JPWO2020208735A1 - ソリッドワイヤ及び溶接継手の製造方法 - Google Patents

ソリッドワイヤ及び溶接継手の製造方法 Download PDF

Info

Publication number
JPWO2020208735A1
JPWO2020208735A1 JP2019547171A JP2019547171A JPWO2020208735A1 JP WO2020208735 A1 JPWO2020208735 A1 JP WO2020208735A1 JP 2019547171 A JP2019547171 A JP 2019547171A JP 2019547171 A JP2019547171 A JP 2019547171A JP WO2020208735 A1 JPWO2020208735 A1 JP WO2020208735A1
Authority
JP
Japan
Prior art keywords
less
solid wire
welding
content
weld metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019547171A
Other languages
English (en)
Other versions
JP6690786B1 (ja
Inventor
周雄 猿渡
周雄 猿渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Application granted granted Critical
Publication of JP6690786B1 publication Critical patent/JP6690786B1/ja
Publication of JPWO2020208735A1 publication Critical patent/JPWO2020208735A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/025Seam welding; Backing means; Inserts for rectilinear seams
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3066Fe as the principal constituent with Ni as next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/38Selection of media, e.g. special atmospheres for surrounding the working area
    • B23K35/383Selection of media, e.g. special atmospheres for surrounding the working area mainly containing noble gases or nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/32Wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Arc Welding In General (AREA)

Abstract

本発明の一態様に係るソリッドワイヤは、化学組成が、C:0.003%以上0.080%以下;Si:0.0010%以上0.50%以下;Mn:0.050%以上1.80%以下;Al:0.030%以上0.500%以下;Ni:8.0%以上16.0%以下;P:0.0200%以下;S:0.0100%以下;O:0.050%以下;Ta:0%以上0.1000%以下;Cu:0%以上0.5%以下;Cr:0%以上0.5%以下;Mo:0%以上0.5%以下;V:0%以上0.20%以下;Ti:0%以上0.10%以下;Nb:0%以上0.10%以下;B:0%以上0.010%以下;Mg:0%以上0.80%以下;REM:0%以上0.050%以下;及び残部:Feおよび不純物からなり、αが1.35%以上5.50%以下であり、Ceqが0.250%以上0.520%以下である。

Description

本発明は、ソリッドワイヤ及び溶接継手の製造方法に関する。
近年、地球温暖化の問題による二酸化炭素排出量規制強化により、石油・石炭などに比べて二酸化炭素の排出量が少ない天然ガスの需要が高まっており、それに伴いLNGタンク建造の需要も世界的に高まっている。LNGタンクに使用される鋼材には、−196℃の極低温度での靭性確保の要求から、6〜9%Niを含むNi系低温用鋼が使用されている。
このNi系低温用鋼の溶接においては、溶接金属の組織をオーステナイト(面心立方、以下FCC)とすることができる、60〜80質量%のNiを含むNi基合金溶接材料(以下、Ni基合金溶接材料という)を用いることが通常である。しかしながらNi基合金溶接材料は、多量のNiを含有しているので、極めて高価である。
さらにNi基合金溶接材料は、高温割れを発生させやすく、また溶融金属の湯流れが悪いため、融合不良などの溶接欠陥を発生させやすい。従来技術によれば、Ni基合金溶接材料は、溶接欠陥を防止するために、低入熱で溶接できる溶接方法(例えば被覆アーク溶接、サブマージアーク溶接およびTIG溶接など)と組み合わせられる。このため、Ni基合金溶接材料を用いた溶接は、施工効率が低い。Ni基合金溶接材料は、材料コスト、及び溶接施工コストの両方において課題を有していると言える。
溶接材料中のNi量を、Ni系低温用鋼と同程度に低減すれば、材料コストを低減することができる。しかしながら、Ni系低温用鋼並みの6〜9質量%程度まで溶接金属中のNi量を低減すると、溶接金属の結晶構造が体心立方構造(以下、BCC)となる。BCC溶接金属においては、その低温靭性を確保するために、酸素量を極めて低い水準まで下げる必要がある。そのため従来技術によれば、Ni量がNi系低温用鋼と同程度である溶接材料は、溶接金属の低酸素化が可能である溶接方法、例えばTIG溶接と組み合わせることが必須であった。非消耗電極式のTIG溶接によれば、たとえ溶接材料のNi量が低くとも、健全な溶接金属が得られる。ただし、TIG溶接の溶接施工効率は低い。従って、溶接材料中のNiを低減させたとしても、溶接施工コストの課題を解決することができなかった。
産業界では、溶接施工効率に優れる溶接法に適用可能であり、且つ低温靭性に優れた溶接金属を製造可能な溶接材料が待望されている。溶接施工効率に優れる溶接法として、例えばMIG溶接及びMAG溶接等のガスシールドアーク溶接法が挙げられる。MIG溶接は、アルゴン、ヘリウムなどのイナートガスでシールドするガスシールドメタルアーク溶接であると定義され、MAG溶接は、炭酸ガス、アルゴンと炭酸ガスとの混合ガスなどの活性のシールドガスを用いる、ガスシールドメタルアーク溶接であると定義される(JIS Z 3001:2008)。酸素がシールドガスに含まれるガスシールドメタルアーク溶接も、MAG溶接と称されることがある。例えばMAG溶接のシールドガスとして、一般にAr−10〜30%CO(つまり、体積分率で10〜30%のCOで、残部がArの混合ガス)、100%CO、またはAr−2%Oなどが使用されており、ガス中に活性ガスであるCOまたはOが2%以上含まれている。
シールドガスに活性ガスを含有させることは、溶接施工コストの観点、及びアークを細くしてエネルギーを集中させて溶接欠陥を減少させる観点で有利である。ただし、MAG溶接は、溶接金属に酸素が取り込まれやすいという欠点がある。従来技術によれば、溶接金属の酸素量を減少させることが求められる溶接材料と、MAG溶接とを組み合わせてNi系低温用鋼を溶接することは容易ではなかった。
極低温用鋼の溶接ワイヤとして例えば次のようなワイヤが提案されている。
特許文献1ではフラックス中にワイヤ全質量に対して、TiO、SiO及びZrOを総量で4.0質量%以上含み、さらに、Mn酸化物をMnO換算で0.6〜1.2質量%含み、かつ、TiO、SiO、ZrO及びMnO(換算量)の含有量を質量%で、それぞれ、[TiO]、[SiO]、[ZrO]及び[MnO]としたとき、[TiO]/[ZrO]が2.3〜3.3、[SiO]/[ZrO]が0.9〜1.5、及び、([TiO]+[SiO]+[ZrO])/[MnO]が5〜13である、Ni基合金を外皮とするフラックス入りワイヤが開示されている。しかしこのワイヤにおいてはNi量が60〜70%であり、溶接材料の低コスト化は達成されてない。
特許文献2では、0.13重量%以下のCを含有し、引張強さが760乃至980N/mmである高張力鋼のTIG溶接に使用されるソリッドワイヤにおいて、JIS Z 3111に規定された方法により得られた全溶着金属のマルテンサイト変態開始温度が400℃以下であると共に、ワイヤ全重量に対してNi:7.5乃至12.0重量%を含有し、C:0.10重量%以下及びH:2重量ppm以下に規制されていることを特徴とするTIG溶接用ソリッドワイヤが開示されている。しかし、特許文献2に開示されたソリッドワイヤにおいて、溶接方法はTIG溶接に限定されており、従ってこれを用いた溶接の施工効率は著しく低い。
特許文献3では、ニッケル鋼を溶接するための有芯ワイヤであって、鋼シースと充填元素とを具備し、前記ワイヤの重量に対して、2乃至15%の弗素と、8乃至13%のニッケルと、鉄とを含有したことを特徴とする有芯ワイヤが開示されている。しかし、特許文献3において開示されたワイヤによって得られる溶接金属の低温靭性(−196℃での衝撃試験でのシャルピー吸収エネルギー)は低い。近年は、溶接部に対して、−196℃での衝撃試験でのシャルピー吸収エネルギーが50J以上となる低温靭性が求められるが、特許文献3において開示されたワイヤはこれを達成することができない。また、特許文献3の有芯ワイヤとMAG溶接とを組み合わせた場合、スパッタ量が増大して溶接欠陥が多数発生すると推定される。
非特許文献1には、Niを約10%に低減した鉄合金のソリッドワイヤを使用し、100%ArシールドガスによるMIG溶接とすることで、TIG溶接と同程度の溶接金属が得られる技術が開示されている。この技術では、上記ワイヤ中のPとS量を著しく低減しているため、靭性は確保されているが、本発明者らの実験では、非特許文献1の方法で溶接すると、アークが不規則に発生することで、溶接ビードが蛇行し、溶接欠陥が多発するという問題が生じた。この問題は、MAG溶接と組み合わせた場合特に顕著に生じる。
このように、溶接施工コストが低い溶接方法(例えばガスシールドアーク溶接、特にMAG溶接)と、Ni量を6〜9%Ni鋼と同程度に低減した安価な溶接材料との組み合わせによって、十分な低温靭性を有する溶接金属を得ることができる技術は、未だ実現されていない。
日本国特開2008−246507号公報 日本国特開平09−253860号公報 日本国特開2008−161932号公報
阿草一男、古生正昭ら、川崎製鉄技報、vol.14、No.3(1982)、9%Ni鋼の純アルゴンシールド共金MIG溶接
本発明は、上記背景技術の問題点に鑑み、溶接材料コストを大幅に低減可能であり、溶接施工効率が優れる溶接方法に適用しても溶接作業性に優れ、並びに引張強さ及び−196℃の低温靭性が優れた溶接金属が得られるソリッドワイヤ、並びにそのソリッドワイヤを用いた溶接継手の製造方法を提供することを課題とする。
本発明の要旨は以下の通りである。
(1)本発明の一態様に係るソリッドワイヤは、化学組成が、前記ソリッドワイヤの全質量に対する質量%で:C:0.003%以上0.080%以下;Si:0.0010%以上0.50%以下;Mn:0.050%以上1.80%以下;Al:0.030%以上0.500%以下;Ni:8.0%以上16.0%以下;P:0.0200%以下;S:0.0100%以下;O:0.050%以下;Ta:0%以上0.1000%以下;Cu:0%以上0.5%以下;Cr:0%以上0.5%以下;Mo:0%以上0.5%以下;V:0%以上0.20%以下;Ti:0%以上0.10%以下;Nb:0%以上0.10%以下;B:0%以上0.010%以下;Mg:0%以上0.80%以下;REM:0%以上0.050%以下;及び残部:Feおよび不純物からなり、下記の式aで定義されるαが1.35%以上5.50%以下であり、下記の式bで定義されるCeqが0.250%以上0.520%以下である。
α=2×[Mn]+[Al]+1.5×[Ti]+[Mg]+10×[Ta]・・・(式a)
Ceq=[C]+[Si]/24+[Mn]/6+[Ni]/40+[Cr]/5+[Mo]/4+[V]/14・・・(式b)
但し、式aおよび式bの[]付元素は、それぞれの元素の前記ソリッドワイヤの前記全質量に対する質量%での含有量を表す。
(2)上記(1)に記載のソリッドワイヤでは、前記化学組成が、前記ソリッドワイヤの全質量に対する質量%で、Ta:0.0005%以上0.1000%以下;Cu:0.1%以上0.5%以下;Cr:0.01%以上0.5%以下;Mo:0.01%以上0.5%以下;V:0.01%以上0.20%以下;Ti:0.005%以上0.10%以下;Nb:0.002%以上0.10%以下;B:0.0003%以上0.010%以下;Mg:0.10%以上0.80%以下;及びREM:0.001%以上0.050%以下からなる群から選択される一種以上を含有してもよい。
(3)上記(1)又は(2)に記載のソリッドワイヤでは、前記ソリッドワイヤ中の前記REMの含有量が、前記ソリッドワイヤの前記全質量に対する質量%で0.010%以下であってもよい。
(4)上記(1)〜(3)のいずれか一項に記載のソリッドワイヤでは、表面にパーフルオロポリエーテル油を有してもよい。
(5)上記(1)〜(4)のいずれか一項に記載のソリッドワイヤでは、引張強さが500MPa以上1000MPa以下であってもよい。
(6)本発明の別の態様に係る溶接継手の製造方法は、上記(1)〜(5)のいずれか1項に記載のソリッドワイヤを用いて鋼材を溶接する。
(7)上記(6)に記載の溶接継手の製造方法では、前記鋼材が、板厚が6mm以上100mm以下であり、Niの含有量が5.5質量%以上9.5質量%以下であり、引張強さが660MPa以上900MPa以下であってもよい。
(8)上記(6)又は(7)に記載の溶接継手の製造方法では、前記溶接がガスシールドアーク溶接であってもよい。
(9)上記(8)に記載の溶接継手の製造方法では、シールドガスが、純Arガス、純Heガス、Arと合計20体積%以下のO及びCOの一方又は両方とを含むガス、並びにHeと合計20体積%以下のO及びCOの一方又は両方とを含むガスのいずれかであってもよい。
本発明のソリッドワイヤは、Ni系低温用鋼並みにNi量を低減することで溶接材料コストを大幅に低減することが可能であり、かつ、溶接施工効率に優れるガスシールドアーク溶接(例えばMIG溶接及びMAG溶接等)に適用されても溶接金属の靭性を確保可能である。例えば、LNGタンクや化学プラント等に使用される、Niを5.5〜9.5%程度含有するNi系低温用鋼の溶接に、本発明のソリッドワイヤ及びこれを用いた溶接継手の製造方法が適用された場合、−196℃の低温靭性が優れる溶接金属が、安価且つ高効率に得られる。
実施例における試験片の採取位置を示す図である(JIS Z3111:2005)。 実施例における溶接ビードの整合性の評価式を示す図である。
Ni系低温用鋼の溶接金属には−196℃の低温靭性が要求され、−196℃の吸収エネルギーを確保するためには溶接金属の酸素量を低減する必要がある。Ni量を6〜9%Ni鋼並みに低減したソリッドワイヤを用いて得られた溶接金属の結晶構造はBCC構造であるが、この溶接金属中の酸素量を低減させることで、脆性破壊が抑制され、溶接金属の低温靭性が十分に向上する。
本発明者らは、Ni含有量をNi系低温用鋼と同程度まで低減したソリッドワイヤにおいて、脱酸元素であるMn、Al、Ti、及びMg、並びにTaの含有量を最適化するためのパラメータ(α)を導入し、さらにC、Si、Mn、Ni、Cr、Mo、Vの含有量を種々の割合で変化させ、このようにして試作したソリッドワイヤを用いて、Arと活性ガスの混合ガスを使用したガスシールドアーク溶接によってNi系低温用鋼の溶接を実施した。
その結果、以下の事項が見出された。
(i)値αを用いてMn、Al、Ti、及びMg、並びにTaの含有量を最適化すれば、Arと活性ガスの混合ガスを用いたガスシールドアーク溶接によっても、溶接金属の酸素量を大幅に低減できる。
(ii)上記(i)に加えて、C、Si、Mn、Ni、Cr、Mo、Vの含有量を特定の範囲とすることで、−196℃での優れた低温靭性が得られる。
(iii)上記(i)及び(ii)の要件が満たされたソリッドワイヤによれば、ガスシールドアーク溶接を使用可能であるので、溶接施工効率がTIG溶接に比して向上する。
なお、値αは以下の式によって算出されるものである。この式は、種々の化学組成を有するソリッドワイヤの評価結果を重回帰分析することにより得られた。
α=2×[Mn]+[Al]+1.5×[Ti]+[Mg]+10×[Ta]・・・(式a)
本発明は以上のような検討の結果なされたものであり、以下、本実施形態のソリッドワイヤについて、特徴とする技術要件の限定理由や好ましい態様について順次説明する。
先ず、本実施形態のソリッドワイヤに含有される合金成分、金属脱酸成分および各成分の含有量の限定理由について説明する。
以下のソリッドワイヤの化学組成の説明において、「%」は特に説明がない限り、「質量%」を意味する。なお、本実施形態に係るソリッドワイヤは、その表面にめっき層を備えてもよい。この場合、ソリッドワイヤの合金成分の分布は一様ではないが、ソリッドワイヤの合金成分は、ソリッドワイヤ全体での平均値として把握される。即ち、以下に説明される各合金成分の含有量は、ソリッドワイヤ全質量に対する各成分の質量%の合計となる成分含有量を意味するものとする。
(C:0.003%以上0.080%以下)
Cは、溶接金属の強度を向上させる元素である。溶接金属の強度を確保するためには、ソリッドワイヤにCを0.003%以上含有させる必要がある。溶接金属の強度の向上のために、ソリッドワイヤのC含有量の下限を0.005%、0.008%、0.010%、又は0.013%としてもよい。一方で、8〜16%のNiを含有する溶接金属は、硬いマルテンサイト組織となる。マルテンサイトの硬さに及ぼすCの影響は非常に大きく、ソリッドワイヤのC含有量が0.080%を超えると、溶接金属が極めて硬化し、靭性が大きく低下する。そのため、ソリッドワイヤのC含有量の上限を0.080%とする。安定して溶接金属の靭性を確保するためには、ソリッドワイヤのC含有量の上限を0.075%、0.070%、0.065%、0.060%、0.055%、又は、0.050%としてもよい。
(Si:0.0010%以上0.50%以下)
Siは、溶接金属の清浄度を向上し、ブローホールなどの溶接欠陥の発生を抑制するのに必要な元素である。これらの効果を得るには、ソリッドワイヤが0.0010%以上のSiを含有する必要がある。溶接欠陥の発生を一層防止するために、ソリッドワイヤのSi含有量の下限を0.0050%又は0.0100%としてもよい。一方で、8〜16%のNiを含有する溶接金属では、Siはミクロ偏析しやすく、ソリッドワイヤのSi含有量が0.50%を超えると、偏析部で顕著な脆化が生じる。そのため、0.50%をソリッドワイヤのSi含有量の上限とする。また、溶接金属の靭性を安定して確保するためには、ソリッドワイヤのSi含有量の上限を0.40%、又は0.30%としてもよい。
(Mn:0.050%以上1.80%以下)
Mnは、脱酸元素であり、さらに溶接金属の清浄度を向上させる。さらにMnは、溶接金属中においてMnSを形成することで、Sによる高温割れの発生を抑制し、溶接金属の靭性を向上させるのに必要な元素である。その効果を得るためには、0.050%以上のMnをソリッドワイヤに含有させる必要がある。溶接金属の靭性の一層の向上のために、ソリッドワイヤのMn含有量の下限を0.100%、0.120%、0.200%又は0.300%としてもよい。一方、8〜16%のNiを含有する溶接金属では、Mnはミクロ偏析しやすく、ソリッドワイヤのMn含有量が1.80%を超えると、偏析部で顕著な脆化が生じる。このため、1.80%をソリッドワイヤのMn含有量の上限とする。また、溶接金属の靭性を安定して確保するためには、ソリッドワイヤのMn含有量の上限を1.60%、1.40%、又は1.20%としてもよい。
(Al:0.030%以上0.500%以下)
Alは脱酸元素であり、Si及びMnと同様に、ブローホールなどの溶接欠陥の発生の抑制、及び清浄度向上等に効果がある。その効果を発揮するために0.030%以上のAlをソリッドワイヤに含有させる。一方、0.500%を超えてソリッドワイヤにAlを含有させると、Alが窒化物や酸化物を形成して、溶接金属の靱性を阻害する。そのため、0.500%をソリッドワイヤのAl含有量の上限とする。また、溶接金属の靭性を向上する効果を十分に得るためには、ソリッドワイヤのAl含有量の下限を0.031%、0.033%、0.035%、0.040%、0.045%、0.050%、0.051%、0.053%、または0.055%としてもよい。また、酸化物の生成抑制のため、ソリッドワイヤのAl含有量の上限を、0.480%、0.450%、0.400%、0.350%、0.300%、又は0.200%としてもよい。
(Ni:8.0%以上16.0%以下)
Niは、固溶靱化(固溶により靭性を高める作用)により、溶接金属の組織及び成分によらず、溶接金属の靱性を向上できる唯一の元素である。特に、−196℃の低温靭性を確保するために、Niは必須の元素である。この効果を得るためには、ソリッドワイヤのNi含有量は8.0%以上にする必要がある。一方、ソリッドワイヤのNi含有量が16.0%を超えると、その効果が飽和するのに加え、溶接材料コストが過大となるため好ましくない。さらに、ソリッドワイヤのNi含有量が16.0%を超える場合、高温割れが発生しやすく、溶融金属の湯流れが悪く、融合不良などの溶接欠陥が発生しやすくなるので、ソリッドワイヤをガスシールドアーク溶接などの高効率溶接に適用することが困難となる。従って、ソリッドワイヤのNi含有量の上限値を16.0%とする。ソリッドワイヤのNi含有量の上限を15.5%、15.0%、又は14.5%に制限してもよい。安定して溶接金属の低温靭性を確保するためには、ソリッドワイヤのNi含有量の下限を8.5%、9.0%又は、9.5%、更には、10.0%としてもよい。
(P:0.0200%以下)
Pは不純物元素であり、過剰添加は高温割れを発生させる傾向にあり、溶接金属の靱性を劣化させるので、極力低減することが好ましい。溶接金属の靭性への悪影響が許容できる範囲として、ソリッドワイヤのP含有量は0.0200%以下とする。溶接金属の靭性の一層の向上のために、ソリッドワイヤのP含有量の上限を0.0150%、0.0100%、0.0080%又は0.0060%としてもよい。溶接金属の靭性確保の観点からは、ソリッドワイヤのP含有量の下限を制限する必要はなく、P含有量の下限は0%である。一方、精錬コストの低減の観点から、ソリッドワイヤのP含有量の下限を0.0010%、0.0020%、又は0.0030%としてもよい。
(S:0.0100%以下)
Sは、不純物元素であり、過剰添加は高温割れを発生させる傾向にあり、溶接金属の靱性を著しく劣化させるので、極力低減することが好ましい。溶接金属の靱性への悪影響が許容できる範囲として、ソリッドワイヤのS含有量は0.0100%以下とする。溶接金属の靭性の一層の向上のために、ソリッドワイヤのS含有量の上限を0.0080%、0.0060%、0.0040%又は0.0030%としてもよい。溶接金属の靭性確保の観点からは、ソリッドワイヤのS含有量の下限を制限する必要はなく、S含有量の下限は0%である。一方、精錬コストの低減の観点から、ソリッドワイヤのS含有量の下限を0.0005%、0.0010%、又は0.0020%としてもよい。
(O:0.050%以下)
Oは、不純物であり、溶接金属の靱性を著しく劣化させるので、極力低減することが好ましい。溶接金属の靱性への悪影響が許容できる範囲として、ソリッドワイヤのO含有量は0.050%以下とする。溶接金属の靭性の一層の向上のために、ソリッドワイヤのO含有量の上限を0.020%、0.015%、0.010%又は0.005%としてもよい。溶接金属の靭性確保の観点からは、ソリッドワイヤのO含有量の下限を制限する必要はなく、O含有量の下限は0%である。一方、精錬コストの低減の観点から、ソリッドワイヤのO含有量の下限を0.0005%、0.001%、又は0.002%としてもよい。
本実施形態に係るソリッドワイヤには、以下に説明する目的で、Ta、Cu、Cr、Mo、V、Ti、Nb、B、Mg、REMの各元素を、選択元素として1種または2種以上含有させることができる。ただし、これら選択元素を含有することなく本実施形態に係るソリッドワイヤはその課題を解決することが出来るので、これら選択元素の下限値は0%である。
(Ta:0%以上0.1000%以下)
Taは析出強化元素であり、溶接金属の強度を向上させる効果がある。さらにTaは、高温アーク中に存在する酸素と結合して、溶接金属中の酸素含有量を低減できる元素である。一方で、ソリッドワイヤのTa含有量が0.1000%を超える場合、溶接金属中の酸素量が一定となり、これ以上低減しにくくなる一方で、溶接金属の強度が過剰となり、溶接金属の低温靭性を阻害する。そのため、ソリッドワイヤのTa含有量の上限を0.1000%とする。溶接金属の高強度化および酸素量低減の効果を十分に得るためには、ソリッドワイヤのTa含有量の下限を0.0005%、0.0010%、0.0015%、0.0020%、0.0025%、又は0.0030%としてもよい。また、溶接金属の低温靭性を一層向上させるためには、ソリッドワイヤのTa含有量の上限値を0.090%、0.080%、0.070%、0.060%、又は0.050%としてもよい。
(Cu:0%以上0.5%以下)
Cuは、ソリッドワイヤの表面のめっきとして、単体または合金としてソリッドワイヤに含有された場合には、固溶強化により、溶接金属の強度を向上させる効果がある。また、Cuがソリッドワイヤ中に単体または合金として含有された場合にも、同様の効果が得られる。ソリッドワイヤのCu含有量の下限は0%とするが、ソリッドワイヤがCuを含有してもよい。例えば、Cu含有の効果を得るためには、ソリッドワイヤのCu含有量の下限を0.1%、としてもよい。一方、ソリッドワイヤのCu含有量が0.5%を超えると溶接金属の靭性が低下する。そのため、ソリッドワイヤのCu含有量は0.5%以下とする。溶接金属の靭性の向上のために、ソリッドワイヤのCu含有量の上限を0.3%、又は0.2%としてもよい。
(Cr:0%以上0.5%以下)
Crは、溶接金属の強度を高めるのに有効な元素である。ソリッドワイヤのCrの含有量の下限は0%とするが、含有の効果を得るために、ソリッドワイヤのCr含有量の下限を0.01%としてもよい。一方、Crをソリッドワイヤに含有させる場合、ソリッドワイヤのCr含有量が0.5%を超えると溶接金属の靭性が低下する。そのため、ソリッドワイヤのCr含有量は0.5%以下とする。溶接金属の靭性の一層の向上のために、ソリッドワイヤのCr含有量の上限を0.3%、0.2%又は0.1%としてもよい。
(Mo:0%以上0.5%以下)
Moは、析出強化により溶接金属の強度を高めるのに有効な元素である。ソリッドワイヤのMoの含有量の下限は0%とするが、Mo含有の効果を得るために、ソリッドワイヤのMo含有量の下限を0.01%としてもよい。Moをソリッドワイヤに含有させる場合、ソリッドワイヤのMo含有量が0.5%を超えると溶接金属の靭性が低下する。そのため、ソリッドワイヤのMo含有量は0.5%以下とする。溶接金属の靭性の一層の向上のために、ソリッドワイヤのMo含有量の上限を0.3%、0.2%又は0.1%としてもよい。
(V:0%以上0.20%以下)
Vは、析出強化により溶接金属の強度を高めるのに有効な元素である。ソリッドワイヤのVの含有量の下限は0%とするが、V含有の効果を得るために、ソリッドワイヤのV含有量の下限を0.01%としてもよい。Vをソリッドワイヤに含有させる場合、ソリッドワイヤのV含有量が0.20%を超えると溶接金属の靭性が低下する。そのため、Vを含有させる場合のソリッドワイヤのV含有量は0.20%以下とする。溶接金属の靭性の一層の向上のために、ソリッドワイヤのV含有量の上限を0.15%、0.10%又は0.05%としてもよい。
(Ti:0%以上0.10%以下)
Tiは、固溶Nを固定して、溶接金属の靭性への悪影響を緩和するのに有効である。また、Tiは脱酸元素としても有効であり、溶接金属中の酸素量を低減させる効果がある。ソリッドワイヤのTiの含有量の下限は0%とするが、Ti含有の効果を得るために、ソリッドワイヤのTi含有量の下限を0.005%としてもよい。Tiをソリッドワイヤに含有させる場合、ソリッドワイヤのTi含有量が0.10%を超えて過剰になると、炭化物が生成し、溶接金属の靭性を劣化させる。そのため、Tiを含有させる場合のソリッドワイヤのTi含有量は、0.10%以下とする。溶接金属の靭性の一層の向上のために、ソリッドワイヤのTi含有量の上限を0.06%、0.04%又は0.02%としてもよい。
(Nb:0%以上0.10%以下)
Nbは析出強化により溶接金属の強度を高めるのに有効である。ソリッドワイヤのNbの含有量の下限は0%とするが、Nb含有の効果を得るために、Nb含有量の下限を0.002%としてもよい。Nbをソリッドワイヤに含有させる場合、ソリッドワイヤのNb含有量が0.10%を超えて過剰になると、溶接金属中に粗大な析出物を形成して溶接金属の靭性を劣化させる。加えて、ソリッドワイヤのNb含有量が0.10%を超えて過剰になると、高温割れが発生する傾向がある。そのため、Nbを含有させる場合のソリッドワイヤのNb含有量は0.10%以下とする。溶接金属の靭性の一層の向上のために、ソリッドワイヤのNb含有量の上限を0.06%、0.04%又は0.02%としてもよい。
(B:0%以上0.010%以下)
Bは、溶接金属中に適正量含有させると、固溶Nと結びついてBNを形成して、固溶Nの靭性に対する悪影響を減じる効果がある。ソリッドワイヤのBの含有量の下限は0%とするが、B含有の効果を得るために、ソリッドワイヤのB含有量の下限を0.0003%としてもよい。Bをソリッドワイヤに含有させる場合、ソリッドワイヤのB含有量が0.010%を超えると、溶接金属中のBが過剰となり、粗大なBNやFe23(C、B)等のB化合物を形成して溶接金属の靭性を逆に劣化させる。加えて、ソリッドワイヤのB含有量が0.010%を超えると、高温割れが発生する傾向がある。そのため、Bを含有させる場合のソリッドワイヤのB含有量は0.010%以下とする。溶接金属の靭性の一層の向上のために、ソリッドワイヤのB含有量の上限を0.006%、0.004%又は0.002%としてもよい。
(Mg:0%以上0.80%以下)
Mgは、脱酸元素であり、溶接金属の酸素を低減し、溶接金属の靭性の改善に効果がある。ソリッドワイヤのMgの含有量の下限は0%とするが、溶接金属中の酸素量を低減する効果を十分得るためには、ソリッドワイヤのMg含有量の下限を0.10%、0.15%、0.20%、0.25%、または0.30%としてもよい。一方、ソリッドワイヤのMg含有量が0.80%を超える場合、スパッタが増加し、溶接作業性を劣化させる。そのため、0.80%をソリッドワイヤのMg含有量の上限とする。溶接作業性の一層の向上のために、ソリッドワイヤのMg含有量の上限を0.78%、0.75%、0.73%、0.70%、0.65%又は0.60%としてもよい。
(REM:0%以上0.050%以下)
REMは本実施形態に係るソリッドワイヤの課題解決のために必須ではないため、REM含有量の下限は0%とする。しかし、REMは、アークを安定化させる元素であるので、ソリッドワイヤに含有させてもよい。この効果を得るために、ソリッドワイヤのREM含有量の下限を0.001%、0.010%、又は0.020%としてもよい。REMをソリッドワイヤに含有させる場合、スパッタが低減し、アークが安定となる効果的なREM含有量は、0.050%以下である。一方で、ソリッドワイヤが過剰にREMを含有すると、スパッタが激しくなり、溶接作業性が劣悪となる。このため、スパッタの低減およびアークの安定に寄与するために、ソリッドワイヤのREM含有量の上限を0.030%、0.020%、0.010%、0.005%、又は0.001%としてもよい。なお「REM」との用語は、Sc、Yおよびランタノイドからなる合計17元素を指し、上記「REM含有量」とは、これらの17元素の合計含有量を意味する。ランタノイドをREMとして用いる場合、工業的には、REMはミッシュメタルの形で添加される。
本実施形態に係るソリッドワイヤの化学組成は、上述された元素を含有し、その残部はFe及び不純物である。不純物とは、ソリッドワイヤを工業的に製造する際に、鉱石若しくはスクラップ等のような原料、又は製造工程の種々の要因によって混入する成分であって、本実施形態に係るソリッドワイヤの特性に悪影響を与えない範囲で許容されるものを意味する。
(α:1.35%以上5.50%以下)
本実施形態のソリッドワイヤは、上述の各元素を含有するが、溶接金属の−196℃の低温靭性を確保するためには、さらに下記式aで表されるαが、1.35%以上5.50%以下となるようにその各元素の含有量を制御する必要がある。
α=2×[Mn]+[Al]+1.5×[Ti]+[Mg]+10×[Ta]・・・(式a)
但し、[]付元素は、それぞれの元素の含有量(質量%)を示す。
本実施形態のソリッドワイヤには、純Arや純Heをシールドガスとして用いるガスシールドアーク溶接(いわゆるMIG溶接)に適用できること、及び、Ar及び/又はHeを主成分とし、O及び/又はCOが合計で20体積%以下含まれる混合ガスをシールドガスとして用いるガスシールドアーク溶接(いわゆるMAG溶接)にも適用した場合でも安定した溶接を可能とすることが求められる。その際、溶接金属の清浄度を向上させるMn、Al、Ti、MgおよびTaの量が十分でない場合、ソリッドワイヤに含まれていた酸素によって溶接金属中に酸素が歩留り、酸化物を生成し、これが溶接金属の低温靭性を劣化させると考えられる。この低温靭性の劣化を抑制するために、上記α値が1.35%以上となるようにソリッドワイヤの化学組成を調整させる必要がある。よって、1.35%をソリッドワイヤのαの下限値とする。一方で、αが5.50%を超えるほどMn、Al、Ti、MgおよびTaがソリッドワイヤに含有された場合、これら元素が過剰に溶接金属に歩留り、窒化物や炭化物を生成し、これらのために溶接金属が過剰に高強度化し、溶接金属の低温靭性が劣化する。また、これら元素が過剰である場合、これら元素がアーク中で酸化されず、アーク中でMn、Al、Ti、Mg、Taの金属蒸気が発生し、アークを不安定にさせる。このため、ソリッドワイヤのαが5.50%を超える場合、溶接欠陥が発生する。よって、5.50%をソリッドワイヤのαの上限値とする。より確実に溶接金属の低温靭性を向上させるためには、ソリッドワイヤのαの下限値を1.36%、1.40%、1.45%、又は1.50%としてもよい。また、ソリッドワイヤのαの上限値を5.40%、5.30%、5.20%、5.10%、5.00%、4.90%、4.80%、4.70%、または4.50%としてもよい。
(炭素当量Ceq:0.250%以上0.520%以下)
さらに本実施形態のソリッドワイヤでは、下記式bで表される、日本溶接協会(WES)で定める炭素当量Ceqが0.250%以上0.520%以下となるように、C、Si、Mn、Ni、Cr、Mo、Vの含有量をさらに調整する。
Ceq=[C]+[Si]/24+[Mn]/6+[Ni]/40+[Cr]/5+[Mo]/4+[V]/14・・・(式b)
但し、[]付元素は、それぞれの元素の質量%での含有量を示す。
ソリッドワイヤのCeqが高い程、溶接金属の引張強さが向上するが、一方で溶接金属の靭性が低下し、また溶接割れ感受性が高くなる。そのため、ソリッドワイヤのCeqが高い場合、低温割れ抑制のための対策が必要となる。このソリッドワイヤのCeqの値が0.250%未満では、溶接金属において目的とする強度(引張強さ)660MPa以上を満足できない。一方でソリッドワイヤのCeqの値が0.520%を超えると、溶接金属の引張強さが過剰となり、溶接金属の靭性が低下する。そのため、ソリッドワイヤのCeqの範囲は、0.250%以上0.520%以下とする。一層安定して溶接金属の強度を確保するために、ソリッドワイヤのCeqの下限を0.260%、0.270%、0.280%、0.320%、又は0.360%としてもよい。溶接金属の靭性の一層の向上のために、ソリッドワイヤのCeqの上限を0.510%、0.500%又は0.490%としてもよい。
また、溶接時のソリッドワイヤの送給性を向上させるために、ソリッドワイヤはその表面に潤滑剤をさらに備えてもよい。ソリッドワイヤ用の潤滑剤としては、様々な種類のもの(例えば植物油、鉱物油等)を使用できるが、溶接金属の低温割れを抑制するためには、パーフルオロポリエーテル油(PFPE油)を使用することが好ましい。なお、潤滑剤の成分は、上述したソリッドワイヤの化学組成に含まれないものとする。潤滑剤由来の化学組成は、ソリッドワイヤの全質量に対して非常にわずかであるためである。本開示においては、ソリッドワイヤの化学組成の測定は、ソリッドワイヤの表面に塗布された潤滑剤を除去してから実施した。
ソリッドワイヤの径は特に限定されない。現在、市場に流通するソリッドワイヤ及び溶接設備を考慮して、例えば本実施形態に係るソリッドワイヤの径を0.5〜2.4mmとしてもよい。ソリッドワイヤの径を0.8mm以上、又は1.0mm以上としてもよい。ソリッドワイヤの径を1.6mm以下、又は1.4mm以下としてもよい。
ソリッドワイヤの機械的性質も特に限定されない。溶接中のソリッドワイヤの送給性を向上させる観点からは、ソリッドワイヤの引張強さが低いことが好ましく、例えばソリッドワイヤの引張強さを950MPa以下、900MPa以下、850MPa、800MPa、750MPa、又は700MPa以下としてもよい。
本実施形態に係るソリッドワイヤを用いたガスシールドアーク溶接によって得られる溶着金属の引張強さは、660MPa以上900MPaとなることが好ましい。この溶着金属の引張強さとは、日本工業規格JIS Z 3111:2005に「溶着金属の引張及び衝撃試験方法」に基づいて測定される引張強さである。この溶着金属の引張強さは、660MPa以上900MPa以下の引張強さを有する高張力鋼と同等レベルである。なお、必要があれば、本実施形態に係るソリッドワイヤから得られる溶着金属の引張強さの下限を685MPaに、上限を850MPaに制限できるように、ソリッドワイヤの化学組成を制御してもよい。なお、JIS Z 3001:2013において「溶着金属」(Deposited metal)は「溶加材から溶接部に移行した金属」と定義され、「溶接金属」(Weld metal)は「溶接部の一部で、溶接中に溶融凝固した金属」と定義される。
本実施形態で用いるソリッドワイヤは、通常のソリッドワイヤの製造方法と同様の製造工程によって製造することができる。すなわち、まず上述された化学組成を有する鋼を溶解し、その後、必要であれば鍛造加工をする。その後、圧延加工を経て、この鋼を棒状に加工する。この棒状の鋼を伸線することで、ソリッドワイヤが得られる。なお、送給性が損なわれないようにソリッドワイヤに適宜熱処理を行ってもよい。さらに、このソリッドワイヤにめっきしてもよい。この場合、めっき成分を含めたソリッドワイヤ全体の平均的な化学組成が上述の範囲内となるようにされる必要がある。また、このソリッドワイヤの表面に潤滑剤を塗布してもよい。上述のように、潤滑剤由来の化学組成は、ソリッドワイヤの全質量に対して非常にわずかであるので、潤滑剤の種類及び塗布量がソリッドワイヤの化学組成に及ぼす影響を考慮する必要はない。
本発明の別の態様に係る溶接継手の製造方法は、本実施形態に係るソリッドワイヤを用いて鋼材を溶接する。鋼材の種類は特に限定されないが、板厚が6mm以上100mm以下であり、Niの含有量が5.5質量%以上9.5質量%以下であり、引張強さが660MPa以上900MPa以下である鋼材(即ち、Ni系低温用鋼)とすることが好ましい。この溶接は、ガスシールドアーク溶接であることが好ましい。例えばLNGタンクには、Ni含有量が5.5質量%以上9.5質量%以下であり、板厚は6mm以上100mmであり、引張強さが660MPa以上900MPa以下である鋼材が使用されている。この鋼材の溶接に、本実施形態のソリッドワイヤを使用することができる。溶接の際に用いるシールドガスは特に限定されないが、例えば純Arガス、純Heガス、Arと合計20体積%以下のO及びCOの一方又は両方とを含むガス、並びにHeと合計20体積%以下のO及びCOの一方又は両方とを含むガスのいずれかとすればよい。即ち、本実施形態に係る溶接継手の製造方法では、純Arガスまたは純Heガスをシールドガスとして用いてもよい。一方、20体積%以下の範囲内であれば、純Arガスまたは純Heガスのそれぞれに、OまたはCOを混合させたものをシールドガスとして用いても、本実施形態に係るソリッドワイヤ及び溶接継手の製造方法の効果を得ることができる。
本開示において、シールドガスとして純Arガスまたは純Heガスを用いる場合、これはMIG溶接に対応する。溶接金属への酸素混入を避ける観点では、この形態が好ましい。
本開示において、シールドガスとして、ArガスまたはHeガスに、合計20体積%以下のO及びCOの一方又は両方を添加したガスを用いる場合、これはMAG溶接に対応する。溶接時のアーク安定性を重視する場合、この形態が好ましい。
なお、本開示においては、溶接材料の形態としてソリッドワイヤを採用し、フラックス入りワイヤを採用していない。フラックス入りワイヤは、溶接金属の材料として金属粉体や酸化物が添加されることが多い。その結果、金属粉体表面に生じた酸化物、もしくは添加物である酸化物に由来して、溶接金属へ酸素が混入しやすい。本開示では、特に、シールドガスとしてArガスまたはHeガスに、OまたはCOを混合させたものを採用することを想定し、溶接金属への酸素の混入を低減すべく、ソリッドワイヤの形態を採用した。
次に、実施例により本発明の実施可能性及び効果についてさらに詳細に説明する。
種々の化学組成を有するソリッドワイヤを製造した。ソリッドワイヤの伸線作業の途中で焼鈍を加え、また、最終のソリッドワイヤ径がφ1.2mmとなるようにした。焼鈍条件は650℃で4時間保持とした。試作後、ソリッドワイヤの表面には潤滑剤を塗布した。表1−1〜表1−2において、PFPE油塗布と記載していないものには、すべて、植物油を塗布した。ソリッドワイヤの成分の分析は化学分析、ガス分析などを行うことで実施した。分析は、ソリッドワイヤ表面に潤滑剤がない状態で実施した。
試作したソリッドワイヤの化学組成、PFPE油塗布の有無、及びソリッドワイヤの引張強さ(「ワイヤの強度」)を表1−1〜表1−2に示す。表1−1〜表1−2に示したソリッドワイヤの化学組成は、上記の分析方法により分析した結果である。なお、本発明の範囲外である値には下線を付した。また、検出限界以下である元素の含有量は記入せず、空白で表した。ソリッドワイヤの引張強さの単位はMPaである。
表1−1〜表1−2に示すソリッドワイヤを用いて、JIS Z 3111:2005に準拠して溶着金属の機械特性を評価した。すなわち、図1に示すような要領とした。板厚が20mmの鋼板1を、ルートギャップ16mm、開先角度20°で突き合わせ、裏当金2を用いた。鋼板1及び裏当金2にはSM490Aを使用したが、鋼板1の開先面及び裏当金2の表面には、試験対象のソリッドワイヤを用いて2層以上、かつ余盛高さ3mm以上のバタリングを実施した。その後、1及び2層目は1又は2パス、3層目から最終層までは2又は3パスで溶接を行い、試験体を作製した。溶接条件を表2および表4(シールドガスの組成は、体積%で表記した)に示す。表2はMAG溶接であり、表4はMIG溶接の溶接条件として示す。表2より、溶接条件は、電流値280A、電圧値24〜28V、溶接速度30cm/分、パス間温度150℃以下、シールドガスとして、Ar及び15体積%COの混合ガスを用いて、ガス流量25l/分で行った。表4より、溶接条件は、電流値260A、電圧値22〜26V、溶接速度30cm/分、パス間温度150℃以下、シールドガスとして、Arガスを用いて、ガス流量25l/分で行った。
作製した試験体から、図1に示すように、機械試験片としてJIS Z3111:2005に準拠したA0号引張り試験片(丸棒)5(径=10mm)とシャルピー衝撃試験片(2mmVノッチ)4を採取し、それぞれの機械特性試験を行って、溶着金属の引張強さ及びシャルピー吸収エネルギーを測定した。ただし、溶接欠陥が甚だしく、機械特性試験が実施できない場合は、評価が行えなかった旨を記録した。各ソリッドワイヤを用いて上述の手段で得られた溶着金属の機械特性の測定結果と評価結果とを、表2のMAG溶接の結果を表3−1、表3−2に示し、表4のMIG溶接の結果を表5−1、表5−2に示す。これら表において、合否基準に満たない値には下線を付した。表2の条件(MAG溶接)による試験、及び表4の条件(MIG溶接)による試験の両方において合格となったソリッドワイヤを、溶接作業性に優れ、並びに引張強さ及び−196℃の低温靭性が優れた溶接金属が得られるソリッドワイヤと判定した。評価方法及び合否判定基準は、表2の条件(MAG溶接)による試験、及び表4の条件(MIG溶接)による試験の両方において同じとした。
機械特性の評価にあたっては、引張強さが660〜900MPaであり、且つ−196℃でのシャルピー衝撃試験で吸収エネルギーが50J以上であるものを、合格とした。
また、得られた溶着金属から試験片を採取して、溶着金属中の酸素量を測定した。溶着金属中の酸素量測定は、インパルス加熱炉−不活性ガス溶解赤外線吸収法により測定した。測定した溶着金属中の酸素量を表3−1〜表3−2に示す。
本発明のソリッドワイヤにおいては、溶着金属中の酸素量を低減することで靱性を向上させている。酸素量が160ppm以下としなければ、−196℃でのシャルピー吸収エネルギーを確保することができないことが、発明例及び比較例を通じて確認された。
次に、各ソリッドワイヤについて、耐溶接欠陥性を評価した。これは、表6に示す板厚25mmの低温用鋼に対して、表2の溶接条件にて下向き1パスの溶接ビードを作製したときの気孔欠陥の発生率(溶接長に対する溶接欠陥長さの割合)や溶接ビードの整合性を評価したものである。溶接欠陥評価においては、溶接欠陥長さが5%以下、且つスパッタ過剰によるビード形状不良や高温割れがない試料を合格とし、表には「無」と記載した。また溶接ビードの整合性評価においては、上記溶接によって形成されたビードにおいて最も大きな蛇行が生じた箇所を目視で特定し、図2に示すように溶接ビードが蛇行した際の溶接ビードの止端部と正常の溶接ビードの止端部の距離(長さb)がビード幅(長さa)の25%以下となったものを合格とした。なお、b/a×100で得られる値を溶接ビード整合率と称する。アーク安定性については、アークの消弧時間の合計が全アーク発生時間の10%以下(即ち、表3−1及び表3−2の「アーク継続時間」が90%超)の場合を合格とした。
表3−1および表5−1の試験結果に示されるように、本発明例であるソリッドワイヤ番号A1〜A23は、引張強さ、靭性、耐溶接欠陥性、アーク安定性、及び溶接ビード整合性のすべてが優れ、合格であった。
一方、表3−2および表5−2の試験結果に示されるように、比較例であるソリッドワイヤ番号B1〜B22は、本発明で規定する要件を満たしていないため、引張強さ、靭性、耐溶接欠陥性、アーク安定性、及び溶接ビード整合性のうち一項目以上満足できず、総合判定で不合格となった。
Figure 2020208735
Figure 2020208735
Figure 2020208735
Figure 2020208735
Figure 2020208735
Figure 2020208735
Figure 2020208735
Figure 2020208735
Figure 2020208735
本実施形態に係るソリッドワイヤは、Ni量を低減することで溶接材料コストを大幅に低減できる。また、本実施形態に係るソリッドワイヤは、溶接施工効率に優れるガスシールドアーク溶接(例えばMIG溶接及びMAG溶接等)に適用することができる。さらに、本実施形態に係るソリッドワイヤは、脱酸元素および微量元素を含有させることで溶接金属中の酸素量を低減することで、−196℃の低温靭性の優れる溶接金属が得られる。本実施形態に係るソリッドワイヤは、例えばNiを5.5〜9.5%程度含有するNi系低温用鋼の溶接に用いられた場合に、従来技術に対して顕著な効果を発揮することができる。従って、本実施形態に係るソリッドワイヤの産業界における価値はきわめて高い。
1 鋼板
2 裏当金
3 溶接ビード
4 シャルピー衝撃試験片(2mmVノッチ)
5 A0号引張り試験片(丸棒)
(1)本発明の一態様に係るソリッドワイヤは、化学組成が、前記ソリッドワイヤの全質量に対する質量%で:C:0.003%以上0.080%以下;Si:0.0010%以上0.50%以下;Mn:0.050%以上1.80%以下;Al:0.030%以上0.500%以下;Ni:8.0%以上16.0%以下;P:0.0200%以下;S:0.0100%以下;O:0.050%以下;Ta:0%以上0.1000%以下;Cu:0%以上0.5%以下;Cr:0%以上0.5%以下;Mo:0%以上0.5%以下;V:0%以上0.20%以下;Ti:0%以上0.10%以下;Nb:0%以上0.10%以下;B:0%以上0.010%以下;Mg:0%以上0.80%以下;REM:0%以上0.050%以下;及び残部:Feおよび不純物からなり、下記の式aで定義されるαが1.35%以上5.50%以下であり、下記の式bで定義されるCeqが0.250%以上0.520%以下である。
α=2×[Mn]+[Al]+1.5×[Ti]+[Mg]+10×[Ta]・・・(式a)
Ceq=[C]+[Si]/24+[Mn]/6+[Ni]/40+[Cr]/5+[Mo]/4+[V]/14・・・(式b)
但し、式aおよび式bの[]付元素は、それぞれの元素の前記ソリッドワイヤの前記全質量に対する質量%での含有量を表す。
(2)上記(1)に記載のソリッドワイヤでは、前記化学組成が、前記ソリッドワイヤの全質量に対する質量%で、Ta:0.0005%以上0.1000%以下;Cu:0.1%以上0.5%以下;Cr:0.01%以上0.5%以下;Mo:0.01%以上0.5%以下;V:0.01%以上0.20%以下;Ti:0.005%以上0.10%以下;Nb:0.002%以上0.10%以下;B:0.0003%以上0.010%以下;Mg:0.10%以上0.80%以下;及びREM:0.001%以上0.050%以下からなる群から選択される一種以上を含有してもよい。
(3)上記(1)又は(2)に記載のソリッドワイヤでは、前記ソリッドワイヤ中の前記REMの含有量が、前記ソリッドワイヤの前記全質量に対する質量%で0.010%以下であってもよい。
(4)上記(1)〜(3)のいずれか一項に記載のソリッドワイヤでは、表面にパーフルオロポリエーテル油を有してもよい。
(5)上記(1)〜(4)のいずれか一項に記載のソリッドワイヤでは、引張強さが736MPa以上950MPa以下であってもよい。
(6)本発明の別の態様に係る溶接継手の製造方法は、上記(1)〜(5)のいずれか1項に記載のソリッドワイヤを用いて鋼材を溶接する。
(7)上記(6)に記載の溶接継手の製造方法では、前記鋼材が、板厚が6mm以上100mm以下であり、Niの含有量が5.5質量%以上9.5質量%以下であり、引張強さが660MPa以上900MPa以下であってもよい。
(8)上記(6)又は(7)に記載の溶接継手の製造方法では、前記溶接がガスシールドアーク溶接であってもよい。
(9)上記(8)に記載の溶接継手の製造方法では、シールドガスが、純Arガス、純Heガス、Arと合計20体積%以下のO及びCOの一方又は両方とを含むガス、並びにHeと合計20体積%以下のO及びCOの一方又は両方とを含むガスのいずれかであってもよい。

Claims (9)

  1. ソリッドワイヤであって、
    化学組成が、前記ソリッドワイヤの全質量に対する質量%で:
    C:0.003%以上0.080%以下;
    Si:0.0010%以上0.50%以下;
    Mn:0.050%以上1.80%以下;
    Al:0.030%以上0.500%以下;
    Ni:8.0%以上16.0%以下;
    P:0.0200%以下;
    S:0.0100%以下;
    O:0.050%以下;
    Ta:0%以上0.1000%以下;
    Cu:0%以上0.5%以下;
    Cr:0%以上0.5%以下;
    Mo:0%以上0.5%以下;
    V:0%以上0.20%以下;
    Ti:0%以上0.10%以下;
    Nb:0%以上0.10%以下;
    B:0%以上0.010%以下;
    Mg:0%以上0.80%以下;
    REM:0%以上0.050%以下;及び
    残部:Feおよび不純物
    からなり、
    下記の式aで定義されるαが1.35%以上5.50%以下であり、
    下記の式bで定義されるCeqが0.250%以上0.520%以下である
    ことを特徴とするソリッドワイヤ。
    α=2×[Mn]+[Al]+1.5×[Ti]+[Mg]+10×[Ta]・・・(式a)
    Ceq=[C]+[Si]/24+[Mn]/6+[Ni]/40+[Cr]/5+[Mo]/4+[V]/14・・・(式b)
    但し、式aおよび式bの[]付元素は、それぞれの元素の前記ソリッドワイヤの前記全質量に対する質量%での含有量を表す。
  2. 前記化学組成が、前記ソリッドワイヤの全質量に対する質量%で、
    Ta:0.0005%以上0.1000%以下;
    Cu:0.1%以上0.5%以下;
    Cr:0.01%以上0.5%以下;
    Mo:0.01%以上0.5%以下;
    V:0.01%以上0.20%以下;
    Ti:0.005%以上0.10%以下;
    Nb:0.002%以上0.10%以下;
    B:0.0003%以上0.010%以下;
    Mg:0.10%以上0.80%以下;及び
    REM:0.001%以上0.050%以下
    からなる群から選択される一種以上を含有することを特徴とする請求項1に記載のソリッドワイヤ。
  3. 前記ソリッドワイヤ中の前記REMの含有量が、前記ソリッドワイヤの前記全質量に対する質量%で0.010%以下であることを特徴とする請求項1又は2に記載のソリッドワイヤ。
  4. 表面にパーフルオロポリエーテル油を有することを特徴とする請求項1〜3のいずれか一項に記載のソリッドワイヤ。
  5. 引張強さが500MPa以上1000MPa以下であることを特徴とする請求項1〜4のいずれか一項に記載のソリッドワイヤ。
  6. 請求項1〜5のいずれか1項に記載のソリッドワイヤを用いて鋼材を溶接することを特徴とする溶接継手の製造方法。
  7. 前記鋼材が、
    板厚が6mm以上100mm以下であり、
    Niの含有量が5.5質量%以上9.5質量%以下であり、
    引張強さが660MPa以上900MPa以下である
    ことを特徴とする請求項6に記載の溶接継手の製造方法。
  8. 前記溶接がガスシールドアーク溶接であることを特徴とする請求項6又は7に記載の溶接継手の製造方法。
  9. シールドガスが、純Arガス、純Heガス、Arと合計20体積%以下のO及びCOの一方又は両方とを含むガス、並びにHeと合計20体積%以下のO及びCOの一方又は両方とを含むガスのいずれかであることを特徴とする請求項8に記載の溶接継手の製造方法。
JP2019547171A 2019-04-10 2019-04-10 ソリッドワイヤ及び溶接継手の製造方法 Active JP6690786B1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/015595 WO2020208735A1 (ja) 2019-04-10 2019-04-10 ソリッドワイヤ及び溶接継手の製造方法

Publications (2)

Publication Number Publication Date
JP6690786B1 JP6690786B1 (ja) 2020-04-28
JPWO2020208735A1 true JPWO2020208735A1 (ja) 2021-05-06

Family

ID=70413794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019547171A Active JP6690786B1 (ja) 2019-04-10 2019-04-10 ソリッドワイヤ及び溶接継手の製造方法

Country Status (6)

Country Link
US (1) US20210340652A1 (ja)
EP (1) EP3812085B1 (ja)
JP (1) JP6690786B1 (ja)
KR (1) KR102480788B1 (ja)
CN (1) CN112512742B (ja)
WO (1) WO2020208735A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116529407A (zh) * 2020-11-26 2023-08-01 杰富意钢铁株式会社 焊接接头及其制造方法
WO2022113473A1 (ja) * 2020-11-26 2022-06-02 Jfeスチール株式会社 溶接継手およびその製造方法
CN113798721B (zh) * 2021-07-21 2022-07-08 中国船舶重工集团公司第七二五研究所 一种屈服强度超过890MPa的金红石型药芯焊丝

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5476452A (en) * 1977-11-30 1979-06-19 Kobe Steel Ltd Wire for tig welding and tig welding method
JP3424088B2 (ja) 1996-03-22 2003-07-07 株式会社神戸製鋼所 高張力鋼のtig溶接方法及びtig溶接用ソリッドワイヤ
JP5019781B2 (ja) * 2006-04-27 2012-09-05 株式会社神戸製鋼所 ガスシールドアーク溶接フラックス入りワイヤを使用するmigアーク溶接方法
FR2905293B1 (fr) 2006-09-06 2008-11-07 Air Liquide Fil, flux et procede de soudage des aciers a forte teneur en nickel
JP5209893B2 (ja) * 2007-03-29 2013-06-12 株式会社神戸製鋼所 Ni基合金フラックス入りワイヤ
JP5215793B2 (ja) * 2007-10-05 2013-06-19 株式会社神戸製鋼所 溶接用ソリッドワイヤ
KR20100059936A (ko) * 2007-10-05 2010-06-04 가부시키가이샤 고베 세이코쇼 용접용 솔리드 와이어
JP5244059B2 (ja) * 2009-09-09 2013-07-24 株式会社神戸製鋼所 溶接ソリッドワイヤおよび溶接金属
EP2656964A4 (en) * 2010-12-22 2016-05-25 Kobe Steel Ltd SOLIDS WELDING WELD AND WELDING MATERIAL
KR101535399B1 (ko) * 2012-05-08 2015-07-08 신닛테츠스미킨 카부시키카이샤 초고장력강 용접용 플럭스 함유 와이어
KR101616237B1 (ko) * 2013-01-31 2016-04-27 신닛테츠스미킨 카부시키카이샤 플럭스 코어드 와이어, 플럭스 코어드 와이어를 사용한 용접 방법, 플럭스 코어드 와이어를 사용한 용접 조인트의 제조 방법 및 용접 조인트
JP6063355B2 (ja) * 2013-06-27 2017-01-18 株式会社神戸製鋼所 溶接用ソリッドワイヤおよび溶接方法
KR101674743B1 (ko) * 2013-11-08 2016-11-09 신닛테츠스미킨 카부시키카이샤 가스 실드 아크 용접용 플럭스 내장 와이어 및 극저온용 강의 용접 방법 및 용접 조인트의 제조 방법
JP5880662B2 (ja) * 2013-11-08 2016-03-09 新日鐵住金株式会社 ガスシールドアーク溶接用フラックス入りワイヤ及び極低温用鋼の溶接方法ならびに溶接継手の製造方法
JPWO2015068273A1 (ja) * 2013-11-08 2017-03-09 新日鐵住金株式会社 ガスシールドアーク溶接用フラックス入りワイヤ及びそのワイヤを用いた極低温用鋼の溶接方法
JP6801494B2 (ja) * 2017-02-16 2020-12-16 日本製鉄株式会社 ガスシールドアーク溶接用フラックス入りワイヤ、および溶接継手の製造方法

Also Published As

Publication number Publication date
EP3812085A1 (en) 2021-04-28
WO2020208735A1 (ja) 2020-10-15
CN112512742B (zh) 2022-03-29
CN112512742A (zh) 2021-03-16
JP6690786B1 (ja) 2020-04-28
EP3812085B1 (en) 2024-04-03
KR20210031474A (ko) 2021-03-19
KR102480788B1 (ko) 2022-12-23
EP3812085A4 (en) 2022-03-23
US20210340652A1 (en) 2021-11-04

Similar Documents

Publication Publication Date Title
KR101674743B1 (ko) 가스 실드 아크 용접용 플럭스 내장 와이어 및 극저온용 강의 용접 방법 및 용접 조인트의 제조 방법
JP5005309B2 (ja) 高張力鋼用ガスシールドアーク溶接フラックス入りワイヤ
JP6978613B2 (ja) 極低温用高強度溶接継手の製造方法
CN106994570B (zh) 不锈钢药芯焊丝
JP6953869B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法
KR102013984B1 (ko) 가스 실드 아크 용접용 플럭스 내장 와이어
JPWO2020039643A1 (ja) ガスメタルアーク溶接用ソリッドワイヤ
JP6690786B1 (ja) ソリッドワイヤ及び溶接継手の製造方法
JP7024931B1 (ja) ガスメタルアーク溶接用ソリッドワイヤ
JP5244059B2 (ja) 溶接ソリッドワイヤおよび溶接金属
JP6155810B2 (ja) ガスシールドアーク溶接用高Niフラックス入りワイヤ
JP6953931B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法
JP6801494B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ、および溶接継手の製造方法
JP6235402B2 (ja) 強度、靭性および耐sr割れ性に優れた溶接金属
JP6953870B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法
JP2018192518A (ja) ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法
JP6953930B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法
JP6084549B2 (ja) 溶着金属
JP2017164768A (ja) ガスシールドアーク溶接用高Niフラックス入りワイヤ及び溶接継手の製造方法
JP2022061819A (ja) 溶接継手の製造方法及び開先充填用のフラックス入りカットワイヤ
JP2022061826A (ja) 溶接継手の製造方法及び開先充填用のフラックス入りカットワイヤ
JP2022157454A (ja) フラックス入りカットワイヤ及び溶接継手の製造方法
JP2021007982A (ja) オーステナイト系ステンレス鋼フラックス入りワイヤ、溶接金属及び溶接方法
KR20240046704A (ko) 솔리드 와이어 및 용접 조인트의 제조 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190828

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190828

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200323

R151 Written notification of patent or utility model registration

Ref document number: 6690786

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151