KR100576894B1 - 각형 전지캔 및 그 제조방법과 그것을 이용한 각형 전지 - Google Patents

각형 전지캔 및 그 제조방법과 그것을 이용한 각형 전지 Download PDF

Info

Publication number
KR100576894B1
KR100576894B1 KR1020027011147A KR20027011147A KR100576894B1 KR 100576894 B1 KR100576894 B1 KR 100576894B1 KR 1020027011147 A KR1020027011147 A KR 1020027011147A KR 20027011147 A KR20027011147 A KR 20027011147A KR 100576894 B1 KR100576894 B1 KR 100576894B1
Authority
KR
South Korea
Prior art keywords
battery
rectangular
shape
cup body
thickness
Prior art date
Application number
KR1020027011147A
Other languages
English (en)
Other versions
KR20020080441A (ko
Inventor
우에다도모미치
기타오카스스무
모리가츠히코
야마시타쇼지
히가시가즈유키
도쿠모토다다히로
하노마사토시
Original Assignee
마츠시타 덴끼 산교 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 마츠시타 덴끼 산교 가부시키가이샤 filed Critical 마츠시타 덴끼 산교 가부시키가이샤
Publication of KR20020080441A publication Critical patent/KR20020080441A/ko
Application granted granted Critical
Publication of KR100576894B1 publication Critical patent/KR100576894B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/133Thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/10Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with wound or folded electrodes
    • H01M2006/106Elliptic wound cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

소정 형상의 펠릿(7)을 임팩트성형하여 중간컵체(8)를 형성하는 제 1 공정과, 상기 중간컵체(8)를 드로잉가공과 아이어닝가공을 연속적으로 한번에 행하는 DI 가공함으로써, 횡단면 형상이 거의 직사각형의 각형 전지캔(9)을 형성하는 제 2 공정을 가지는 각형 전지캔의 제조방법에 의해 생산성의 향상을 도모하면서, 치수정밀도가 높은 각형 전지캔을 제조한다.
펠릿, 중간컵체, 각형 전지캔

