KR19990052170A - Lithium-cobalt-manganese oxide (LICOXMN2-XO4) of cathode material of 5V class lithium secondary battery and its manufacturing method - Google Patents

Lithium-cobalt-manganese oxide (LICOXMN2-XO4) of cathode material of 5V class lithium secondary battery and its manufacturing method Download PDF

Info

Publication number
KR19990052170A
KR19990052170A KR1019970071619A KR19970071619A KR19990052170A KR 19990052170 A KR19990052170 A KR 19990052170A KR 1019970071619 A KR1019970071619 A KR 1019970071619A KR 19970071619 A KR19970071619 A KR 19970071619A KR 19990052170 A KR19990052170 A KR 19990052170A
Authority
KR
South Korea
Prior art keywords
lithium
cobalt
secondary battery
manganese oxide
lithium secondary
Prior art date
Application number
KR1019970071619A
Other languages
Korean (ko)
Other versions
KR100269249B1 (en
Inventor
강성구
장순호
장기호
류광선
Original Assignee
정선종
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정선종, 한국전자통신연구원 filed Critical 정선종
Priority to KR1019970071619A priority Critical patent/KR100269249B1/en
Priority to JP10364949A priority patent/JPH11250912A/en
Publication of KR19990052170A publication Critical patent/KR19990052170A/en
Application granted granted Critical
Publication of KR100269249B1 publication Critical patent/KR100269249B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1242Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]-, e.g. LiMn2O4, Li[MxMn2-x]O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/006Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 리튬 2차전지의 양극 물질에 관한 것으로, 양극물질로서 리튬-코발트-망간 산화물을 제안하고, 그 제조방법 및 그를 이용한 리튬 2차전지를 제공하기 위한 것이다. 일반적으로 리튬 2차전지는 양극, 전해질, 음극으로 구성된다. 종래의 4V급 양극물질로 알려진 리튬-망간 산화물은 가격이 저렴하고 실제 용량이 110mAh/g 정도로 비교적 높으나, 화학량론적인 화합물의 제조가 어렵고, 사이클의 반복에 따른 결정구조 변형에 의해 용량 감소 등의 전극특성이 열화되는 단점이 있다. 본 발명에서는 상기의 단점을 개선하기 위해 망간 대신 코발트를 치환한 리튬-코발트-망간화합물을 제안한다. 상기의 리튬-코발트-망간 화합물은 리튬-망간 화합물에 비해 구조적으로 안정하여 사이클 반복에 따른 용량 감소가 적으며, 고전압에도 적용이 가능하다.The present invention relates to a positive electrode material of a lithium secondary battery, and proposes a lithium-cobalt-manganese oxide as a positive electrode material, and a production method thereof and a lithium secondary battery using the same. Generally, a lithium secondary battery is composed of a cathode, an electrolyte, and a cathode. Lithium-manganese oxide, known as a conventional 4V anode material, is inexpensive and has a relatively high capacity of 110 mAh / g. However, it is difficult to produce a stoichiometric compound, and a reduction in capacity There is a disadvantage that electrode characteristics are deteriorated. The present invention proposes a lithium-cobalt-manganese compound in which cobalt is substituted for manganese in order to improve the above disadvantages. The lithium-cobalt-manganese compound is structurally stable as compared with the lithium-manganese compound, so that the reduction in capacity due to cycle repetition is small and can be applied to a high voltage.

Description

5V급 리튬 2차전지의 양극물질 리튬-코발트-망간 산화물(LiCoxMn2-xO4) 및 그 제조 방법Lithium-cobalt-manganese oxide (LiCoxMn2-xO4) as a cathode material of 5V-class lithium secondary battery and method for manufacturing the same

본 발명은 리튬 2차전지의 양극물질에 관한 것으로, 특히 리튬 2차전지의 양극물질로서 사용하기 위한 리튬-코발트-망간 산화물 및 그의 제조방법과, 리튬-코발트-망간 산화물을 이용한 5V급 리튬 2차전지에 관한 것이다.The present invention relates to a positive electrode material of a lithium secondary battery, and more particularly, to a lithium-cobalt-manganese oxide for use as a positive electrode material of a lithium secondary battery and a method for producing the same, The present invention relates to a battery.

종래의 리튬 2차전지의 양극으로 사용된 리튬-망간 산화물은 스피넬(spinel) 구조를 가지고 있다. 즉 팔면체(octahedral) 자리의 반과 사면체(tetrahedral)자리가 입방조밀쌓임(cubic close-packed) 산소배열에서 비어있기 때문에 다른 이온들이 팔면체 자리의 빈자리, 또는 사면체 자리의 빈자리에 충당될 수 있다. 이러한 팔면체자리의 빈자리가 스피넬 구조에서 3차원의 비어있는 터널 구실을 하기 때문에 이 구조를 "3차원 [1×1] 터널구조"라고 한다.The lithium-manganese oxide used as a positive electrode of a conventional lithium secondary battery has a spinel structure. That is, half of the octahedral and tetrahedral sites are empty in the cubic close-packed oxygen arrangement, so that other ions can be assigned to vacancies in octahedral or tetrahedral spaces. This structure is called a "three-dimensional [1 × 1] tunnel structure" because the vacant space of this octahedral space serves as a three-dimensional empty tunnel structure in the spinel structure.

LiMn2O4를 양극으로 한 전지의 충전은 LiMn2O4활물질로 부터 Li 이온이 빠져 나오므로 이루어지고 과충전이 일어나면 극단적으로 λ-MnO2로 구조가 변하게 되며, 이를 다시 방전시키면 LiMn2O4구조로의 복귀가 이루어진다. 이론적으로 LiMn2O4의 이론 용량은 148mAh/g으로 LiCoO2나 LiNiO2보다 낮으나 가격면에서 경쟁력이 뛰어나기 때문에 리튬 2차전지의 양극 활물질로의 기대는 매우 크다. 평형조건에서 Li/ LiMn2O4의 전지는 방전 시 약 4V에서 Li이 Mn2O4의 스피넬 골격으로 삽입되어 LiMn2O4의 등방구조를 형성한다. 충방전 곡선에서 보면 4V근처에서 평평한 곡선이 나타나는데 이때 LixMn2O4전극의 표면은 Li1+δMn2O4가 형성되며 이때의 평균적인 망간의 산화수는 3.5보다 작게 되는 반면에 전극 내부의 평균적인 분자식은 Li1-δMn2O4가 되어 망간의 산화수는 3.5보다 크게되며 이로인해 전극의 표면과 내부사이에는 Jahn-Taller 효과의 차이가 나타나며 이는 싸이클이 반복됨에 따라 빠른 방전 용량의 감소를 가져온다.LiMn 2 O 4 as a positive electrode is charged by discharging Li ions from the LiMn 2 O 4 active material. When overcharging occurs, the LiMn 2 O 4 structure is extremely changed to λ-MnO 2. If the LiMn 2 O 4 is discharged again, LiMn 2 O 4 A return to the structure is made. Theoretically, the theoretical capacity of LiMn 2 O 4 is 148 mAh / g, which is lower than that of LiCoO 2 or LiNiO 2 , but it is highly competitive in terms of price, so expectation of lithium secondary battery as a cathode active material is very high. Under equilibrium conditions, Li / LiMn 2 O 4 cells are inserted into the spinel framework of Mn 2 O 4 at about 4 V during discharge to form an isotropic structure of LiMn 2 O 4 . In the charge / discharge curve, a flat curve appears near 4V. At this time, the surface of the Li x Mn 2 O 4 electrode is formed with Li 1 + δ Mn 2 O 4 and the average oxidation number of manganese is less than 3.5, The average molecular formula is Li 1 - δ Mn 2 O 4 , and the oxidation number of manganese is larger than 3.5. As a result, there is a difference in Jahn-Taller effect between the surface and the interior of the electrode. .

종래의 리튬 2차전지의 양극물질로 사용되어온 스피넬 LiMn2O4의 문제점으로 지적되고 있는 것은 충방전 사이클의 반복에 따른 방전용량의 급격한 감소이다. 그 이유는, 층상구조로 2차원의 Li 이온경로를 갖는 LiNiO2나 LiCoO2와 같은 층상물질과 비교할 때, 구조적으로 3차원 경로를 통하여 이동하는 Li 이온의 확산속도가 작고, 충방전에 따른 구조의 변화로 Li을 인터컬레이션/디인터컬레이션 할 수 있는 유효공간이 작아지기 때문이거나, 충방전 과정에서 전해질로의 Mn의 용해 때문 인 것으로 알려져 있다. 또한, Li 이온의 확산속도에 의해 분극화(polarization)을 비교적 심하게 발생시켜, 전체적인 전지의 내부 저항을 증가시키고 특성을 감소시킨다.What is pointed out as a problem of spinel LiMn 2 O 4 which has been used as a positive electrode material of a conventional lithium secondary battery is a drastic decrease in discharge capacity due to repetition of charging and discharging cycles. The reason is that the diffusion rate of Li ions moving through the three-dimensional path structurally is smaller than that of a layered material such as LiNiO 2 or LiCoO 2 having a two-dimensional Li ion path in a layered structure, , It is known that the effective space for the intercalation / deintercalation of Li becomes small due to the change of the Li content, or the dissolution of Mn into the electrolyte during the charging and discharging process. In addition, the polarization is relatively strongly caused by the diffusion rate of Li ions, thereby increasing the internal resistance of the whole battery and decreasing the characteristics thereof.

따라서 본 발명에서는 상기의 단점을 개선한 리튬-코발트-망간 산화물을 제안한다. 상기의 리튬-코발트-망간 산화물은 종래의 4V급 양극물질로 알려진 리튬-망간 산화물에 비해 구조적으로 안정하여 사이클 반복에 따른 용량 감소가 적으며, 고전압 영역(5V)에서의 용량이 크므로 5V급 2차전지의 양극물질로 사용이 가능하다. 따라서 본 발명의 목적은 상기의 리튬-망간 산화물을 이용하여 용량과 성능이 향상된 리튬 2차전지를 제작하는 것이다.Therefore, the present invention proposes a lithium-cobalt-manganese oxide which overcomes the above disadvantages. The above lithium-cobalt-manganese oxide is structurally stable as compared with the lithium-manganese oxide known as the conventional 4V-type cathode material, so that the capacity decrease due to cycle repetition is small and the capacity in the high voltage region (5V) It can be used as anode material of secondary battery. Accordingly, an object of the present invention is to provide a lithium secondary battery improved in capacity and performance by using the lithium-manganese oxide.

본 발명에서는 Mn 중에 일부를 Co로 치환한 리튬-코발트-망간 산화물을 리튬 2차전지의 양극물질로서 사용하여 리튬 2차전지를 구성한다.In the present invention, lithium-cobalt-manganese oxide in which a part of Mn is substituted with Co is used as a positive electrode material of a lithium secondary battery to constitute a lithium secondary battery.

도 1은 본 발명에 의한 리튬-코발트-망간 산화물의 제조 방법을 도시한 흐름도.BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flow chart showing a method for producing lithium-cobalt-manganese oxide according to the present invention. FIG.

도 2는 본 발명에 의한 리튬-코발트-망간 산화물의 X-선 회절 분석 패턴을 도시한 특성도로서,FIG. 2 is a characteristic diagram showing an X-ray diffraction analysis pattern of the lithium-cobalt-manganese oxide according to the present invention,

도 2a는 EMD를 이용해 850℃에서 제조한 리튬-코발트-망간 산화물의 특성도.FIG. 2A is a characteristic diagram of lithium-cobalt-manganese oxide prepared at 850 ° C. using EMD. FIG.

도 2b는 EMD를 이용해 800℃에서 제조한 리튬-코발트-망간 산화물의 특성도.FIG. 2B is a characteristic diagram of lithium-cobalt-manganese oxide produced at 800 ° C. using EMD.

도 3은 본 발명의 리튬-코발트-망간 산화물에서의 코발트의 치환량에 따른 용량 변화를 도시한 특성도로서,FIG. 3 is a characteristic diagram showing a capacity change according to the replacement amount of cobalt in the lithium-cobalt-manganese oxide of the present invention,

도 3a의 (a) 및 (b)는 EMD를 이용해 850℃에서 제조한 리튬-코발트-망간 산화물의 특성도.3A and 3B are characteristic diagrams of lithium-cobalt-manganese oxide prepared at 850 ° C. using EMD.

도 3b의 (a) 및 (b)는 EMD를 이용해 800℃에서 제조한 리튬-코발트-망간 산화물의 특성도.FIGS. 3 (a) and 3 (b) are graphs showing the characteristics of lithium-cobalt-manganese oxide prepared at 800 ° C. using EMD.

이하 본 발명에 대한 실시예를 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

리튬-크롬-망간 산화물(LiCoxMn2-xO4, 0≤x≤0.5)의 스피넬 화합물은 출발물질로 LiOH, Co3O4, MnO2를 사용하여 제조하였다. 화학량론적 화합물(stoichiometric compound)을 제조하기 위하여 CO3O4와 MnO2는 정확한 몰비로 평량하였으며 LiOH는 Li의 원자량이 매우 작고 증기압이 높기 때문에 10% 과량을 섞어주었다. 상기의 분말들은 막자사발에서 혼합하여 시편으로 제조하고 800℃ ∼ 850℃에서 18시간 동안 2회 반응시켜키고 상온까지 50℃/hour의 속도로 냉각시켜 리튬-코발트-망간 산화물(LiCoxMn2-xO4(0.0≤x≤0.5))을 제조하였다. 즉, 상기 각 시료를 갈아서 분말로 만든후 하소, 소결 및 냉각 과정을 거쳐 원하는 산화물을 제조하며, 중간과정에서 시료들을 다시 갈아서 혼합하고 제반응시켜 원하는 산화물을 제조한다. 도 1은 리튬- 코발트-망간 산화물의 제조 공정을 도시한 흐름도이다.A spinel compound of lithium-chromium-manganese oxide (LiCo x Mn 2-x O 4 , 0? X ? 0.5) was prepared using LiOH, Co 3 O 4 , and MnO 2 as starting materials. For the preparation of stoichiometric compounds, CO 3 O 4 and MnO 2 were weighed at precise molar ratios, and LiOH was mixed with 10% excess because the atomic mass of Li was very small and the vapor pressure was high. The powders were mixed with each other in a mortar to prepare specimens. The powders were reacted at 800 ° C to 850 ° C for 18 hours twice and cooled to room temperature at a rate of 50 ° C / hour to obtain lithium-cobalt-manganese oxide (LiCo x Mn 2- x O 4 (0.0? x? 0.5)). That is, each of the above-mentioned samples is ground into powders, followed by calcination, sintering and cooling to produce desired oxides. In the intermediate process, the samples are re-ground, mixed, and reacted to produce desired oxides. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flow chart showing a process for producing lithium-cobalt-manganese oxide.

이렇게 얻어진 샘플은 XRD 측정으로 격자상수(lattice parameter)를 계산하였고 결정계(crystal system)를 확인하여 합성여부를 확인하였으며, SEM을 이용하여 대략적인 시료의 입자 크기를 측정하였다.The lattice parameter was calculated by XRD and the crystal system was confirmed. The particle size of the sample was measured by SEM.

상기와 같이 제조한 리튬- 코발트-망간 산화물의 X-선 회절분석을 수행 결과 제조된 시료는 공간군(space group) Fd3m을 갖는 스피넬(spinel) 상임이 확인되었다(도 2). X-선 회절 분석 결과 Co의 치환량에 따른 격자상수는 점차적으로 감소하는 경향을 보였다. 850℃에서 합성한 시료의 격자상수가 전체적으로 작았고, Co의 함량이 0.2 이상에서 급격한 격자상수의 감소를 보였다. 이것은 850℃에서의 합성조건에서 Li의 증발에 기인하여 비화학양론적 조성을 보이는 것으로 여겨지며, Co의 양이 많아지면서 격자상수의 급격한 감소는 Mn3+이온보다 Co3+의 이온반경이 작은 데서 기인하는 것으로 여겨진다.As a result of X-ray diffraction analysis of the lithium-cobalt-manganese oxide thus prepared, it was confirmed that the sample prepared was a spinel having a space group Fd3m (FIG. 2). As a result of X-ray diffraction analysis, the lattice constant according to the substitution amount of Co tended to decrease gradually. The lattice constant of the sample synthesized at 850 ℃ was small and the lattice constant was abruptly decreased when the content of Co was over 0.2. It is believed that this is due to the evaporation of Li in the synthesis conditions at 850 ° C and shows a non-stoichiometric composition. As the amount of Co increases, a sharp decrease in the lattice constant occurs due to a smaller ionic radius of Co 3+ than that of Mn 3+ .

리튬-코발트-망간 산화물의 전극특성을 알아보기 위하여 Li//LiCoxMn2-xO4의 반쪽전지를 다음과 같이 구성하였다. 양극은 LiCoxMn2-xO4(wt. 89%)에 도전제로 아세틸렌블랙(acetylene black)(wt. 10%), 바인더로 PTFE(poly-tetrafluoro-ethylene, wt. 1%)를 이용하였고, 음극으로는 리튬 금속을, 전해질은 1M LiPF6를 에틸렌 카보네이트(ethylene carbonate ; EC) + 디메틸 카보네이트(dimethyl carbonate ; DMC)를 부피비 2:1로 혼합한 용매에 녹인 것을 사용하여 반쪽전지를 구성하였다. 도 3a는 850℃에서 합성된 LiCoxMn2-xO4의 방전 전압곡선과 사이클에 따른 방전곡선을 나타낸 것이다. 800℃에서와 같이 Co의 치환량이 증가함에 따라 방전용량도 함께 감소하였으며, Co가 0.2 이상 치환될 때부터 급격한 용량의 감소를 보였으나, 이 경우에도 사이클에 따른 방전 용량은 그대로 유지함을 볼 수 있었다.To investigate the electrode characteristics of lithium-cobalt-manganese oxide, a half cell of Li // LiCo x Mn 2-x O 4 was constructed as follows. Acetylene black (wt. 10%) and PTFE (polytetrafluoro-ethylene, wt. 1%) were used as a conductive agent in LiCo x Mn 2-x O 4 (wt. , Lithium metal as a cathode and 1M LiPF 6 as an electrolyte were dissolved in a mixed solvent of ethylene carbonate (EC) + dimethyl carbonate (DMC) in a volume ratio of 2: 1 to form a half cell . FIG. 3A shows discharge voltage curves of LiCo x Mn 2-x O 4 synthesized at 850 ° C and discharge curves according to cycles. As the Co substitution amount increased, the discharge capacity decreased as well as at 800 ° C. When the Co was replaced by more than 0.2, the abrupt capacity decreased, but the discharge capacity according to the cycle remained unchanged .

도 3b에는 800℃에서 합성된 LiCoxMn2-xO4의 방전 전압곡선과 사이클에 따른 용량변화를 나타낸 것이다. 상기의 LiCoxMn2-xO4에서 Co의 치환량이 0.1까지는 방전용량을 유지하였고, 0.1 이상에서부터는 용량이 감소하였으나, 사이클에 따른 방전용량은 거의 일정한 수준을 유지하였으며, 우수한 가역 특성을 보여준다. 상기의 결과로부터 850℃에서 제조한 시료가 800℃에서 제조한 시료에서 보다 Li의 자리에 소량의 Li 결핍(vacancy)을 예측할 수 있다. 즉 코발트가 치환된 상기의 리튬-코발트-망간 산화물은 5V의 상이 안정하게 되어 고전압에서의 용량이 증가하고, 4V 영역에서의 용량이 감소하지만 전체적인 용량은 보존된다.FIG. 3B shows the discharge voltage curve of LiCo x Mn 2-x O 4 synthesized at 800 ° C and the change in capacity according to the cycle. In LiCo x Mn 2-x O 4 , the discharge capacity was maintained at a substitution amount of Co of 0.1 and the capacity was decreased at a value of 0.1 or more. However, the discharging capacity according to the cycle was maintained at a substantially constant level and exhibited excellent reversible characteristics . From the above results, a small amount of Li vacancy can be predicted at a site of Li than at a sample prepared at 850 ° C at a temperature of 800 ° C. That is, the above-mentioned lithium-cobalt-manganese oxide substituted with cobalt stabilizes the phase of 5V, thereby increasing the capacity at the high voltage and decreasing the capacity at the 4V region, but the overall capacity is preserved.

종래의 리튬 2차전지와 달리 양극으로 상기의 리튬-코발트-망간 산화물을 사용하면 사이클 반복에 따른 용량 저하가 작아 사이클 특성이 개선되며, 고전압 영역에서도 안정하므로 5V 급 전지로의 적용이 가능하다.Unlike the conventional lithium secondary battery, when the lithium-cobalt-manganese oxide is used as the positive electrode, the capacity decrease due to cyclic repetition is small and the cycle characteristics are improved, and the battery is stable in a high voltage range.

Claims (4)

리튬 2차전지의 양극 물질용 산화물에 있어서,In the oxide for a positive electrode material of a lithium secondary battery, LiOH, LiCO3및 LiNO3로부터 선택된 1종의 리튬 화합물과 망간 산화물(MnO2) 및 코발트 산화물(Co3O4)을 평량화 시키고 분말을 혼합하여 800∼850℃의 온도에서 18∼20시간 동안 열처리한 후 서냉시켜 제조한 것을 특징으로 하는 리튬 2차전지 양극 물질용 리튬- 코발트-망간 산화물(LiCoxMn2-xO4, (0<x≤0.5)).(MnO 2 ) and cobalt oxide (Co 3 O 4 ) selected from LiOH, LiCO 3 and LiNO 3 , mixing the powders, heating the mixture at a temperature of 800 to 850 ° C. for 18 to 20 hours Cobalt-manganese oxide (LiCo x Mn 2-x O 4 , (0 < x &lt; = 0.5)) for a cathode material of a lithium secondary battery. 리튬-코발트-망간 산화물(LiCoxMn2-xO4) 중 0<x≤0.5인 산화물을 양극으로 사용하고, 음극으로는 리튬 금속 또는 탄소화합물 또는 리튬을 함유한 화합물을 사용하고 액체 전해질 또는 고분자 전해질을 사용하여 제조된 것을 특징으로 하는 5V 이상에서 작동되는 리튬 2차전지.An oxide of 0 < x? 0.5 in lithium-cobalt-manganese oxide (LiCo x Mn 2-x O 4 ) is used as the anode and a compound containing lithium metal or carbon compound or lithium is used as the cathode, A lithium secondary battery operated at 5 V or higher, which is fabricated using a polymer electrolyte. LiOH, MnO2, Co3O4를 화학량론적 화합물을 제조하기 하여 MnO2와 Co3O4정확한 몰비로 평량하는 단계와,LiOH, MnO 2, further comprising: a basis weight of Co 3 O 4 in the preparation of a stoichiometric compound as MnO 2 and Co 3 O 4 and the exact molar ratio, 상기의 분말들이 잘 섞일 수 있도록 유발에서 갈아 혼합하는 단계와,Mixing the powders in a mortar so as to mix them well, 상기 혼합된 분말을 800℃ ∼ 850℃에서 18 - 20시간 동안 2회 반응시켜키는 단계와,Reacting the mixed powder at 800 DEG C to 850 DEG C for 18 to 20 hours twice, 상기 반응된 시료를 상온까지 50℃/hour의 속도로 냉각시키는 단계를Cooling the reacted sample to room temperature at a rate of 50 ° C / hour 수행하여 리튬 2차전지의 양극 물질로 사용하기 위한 리튬-코발트-망간 산화물(LiCoxMn2-xO4(0.0≤x≤0.5))을 제조하는 것을 특징으로 하는 리튬 2차전지 양극물질용 리튬-망간-철 산화물 제조방법.Cobalt-manganese oxide (LiCo x Mn 2-x O 4 (0.0 ? X? 0.5)) for use as a positive electrode material of a lithium secondary battery is produced by performing the above- Lithium-manganese-iron oxide manufacturing method. 제 3 항에 있어서, 상기 평량화 단계는,4. The method of claim 3, wherein the weighing step comprises: 상기 LiOH는 10% 과량을 섞어주는 것을 특징으로 하는 리튬 2차전지 양극물질용 리튬-코발트-망간 산화물 제조방법.Wherein the LiOH is mixed with an excess of 10%.
KR1019970071619A 1997-12-22 1997-12-22 Licoxmn2-xo4 as positive electrode material for 5v lithium secondary batteries KR100269249B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1019970071619A KR100269249B1 (en) 1997-12-22 1997-12-22 Licoxmn2-xo4 as positive electrode material for 5v lithium secondary batteries
JP10364949A JPH11250912A (en) 1997-12-22 1998-12-22 Lithium secondary battery using lithium-x-manganese oxide(luxxmn2-xo4) as cathode material and manufacture of lithium-x-manganese oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970071619A KR100269249B1 (en) 1997-12-22 1997-12-22 Licoxmn2-xo4 as positive electrode material for 5v lithium secondary batteries

Publications (2)

Publication Number Publication Date
KR19990052170A true KR19990052170A (en) 1999-07-05
KR100269249B1 KR100269249B1 (en) 2000-10-16

Family

ID=19528078

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970071619A KR100269249B1 (en) 1997-12-22 1997-12-22 Licoxmn2-xo4 as positive electrode material for 5v lithium secondary batteries

Country Status (1)

Country Link
KR (1) KR100269249B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7008608B2 (en) 2003-05-07 2006-03-07 Electronics And Telecommunications Research Institute Li-Co-Mn oxide as cathode material for lithium batteries and method of synthesis of the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102091214B1 (en) 2016-09-12 2020-03-19 주식회사 엘지화학 Positive Electrode Active Material for Lithium Secondary Battery Comprising High-voltage Lithium Cobalt Oxide Particle and Method of Manufacturing the Same
CN108063247A (en) * 2017-12-23 2018-05-22 清远佳致新材料研究院有限公司 A kind of method that compound manganese ore prepares manganate cathode material for lithium

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5084366A (en) * 1989-03-30 1992-01-28 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
JP3606289B2 (en) * 1995-04-26 2005-01-05 日本電池株式会社 Cathode active material for lithium battery and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7008608B2 (en) 2003-05-07 2006-03-07 Electronics And Telecommunications Research Institute Li-Co-Mn oxide as cathode material for lithium batteries and method of synthesis of the same

Also Published As

Publication number Publication date
KR100269249B1 (en) 2000-10-16

Similar Documents

Publication Publication Date Title
KR100632979B1 (en) Lithium-containing composite oxide and nonaqueous secondary cell using the same, and method for manufacturing the same
US6017654A (en) Cathode materials for lithium-ion secondary cells
Park et al. Structural and electrochemical characterization of lithium excess and Al-doped nickel oxides synthesized by the sol–gel method
JP4644895B2 (en) Lithium secondary battery
US5620812A (en) Non-aqueous electrolyte secondary battery
US5700442A (en) Insertion compounds based on manganese oxide usable as the positive electrode active material in a lithium battery
EP1130663B1 (en) Positive electrode material for battery and nonaqueous electrolyte secondary battery
EP1142834A1 (en) Lithium-manganese composite oxide, positive electrode material for lithium secondary cell, positive electrode and lithium secondary cell, and method for preparing lithium-manganese composite oxide
US20020197532A1 (en) Electrochemical cell
JP3873717B2 (en) Positive electrode material and battery using the same
US7829045B2 (en) Method for producing lithium composite oxide for use as positive electrode active material for lithium secondary batteries
WO1995001935A1 (en) Novel materials for use as cathodes in lithium electrochemical cells
JP4813453B2 (en) Lithium-containing composite oxide and non-aqueous secondary battery
EP0734085B1 (en) Spinel-type lithium manganese oxide as a cathode active material for nonaqueous electrolyte lithium secondary batteries
KR20020031322A (en) Method for producing cathode active material and method for manufacturing nonaqueous electrolyte battery
KR100269249B1 (en) Licoxmn2-xo4 as positive electrode material for 5v lithium secondary batteries
KR101083860B1 (en) Cathode Material, Method of Manufacturing the Same, and Battery Using the Same
JP2002167220A (en) Lithium manganese compound oxide, cathode material for lithium secondary battery, cathode for lithium secondary battery, lithium secondary battery and manufacturing method for lithium manganese compound oxide
JP4234334B2 (en) Lithium manganese composite oxide for secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
JP4106651B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JPH08217451A (en) Needle manganese complex oxide, production and use thereof
KR100266074B1 (en) Lifemn2-xo4 as positive electrode material for 5v lithium secondary batteries
JP2002184404A (en) Positive electrode material and nonaqueous electrolyte battery
JP3746099B2 (en) Cathode active material for lithium battery and method for producing the same
US6071646A (en) Spinel compounds as cathodes for lithium materials

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20070702

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee