0<x<1.1、0≦y<0.6を表す)で表されるリチウム複合酸化物において、X線回折によるリートベルト解析法による3aサイトに占めるリチウム含有率が90%以上で、かつ六方晶の層状化合物(空間群R−3m)に属する上記リチウム複合酸化物の純度が90%以上であることを特徴とするリチウム複合酸化物である場合を除く)。
In a non-aqueous electrolyte battery comprising a negative electrode made of lithium, a lithium alloy or a compound that occludes / releases lithium ions, a positive electrode, and an electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent,
The positive active material is the formula Li x Ni (1-y) M y O 2 (0 ≦ x ≦ 1.2,0 <y ≦ 0.5, M is Ti, V, Cr, Mn, Fe, Co, A lithium composite oxide represented by one or more of Cu, Zn, Al, and B metal elements,
The lithium composite oxide consists only a single crystal phase at the time of charge termination, a nonaqueous electrolyte battery characterized by comprising a crystal phase which is attributable to R-3 m (provided that the positive electrode active material is below General formula (I)
Li x Ni 1-y Me y O 2 (I)
(Wherein, Me represents a transition metal element other than Ni, 0 <x <1.1, 0 ≦ y <0.6), in a lithium composite oxide represented by a Rietveld analysis method by X-ray diffraction Lithium composite oxide, characterized in that the lithium content in the 3a site is 90% or more and the purity of the lithium composite oxide belonging to the hexagonal layered compound (space group R-3m) is 90% or more Except when).
電池の充電終了時の開回路電圧がリチウムに対して3.9〜4.3Vである請求項1記載の非水電解液電池。The non-aqueous electrolyte battery according to claim 1, wherein an open circuit voltage at the end of charging of the battery is 3.9 to 4.3 V with respect to lithium. 充電終了時の正極活物質のx値が0.1≦x≦0.5である請求項1記載の非水電解液電池。The nonaqueous electrolyte battery according to claim 1, wherein an x value of the positive electrode active material at the end of charging is 0.1 ≦ x ≦ 0.5. 前記正極活物質を用いた電池の充電終了時の正極板のCuKα線を使用したX線回折図において、2θ=18°〜20°付近の回折ピークおよび2θ=44°〜46°付近の回折ピークが単一ピークであることを特徴とする請求項1記載の非水電解液電池。In the X-ray diffraction diagram using CuKα rays of the positive electrode plate at the end of charging of the battery using the positive electrode active material, a diffraction peak around 2θ = 18 ° to 20 ° and a diffraction peak around 2θ = 44 ° to 46 ° The nonaqueous electrolyte battery according to claim 1, wherein is a single peak. 前記正極活物質が共沈法で生成したNi(1−y)(OH)とLi化合物から合成したリチウム複合酸化物であることを特徴とする請求項1記載の非水電解液電池。The non-aqueous electrolyte battery according to claim 1, wherein the positive electrode active material is a lithium composite oxide synthesized from Ni (1-y) M y (OH) 2 and a Li compound produced by a coprecipitation method. .
JP00706496A 1996-01-19 1996-01-19 Non-aqueous electrolyte battery Expired - Lifetime JP3613869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00706496A JP3613869B2 (en) 1996-01-19 1996-01-19 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00706496A JP3613869B2 (en) 1996-01-19 1996-01-19 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH09199127A JPH09199127A (en) 1997-07-31
JP3613869B2 true JP3613869B2 (en) 2005-01-26

Family

ID=11655646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00706496A Expired - Lifetime JP3613869B2 (en) 1996-01-19 1996-01-19 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP3613869B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100632979B1 (en) 2000-11-16 2006-10-11 히다치 막셀 가부시키가이샤 Lithium-containing composite oxide and nonaqueous secondary cell using the same, and method for manufacturing the same
JP4320548B2 (en) * 2001-03-14 2009-08-26 株式会社ジーエス・ユアサコーポレーション Positive electrode active material and non-aqueous electrolyte secondary battery using the same
JP3827545B2 (en) 2001-09-13 2006-09-27 松下電器産業株式会社 Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery
JP4836371B2 (en) 2001-09-13 2011-12-14 パナソニック株式会社 Positive electrode active material and non-aqueous electrolyte secondary battery including the same
JP4197237B2 (en) 2002-03-01 2008-12-17 パナソニック株式会社 Method for producing positive electrode active material
US9391325B2 (en) 2002-03-01 2016-07-12 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
CN101626080B (en) 2008-10-17 2011-02-09 成都晶元新材料技术有限公司 Nickel-cobalt-manganese multiplex doped lithium ion battery anode material and preparation method thereof
KR101255539B1 (en) * 2010-12-14 2013-04-16 삼성에스디아이 주식회사 Positive electrode active material for lithium battery and lithium battery using the same
JP6052643B2 (en) * 2016-01-06 2016-12-27 株式会社Gsユアサ Non-aqueous electrolyte secondary battery active material, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
CN111430678A (en) * 2019-10-29 2020-07-17 蜂巢能源科技有限公司 Positive electrode material of lithium ion battery and preparation method thereof
EP4084141A4 (en) * 2019-12-26 2023-07-05 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte secondary battery
JP7284244B1 (en) * 2021-12-08 2023-05-30 住友化学株式会社 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP7244615B1 (en) * 2021-12-08 2023-03-22 住友化学株式会社 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery

Also Published As

Publication number Publication date
JPH09199127A (en) 1997-07-31

Similar Documents

Publication Publication Date Title
KR100609789B1 (en) Non-Aqueous Electrolyte Secondary Battery
JP3008793B2 (en) Manufacturing method of positive electrode active material for lithium secondary battery
JP3631197B2 (en) Nonaqueous electrolyte secondary battery
JP2002075367A (en) Positive electrode active material for lithium battery, manufacturing method for the active material, and secondary battery using it
JP2000223122A (en) Positive electrode active material for lithium secondary battery and its manufacture, positive electrode for lithium secondary battery using the positive electrode active material and its manufacture, and lithium secondary battery using the positive electrode and its manufacture
JP2010064944A (en) Lithium-nickel composite oxide and nonaqueous electrolyte secondary battery using the lithium-nickel composite oxide as positive electrode active material
JPH11135119A (en) Active material and positive plate for nonaqueous electrolyte secondary battery, and the nonaqueous electrolyte secondary battery
KR100276053B1 (en) Manufacturing method of positive electrode active material for nonaqueous electrolyte secondary battery
JP3613869B2 (en) Non-aqueous electrolyte battery
JP2003238165A (en) Lithium-containing compound oxide and its production method
WO2012081518A2 (en) Nonaqueous electrolyte secondary battery
JP2000195513A (en) Nonaqueous electrolyte secondary battery
JP3120789B2 (en) Non-aqueous electrolyte secondary battery
JP3588338B2 (en) Non-aqueous electrolyte secondary battery
JP3420425B2 (en) Non-aqueous electrolyte secondary battery
JP2014096330A (en) Positive electrode active material, lithium battery, and process of manufacturing positive electrode active material
JPH09171824A (en) Nonaqueous electrolyte secondary battery
JPH11111291A (en) Positive electrode material for nonaqueous secondary battery and battery using this
EP0831542A1 (en) Method for producing positive active material of lithium secondary battery
JP3751133B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP3776230B2 (en) Lithium secondary battery
JP2002075361A (en) Lithium ion secondary battery
KR101244737B1 (en) Negative electrode for lithium secondary battery and lithium secondary battery comprising same
JPH0822826A (en) Synthesizing method for positive active material of nonaqueous secondary battery
JP3746099B2 (en) Cathode active material for lithium battery and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

EXPY Cancellation because of completion of term