Description

각형 전지캔 및 그 제조방법과 그것을 이용한 각형 전지{SQUARE BATTERY CONTAINER, METHOD OF MANUFACTURING THE CONTAINER, AND SQUARE BATTERY USING THE CONTAINER}
본 발명은 각종 각형 전지의 외체케이스로서 이용되는 각형 전지캔 및 이 각형 전지캔을 DI(drawing과 ironing) 공법을 이용하여 제작할 수 있는 제조방법과 그 제조방법으로 얻어진 각형 전지캔을 이용하여 구성하는 각형 전지에 관한 것이다.
리튬이온 2차전지는 현재 실용화되어 있는 전지계 중에서, 전지의 소형화의 지표로서 이용되는 단위체적당 에너지밀도는 물론, 전지의 경량화의 지표로서 이용되는 단위중량당 에너지밀도가 매우 높은 장점을 갖고 있다. 전지의 에너지밀도를 결정하는 것은 발전요소를 구성하는 양극이나 음극의 전지활성물질이 중심이지만, 발전요소를 수납하는 전지캔의 소형화 및 경량화도 중요한 요소가 된다. 즉, 전지캔을 얇게 만들 수 있다면, 동일 외형의 전지캔에 의해 많은 전지활성물질을 수용하여 전지 전체에서의 체적에너지밀도를 향상시킬 수 있고, 전지캔을 경량인 재료로 형성할 수 있으면, 전지 전체의 중량이 저감되어 중량 에너지밀도가 향상된다.
상술한 바와 같은 전지의 동향 중에서 특히, 슬림형의 각형 전지캔을 외체케 이스로서 이용한 각형 전지는 원통형전지와 비교하여 기기의 슬림화에 적합하고, 또한 공간효율이 높기 때문에 중요시되고 있다. 종래, 각형 전지캔의 제조방법으로서는 트랜스퍼 프레스기에 의한 딥드로잉(deep drawing)가공을 10수 공정 반복함으로써, 횡단면 형상이 거의 직사각형인 전지캔을 제작하는 소위 트랜스퍼 드로잉(transfer drawing) 혹은 알루미늄을 재료로 한 임팩트성형에 의한 공법이 이미 채용되어 있다.
그러나, 트랜스퍼 드로잉공법을 이용한 각형 전지캔의 제조방법에서는 딥드로잉가공을 10수 회 반복하기 때문에, 예컨대, 20개/분 정도로 생산성이 매우 나쁘고, 게다가 공정수가 많은데다 다단계 드로잉을 위한 금형이 복잡하기 때문에, 비용이 높아지는 결점도 있다. 또한, 트랜스퍼 드로잉공법에서는 체적에너지밀도를 높여 고용량화를 도모하는 것을 목적으로 전지캔 소재의 두께를 얇게 하는 경우, 딥드로잉을 반복하여 슬림화하므로, 드로잉가공의 횟수분의 펀치(punch)의 펀칭이 필요하며, 그 때마다 펀치직경을 작게 하고, 또 다이스(dice)와의 간격을 작게 취하기 때문에, 바닥주변부가 두꺼운 부분에서 측면과 같이 얇게 할 필요가 있어, 그로 인한 드로잉가공이 매우 어렵다. 또한, 그것에 의해 얻어진 각형 전지캔은 바닥주변부의 강도가 부족하여, 전지로서 기능했을 때에 필요한 내압강도를 확보할 수 없는 문제도 있다.
또한, 일본 특허공개 2000-182573호 공보에는 장변측판부의 캔두께를 코너부의 캔두께보다도 두껍게 설정한 각형 전지캔이 개시되어 있고, 또한, 일본 특개평 6-52842호 공보에는 장변측판부의 캔두께를 단변측판부의 캔두께보다도 두껍게 설 정한 각형 전지캔이 개시되어 있다. 그런데, 이들 각형 전지캔은 전지내압이 상승했을 때의 장변측판부의 팽창변형을 방지할 수가 있지만, 표면적이 가장 큰 장변측판부의 캔두께를 두껍게 하기 때문에, 발전요소를 수납하는 용적이 작아져서 체적에너지밀도 및 중량 에너지밀도의 향상을 도모할 수 없다.
또한, 일본 특허공고평 7-99686호 및 일본 특개평 9-219180호의 각 공보에는 저면에 수직인 가는 세로줄을 캔내면에 형성하여 발전요소와의 접촉면적의 증대를 도모함으로써, 전지로 했을 때의 내부저항의 저감을 도모한 전지캔이 개시되어 있다. 그러나, 이들 전지캔의 세로줄로는 전지내압이 상승했을 때의 팽창변형을 방지하는 기능을 거의 얻을 수 없다. 또한, 일본 특개평 7-326331호 공보에는 코너부의 캔두께를 직선부분인 장변측판부 및 단변측판부의 캔두께보다도 두껍게 설정한 각형 전지캔이 개시되어 있다. 이 각형 전지캔은 발전요소의 수납율의 향상을 도모할 수 있지만, 두께가 두꺼워진 코너부에 의한 강도의 증강만으로는 얇은 장변측판부의 팽창변형을 방지할 수 없다.
한편, 임팩트성형에 의한 각형 전지캔의 제조는 전지캔 소재가 되는 펠릿(pellet)을 펀치로 분쇄하면서 펀치와 다이스의 빈틈에 재료를 압연시켜 펀치의 외주면을 따라 연장시킴으로써 각형 전지캔을 형성할 수 있기 때문에, 트랜스퍼 드로잉공정과 비교하여 생산성이 향상되지만, 치수정밀도가 매우 나쁜데다 슬림화된 경우에는 측면부의 강도가 부족하다. 특히, 각형 전지캔의 경우에는 전지로서 기능할 때, 전지내압이 상승한 경우의 변형이, 안정된 형상인 원통형 전지캔과 비교하여 크고, 보다 안정된 형상인 원통형상으로 향하여 면적이 넓은 장변측판부가 팽창하도록 변형되기 때문에, 전해액의 누액이나 발전소자의 단락에 의해 기기의 손상이 생길 우려가 있다. 그 때문에, 임팩트성형에 의한 각형 전지캔의 제조에서는 전지의 내압상승시의 변형을 확실히 방지할 수 있는 강도를 확보하기 위해서, 부득이하게 슬림화나 경량화를 희생시킨 형상으로 할 필요가 있어, 체적에너지밀도 및 중량 에너지밀도의 향상을 도모할 수 없다.
또한, 각형 전지캔의 다른 제조방법으로서, 일본 특개평 6-333541호 공보에는 각통과 바닥판을 각각 성형가공하여, 각통의 저부에 바닥판을 레이저(laser)용접으로 기밀하게 접합하는 것이 개시되어 있다. 그러나, 이 제조방법에서는, 트랜스퍼 드로잉공정과 비교하여 공정수가 그다지 감소하지 않는데다 각통과 바닥판의 정확한 위치결정공정이나 레이저용접공정 등의 번거로운 작업이 개재하기 때문에, 생산성의 향상을 도모할 수 없다. 더구나, 이 제조방법에서는, 슬림화 및 경량화에 의한 고에너지밀도와 전지내압 상승시에 변형되지 않는 내압강도와의 상반되는 요건을 동시에 만족할 수 있는 각형 전지캔을 얻을 수 없다.
그런데, 원통형전지의 전지캔의 제조방법에서는, 슬림화되어 체적에너지밀도의 향상을 도모하면서 필요한 내압강도를 확보할 수 있는 전지캔을 제작할 수 있고, 또한 높은 생산성으로 제조하는 것이 가능한 DI 공법이 사용되고 있다. 이 DI 공법은 프레스기에 의한 딥드로잉가공으로 제작한 컵형상 중간제품에 대해 드로잉가공과 아이어닝(ironing)가공을 연속적으로 한번에 행하는 공법이고, 이에 따라, 소정의 원통형 전지캔을 제작하고, 트랜스퍼 드로잉공법과 비교하여 공정수의 저감에 의한 생산성의 향상, 두께 등의 치수정밀도의 향상, 캔측 둘레벽의 두께감소에 의한 경량화 및 용량 증가에 따른 에너지밀도의 향상, 응력부식의 저감 등의 장점이 있어 그 사용이 확대되고 있다.
그래서, 상기의 DI 공법으로 각형 전지캔을 제조하는 것이 고려된다. 그러나, DI 공법으로 원통형 전지캔을 제작하는 경우에는, 횡단면 형상이 원형인 컵형상 중간제품으로부터 동일한 횡단면 형상이 원형인 전지캔으로의 상사형 가공으로서, DI 가공시에 아이어닝공정에서 둘레벽 전체의 두께가 균등하게 감소하기 때문에, 가공시에 재료가 균일하게 흘러 자연스럽게 변형된다. 이에 대하여, DI 가공으로 각형 전지캔을 제작하고자 하면, 횡단면 형상이 원형인 컵형상 중간제품으로부터 횡단면 형상이 거의 직사각형인 전지캔으로의 비상사형 가공이 되기 때문에, 가공시의 재료의 흐름이 불균일하게 되어, 편심에 의한 두께 불균일, 전단, 균열 등이 생기기 쉽고, 성형시에 작용하는 가공응력이 균등하지 않으므로 응력집중에 따라 가공이 곤란해져서, 안정된 가공을 할 수 없기 때문에, 고정밀도의 성형이 곤란해지며, 특히 각형에서의 면적이 작은 단변측판부에 크랙이나 파열이 생기기 쉬워, 변형된 형상이 되는 개소가 생기는 등의 문제가 발생한다.
또한, 일본 특개평 10-5906호 공보에는 드로잉가공으로 제 1 중간컵체를 성형한 후, 이 중간컵체의 측면둘레벽부에 대하여 복수회의 드로잉가공을 반복하여 제 2 중간컵체를 성형하고, 마지막으로 제 2 중간컵체를 충격압출가공(임팩트성형)함으로써, 바닥판부와 코너부와의 캔두께를 소정값으로 조정하는 각형 전지캔의 제조방법이 개시되어 있다. 그러나, 이 제조방법에서는 드로잉가공, 복수단계의 DI 가공 및 임팩트성형을 필요로 하기 때문에, 공정이 많아지고, 또 마지막 공정에서 임팩트성형함으로써 바닥판부를 필요한 캔두께가 되도록 조정하기 때문에, 바닥판부 및 측면둘레벽부의 캔두께의 조정이 매우 어렵게 되어, 각부를 필요한 캔두께로 한 형상의 각형 전지캔을 고정밀도로 얻을 수 없다. 이에 대해, 본건 출원인은 DI 공법을 이용하여 고에너지밀도와 필요한 내압강도를 갖는 각형 전지캔을 제조할 수 있는 제조방법을 우선 제안하고 있다. 이 제조방법은 제 1 공정에서 후프(hoop)재를 펀칭가공하여, 도 5의 (a)에 나타내는 바와 같은 타원형의 전지캔 소재(1)를 형성한 후에, 이 전지캔 소재(1)를 딥드로잉가공하여 도 5의 (b)에 나타내는 바와 같은 횡단면 형상이 원형에 가까운 거의 타원형상의 제 1 중간컵체(2)를 성형한다. 이어서, 제 1 중간컵체(2)는 드로잉 프레스기를 이용한 제 2 공정으로 복수단계의 연속적인 재드로잉가공을 거쳐서, 도 5의 (c)에 나타낸 바와 같이, 제 1 중간컵체(2)의 횡단면 형상보다도 단경/장경의 비율이 작은 거의 타원형의 횡단면 형상을 갖는 제 2 중간컵체(3)로 성형된다. 마지막으로, 제 2 중간컵체(3)는 제 3 공정에서 드로잉가공과 아이어닝가공을 연속적으로 행하는 DI 가공함으로써, 도 5의 (d)에 나타낸 바와 같이, 횡단면 형상이 거의 직사각형으로서, 그 단변측판부(4a)의 두께가 장변측판부(4b)의 두께보다도 두꺼운 형상을 갖는 각형 전지캔(4)으로 성형된다.
이 제조방법에서는 3 공정에서 소망 형상의 각형 전지캔(4)을 제작할 수 있기 때문에, 종래의 트랜스퍼 드로잉 등과 비교하여 생산성이 각별히 향상됨과 동시에, DI 공법을 이용함으로써 두께 등의 치수정밀도가 높은 각형 전지캔(4)을 얻을 수 있다. 그러나, 이 제조방법에는 또 해결해야 할 문제가 잔존하고 있다. 즉, 제 1 중간컵체(2)를 갑자기 DI 가공하여 각형 전지캔을 제작하고자 하면 횡단면 형상이 원형에 가까운 거의 타원형으로부터 거의 직사각형이 되도록 DI 가공하게 되기 때문에, 파열이나 크랙이 생긴다. 그 때문에, 제 2 공정을 개재할 필요가 있지만, 이 제 2 공정에서는 단경이 서서히 짧아지도록 드로잉하여 단경방향의 치수를 단축하면서, 그 드로잉에 따른 변형분의 재료를 장경방향으로 가도록 유동시키고, 또, 장경방향을 소정의 치수로 단축하여 수정한다. 따라서, 제 2 공정에서는 복수단계의 재드로잉가공을 행하기 때문에 공정수가 많아진다.
본 발명이 목적으로 하는 것은 고에너지밀도와 필요한 내압강도를 갖는 각형 전지캔 및 이 각형 전지캔을 DI 공법에 의해 공정수를 저감하여 생산성의 향상을 도모하면서 높은 치수정밀도로 또한 용이하게 얻을 수 있는 각형 전지캔의 제조방법 및 이 각형 전지캔을 이용한 각형 전지를 제공하는 것이다.
상기 목적을 달성하기 위한 본원 발명은, 소정형상의 펠릿을 임팩트성형하여, 중간컵체를 성형하는 제 1 공정과 상기 중간컵체를 드로잉가공과 아이어닝가공을 연속적으로 한번에 행하는 DI 가공함으로써, 횡단면 형상이 대략 장방형의 각형 전지캔을 성형하는 제 2 공정을 포함하며, 상기 펠릿(7)의 평면 형상은, 상기 각형 전지 캔(9, 44)의 횡단면의 형상에 대응하며, 대략 타원형 또는 대략 장방형인 것을 특징으로 하는 각형 전지캔의 제조방법이다.
상기 제조방법에 따르면, 임의의 형상을 하나의 공정으로 제작 가능한 임팩트성형에 의해서 횡단면 형상이 대략 직사각형의 중간컵체를 한번에 제작하여, 이 중간컵체를 DI 공법에 의해 각형 전지캔으로 가공하기 때문에, 동시에 펀치의 1 스트로크(stroke)의 이동만으로 성형할 수 있는 제 1 공정 및 제 2 공정을 가질 뿐이고, 공정수가 각별히 적어져 생산성이 현저히 향상한다. 또한, 중간컵체를 DI 가공하기 때문에, 원하는 형상의 각형 전지캔을 용이하고 또한 확실히 제작할 수 있는 동시에, 두께 등의 치수정밀도가 향상하기 때문에, 두께를 가급적 얇게 하면서도 충분한 내압강도를 갖는 각형 전지캔을 제조할 수 있다.
또한, 상기 목적을 달성하기 위한 본원 발명은 소정 형상의 펠릿을 임팩트성형함으로써, 직사각형의 횡단면 형상을 갖는 밑면이 있는 각통 형상으로서, 그 직사각형에서의 장변측판부, 단변측판부 및 코너부의 순서로 각각의 판두께가 두꺼운 형상을 갖는 중간컵체를 성형한 후, 이 중간컵체를 드로잉가공과 아이어닝가공을 연속적으로 한번에 행하는 DI 가공함으로써, 횡단면 형상이 직사각형이고, 그 직사각형의 장변측판부, 단변측판부 및 코너부의 순서로 각각의 판두께가 두꺼운 형상으로 형성되어 이루어지는 것을 특징으로 하는 각형 전지캔이다.
상기 구성에 따르면, 전지내압의 상승시에는 장변측판부를 외측으로 팽창변형하도록 하는 힘과, 단변측판부를 내측으로 파이도록 하는 힘이 동시에 작용하는 것에 대하여, 장변측판부보다도 두꺼운 캔두께로 한 단변측판부가 장변측판부의 외측으로의 팽창변형을 효과적으로 저지한다. 또한, 장변측판부는 코너부를 지점으로서 외측으로 팽창변형하고자 하기 때문에, 단변측판부보다도 더욱 캔두께를 두껍게 한 코너부는 장변측판부의 외측으로의 팽창변형을 효과적으로 저지한다. 따라서, 장변측판부는 캔두께를 가장 얇게 설정하면서도, 전지내압의 상승에 따라 외측으로 팽창변형하고자 하는 것이 효과적으로 방지되어, 충분한 내압강도를 확보할 수 있 는 동시에, 둘레벽 부분에서 가장 표면적이 큰 장변측판부의 캔두께를 최소로 함으로써 발전요소를 수용하는 용적을 크게 할 수 있다. 특히, 장변측판부에 격자모양의 돌출팽창부를 형성하는 경우에는 돌출팽창부에 의해서 팽창변형을 효과적으로 억제할 수 있기 때문에, 장변측판부의 캔두께를 가급적 얇게 할 수 있다. 또한, 코너부의 캔두께는 전지캔에 수납하는 전극군과의 사이에 생기는 공간만큼 내측으로 팽창시킨 형상으로 두껍게 해도 전극군의 수용량의 감소를 초래하지 않는다.
또, 상기 목적을 달성하기 위한 본원 발명은, 소정 형상의 펠릿을 임팩트성형하여 중간컵체를 형성하는 제 1 공정과, 상기 중간컵체를 직사각형의 횡단면 형상을 갖는 각형판재의 장변측면에 적어도 가공홈이 격자형상으로 형성된 DI 펀치를 이용하여, 드로잉가공과 아이어닝가공을 연속적으로 한번에 행하는 DI 가공함으로써, 적어도 그 장변측판부의 캔 내면에 두께방향이 두껍게 되도록 팽창하여 선형상으로 연장되는 복수의 돌출팽창부가 격자형상의 배치로 형성된 각형 전지캔을 성형하는 제 2 공정을 포함하며, 상기 펠릿(7)의 평면 형상은 상기 각형 전지 캔(9, 44)의 횡단면의 형상에 대응하는 것을 특징으로 하는 각형 전지캔의 제조방법이다.
상기 제조방법에 따르면, 공정수가 현격히 적어져 생산성이 현저히 향상하고, 중간컵체를 DI 가공하기 때문에, 원하는 형상의 각형 전지캔을 용이하고 또한 확실히 제작할 수 있는 동시에, 두께 등의 치수정밀도가 향상하기 때문에, 두께를 가급적 얇게 하면서도 충분한 내압강도를 갖는 각형 전지캔을 제조할 수 있다. 또한, 제 2 공정의 DI 가공에서 중간컵체의 캔내면측의 재료의 일부가 소성변형되면서 DI 펀치의 가공홈 내로 유입되기 때문에, 중간컵체의 캔내면측의 재료가 DI 펀치와의 사이에 저항이 부가된 상태가 됨으로써 DI 펀치와 일체적으로 이동함과 동 시에, 중간컵체의 캔외면측의 재료가 다이스로 주로 아이어닝되기 때문에, 다이스와 DI 펀치와의 사이에서의 재료가 남는 현상을 억제하여 재료의 흐름을 원활히 할 수 있다. 또, 각형 전지캔의 장변측판부에만 돌출팽창부를 형성하도록 하면, 장변측판부에서의 가공속도를 억제하여, 전체의 가공속도를 일정화할 수 있다. 그 결과, 이 제조방법에서는 캔내면 및 캔외면에 동시에 물결무늬형상이 생기지 않는 균일한 캔두께를 갖는 각형 전지캔을 제조할 수 있다. 또, 제조된 각형 전지캔은 가급적 얇은 두께로 하면서도, 격자형상의 돌출팽창부가 보강기로서 기능하여 팽창변형을 효과적으로 억제할 수 있는 강도를 갖기 때문에, 매우 높은 내압강도를 갖게 된다.
상기 목적을 달성하기 위한 본원 발명은 상기 발명의 제조방법에 의해서 제조된 각형 전지캔의 내부에 전극군 및 전해액으로 이루어지는 발전요소를 수납하고, 또한 개구부를 봉입판으로 액밀하게 밀봉시키는 것을 특징으로 하는 각형 전지이다.
상기 구성에 의하면, 각형 전지캔을 적은 공정수로 제작할 수 있는 만큼 생산성이 향상되고, 또한, 두께 등을 높은 치수정밀도로 형성할 수 있는 각형 전지캔의 두께를 가급적 얇게 형성함으로써, 체적에너지밀도의 향상을 도모하면서도 충분한 내압강도를 갖게 된다.
상기 목적을 달성하기 위한 본원 발명은 상기 발명의 제조방법으로 제조된 각형 전지캔의 내부에 전극군 및 전해액으로 이루어지는 발전요소를 수납하고, 또한 개구부를 봉입판으로 액밀하게 밀봉하여 이루어지는 것을 특징으로 하는 각형 전지이다.
상기 구성에 따르면, 전지내압의 상승시에 팽창변형하기 쉬운 장변측판부가 보강기로서 기능하는 격자형상의 돌출팽창부에 의해서 팽창변형이 효과적으로 억제되기 때문에, 예컨대, 0.25mm 이하의 가급적 얇은 캔두께로 형성하는 것이 가능해져, 발전요소를 수용하기 위한 내용적이 커져 고에너지밀도를 도모할 수 있다.
도 1의 (a)∼(c)는 본 발명의 제 1 실시예에 관한 각형 전지캔의 제조방법에서의 제 1 공정을 순서대로 나타낸 개략종단면도.
도 2는 제 1 실시예에서의 제 2 공정의 개략종단면도.
도 3의 (a) 및 도 3의 (c)는 제 1 실시예에서의 펠릿의 사시도이고, 도 3의 (b) 및 도 3의 (d)는 중간컵체의 사시도이며, 도 3의 (e)는 각형 전지캔의 사시도이고, 도 3의 (f)는 다른 각형 전지캔의 종단면도.
도 4는 제 1 실시예의 각형 전지캔을 이용하여 구성한 각형 전지를 나타내는 종단면도.
도 5의 (a)는 종래의 각형 전지캔의 제조방법에 의한 전지캔소재의 평면도이고, 도 5의 (b)는 제 1 중간컵체의 사시도이며, 도 5의 (c)는 제 2 중간컵체의 사시도이고, 도 5의 (d)는 각형 전지캔의 일부 파손된 사시도.
도 6은 본 발명의 제 2 실시예에 관한 각형 전지캔의 제조방법에서의 제 2 공정의 개략횡단면도.
도 7의 (a)는 제 2 실시예의 제 2 공정에서 이용되는 DI 펀치를 나타내는 사 시도이고, 도 7의 (b)는 도 7의 (a)의 ⅦB부의 확대도.
도 8은 동 실시예의 제조방법에서 제 2 공정에서의 캔 제조과정을 나타내는 일부의 단면부.
도 9의 (a)는 제 2 실시예의 제조방법으로 제조된 각형 전지캔의 종단면형상을 나타내는 사시도이고, 도 9의 (b)는 그 전지캔의 캔내면의 일부를 확대하여 나타낸 사시도이며, 도 9의 (c)는 그 전지캔의 일부의 확대단면도.
도 10의 (a)는 제 2 실시예의 제조방법에서의 제 1 공정으로 제작된 중간컵체의 개구부에서 본 도면이고, 도 10의 (b)는 제 2 공정을 거쳐서 제조된 각형 전지캔의 개구부에서 본 평면도.
이하, 본 발명의 바람직한 실시예에 대해서 도면을 참조하여 상세히 설명한다. 우선, 제 1 실시예의 각형 전지캔의 제조방법에서의 제조공정을 개략적으로 설명한다. 이 각형 전지캔의 제조방법에서는, 도 1의 (a)∼(c)의 개략종단면도에 나타내는 제 1 공정에서 전지캔소재로서의 펠릿(7)은 제조해야 할 각형 전지캔의 횡단면 형상의 외형에 대응하는 평면에서 본 형상인 도 3의 (a)에 나타내는 바와 같은 타원형 또는 도 3의 (c)에 나타내는 거의 직사각형으로 형성된다. 그리고, 이 펠릿(7)을 임팩트성형함으로써, 도 3의 (b)에 나타내는 단경/장경의 비율이 작은 거의 타원형상의 횡단면 형상을 갖는 중간컵체(8) 또는 도 3의 (d)에 나타내는 거의 직사각형의 횡단면 형상을 갖는 중간컵체(8)를 형성하여, 이 중간컵체(8)를 도 2의 개략종단면도에 나타내는 제 2 공정에서 DI 가공함으로써, 도 3의 (e)의 일부 절단된 사시도에 나타내는 원하는 형상의 각형 전지캔(9)을 제작한다. 이하, 제 1 및 제 2 공정에 대해서 순서대로 상세히 설명한다.
상기 펠릿(7)을 타원형으로 한 경우에는 임팩트성형시에 생기는 응력에 기인하는 형상의 변형을 방지하여, 중간컵체(8)를 필요한 형상으로 확실히 성형가공할 수 있다. 한편, 펠릿(7)을 거의 직사각형으로 한 경우에는 형성해야 할 각형 전지캔(9)에 가까운 외형을 갖는 중간컵체(8)를 형성할 수 있으므로, 이 중간컵체(8)를 DI 가공하여 소정의 각형 전지캔(9)을 제작할 때의 가공부담이 경감된다.
도 1의 (a)∼(c)는 제 1 공정에서 임팩트성형을 하는 프레스기를 나타내고, 다이스홀더(1O)에 다이스(11)가 고정되어 있다. 이 다이스(11)의 가공구멍(11a)에는 도 3의 (a) 또는 도 3의 (c)에 나타낸 전지캔소재로서의 펠릿(7)이 공급된다. 펠릿(7)의 재료로서는 제조해야 할 각형 전지캔(9)의 경량화를 도모할 수 있는 것과, 이 제 1 공정에서 임팩트성형에 요구되는 전신성(展伸性)을 갖고 있는 것으로써, 알루미늄 또는 알루미늄합금을 사용한다. 특히, 알루미늄합금은 망간을 포함하는 것이 바람직하다. 구체적으로는, JIS 규격의 H4000의 A1000번∼A5000번의 화학성분을 갖는 알루미늄합금을 사용한다. 이러한 알루미늄합금은 임팩트성형에 매우 알맞은 전신성을 갖고 있는 동시에, 성형 후에 바람직한 가공경화를 얻을 수 있다. 더욱 바람직하게는, A3000번의 화학성분을 갖는 알루미늄합금을 사용하면 좋고, 이 경우에는 전지캔으로서의 특성이 뛰어나다.
또한, 펠릿(7)은 상기의 알루미늄 또는 알루미늄합금으로 이루어지는 전지캔소재를 펀칭가공함으로써, 도 3의 (a)에 명시하는 바와 같은 평면에서 본 형상이 제조해야 할 각형 전지캔(9)의 횡단면 형상에 가까운 타원형을 갖는 타원형 또는 도 3의 (c)에 나타내는 거의 직사각형으로 형성되어 있다. 이러한 형상으로 한 펠릿(7)에는 250℃∼400℃의 온도에서 0.5시간∼3시간(바람직하게는 1시간 전후)의 어닐(annealing)처리가 실시된다. 이 어닐처리는 펠릿(7)을 펀칭가공하기 전의 전지캔소재에 대하여 실시해도 되지만, 펀칭가공으로 얻어진 펠릿(7)에 대하여 실시하는 것이 바람직하다.
상기 펠릿(7)이 다이스(11)의 가공구멍(1la)에 삽입되면, 도 1의 (b)에 나타낸 바와 같이 펀치홀더(12)에 보존유지된 펀치(13)는 다이스(11)측에 근접이동되어, 다이스(11)의 가공구멍(11a) 내에 삽입된다. 그에 따라, 펠릿(7)은 펀치(13)로 압착시켜 펀치(13)와 가공구멍(11a)의 구멍벽과의 빈틈에 밀어 넣어지도록 전연(展延)되면서, 펀치(13)의 외주면에 따라 신장되도록 주조된다.
상기의 임팩트성형에서는 펀치(13)의 선단면에 형성된 요철면(13a)이 펠릿(7)에 접촉한 시점에서 펠릿(7)에 침투됨으로써, 이후의 임팩트성형 과정에서 펀치(13)가 펠릿(7)에 대하여 위치가 어긋나지 않게 소정의 상대위치에 보존유지된다. 그로 인해, 가공의 진행에 따라 변형하는 펠릿(7)의 재료가 펀치(13) 주위에 균등하게 또한 원활히 유동하기 때문에, 두께 불균일이 없는 고정밀도의 중간컵체(8)를 확실하게 성형가공할 수 있다.
또, 상기 요철면(13a)은 널(knurl)과 같은 그물코 형상으로 형성하는 것이 바람직하다. 또한, 요철면(13a)은 반드시 필요한 것이 아니고, 선단면이 평면으로 된 펀치로 임팩트성형하더라도 거의 필요한 형상의 중간컵체를 얻을 수 있다. 펀치(13)가 소정의 스트로크만 이동하고 끝낸 때에는, 도 3의 (b) 또는 도 3의 (d)에 나타내는 형상의 중간컵체(8)가 성형된다. 이 중간컵체(8)의 저면에는 펀치(13)의 요철면(13a)이 전사된 요철면(8d)이 형성된다. 이 중간컵체(8)는 상술한 어닐처리가 실시되어 양호한 신장성을 유지하게 된 펠릿(7)을 임팩트 성형하여 얻어진 것이므로, 이 점으로부터도 중간컵체(8)는 그 측면부의 두께의 격차가 한층 더 작게 된다.
상기 중간컵체(8)는 도 5의 (c)에 나타내는 제 2 중간컵체(3)와 거의 동일형상으로서, 횡단면 형상이 원하는 거의 타원형상 또는 거의 직사각형의 형상을 갖고 있다. 따라서, 이 제조방법에서는 상술한 선출원의 제조방법에서 딥드로잉을 하는 제 1 공정과 재드로잉을 행하는 제 2 공정을 거쳐서 제작하고 있던 제 2 중간컵체(3)와 동등한 중간컵체(8)를 제 1 공정의 임팩트성형을 행함으로써, 한번에 성형가공할 수 있다. 단, 이 중간컵체(8)는 임팩트성형으로 한 공정에서 형성된 것이기 때문에, 왜곡 변형된 개소가 약간 존재하지만, 이것은 후술하는 제 2 공정에서의 DI 공법에서 충분히 수정할 수 있기 때문에, 아무런 문제가 없다.
다음에, 소정의 스트로크만 이동하고 끝낸 펀치(13)는 도 1의 (c)에 나타낸 바와 같이, 다이스(11)로부터 이격되어 원래의 위치로 향해서 이동한다. 이 때, 성형가공된 중간컵체(8)는 펀치(13)에 부착한 상태로 펀치(13)에 의해 가공구멍(11a)에서 인출된 후에, 스트리퍼(stripper, 14)에 의해 펀치(13)로부터 분리되어진다.
그런데, 후술하는 제 2 공정에서의 DI 가공하는 경우에서는, 재료가 중심 방향으로 집중할려고 하는 응력이 작용하므로, 얻어지는 전지캔이 찌그러진 형상이 되는 경향이 있다. 이에 대하여, 이 실시예에서는 미리 타원형 또는 직사각형으로 형성한 펠릿(7)을 임팩트성형하여 거의 타원형 또는 거의 직사각형의 횡단면 형상의 중간컵체(8)를 형성하여, 이 중간컵체(8)를 DI 가공하기 때문에, 응력에 의한 찌그러짐을 방지하고, 또한 가공부담을 경감하여, 필요한 형상의 전지캔을 성형가공할 수가 있다.
상기 중간컵체(8)의 두께는 펀치(13)와 다이스(11)의 가공구멍(11a)의 구멍벽과의 간극에 의해서 임의로 설정된다. 측면부의 두께가 얇은 중간컵체(8)는 후공정의 DI 가공시의 가공부담이 적게 되는 반면, 필요한 두께를 갖는 전지캔을 얻기 위한 컨트롤이 어려워지고, 반대로 측면부의 두께가 두꺼운 중간컵체(8)는 필요한 두께를 갖는 전지캔(9)을 얻기 위한 컨트롤을 용이하게 할 수 있는 반면, DI 가공시의 가공부담이 커진다. 그래서, 중간컵체(8)는 장변측판부의 두께/바닥판부의 두께의 비가 0.6∼1.3으로 단변측판부의 두께/바닥판부의 두께의 비가 1.0∼1.8의 범위 내로 되는 형상으로 형성해 놓으면, 이 중간컵체(8)를 DI 가공할 때의 가공부담이 적어짐과 동시에, 필요한 두께를 갖는 전지캔(9)을 얻기 위한 컨트롤이 용이해져, 특히 장변측판부가 찢기는 불량의 발생을 확실히 방지할 수 있다.
상기 중간컵체(8)는 상술한 어닐처리를 실시한 전지캔소재 또는 펠릿(7)을 임팩트성형하여 얻어진 것인 경우에서도, 다시 어닐처리를 행하고 나서 DI 가공하는 것이 바람직하다. 이 어닐처리는 250℃∼400℃의 온도에서 0.5시간∼3시간(바람직하게는 1시간 전후)정도 행한다. 이에 따라, 중간컵체(8)는 임팩트성형시에 생긴 가공경화가 완화되어 재료의 신장성이 양호해져, 다음 공정의 DI 가공을 행하기 쉬운 상태가 된다.
그리고, 이 중간컵체(8)는 도 2에 나타내는 제 2 공정에서 드로잉 겸 아이어닝가공기에 의해서 1 단의 드로잉과 3 단의 아이어닝가공을 연속적으로 한번에 실시하는 DI 가공됨으로써, 원하는 형상의 각형 전지캔(9)이 된다. 이 드로잉 겸 아이어닝가공기는 중간제품 반송부(17), 다이스기구(18) 및 스트리퍼(19) 등을 구비하여 구성되어 있다. 다이스기구(18)에는 드로잉 다이스(18A) 및 제 1 내지 제 3 아이어닝 다이스(18B∼18D)가 배치되어, 이들 다이스(18A∼18D)는 DI 펀치(20)의 축중심과 동심이 되도록 직렬로 배치되어 있다.
중간제품 반송부(17)는 중간컵체(8)를 순서대로 성형 개소에 반송한다. 성형 개소에 반송되어 위치가 결정된 중간컵체(8)는 탄성 휠(도시생략)에 의해 구동되는 DI 펀치(20)의 누르는 동작에 의해, 드로잉 다이스(18A)에 의해서 그 형상이 DI 펀치(20)의 외형상에 따른 형상이 되도록 드로잉된다. 이 드로잉 다이스(18A)를 통과완료한 컵체는 중간컵체(8)에 대해 장경방향 및 단경방향의 각 치수를 약간 작게 하면서 몸통 길이가 변형되어, 원하는 각형 전지캔(9)의 횡단면 형상인 거의 직사각형에 가까운 거의 타원형상으로 성형되지만, 그 두께 등에 변화는 없다.
다음에, 드로잉 다이스(18A)를 통과완료한 컵체는 DI 펀치(20)의 누르는 동작이 진행됨으로써, 제 1 아이어닝 다이스(18B)에 의해 제 1 단계 아이어닝가공이 실시되고, 측면둘레부가 전신되어 그 두께가 얇아짐과 동시에 가공경화에 의해 경도가 높아진다. 이 제 1 아이어닝 다이스(18B)를 통과완료한 컵체는 DI 펀치(20)의 누르는 동작이 계속 진행됨으로써, 제 1 아이어닝 다이스(18B)보다도 작은 아이어 닝가공구멍을 갖는 제 2 아이어닝 다이스(18C), 이어서 제 2 아이어닝 다이스(18C)보다도 더욱 작은 아이어닝가공구멍을 갖는 제 3 아이어닝 다이스(18D)에 의해서 제 2 단계 및 제 3 단계의 아이어닝가공이 차례로 실시되고, 그 둘레벽부는 차례로 연신되어, 두께가 더욱 얇아짐과 동시에 가공경화에 의해서 경도가 높아진다. 제 3 아이어닝 다이스(18D)를 통과완료하면, 원하는 형상의 각형 전지캔(9)이 완성된다. 이 경우, 단경/장경의 비율이 작은 거의 타원형상, 요컨대 직사각형에 가까운 타원형상의 횡단면 형상으로 된 중간컵체(8)를 DI 가공하기 때문에, 무리없이 DI 가공을 행하여 원하는 형상의 각형 전지캔(9)을 안정되게 제작할 수 있다.
이 각형 전지캔(9)은 스트리퍼(19)에 의해 드로잉 겸 아이어닝가공기로부터 분리된 후에, 그 측상부(귀부)가 상기의 각 가공을 거침으로써, 다소 변형된 형상으로 되기 때문에, 그 귀부가 절단되어 도 3의 (e)에 나타내는 각형 전지캔(9)이 된다. 이 전지캔(9)의 저면에는 임팩트성형시에 형성된 요철면(8d)이 그대로 잔존하고 있다.
이 실시예의 각형 전지캔(9)의 제조방법에서는, 상술한 선출원의 각형 전지캔의 제조방법에서는 딥드로잉가공에 의한 제 1 공정과 복수 단계의 재드로잉가공에 의한 제 2 공정을 거침으로써, 제작하고 있던 제 2 중간컵체(3)와 동등한 중간컵체(8)를 임팩트성형에 의한 한 공정으로 제작하는 제 1 공정과, 생산속도가 우수한 DI 가공에 의한 제 2 공정에 의해, 원하는 형상의 각형 전지캔(9)을 제작할 수 있기 때문에, 선출원의 제조방법과 비교하여 공정수가 대폭 저감하여 생산성이 각별히 향상되고, 직사각형에 가까운 타원형상의 횡단면형상으로 한 중간컵체(8)를 DI 가공하기 때문에, 원하는 형상의 각형 전지캔(9)을 용이하게 제작할 수가 있는 동시에, DI 펀치(20)의 1스트로크의 작동으로 성형하는 DI 가공에 의해 두께 등의 치수정밀도가 향상하는 이점이 있다.
또, 이 실시예로 얻어진 도 3의 (e)의 각형 전지캔(9)은 전체가 균등한 두께를 갖고 있지만, 이 실시예의 제 1 공정의 임팩트성형은 펀치(13)와 다이스(11)의 가공구멍(11a)의 구멍벽과의 간극의 설정으로 임의의 형상으로 용이하게 성형할 수 있는 양호한 형상선택성을 갖고 있기 때문에, 선출원의 제조방법으로 얻어지는 도 5의 (d)의 각형 전지캔(4)과 같이 횡단면 형상이 거의 직사각형으로서, 그 단변측판부(4a)의 두께가 장변측판부(4b)의 두께보다도 두꺼운 형상으로 형성하는 것도 용이하다.
또한, 이 제조방법에서는, 도 3의 (f)의 종단면도에 나타내는 바와 같은 형상의 각형 전지캔(21)도 용이하게 제작할 수 있다. 이 각형 전지캔(21)은 단변측판부(21a) 및 장변측판부(21b)에서의 개구부 주변, 요컨대 각형 전지로 하였을 때의 봉입부 주변에 다른 부분보다도 두께가 약 10% 얇은 슬림부(21c)가 형성되어 있다. 이 슬림부(21c)는 제 2 공정에서의 드로잉 겸 아이어닝가공기의 DI 펀치(20)의 소정 부분을 약간 큰 직경으로 팽창시킨 형상으로 함으로써 형성할 수 있다.
다음에, 상술하는 실시예에 관한 각형 전지캔(9, 21)의 제조방법에 관한 구체예에 대해서 설명한다. 우선, 제 1 공정을 실시하였을 때의 실측값을 나타내면, 펠릿(7)은 알루미늄을 재료로 한 타원형으로서, 그 두께가 3.6mm, 장경이 30.9mm, 단경이 9.8mm이다. 중간컵체(8)는 두께가 0.4mm, 장경이 31.1mm, 단경이 10.0mm이 다. 계속해서, 제 2 공정을 거쳐서 제작한 도 3의 (e)에 나타내는 각형 전지캔(9)은 단변측판부(9a) 및 장변측판부(9b)의 두께가 0.2mm 이하, 바닥판부의 두께가 0.4mm, 장변이 29.5mm, 단변이 5.3mm이다. 이러한 형상의 변환을 거침으로써, 왜곡된 변형이 거의 없고, 높은 치수정밀도를 갖는 각형 전지캔(9)을 원활히 제작할 수 있었다.
또한, 같은 각형 전지캔을 다른 펠릿형상으로 제조한 제조방법에 관한 구체예에 관해서 설명한다. 우선, 제 1 공정을 실시하였을 때의 실측값을 나타내면, 펠릿은 알루미늄을 재료로 한 횡단면 형상이 직사각형의 네 모서리에 R을 갖는 거의 직사각형의 타원형으로서, 그 두께가 3.6mm, 장변이 29.5mm, 단변이 5.0mm이다. 중간컵체는 두께가 0.4mm, 장변이 30.0mm, 단변이 5.5mm이다.
계속해서, 제 2 공정을 거쳐서 앞의 도 3의 (e)에 나타내는 각형 전지캔(9)과 동일한 전지캔, 단변측판부(9a) 및 장변측판부(9b)의 두께가 0.2mm, 바닥판부의 두께가 0.4mm, 장경이 29.5mm, 단변이 5mm로 제작하였다. 이러한 형상의 변환을 거침으로써, 왜곡된 변형이 거의 없고, 높은 치수정밀도를 갖는 각형 전지캔(9)을 원활히 제작할 수가 있었다. 특히, 횡단면 형상이 직사각형의 네 모서리에 R을 갖는 거의 직사각형으로 함으로써, DI 공정에서 저면의 팽창을 억제할 수 있고, 또한, 구부림, 드로잉가공율이 작고, DI 공정에서의 드로잉가공이 용이해지는 등의 이점을 갖는다.
도 4는 도 3의 (f)에 나타내는 각형 전지캔(21)을 이용하여 구성한 각형의 리튬이온 2차전지를 나타내는 종단면도이다. 이 각형 전지는 각형 전지캔(21)의 개 구부 내측둘레부에 봉입판(22)이 끼워 부착되고, 이 각형 전지캔(21)과 봉입판(22)의 끼워맞춤부(23)는 레이저용접에 의해 일체화되어, 액밀 또는 기밀하게 봉입되어 있다. 봉입판(22)은 그 중앙부가 내측으로 오목한 형상으로 형성되며, 또한 관통구멍(24)이 형성되어 있고, 이 관통구멍(24)에는 발포아스팔트(blown asphalt)와 광물유와의 혼합물로 이루어지는 밀봉제를 도포한 내전해액성이며, 또한 전기절연성의 합성 수지제 개스킷(27)이 일체로 설치되어 있다.
상기 개스킷(27)에는 음극단자를 겸한 니켈 또는 니켈도금강제의 리벳(28)이 고착되어 있다. 이 리벳(28)은 개스킷(27)의 중앙부에 삽입되어, 그 하부에 워셔(washer, 29)를 끼워 맞춘 상태에서 선단부가 코킹(caulking)가공됨으로써 고정되어, 개스킷(27)에 대해 액밀 또는 기밀하게 밀착되어 있다. 또, 이 실시예의 개스킷(27)은 사출성형으로 봉입판(22)과 일체로 형성되어 있다. 음극단자를 겸한 리벳(28)과 봉입판(22)의 장변측의 바깥테두리와의 사이에는 거의 타원형의 배기구멍(30)이 설치되고, 이 배기구멍(30)은 봉입판(22)의 내면에 압착되어 일체화된 알루미늄박(31)에 의해 폐색되어, 방폭용 안전밸브가 형성되어 있다.
각형 전지캔(21)에서의 발전요소의 수납부에는 전극군(32)이 수납되어 있다. 이 전극군(32)은 미세다공성 폴리에틸렌필름(polyethylene film)으로 이루어지는 격리판(separator, 33)을 통해 각 한 장의 양극판(도시생략) 및 음극판(도시생략)을 감고, 가장 바깥둘레를 격리판(33)으로 둘러싸 횡단면이 타원형으로 형성되어 있다. 이 전극군(32)의 양극 리드(lead,34)는 봉입판(22)의 내면에 대해 레이저빔에 의한 스폿용접에 의해 접속되고, 음극 리드판(37)은 워셔(29)에 대한 저항용접 에 의해 접속되어 있다.
봉입판(22)에는 주액구멍(38)이 설치되어 있고, 이 주액구멍(38)으로부터 소정량의 유기전해액이 주입된다. 그 후, 주액구멍(38)은 덮개판(39)을 끼워 부착시켜 덮여지고, 덮개판(39)과 봉입판(22)을 레이저용접함으로써, 각형 전지가 완성된다. 또, 전극군(32)은 횡단면이 타원형이 되도록 감은 것을 이용하는 경우에 대해서 설명하였지만, 이 각형 전지캔(21)은 일반적인 각형 셀(cell)과 같이, 격리판(33)을 통해 여러 장의 양극판 및 음극판을 적층하여 구성된 전극군을 수납하여 각형 전지를 구성하는 경우에도 적용할 수 있다.
이 각형 전지는 상기 실시예의 제조방법으로 제작되는 각형 전지캔(21)을 이용하여 구성하기 때문에, 각형 전지캔(21)을 적은 공정수로 제작할 수 있는 만큼 생산성이 향상한다. 또한, 각형 전지캔(21)은 DI 공법으로 두께 등을 높은 치수정밀도로 형성할 수 있으므로, 각형 전지캔(21)의 두께를 가급적 얇게 형성하면, 이 각형 전지는 체적에너지밀도의 향상을 도모하면서 충분한 내압강도를 갖게 된다. 이러한 효과는 도 3의 (e)의 각형 전지캔(9)을 이용한 경우에도 동일하게 얻을 수 있지만, 각형 전지캔(21)을 이용한 경우에는 봉입판(22)과 각형 전지캔(21)과의 끼워맞춤부(23)를 레이저용접할 때, 봉입판(22)이 각형 전지캔(21)의 슬림부(21c)와 다른 부분과의 단부에 지지되므로, 봉입판(22)을 지지하기 위한 수단이 불필요해져서 레이저용접을 용이하게 행할 수 있는 이점이 있다.
다음에, 본 발명의 제 2 실시예에 관한 각형 전지캔의 제조방법에 대해서 설명한다. 이 제조방법에서는 도 1에 나타내는 제 1 공정에서 임팩트성형함으로써, 제 1 실시예와 같은 중간컵체(8)를 성형가공하여, 이 중간컵체(8)를 도 6에 나타내는 제 2 공정에서 드로잉 겸 아이어닝가공기로 DI 가공하는 것이다. 도 6에서 도 2와 동일 또는 동등한 것에는 동일한 부호를 붙여 중복하는 설명을 생략한다. 이 드로잉 겸 아이어닝가공기가 도 2의 것과 상이한 것은 DI 펀치(40)의 구성만이 다르다. 즉, DI 펀치(40)는 도 7의 (a)의 사시도 및 도 7의 (a)의 ⅦB부의 확대도인 도 7의 (b)에 나타낸 바와 같이, 제조해야 할 각형 전지캔에 대응하는 횡단면 형상이 거의 직사각형의 각형 판재형상의 외형을 갖고, 그 양쪽 장변측면에서의 하단으로부터 소정 위치까지의 개소에 격자형상의 가공홈(41)이 형성되어 있다. 이 격자형상의 가공홈(41)은 서로 교차하는 교점(42)을 통해 서로 연통되어 있다.
이 제 2 공정에서의 DI 가공은 기본적으로 제 1 실시예의 제 2 공정과 마찬가지지만, 다른 점에 대해서만 설명한다. 도 8에 나타내는 바와 같이, 중간컵체(8)가 드로잉 다이스(18A) 및 제 1 내지 제 2 아이어닝 다이스(18B∼l8C)를 통과하여 드로잉 및 아이어닝가공된 컵체(36)가 제 3 아이어닝 다이스(18D)를 통과할 때에는, 이 제 3 아이어닝 다이스(18D)의 가장 작은 아이어닝가공구멍에 의한 가압력에 의해서 컵체(36)의 캔내면이 DI 펀치(40)의 외면에 강하게 압접된다. 이에 따라, 그 컵체(36)의 캔내면측의 재료의 일부가 소성변형되면서 DI 펀치(40)의 가공홈(41) 내에 압입되고, 가공구(41)가 컵체(36)의 캔내면에 전사되어, 가공홈(41)에 대응하는 격자형상의 돌출팽창부(43)가 형성된다.
상기 컵체(36)의 캔내면에 돌출팽창부(43)가 형성될 때에는 컵체(36)의 캔내면측의 재료가 DI 펀치(40)와의 사이에 저항이 부가된 상태가 됨으로써, 거의 가공 되지 않고 DI 펀치(40)와 일체적으로 이동함과 동시에, 컵체(36)의 캔외면측의 재료가 제 3 아이어닝 다이스(18D)에서 주로 아이어닝되기 때문에, 제 3 아이어닝 다이스(18D)와 DI 펀치(40)와의 사이에서의 재료가 남는 현상을 억제하여 재료의 흐름을 원활히 할 수 있다. 더구나, 컵체(36)의 장변측판부에만 돌출팽창부(43)를 형성하도록 하고 있기 때문에, 장변측판부에서의 가공속도를 억제하여, 전체의 가공속도를 일정화할 수 있다.
그 결과, 이 제조방법에서는, 캔내면 및 캔외면에 동시에 물결무늬현상이 생기지 않는 균일한 캔두께를 갖는 각형 전지캔을 제조할 수가 있다. 바꿔 말하면, 가령 장변측면이 평면이 되는 각형 판재형상의 DI 펀치로 DI 가공한 경우에는 컵체(36)의 캔내면측 및 캔외면측의 재료가 DI 펀치 및 아이어닝 다이스에 따라서 가공되지 않기 때문에, 재료가 남는 현상이 생겨서 DI 펀치와 아이어닝 다이스와의 사이의 간격보다도 가는 캔두께가 부분적으로 생기는 물결무늬현상이 생긴다. 또한, 각형 전지캔을 DI 가공하는 경우에는, 그 장변측판부의 가공속도가 단변측판부보다도 빠르게 되고, 장변측판부가 연신되어 얇게 되어 버리지만, 이러한 불량은 이 실시예의 제조방법을 채용함으로써 한번에 해소할 수가 있다.
도 9의 (a)는 상기 제 2 실시예의 제조방법으로 얻어진 각형 전지캔(44)의 종단면 형상을 나타내는 사시도, 도 9의 (b)는 그 전지캔(44)의 일부를 확대하여 나타내는 사시도, 도 9의 (c)는 일부의 확대단면도이다. 이 각형 전지캔(44)은 횡단면 형상이 직사각형으로 된 밑면이 있는 각통 형상의 외형을 갖고, 그 장변측판부(44a)의 캔내면에 DI 펀치(40)의 가공홈(41)의 격자형상과 동일한 격자형상으로 된 다수의 돌출팽창부(43)가 형성되어 있고, 이들 각 돌출팽창부(43)는 교점(47)을 통해 서로 연결되어 있다.
이 각형 전지캔(44)은 가급적이면 얇은 두께로 하면서도, 격자형상의 돌출팽창부(43)가 보강기로서 기능하여 팽창변형을 효과적으로 억제할 수 있는 강도를 갖기 때문에, 매우 높은 내압강도를 갖게 되고, 더욱이, 캔외면 및 캔내면이 동시에 물결무늬현상이 없는 고정밀도의 평면으로 되어 있다. 또, 이 각형 전지캔(44)은 돌출팽창부(43)가 교점(47)을 통해 서로 연결되어 있으므로, 돌출팽창부(43)에 의해 강도가 증대하는 방향이 두 방향 이상이 되어, 한층 더 높은 내압강도를 갖게 된다.
도 9의 (c)를 참조하면서 구체적으로 설명하면, 돌출팽창부(43)의 팽창높이 H, 폭 W 및 간격 K를 다음과 같은 범위 내의 값으로 설정하여 전지캔의 캔내면에 형성하면, 충분한 에너지밀도를 확보하면서도 전지내압의 상승에 대해 팽창변형을 효과적으로 억제할 수 있는 필요한 효과를 얻을 수 있다.
즉, 돌출팽창부(43)의 팽창높이 H는 전지캔의 캔두께(각형 전지에서는 장변측판부(44a)의 캔두께) D의 5∼50%에 설정하는 것이 바람직하다. 5% 미만에서는 팽창변형을 억제하는 효과가 적고, 50% 이상에서는 전지캔의 용적이 감소하여 체적에너지밀도의 저하를 초래할 뿐만 아니라, 전지캔의 제조 자체가 곤란해진다. 보다 바람직한 팽창높이 H는 캔두께 D의 5∼20%의 범위 내의 값에 설정하는 것이고, 가장 바람직한 팽창높이 H는 캔두께 D의 5∼10%의 범위 내에 설정하는 것이고, 구체적인 수치는 0.01mm∼0.02mm이다.
또한, 돌출팽창부(43)의 폭 W는 상기 팽창높이 H의 1∼30배의 범위 내에 설정하는 것이 바람직하다. 1배 이하에서는 팽창변형을 효과적으로 억제할 수 있는 팽창높이 H를 갖는 돌출팽창부(43)를 형성할 수 없고, 30배 이상에서는 전지캔의 내용적이 작아져서 체적에너지밀도의 저하를 초래한다. 보다 바람직한 폭 W는 팽창높이 H의 5∼20배의 범위 내의 값에 설정하는 것이고, 가장 바람직한 폭 W는 팽창높이 H의 10∼15배의 범위 내에 설정하는 것이다.
또, 돌출팽창부(43)의 간격 K는 상기 폭 W의 2∼20배의 범위 내에 설정하는 것이 바람직하다. 2배 이하에서는 전지캔의 내용적이 작아져서 체적에너지밀도의 저하를 초래하고, 20배 이상에서는 팽창변형을 억제하는 효과가 불충분하게 된다. 보다 바람직한 간격 K는 폭 W의 5∼15배의 범위 내에 설정하는 것이다.
또한, 도 10의 (a)는 상기 제 2 실시예의 제조방법에서의 제 1 공정을 거쳐서 제작된 중간컵체(8)의 개구부에서 본 도면, 도 10의 (b)는 제 2 공정을 거쳐 제조된 각형 전지캔(44)의 개구부에서 본 도면이다. 도 10의 (a)의 중간컵체(8)는 장변측판부(8a)의 두께 T1, 단변측판부(8b)의 두께 T2, 코너부(8c)의 두께 T3가 T1<T2<T3의 상대관계가 된 형상을 갖고 있다. 구체적으로는, 장변측판부(8a)의 두께 T1이 0.40mm, 단변측판부(8b)의 두께 T2가 0.55mm, 코너부(8c)의 두께 T3이 0.75mm이다. 또, 바닥판부의 두께는 0.40mm이다. 제 1 임팩트성형은 상술한 바와 같이, 펀치(13)와 다이스(11)의 가공구멍(11a)의 구멍벽과의 간극의 설정에 의해서 임의의 형상으로 용이하게 성형할 수 있는 양호한 형상선택성을 갖고 있기 때문에, 상기한 각부의 두께 T1∼T3이 다른 형상의 중간컵체(8)를 용이하고, 또한 하나의 공정으로 신속히 제작할 수가 있다.
상기 형상으로 된 중간컵체(8)는 다음 공정에서 DI 가공될 때에 바닥판부를 제외한 장변측판부(8a), 단변측판부(8b) 및 코너부(8c)가 거의 같은 비율로 아이어닝되기 때문에, 깨지거나 찢어지는 불량의 발생을 확실히 방지하면서, 목적으로 하는 필요한 캔두께를 갖는 전지캔(44)을 확실히 얻을 수 있다.
도 10의 (b)의 각형 전지캔(44)은 장변측판부(44a)의 캔두께 t1, 단변측판부(44b)의 캔두께 t2, 코너부(44c)의 캔두께 t3가 중간컵체(8)와 동일하게 t1<t2<t3의 상대관계의 형상을 유지하고 있다. 구체적으로는, 장변측판부(44a)의 캔두께 t1이 0.20mm, 단변측판부(44b)의 캔두께 t2가 0.30mm, 코너부(44c)의 캔두께 t3이 0.50mm이다. 이것은 중간컵체(8)의 둘레측면의 전체가 DI 가공에 의해 거의 균등하게 얇아지도록 성형된 결과이다. 또, 바닥판부의 두께는 중간컵체(8)와 같은 0.40mm이다.
따라서, 원하는 형상의 각형 전지캔(44)의 각부의 캔두께 t1∼t3의 비율에 대응하는 비율의 두께 T1∼T3를 갖는 중간컵체(8)를 임팩트성형으로 미리 제작해 놓으면, DI 가공에서는 필요한 캔두께 t1∼t3를 갖는 각형 전지캔(44)을 얻기 위한 제어가 용이해지고, 또한 가공부담이 작아진다. 또한, 바닥판부는 제 1 공정의 임팩트성형한 시점에서 소정의 캔두께로 성형되고, 또한 그 캔두께가 DI 가공을 거쳐도 변화하지 않기 때문에, 가급적 적은 공정으로 확실하게 소정의 캔두께로 형성할 수 있다.
상기 형상으로 된 전지캔(44)은 전지내압의 상승시에 장변측판부(44a)를 외측으로 팽창변형시키고자 하는 힘과, 단변측판부(44b)를 내측으로 파이도록 하는 힘이 동시에 작용하기 때문에, 장변측판부(44a)보다도 두꺼운 캔두께 t2로 된 단변측판부(44b)가 장변측판부(44a)의 외측으로의 팽창변형을 효과적으로 저지한다. 또한, 장변측판부(44a)는 코너부(44c)를 지점으로서 외측으로 팽창변형하고자 하기 때문에, 단변측판부(44b)보다도 더욱 캔두께 t3를 크게 한 코너부(44c)는 장변측판부(44a)의 외측으로의 팽창변형을 효과적으로 저지한다.
따라서, 장변측판부(44a)는 캔두께 t1을 가장 작게 설정하면서도, 전지내압의 상승에 따라 외측으로 팽창변형하고자 하는 것이 효과적으로 방지되어, 충분한 내압강도를 확보할 수 있는 동시에, 주벽부분에서 가장 표면적이 큰 장변측판부(44a)의 캔두께 t1을 최소로 함으로써 발전요소를 수용하는 용적을 크게 할 수 있다. 또한, 코너부(44c)의 캔두께 t3은 전지캔(44)에 수납하는 전극군과의 사이에 생기는 빈틈만큼 내측으로 팽창시킨 형상으로 두껍게 해도, 전극군의 수용량의 감소를 초래한다.
또한, 상기 각형 전지캔(44)의 장변측판부(44a)의 캔두께 t1은 상술한 바와 같이 0.20mm로 가급적 얇게 할 수 있다. 왜냐하면, 장변측판부(44a)는 격자형상의 돌출팽창부(43)에 의한 팽창변형이 효과적으로 억제되기 때문에, 0.25mm 이하의 가급적 얇은 캔두께 t1로 형성할 수 있다. 바꾸어 말하면, 이 각형 전지캔(44)은 장변측판부(44a)의 캔두께 t1을 0.25mm 이하로 얇게 한 경우에 팽창변형이 생기기 쉬워지는 과제를 격자형상의 돌출팽창부(43)를 형성함으로써 해소한 것이다.
본 발명의 각형 전지캔 및 그 제조방법에 의하면, 장변측판부의 캔두께를 가급적 얇게 하더라도 전지내압의 상승에 의한 팽창변형을 효과적으로 억제할 수 있는 충분한 강도를 갖고, 또한 공간효율이 높은 각형 전지에서의 단위체적 및 단위중량당의 에너지밀도를 모두 향상시키는 각형 전지캔을 생산성 좋게 제조할 수 있기 때문에, 전지캔의 소형화 및 슬림화가 요구되는 경우의 각형 전지에 사용하는 것에 적합하다.

Claims (8)

  1. 소정 형상의 펠릿(7)을 임팩트 성형하여 중간컵체(8)를 성형하는 제 1 공정과,
    상기 중간컵체(8)를 드로잉 가공과 아이어닝 가공을 연속적으로 한번에 행하는 DI 가공을 함으로써, 횡단면 형상이 대략 장방형의 각형 전지캔(9, 44)을 성형하는 제 2 공정을 포함하며,
    상기 펠릿(7)의 평면 형상은, 상기 각형 전지 캔(9, 44)의 횡단면의 형상에 대응하며, 대략 타원형 또는 대략 장방형인 것을 특징으로 하는 각형 전지캔의 제조방법.
  2. 제 1 항에 있어서,
    선단면이 요철면(13a)으로 된 펀치(13)를 이용하여 펠릿(7)을 임팩트성형함으로써, 중간컵체(8)를 성형하도록 하는 것을 특징으로 하는 각형 전지캔의 제조방법.
  3. 제 1 항에 있어서,
    펠릿(7)을 임팩트성형함으로써, 횡단면 형상이 직사각형의 밑면이 있는 각통 형상이며, 그 직사각형에서의 장변측판부(8a), 단변측판부(8b) 및 코너부(8c)의 판두께를 순서대로 T1, T2, T3으로 하였을 때, T1<T2 <T3이 되도록 형상을 갖는 중간컵체(8)를 성형하고,
    상기 중간컵체(8)를 DI 가공함으로써, 횡단면 형상이 직사각형이며, 그 직사각형의 장변측판부(44a), 단변측판부(44b) 및 코너부(44c)의 판두께를 순서대로 t1, t2, t3으로 했을 때, t1<t2<t3이 되도록 형상을 가지는 각형 전지캔(44)을 성형하도록 한 것을 특징으로 하는 각형 전지캔의 제조방법.
  4. 제 3 항에 있어서,
    펠릿(7)을 임팩트성형함으로써, 장변측판부(8a)의 두께(Tl)에 대한 바닥판부의 두께의 비가 0.6∼1.3이고, 또한 단변측판부(8b)의 두께(T2)에 대한 바닥판부의 두께의 비가 1.0∼1.8의 형상을 갖는 중간컵체(8)를 성형하도록 한 것을 특징으로 하는 각형 전지캔의 제조방법.
  5. 소정 형상의 펠릿(7)을 임팩트성형함으로써, 횡단면 형상이 직사각형의 밑면이 있는 각통 형상이고, 그 직사각형에서의 장변측판부(8a), 단변측판부(8b) 및 코너부(8c)의 판두께를 순서대로 T1, T2, T3으로 했을 때, T1<T 2<T3이 되도록 형상을 갖는 중간컵체(8)를 성형한 후, 이 중간컵체(8)를 드로잉가공과 아이어닝가공을 연속적으로 한번에 행하는 DI 가공함으로써, 횡단면 형상이 직사각형으로서, 그 직사각형의 장변측판부(44a), 단변측판부(44b) 및 코너부(44c)의 판두께를 순서대로 t1, t2, t3으로 하였을 때, t1<t2<t3이 되도록 하는 형상으로 성형되어 이루어지는 것을 특징으로 하는 각형 전지캔.
  6. 소정 형상의 펠릿(7)을 임팩트성형하여 중간컵체(8)를 성형하는 제 1 공정과,
    상기 중간컵체(8)를 직사각형의 횡단면 형상을 갖는 각형 판재의 적어도 장변 측면에 가공홈이 격자형상으로 형성된 DI 펀치(40)를 이용하여, 드로잉가공과 아이어닝가공을 연속적으로 한번에 행하는 DI을 가공함으로써, 적어도 그 장변측판부(44a)의 캔 내면에 두께 방향이 두껍게 되도록 팽창하여 선 형상으로 연장되는 복수의 돌출팽창부(43)가 격자형상의 배치로 형성된 각형 전지캔(44)을 성형하는 제 2 공정을 포함하며,
    상기 펠릿(7)의 평면 형상은 상기 각형 전지 캔(9, 44)의 횡단면의 형상에 대응하는 있는 것을 특징으로 하는 각형 전지캔의 제조방법.
  7. 제 1 항에 기재된 제조방법으로 제조된 각형 전지캔(9, 44)의 내부에 전극군(32) 및 전해액으로 이루어지는 발전요소를 수납하고, 또한 개구부를 봉입판(22)으로 액밀(液密)하게 밀봉하는 것을 특징으로 하는 각형 전지.
  8. 제 6 항에 기재된 제조방법으로 제조된 각형 전지캔(44)의 내부에, 전극군(32) 및 전해액으로 이루어지는 발전요소를 수납하고, 또한 개구부를 봉입판(22)으로 액밀하게 밀봉하는 것을 특징으로 하는 각형 전지.
KR1020027011147A 2000-12-26 2001-12-26 각형 전지캔 및 그 제조방법과 그것을 이용한 각형 전지 KR100576894B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JPJP-P-2000-00394153 2000-12-26
JP2000394153 2000-12-26
JPJP-P-2001-00341469 2001-11-07
JP2001341469 2001-11-07

Publications (2)

Publication Number Publication Date
KR20020080441A KR20020080441A (ko) 2002-10-23
KR100576894B1 true KR100576894B1 (ko) 2006-05-03

Family

ID=26606605

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020027011147A KR100576894B1 (ko) 2000-12-26 2001-12-26 각형 전지캔 및 그 제조방법과 그것을 이용한 각형 전지

Country Status (6)

Country Link
US (1) US6946221B2 (ko)
EP (1) EP1347519A4 (ko)
KR (1) KR100576894B1 (ko)
CN (1) CN1216428C (ko)
TW (1) TW535310B (ko)
WO (1) WO2002052662A1 (ko)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000069004A1 (en) * 1999-05-07 2000-11-16 Matsushita Electric Industrial Co., Ltd. Square cell container and method of manufacturing the cell container
JP3740048B2 (ja) * 2001-10-12 2006-01-25 松下電器産業株式会社 電池缶およびそれを用いた電池
JP2004207571A (ja) 2002-12-26 2004-07-22 Toshiba Corp 半導体装置の製造方法、半導体製造装置及びステンシルマスク
JP3694506B2 (ja) 2003-02-04 2005-09-14 石崎プレス工業株式会社 プレス加工を用いた電池用負極缶の製造方法
KR101030835B1 (ko) * 2008-12-03 2011-04-22 삼성에스디아이 주식회사 전지용 케이스의 제조 방법 및 이에 의해 제조되는 전지용 케이스
US8691426B2 (en) 2009-03-25 2014-04-08 Samsung Sdi Co., Ltd. Secondary battery having a wall with varying thicknesses
CN101704050B (zh) * 2009-10-26 2012-10-10 无锡市金杨新型电源有限公司 一种阶梯模具冲压薄壁电池壳的工艺及阶梯模具
TWI482331B (zh) * 2011-09-16 2015-04-21 Changs Ascending Entpr Co Ltd Battery box sealing method
ES2426319B1 (es) * 2012-04-19 2014-09-02 Expal Systems, S.A. Proceso y sistema de conformado de una lámina metálica
CN102820437B (zh) * 2012-08-16 2015-02-25 绥中正国新能源科技有限公司 一种锂电池壳的制造方法
KR102296130B1 (ko) * 2014-08-13 2021-08-31 삼성에스디아이 주식회사 이차 전지
KR101657361B1 (ko) * 2014-10-27 2016-09-13 삼성에스디아이 주식회사 이차 전지용 캔의 제조 방법 및 이를 이용한 이차 전지
CN104362292B (zh) * 2014-11-19 2017-03-01 东莞新能源科技有限公司 一种锂二次电池
JP6731176B2 (ja) * 2016-01-21 2020-07-29 株式会社Gsユアサ 蓄電素子、及び蓄電素子の製造方法
US10115997B2 (en) * 2016-05-12 2018-10-30 Bosch Battery Systems Llc Prismatic electrochemical cell
DE102016121089A1 (de) 2016-11-04 2018-05-09 Schuler Pressen Gmbh Verfahren und Vorrichtung zur Herstellung eines prismatischen Batteriezellenbehälters
US10697479B1 (en) 2017-06-09 2020-06-30 JARP Industries, Inc. Pressure vessel and method of welding a pressure vessel sidewall and end cap together
DE102017117276A1 (de) * 2017-07-31 2019-01-31 Schuler Pressen Gmbh Presse und Verfahren zum Kaltumformen eines Ausgangsteils in einen Hohlkörper
DE102017220115A1 (de) * 2017-11-13 2019-05-16 Robert Bosch Gmbh Verfahren zur Herstellung eines Zellengehäuses für eine Batteriezelle und Batteriezelle
JP7014655B2 (ja) * 2018-03-22 2022-02-01 本田技研工業株式会社 バッテリモジュール及びバッテリモジュールの製造方法
US20220140428A1 (en) * 2019-03-21 2022-05-05 Lg Energy Solution, Ltd. Battery module having module housing of thin plate type and battery pack including the same
KR20200134634A (ko) * 2019-05-23 2020-12-02 상신이디피(주) 이차전지 캔 성형 방법 및 이에 의하여 제조된 이차전지 캔
CN110405055A (zh) * 2019-06-18 2019-11-05 李可 圆柱电池钢壳自动化冲压生产线
CN110935789B (zh) * 2019-12-12 2021-12-24 武汉市杰精精密电子有限公司 一种锂铔电池外壳拉伸和冲制翻边孔工艺、及其冲压装置
JP7333001B2 (ja) * 2019-12-26 2023-08-24 トヨタ自動車株式会社 組電池および電池ホルダー
CN112157175B (zh) * 2020-09-15 2024-10-01 苏州斯莱克精密设备股份有限公司 一种电池罐罐体拉伸用冲头、模具及其拉伸工艺
CN112191725A (zh) * 2020-09-29 2021-01-08 马鞍山市凯通新能源科技有限公司 新能源汽车电池盒的压制工艺
CN113828715B (zh) * 2021-08-24 2023-05-05 桂林理工大学 含钪高锌铝合金硬盘盒体矩形通道转角挤压成形方法
CN113828722B (zh) * 2021-09-05 2023-05-30 桂林理工大学 一种硬盘盒体挤压模具的设计方法
CN114759303B (zh) * 2022-05-20 2024-08-27 欣旺达动力科技股份有限公司 电芯以及电池包
CN115464340A (zh) * 2022-09-15 2022-12-13 上海联擎动力技术有限公司 一种用于椭圆形深孔加工的电极制作方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3984259A (en) * 1975-08-22 1976-10-05 Aluminum Company Of America Aluminum cartridge case
JPH0799686B2 (ja) 1984-02-28 1995-10-25 松下電器産業株式会社 電 池
JP2563185B2 (ja) * 1987-10-08 1996-12-11 東芝電池株式会社 角形密閉電池
JP3114768B2 (ja) 1992-07-29 2000-12-04 株式会社ユアサコーポレーション 角形密閉式電池用電槽缶
JPH084869B2 (ja) 1993-04-05 1996-01-24 豊田通商株式会社 金属製角形超薄肉背高ケースの製造方法とそのための金型
JPH06333541A (ja) 1993-05-19 1994-12-02 Toshiba Corp 角型電池缶とその製造方法及び角型電池缶用角筒の成形装置
EP0629009B1 (en) * 1993-06-04 1997-08-06 Katayama Special Industries, Ltd. Battery can, sheet for forming battery can, and method for manufacturing sheet
JP3015667B2 (ja) * 1994-05-31 2000-03-06 三洋電機株式会社 密閉形の角形電池
US5787752A (en) * 1995-03-15 1998-08-04 Matsushita Electric Industrial Co., Ltd. Method to manufacture cell-cans
JP3402047B2 (ja) * 1996-02-08 2003-04-28 松下電器産業株式会社 電 池
JP3339287B2 (ja) * 1996-02-20 2002-10-28 松下電器産業株式会社 密閉された角型蓄電池
JPH105907A (ja) 1996-06-21 1998-01-13 Masayuki Okano 有底容器の製造方法およびその金型
JP3186980B2 (ja) 1996-06-26 2001-07-11 冨士発條株式会社 平角形電池用有底容器の製造方法
JP3684561B2 (ja) 1996-08-20 2005-08-17 日本電池株式会社 電池
JP3604879B2 (ja) * 1997-08-05 2004-12-22 松下電器産業株式会社 電池の製造方法
JP3857818B2 (ja) * 1997-09-08 2006-12-13 松下電器産業株式会社 リチウムイオン二次電池
JP4217992B2 (ja) * 1998-06-26 2009-02-04 武内プレス工業株式会社 変形容器の製造方法
JP3551786B2 (ja) 1998-09-30 2004-08-11 日本ケミコン株式会社 偏平薄型有底角筒体の製造方法及び製造用パンチ
JP3492926B2 (ja) 1998-12-09 2004-02-03 宮本工業株式会社 有底容器の衝撃押出し成形装置および衝撃押出し成形方法、並びに有底容器
JP4088732B2 (ja) 1998-12-11 2008-05-21 株式会社ジーエス・ユアサコーポレーション 二次電池

Also Published As

Publication number Publication date
US6946221B2 (en) 2005-09-20
EP1347519A4 (en) 2007-05-02
KR20020080441A (ko) 2002-10-23
CN1216428C (zh) 2005-08-24
EP1347519A1 (en) 2003-09-24
CN1406395A (zh) 2003-03-26
US20030003355A1 (en) 2003-01-02
TW535310B (en) 2003-06-01
WO2002052662A1 (en) 2002-07-04

Similar Documents

Publication Publication Date Title
KR100576894B1 (ko) 각형 전지캔 및 그 제조방법과 그것을 이용한 각형 전지
KR100662164B1 (ko) 각형 전지캔 및 그 제조방법
JP3740048B2 (ja) 電池缶およびそれを用いた電池
JP3689667B2 (ja) 角形電池缶およびその製造方法並びにそれを用いた角形電池
KR20130064133A (ko) 전지 케이스용 덮개 및 전지 케이스용 덮개의 제조 방법
JP5596647B2 (ja) 電池ケース用蓋の製造方法
KR101902132B1 (ko) 차재 전지용의 각형 전지 케이스 및 그의 제조 방법
KR20150004747A (ko) 전지 케이스 및 전지 케이스의 안전 밸브의 형성 방법
KR100455013B1 (ko) 전지캔 및 그 제조방법
US20220320675A1 (en) Sealing plate equipped with gas discharge valve and secondary battery using the same
US5787752A (en) Method to manufacture cell-cans
EP4336633A1 (en) Battery case
KR20230109949A (ko) 이차전지
JP3600017B2 (ja) 電池缶及びそれを用いた電池
US20020187392A1 (en) Secondary battery, anode can thereof, and method of manufacturing the same
JP4064642B2 (ja) 電池缶の製造方法
JP2003157809A (ja) 角型リチウムイオン二次電池
JP2001313008A (ja) 電池缶およびその製造方法並びに電池
KR102694300B1 (ko) 원통형 이차전지 캔 및 그 제조방법
JP3247570B2 (ja) 電池缶の製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee