WO2022113473A1 - 溶接継手およびその製造方法 - Google Patents

溶接継手およびその製造方法 Download PDF

Info

Publication number
WO2022113473A1
WO2022113473A1 PCT/JP2021/033208 JP2021033208W WO2022113473A1 WO 2022113473 A1 WO2022113473 A1 WO 2022113473A1 JP 2021033208 W JP2021033208 W JP 2021033208W WO 2022113473 A1 WO2022113473 A1 WO 2022113473A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
weld metal
steel sheet
metal part
welded
Prior art date
Application number
PCT/JP2021/033208
Other languages
English (en)
French (fr)
Inventor
充志 ▲高▼田
鵬 韓
正道 鈴木
Original Assignee
Jfeスチール株式会社
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社, 株式会社神戸製鋼所 filed Critical Jfeスチール株式会社
Priority to US18/253,839 priority Critical patent/US20240003367A1/en
Priority to KR1020237013486A priority patent/KR20230070296A/ko
Priority to JP2021576763A priority patent/JP7029034B1/ja
Priority to EP21897451.7A priority patent/EP4252959A1/en
Priority to CN202180079377.9A priority patent/CN116529407A/zh
Publication of WO2022113473A1 publication Critical patent/WO2022113473A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to welded structures used in extremely low temperature environments, such as tanks for storing liquefied gas, and in particular, the strength and strength of welded joints using high Ni steel sheets containing 6.5 to 10.0% by mass of Ni. Regarding improvement of ultra-low temperature toughness.
  • 9% Ni steel is often used for storage tanks for liquefied natural gas (LNG), liquid nitrogen, liquid oxygen, etc.
  • LNG liquefied natural gas
  • a Ni-based alloy containing 50% or more of Ni as a welding material. This is because when welding is performed using a welding material (co-gold-based welding material) consisting of a component (co-gold-based) similar to 9% Ni steel as the welding material, it remains welded at the welded joint 9 This is because it is not possible to secure low temperature toughness (ultra-low temperature toughness) at an extremely low temperature of -196 ° C, which is equivalent to that of% Ni steel base metal.
  • Patent Document 1 proposes "a wire containing flux for 9% Ni steel welding".
  • the wire described in Patent Document 1 is a flux-containing wire formed by filling a Ni-based alloy outer skin with flux, and is a mass% based on the total weight of the wire, and the total of the Ni-based alloy outer skin and the flux is Mn: 2.0 to 4.5%.
  • the total Ti oxide: TiO 2 conversion value is 3.0 to 7.0%, and the total Si oxide: SiO 2 conversion value is in the flux.
  • slag forming agents consisting of: 6-12% is adjusted to contain the components in the flux-filled wire. If a 9% Ni steel welded joint is manufactured using this wire, a weld metal with high strength and excellent toughness can be obtained, and it has excellent crack resistance and defect resistance such as blowholes, and is welded in all postures. It is said that high-efficiency and high-quality weld metal can be obtained, such as excellent workability.
  • Patent Document 2 describes "welding material for low temperature steel".
  • the welding material described in Patent Document 2 is a welding material in which the amount of Ni is reduced and austenite is stabilized by Mn.
  • Welding material containing: 0.05 to 0.5%, Si: 0.15 to 0.75%, Mn: 20 to 50%, Cr: 4 to 17%, N: 0.005 to 0.5%, with the balance consisting of Fe and unavoidable impurities. Is.
  • W and Ta may be contained up to 4% each, or Ni and Mo may be contained up to 10% each.
  • the tensile properties of the weld metal and the impact toughness at a test temperature of -196 ° C are said to be comparable to those of Inconel-based alloys.
  • Patent Document 3 describes "flux cored arc welding wire".
  • the wire described in Patent Document 3 is by weight%, C: 0.15 to 0.8%, Si: 0.2 to 1.2%, Mn: 15 to 34%, Cr: 6% or less, Mo: 1.5 to 4%, S: Of 0.02% or less, P: 0.02% or less, B: 0.01% or less, Ti: 0.09 to 0.5%, N: 0.001 to 0.3%, TiO 2 : 4 to 15%, SiO 2 , ZrO 2 and Al 2 O 3 Total of one or more selected from: 0.01-9%, total of one or more selected from K, Na and Li: 0.5-1.7%, one or more of F and Ca: 0.2 It is characterized by containing ⁇ 1.5%, balance Fe and other unavoidable impurities.
  • Patent Document 4 describes "solid wire for gas metal arc welding".
  • the solid wire described in Patent Document 4 has a mass% of C: 0.2 to 0.8%, Si: 0.15 to 0.90%, Mn: 17.0 to 28.0%, P: 0.03% or less, S: 0.03% or less, Ni: A wire containing 0.01 to 10.00%, Cr: 0.4 to 4.0%, Mo: 0.01 to 3.50%, B: less than 0.0010%, N: 0.12% or less, and having a composition consisting of the balance Fe and unavoidable impurities.
  • gas metal arc welding is performed by abutting steel plates having a composition of 0.5% C-0.4% Si-25% Mn-3% Cr-residue Fe in mass%. It is said that a weld metal having a high strength with a room temperature yield strength of 400 MPa or more and an excellent ultra-low temperature toughness with an absorption energy vE -196 of 28 J or more at a test temperature of -196 ° C can be obtained.
  • the welding material described in Patent Document 1 is a Ni-based alloy-based welding material containing 50% or more of Ni, and has a problem of being expensive. Further, according to the study by the present inventors, when a welded joint made of 9% Ni steel is manufactured from the high Mn steel-based welding material described in Patent Document 2, there is a problem that high-temperature cracking occurs, and there is also a problem.
  • the high Mn steel wire described in Patent Documents 3 and 4 is applied to the welding of 9% Ni steel, the boundary portion between the base metal portion and the weld metal portion (hereinafter referred to as a weld bond portion (molten boundary portion)). Therefore, it was found that there is a problem that the absorbed energy vE -196 of the steel impact test at the test temperature: -196 ° C cannot always secure 27J.
  • the present invention solves the problem of the prior art and is a welded joint formed by welding and joining high Ni steel plates containing 6.5 to 10.0% of Ni by mass%, and the weld metal portion has high temperature crack resistance. It is an object of the present invention to provide a welded joint having excellent, high strength, excellent low temperature toughness, and excellent low temperature toughness of a welded bond portion.
  • the "high strength" of the weld metal portion referred to here means a case where the normal temperature yield strength (0.2% proof stress) WYS is 400 MPa or more and the normal temperature tensile strength WTS is 660 MPa or more.
  • excellent in low temperature toughness of the weld metal part and the welded bond part here means the case where the absorption energy vE -196 of the Charpy impact test at the test temperature: ⁇ 196 ° C. is 27J or more.
  • the present inventors first prepare a weld metal having a weld metal composition of 13% by mass or more and having an austenite structure even at an extremely low temperature, and then crack the weld metal at a high temperature.
  • the weld metal contains more than 4.0% by mass of Cr, carbides (Cr 23 C 6 ) will precipitate at the austenite grain boundaries and the grain boundaries will become brittle. , Found that high temperature cracking occurs.
  • the present invention has been completed with further studies based on the above findings.
  • the gist of the present invention is as follows. [1] A welded joint in which steel plates are welded together via a weld metal portion.
  • the steel sheet is divided into% by mass.
  • the weld metal part is by mass% C: 0.10 to 0.80%, Si: 0.10 to 1.00%, Mn: 13.0-25.0%, P: 0.030% or less, S: 0.030% or less, Ni: 1.0 to 12.0%, Cr: 0.4-3.8%, Mo: 0.1-5.0%, N: 0.080% or less, O: 0.100% or less, weld metal part composition consisting of balance Fe and unavoidable impurities, 0.2% proof stress WPS: 400MPa or more, and tensile strength WTS: 660MPa or more.
  • WPS 0.2% proof stress (MPa) of the weld metal part
  • BYS yield strength of the steel sheet (MPa)
  • WTS tensile strength of the weld metal part (MPa)
  • BTS tensile strength of the steel plate (MPa)
  • the steel sheet is divided into% by mass.
  • the solid wire in% by mass C: 0.15 to 1.00%, Si: 0.15 to 1.10%, Mn: 17.0 to 30.0%, P: 0.030% or less, S: 0.030% or less, Ni: 0.2-13.0%, Cr: 0.4-3.8%, Mo: 0.1-5.0%, N: 0.060% or less, O: 0.020% or less, and the wire has a wire composition consisting of the balance Fe and unavoidable impurities.
  • the weld metal part is by mass% C: 0.10 to 0.80%, Si: 0.10 to 1.00%, Mn: 13.0-25.0%, P: 0.030% or less, S: 0.030% or less, Ni: 1.0 to 12.0%, Cr: 0.4-3.8%, Mo: 0.1-5.0%, N: 0.080% or less, O: 0.100% or less, weld metal part composition consisting of balance Fe and unavoidable impurities, 0.2% proof stress WPS: 400MPa or more, and tensile strength WTS: 660MPa or more.
  • WPS 0.2% proof stress (MPa) of weld metal part
  • BYS yield strength of steel plate (MPa)
  • WTS tensile strength of weld metal part (MPa)
  • BTS tensile strength of steel plate (MPa)
  • Manufacture of welded joints with excellent low temperature toughness characterized in that the welding conditions of the gas metal arc welding are adjusted so that the heat input for 1-pass welding is 0.5 to 6.0 kJ / mm so as to satisfy each of the above.
  • the present invention it is possible to easily manufacture a welded joint having high strength and excellent low-temperature toughness without using an expensive Ni-based welding material and without causing high-temperature cracking, which is extremely effective in industry. Play. Further, according to the present invention, it is possible to provide a welded joint having high strength and excellent low temperature toughness.
  • the welded joint of the present invention is a welded metal made of high Ni steel sheets having a basic composition of C: 0.02 to 0.20%, Si: 0.05 to 0.50%, Mn: 0.10 to 1.80%, Ni: 6.5 to 10.0% in mass%. It is a welded joint made by welding and joining through a portion.
  • the number of high Ni steel sheets to be welded may be two or more. In the following, the mass% in the composition is simply expressed as%.
  • the high Ni steel sheet used as the base material (welded material) is C: 0.02 to 0.20%, Si: 0.05 to 0.50%, Mn: 0.10 to 1.80%, P: 0.030%, S: 0.030% or less in mass%. , Ni: 6.5 to 10.0%, N: 0.010% or less, O: 0.010% or less, and has a steel sheet composition in which the balance consists of Fe and unavoidable impurities. If necessary, an alloying element may be added as a selective element in addition to the above-mentioned components.
  • improvement of strength and toughness can be expected, Cu: 0.5% or less, Al: 0.1% or less, Cr: 1.0% or less, Mo: 1.0% or less, V: 0.2% or less, Nb: 0.2% or less and One or more selected from the group consisting of Ti: 0.2% or less, and / or the group consisting of B: 0.005% or less, Ca: 0.005% or less and REM: 0.020% or less, which can be expected to improve toughness.
  • One or more selected from the above can be exemplified.
  • the weld metal portion in the welded joint of the present invention is C: 0.10 to 0.80%, Si: 0.10 to 1.00%, Mn: 13.0 to 25.0%, P: 0.030% or less, S: 0.030% or less, in terms of mass%.
  • C 0.10 to 0.80%
  • C is an element that stabilizes austenite, and is an element that has the effect of increasing the strength of the weld metal by strengthening the solid solution.
  • the content of 0.10% or more is required.
  • C was limited to the range of 0.10 to 0.80%. It should be noted that it is preferably 0.15% or more. Further, it is preferably 0.60% or less.
  • Si 0.10-1.00% Si suppresses the precipitation of carbides, thereby dissolving C in austenite and stabilizing austenite. In order to obtain such an effect, a content of 0.10% or more is required. However, if it is contained in excess of 1.00%, Si segregates during solidification and forms a liquid phase at the interface of the solidified cell, which lowers the high temperature crack resistance. Therefore, Si was limited to the range of 0.10 to 1.00%. It should be noted that it is preferably 0.20% or more. Further, it is preferably 0.90% or less.
  • Mn 13.0-25.0%
  • Mn is an element that stabilizes the austenite phase at low cost, and the content of Mn is required to be 13.0% or more in the present invention. If the Mn is less than 13.0%, the stability of austenite will be insufficient, and a hard martensite phase will be formed in the weld metal, resulting in a decrease in toughness. On the other hand, when Mn exceeds 25.0%, excessive Mn segregation occurs during solidification, inducing high-temperature cracking. Therefore, Mn was limited to the range of 13.0 to 25.0%. It is preferably 15.0% or more. Further, it is preferably 22.0% or less.
  • P 0.030% or less
  • P is an element that segregates at grain boundaries and induces high-temperature cracking. In the present invention, it is preferable to reduce it as much as possible, but 0.030% or less is acceptable. Therefore, P was limited to 0.030% or less. Excessive reduction leads to an increase in refining cost. Therefore, it is preferable to adjust P to 0.002% or more.
  • S 0.030% or less S is an element that segregates at grain boundaries and induces high-temperature cracking. In the present invention, it is preferable to reduce it as much as possible, but 0.030% or less is acceptable. Therefore, S was limited to 0.030% or less. Excessive reduction leads to an increase in refining cost. Therefore, it is preferable to adjust S to 0.001% or more.
  • Ni 1.0-12.0%
  • Ni is an element that strengthens austenite grain boundaries, and suppresses the embrittlement of grain boundaries, thereby suppressing the occurrence of high-temperature cracking. In order to obtain such an effect, the content of 1.0% or more is required. Ni also has the effect of stabilizing the austenite phase. However, Ni is an expensive element, and a content of more than 12.0% is economically disadvantageous. Therefore, Ni was limited to the range of 1.0 to 12.0%. It is preferably 2.0% or more. Further, it is preferably 11.0% or less.
  • Cr 0.4-3.8% Cr acts as an element that stabilizes the austenite phase at cryogenic temperatures and improves the low temperature toughness (cryogenic toughness) of the weld metal. Cr also has the effect of improving the strength of the weld metal. In addition, Cr works effectively to reduce the solid-liquid coexistence temperature range and suppress the occurrence of high-temperature cracking. Furthermore, Cr also works effectively to enhance the corrosion resistance of the weld metal. In order to obtain such an effect, a content of 0.4% or more is required. If Cr is less than 0.4%, the above effect cannot be ensured.
  • Cr was limited to the range of 0.4 to 3.8%. It should be noted that it is preferably 0.6% or more. Further, it is preferably 3.5% or less.
  • Mo 0.1-5.0%
  • Mo is an element that strengthens austenite grain boundaries, and suppresses the occurrence of high-temperature cracking by suppressing embrittlement of grain boundaries. Mo also has the effect of improving wear resistance by curing the weld metal. In order to obtain such an effect, a content of 0.1% or more is required. On the other hand, if it is contained in excess of 5.0%, the inside of the grain is too hardened, the grain boundary is relatively weakened, and high temperature cracking occurs. Therefore, Mo was limited to the range of 0.1 to 5.0%. It should be noted that it is preferably 0.5% or more. Further, it is preferably 4.0% or less.
  • O 0.100% or less
  • O (oxygen) is an element that is inevitably mixed, but it forms Al-based oxides and Si-based oxides in the weld metal and contributes to the suppression of coarsening of the solidified structure. Since such an effect becomes remarkable when the content is 0.003% or more, it is preferable to contain 0.003% or more, but when it is contained in a large amount exceeding 0.100%, the coarsening of the oxide becomes remarkable. Therefore, O (oxygen) was limited to 0.100% or less. It is preferably 0.003% or more. Further, it is preferably 0.060% or less.
  • N 0.080% or less
  • N is an element that is inevitably mixed, but like C, it effectively contributes to improving the strength of weld metal, stabilizes the austenite phase, and stably improves ultra-low temperature toughness. It is an element. Since such an effect becomes remarkable when the content is 0.003% or more, it is preferable to contain 0.003% or more. However, if it is contained in excess of 0.080%, a nitride is formed and the low temperature toughness is lowered. Therefore, N was limited to 0.080% or less. It is more preferably 0.004% or more. Further, it is preferably 0.060% or less.
  • the above-mentioned components are the basic components in the weld metal portion of the welded joint of the present invention, but in the present invention, in addition to the above-mentioned basic components, as an optional optional component, V: 1.0% or less, if necessary. , Ti: 1.0% or less, Nb: 1.0% or less and W: 1.0% or less, one or more selected from the group, and / or Cu: 2.0% or less, Al: 1.0% or less, Ca: It can contain one or more selected from the group consisting of 0.010% or less and REM: 0.020% or less.
  • V 1.0% or less
  • Ti 1.0% or less
  • Nb 1.0% or less
  • W 1.0% or less
  • V, Ti, Nb and W are all carbide forming elements. It is an element that contributes to an increase in the strength of the weld metal by precipitating fine carbides in the austenite grains, and can be selected and contained in one or more types as necessary.
  • V is a carbide-forming element that precipitates fine carbides in austenite grains and contributes to improving the strength of the weld metal. In order to obtain such an effect, it is preferable that V is contained in an amount of 0.001% or more. However, if it is contained in excess of 1.0%, the excess carbide becomes the starting point of fracture, and thus the low temperature toughness is lowered. Therefore, when it is contained, it is preferable to limit V to 1.0% or less. It should be noted that it is more preferably 0.002% or more. Further, it is more preferably 0.600% or less.
  • Ti is a carbide-forming element that precipitates fine carbides and contributes to improving the strength of the weld metal.
  • Ti is contained in an amount of 0.001% or more. However, if it is contained in excess of 1.0%, the excess carbide becomes the starting point of fracture, and thus the low temperature toughness is lowered. Therefore, when it is contained, it is preferable to limit Ti to 1.0% or less. It should be noted that it is more preferably 0.002% or more. Further, it is more preferably 0.600% or less.
  • Nb like V and Ti, is a carbide-forming element that precipitates fine carbides and contributes to improving the strength of the weld metal.
  • Nb is contained in an amount of 0.001% or more. However, if it is contained in excess of 1.0%, the excess carbide becomes the starting point of fracture, and thus the low temperature toughness is lowered. Therefore, when it is contained, it is preferable to limit Nb to 1.0% or less. It is more preferably 0.002% or more. Further, it is more preferably 0.600% or less.
  • W is a carbide-forming element that precipitates fine carbides and contributes to improving the strength of the weld metal.
  • W is preferably contained in an amount of 0.001% or more. However, if it is contained in excess of 1.0%, the excess carbide becomes the starting point of fracture, and thus the low temperature toughness is lowered. Therefore, when it is contained, it is preferable to limit W to 1.0% or less. It should be noted that it is more preferably 0.002% or more. Further, it is more preferably 0.600% or less.
  • Cu is an element that contributes to austenite stabilization
  • Al is an element. It is an element that acts as a deoxidizing agent
  • Ca and REM are elements that contribute to the suppression of high-temperature cracking, and can be selected and contained as necessary.
  • Cu is an element that stabilizes the austenite phase, and in order to obtain such an effect, it is preferably contained in 0.01% or more. However, if it is contained in a large amount exceeding 2.0%, a liquid phase having a low melting point is formed at the austenite grain boundaries, so that high-temperature cracking occurs. Therefore, when it is contained, it is preferable to limit Cu to 2.0% or less. It should be noted that it is more preferably 0.02% or more. Further, it is more preferably 1.6% or less.
  • Al acts as a deoxidizing agent, increases the viscosity of the molten metal, stably maintains the bead shape, and has an important effect of reducing the occurrence of spatter.
  • Al reduces the solid-liquid coexistence temperature range and contributes to suppressing the occurrence of high-temperature cracking in the weld metal. Since such an effect becomes remarkable when the content is 0.001% or more, it is preferable to contain 0.001% or more. However, if it is contained in excess of 1.0%, the viscosity of the molten metal becomes too high, and conversely, defects such as an increase in spatter and defects such as poor fusion due to the bead not spreading increase. Therefore, when it is contained, it is preferable to limit Al to the range of 1.0% or less. It should be noted that it is more preferably 0.002% or more. Further, it is more preferably 0.8% or less.
  • Ca and REM are both elements that contribute to the suppression of high temperature cracking.
  • Ca binds to S in the molten metal to form a high melting point sulfide CaS, thereby suppressing high temperature cracking. Such an effect becomes remarkable when the content is 0.001% or more.
  • the content exceeds 0.010%, the arc is disturbed during welding, which makes stable welding difficult. Therefore, when it is contained, it is preferable to limit Ca to 0.010% or less. It should be noted that it is more preferably 0.002% or more. Further, it is more preferably 0.008% or less.
  • REM is a powerful deoxidizer and exists in the form of REM oxide in weld metals.
  • the REM oxide becomes a nucleation site during solidification, which changes the solidification form of the weld metal and contributes to the suppression of high-temperature cracking. Such an effect becomes remarkable when the content is 0.001% or more.
  • it is contained in excess of 0.020%, the stability of the arc will decrease. Therefore, when it is contained, it is preferable to limit the REM to 0.020% or less. It should be noted that it is more preferably 0.002% or more. Further, it is more preferably 0.016% or less.
  • the rest other than the above components consist of Fe and unavoidable impurities.
  • unavoidable impurities include Bi, Sn, Sb, etc., and 0.2% or less in total is acceptable.
  • the weld metal part having the above composition is a weld metal part having high strength and excellent low temperature toughness having a tensile property of 0.2% proof stress WPS: 400 MPa or more and tensile strength WTS: 660 MPa or more.
  • the weld metal portion satisfies both the above equations (1) and (2), the progress of fracture in the weld bond portion is on the weld metal portion side, exhibits high absorption energy, and has low temperature toughness (ultra-low temperature toughness). It becomes an excellent welded bond part.
  • the material to be welded two or more high Ni steel sheets having a desired plate thickness and the above-mentioned steel sheet composition are prepared. Then, groove processing is performed so that the prepared steel plates form a predetermined groove shape.
  • the groove shape to be formed is not particularly limited, and examples of the welded structure include a normal weld groove and a V groove.
  • the grooved steel plates are butted against each other, welded using a welding material (solid wire), and welded and joined through the formation of a multi-layer welded metal part to manufacture a welded joint.
  • a welding material solid wire
  • the welding method to be used is not particularly limited as long as it can form a weld metal portion (multilayer) having desired characteristics, but it is necessary to form a weld metal portion and a bond portion having desired strength and excellent low temperature toughness.
  • 1-pass heat input 0.5 to 6.0 kJ / mm
  • multi-layered gas metal arc welding is preferable.
  • the welding material to be used may be any welding material that can form the above-mentioned weld metal portion, and is not particularly limited.
  • any of the usual methods for manufacturing a solid wire for welding can be applied.
  • the solid wire used is C: 0.15 to 1.00%, Si: 0.15 to 1.10%, Mn: 17.0 to 30.0%, P: 0.030% or less, S: 0.030% or less, so that the above-mentioned weld metal part can be formed.
  • Ni: 0.2 to 13.0%, Cr: 0.4 to 3.8%, Mo: 0.1 to 5.0%, N: 0.060% or less, O: 0.020% or less are included as basic elements, or V: 1.0% or less, Ti: One or more selected from the group consisting of 1.0% or less, Nb: 1.0% or less and W: 1.0% or less, and / or Cu: 2.0% or less, Al: 1.0% or less, Ca: 0.010% or less.
  • REM one or more selected from the group consisting of 0.020% or less may be contained as an arbitrary alloying element, and a wire having a wire composition consisting of the balance Fe and unavoidable impurities is preferable. ..
  • the annealing is preferably performed at an annealing temperature of 1000 to 1200 ° C.
  • a high Ni steel sheet having the steel sheet composition shown in Table 1 and having a plate thickness of 30 mm was prepared.
  • a tensile test was conducted at room temperature using a No. 10 test piece specified in JIS Z2241 collected from the center of the thickness of the steel sheet.
  • the tensile properties (yield strength BYS, tensile strength BTS) of the obtained steel sheet are also shown in Table 1.
  • the molten steel having the composition (wire composition) shown in Table 2 was melted in a vacuum melting furnace and cast to obtain a steel ingot (100 kgf). The obtained ingot was heated to 1200 ° C. and then hot-rolled to obtain a rod-shaped steel material. Then, the obtained rod-shaped steel material was further subjected to cold rolling (cold wire drawing) a plurality of times with annealing sandwiched between them to obtain a 1.2 mm ⁇ solid wire for welding.
  • the prepared test plate (high Ni steel plate: plate thickness 30 mm ⁇ width 150 mm ⁇ length 400 mm) was subjected to groove processing so that a groove (groove angle: 45 °) could be formed.
  • gas metal arc welding was performed in a shield gas to form a multi-layered weld metal portion, and a welded joint was obtained.
  • Welding conditions are downward posture, current: 150-450A (DCEP), voltage: 20-40V, welding speed: 15-60cm / min, inter-pass temperature: 100-200 ° C, shield gas: 80% Ar. The condition consisted of -20% CO 2 .
  • the welding heat input of one pass was adjusted to the range of 0.5 to 6.0 kJ / mm (see Table 3).
  • the temperature at the time of welding was 18 ° C and the humidity was 40%.
  • weld metal part and the weld heat-affected zone of the obtained welded joint were observed using an optical microscope (magnification: 100 times), and the presence or absence of weld cracks (high temperature cracks) was investigated. If cracks were found in the weld metal part, it was evaluated as “presence”, and if no cracks were found, it was evaluated as “no cracks”.
  • a No. 14A tensile test piece (parallel part diameter 12.5 mm ⁇ ) was sampled from the thickness and center position of the weld metal part of the obtained welded joint in accordance with JIS Z2241, and a tensile test was performed at room temperature. Was carried out, and the strength of the weld metal part (0.2% proof stress WPS, tensile strength WTS) was determined. In addition, three tensile tests were carried out, and the average value was taken as the strength of the weld metal part.
  • a Charpy impact test piece (V notch: 10 mm thick) was collected from the obtained welded joint, and a Charpy impact test was conducted at a test temperature of -196 ° C in accordance with JIS Z 2242. The absorbed energy E -196 (J) at 196 ° C was determined. Three test pieces were used for measuring the weld metal part and three for measuring the weld bond part, and the average value thereof was the absorbed energy E- 196 of each of the weld metal part and the weld bond part of the welded joint. Both Charpy impact test pieces were collected so that the center position of the test piece thickness was 7 mm in the plate thickness direction from the surface of the steel plate. Then, the notch positions of the Charpy impact test pieces for measuring the weld metal portion and measuring the weld bond portion were collected so as to be the center position in the width direction of the weld metal portion and the weld bond portion, respectively.
  • the weld crack is generated, the strength of the weld metal portion is insufficient, the low temperature toughness of the weld metal portion is lowered, or the weld bond is formed. The low temperature toughness of the part is reduced, or the desired welded joint is not obtained.
  • the crack propagation path (crack growth position) is thermal. It becomes an affected zone (HAZ portion), and the low temperature toughness is reduced.
  • HZ portion affected zone
  • the propagation path of the crack is the weld metal portion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Arc Welding In General (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

本発明は、高強度で、耐高温割れ性と低温靭性にも優れた溶接継手を提供する。本発明では、6.5~10.0質量%Niを含む高Ni鋼板同士を、溶接により溶接金属部を形成して接合し溶接継手とする。前記溶接金属部を、極低温域においてもオーステナイト組織となるようにMnを13.0~25.0%含み、高温割れの発生を抑制するためにCrを3.8%以下に限定し、さらに、Ni:1.0~12.0%、Mo:0.1~5.0%、N:0.080%以下、O:0.100%以下含む溶接金属部組成としたうえで、鋼板の降伏強さBYSと溶接金属部の0.2%耐力WPSとが次式[WPS]≦[BYS]-100MPa……(1)、および、鋼板の引張強さBTSと溶接金属部の引張強さWTSとが次式[WTS]≦[BTS]+100MPa……(2)を満足するように溶接金属部強度を調整する。これにより、溶接金属部および溶接ボンド部がともに、優れた低温靭性を保持することができる。

Description

溶接継手およびその製造方法
 本発明は、例えば、液化ガス貯蔵用タンク等の、極低温環境下で使用される溶接構造物に係り、とくにNiを6.5~10.0質量%含有する高Ni鋼板を用いた溶接継手の、強度および極低温靭性の向上に関する。
 液化天然ガス(LNG)、液体窒素、液体酸素等の貯蔵タンクには、9%Ni鋼が用いられることが多い。9%Ni鋼の溶接では、溶接材料として、Niを50%以上含有させたNi基合金を適用するのが一般的である。これは、溶接材料として、9%Ni鋼に類似した成分(共金系)からなる溶接材料(共金系溶接材料)を用いて溶接した場合には、溶接継手部において、溶接のままで9%Ni鋼母材と同等の、-196℃の極低温における低温靭性(極低温靭性)を確保することができないためである。
 これに対し、例えば、特許文献1には、「9%Ni鋼溶接用フラックス入りワイヤ」が提案されている。特許文献1に記載されたワイヤは、Ni基合金外皮にフラックスを充填してなるフラックス入りワイヤで、ワイヤ全質量に対する質量%で、Ni基合金外皮とフラックスの合計で、Mn:2.0~4.5%、Ni:53~65%、Cr:13~19%、Mo:5~14%、Nb:0.5~3.0%、Cu:0.01~0.5%、Ti:0.4~1.0%を含有し、C:0.02%以下、Si:0.2%以下であり、さらに、ワイヤ全質量に対する質量%で、フラックス中に、Ti酸化物:TiO2換算値の合計で3.0~7.0%、Si酸化物:SiO2換算値の合計で0.5~2.0%、Zr酸化物:ZrO2換算値の合計で1.0~2.0%、Al酸化物:Al2O3換算値の合計で0.01~0.1%、Na酸化物およびK酸化物:Na2O換算値及びK2O換算値の1種または2種以上の合計で0.1~0.8%、CaO:0.1~0.8%、弗素化合物:F換算値の合計で0.1~1.0%、酸化物及び弗素化合物からなるスラグ形成剤の合計:6~12%を含有するように、フラックス入りワイヤ中の成分を調整する、としている。このワイヤを用いて9%Ni鋼溶接継手を作製すれば、高強度で靭性に優れた溶接金属が得られ、耐割れ性およびブローホール等の耐欠陥性に優れ、かつ、全姿勢での溶接作業性に優れる等、高能率で高品質な溶接金属が得られる、としている。
 また、特許文献2には、「低温用鋼用溶接材料」が記載されている。特許文献2に記載された溶接材料は、Ni量を削減し、Mnでオーステナイトを安定化した溶接材料で、心線中または心線および一部その被覆溶材中に、心線重量比で、C:0.05~0.5%、Si:0.15~0.75%、Mn:20~50%、Cr:4~17%、N:0.005~0.5%を含み、残部がFeおよび不可避的不純物からなる組成を有する溶接材料である。なお、上記した組成に加えてさらに、WならびにTaをそれぞれ4%まで、またはNiならびにMoをそれぞれ10%まで含有してもよい、としている。これにより、溶接金属の引張特性および試験温度:-196℃における衝撃靭性が、インコネル系合金と比較して遜色のない特性を有するとしている。
 また、特許文献3には、「フラックスコアードアーク溶接用ワイヤ」が記載されている。特許文献3に記載されたワイヤは、重量%で、C:0.15~0.8%、Si:0.2~1.2%、Mn:15~34%、Cr:6%以下、Mo:1.5~4%、S:0.02%以下、P:0.02%以下、B:0.01%以下、Ti:0.09~0.5%、N:0.001~0.3%、TiO2:4~15%、SiO2、ZrO2およびAl2O3のうちから選択された1種以上の合計:0.01~9%、K、NaおよびLiのうちから選択された1種または2種以上の合計:0.5~1.7%、FとCaのうち1種以上:0.2~1.5%、残部Feおよびその他の不可避的不純物を含むことを特徴としている。特許文献3に記載されたワイヤを用いて、極低温用高Mn鋼材を溶接母材として溶接すると、高温割れが防止され、かつ常温降伏強さが高強度で優れた極低温靭性を有する溶接継手部を得ることができるとしている。
 また、特許文献4には、「ガスメタルアーク溶接用ソリッドワイヤ」が記載されている。特許文献4に記載されたソリッドワイヤは、質量%で、C:0.2~0.8%、Si:0.15~0.90%、Mn:17.0~28.0%、P:0.03%以下、S:0.03%以下、Ni:0.01~10.00%、Cr:0.4~4.0%、Mo:0.01~3.50%、B:0.0010%未満、N:0.12%以下を含み、残部Feおよび不可避的不純物からなる組成を有するワイヤである。特許文献4に記載されたソリッドワイヤを用いて、質量%で、0.5%C-0.4%Si-25%Mn-3%Cr-残部Feからなる組成の鋼板同士を突き合わせて、ガスメタルアーク溶接を行うと、常温降伏強さが400MPa以上の高強度と、試験温度:-196℃における吸収エネルギーvE-196が28J以上の優れた極低温靭性と、を有する溶着金属が得られる、としている。
特開2018-144045号公報 特開昭49-052737号公報 特表2017-502842号公報 特許第6621572号公報
 しかしながら、特許文献1に記載された溶接材料は、Niを50%以上含有するNi基合金系溶接材料であり、高価であるという問題がある。また、本発明者らの検討によれば、特許文献2に記載された高Mn鋼系溶接材料で、9%Ni鋼の溶接継手を作製すると、高温割れが発生するという問題があり、また、特許文献3および4に記載された高Mn鋼系ワイヤを9%Ni鋼の溶接に適用すると、母材部と溶接金属部との境界部(以下、溶接ボンド部(溶融境界部)と称する)で、試験温度:-196℃におけるシャルピー衝撃試験の吸収エネルギーvE-196が、必ずしも、27Jを確保できないという問題があることを見出した。
 本発明は、かかる従来技術の問題を解決し、Niを質量%で6.5~10.0%含有する高Ni鋼板同士を溶接接合してなる溶接継手であって、溶接金属部が、耐高温割れ性に優れ、高強度で優れた低温靭性を有し、かつ溶接ボンド部の低温靭性にも優れる、溶接継手を提供することを目的とする。
 なお、ここでいう溶接金属部の「高強度」とは、常温降伏強さ(0.2%耐力)WYSが400MPa以上であり、かつ常温引張強さWTSが660MPa以上である場合をいうものとする。また、ここでいう溶接金属部、溶接ボンド部の「低温靭性に優れる」とは、試験温度:-196℃におけるシャルピー衝撃試験の吸収エネルギーvE-196が27J以上である場合をいうものとする。
 本発明者らは、上記した目的を達成するため、まず、溶接金属組成が13質量%以上のMnを含み、極低温においてもオーステナイト組織となる溶接金属としたうえで、さらに溶接金属の高温割れに及ぼす各種要因について鋭意検討した。その結果、Mnを13質量%以上含有させてオーステナイト組織とした溶接金属の高温割れを抑制するためには、Crを4.0質量%以下に制限することが有効であることを知見した。さらに、溶接金属において4.0質量%を超えてCrを含有すると、オーステナイト粒界に炭化物(Cr23C6)が析出し該粒界が脆化するため、溶接時に導入される熱ひずみで開口して、高温割れが発生することを見出した。
 また、溶接金属が極低温においてもオーステナイト組織である場合の、溶接ボンド部の低温特性に影響する各種要因について鋭意検討を重ねた。そして、極低温で試験した各種シャルピー衝撃試験片について、破壊の伝播経路を観察した。その結果、吸収エネルギーvE-196が27J以上となる低温靭性に優れた溶接ボンド部では、破壊が溶接金属を伝播しているのに対して、吸収エネルギーvE-196が27J未満となる低温靭性が低下した溶接ボンド部では、破壊が溶接熱影響部を伝播していることを知見した。これは、高Mn鋼の母材部では、熱処理(焼入れ焼戻し処理)によりミクロ組織の造り込みが行われており、この熱処理により極低温靭性が確保されているが、溶接熱影響部では、ミクロ組織が粗大化するため、極低温靭性が低下し、一方、Mnを13質量%以上含有し組織がオーステナイト組織である溶接金属部では、優れた低温靭性を保持したままであることに起因する。
 上記知見を基に、さらに検討を重ねた結果、破壊が溶接継手の溶接熱影響部ではなく溶接金属部を伝播する、優れた低温靭性を有する溶接ボンド部を得るためには、溶接金属部の0.2%耐力WPSと鋼板(母材部)の降伏強さBYSとが次(1)式
     [WPS] ≦ [BYS] - 100MPa    ……(1)
(ここで、WPS:溶接金属部の0.2%耐力(MPa)、BYS:鋼板(母材部)の降伏強さ(MPa))
を満足し、かつ溶接金属部の引張強さWTSと鋼板(母材部)の引張強さBTSとが次(2)式
     [WTS] ≦ [BTS] + 100MPa    ……(2)
(ここで、WTS:溶接金属の引張強さ(MPa)、BTS:鋼板(母材部)の引張強さ(MPa))を満足するように、溶接入熱を0.5~6.0kJ/mmとし、溶接金属の強度を調整することが有効であることを知見した。
 本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。本発明の要旨は、次のとおりである。
[1]鋼板同士が溶接金属部を介して溶接接合された溶接継手であって、
前記鋼板を、質量%で、
 C:0.02~0.20%、       Si:0.05~0.50%、
 Mn:0.10~1.80%、       P:0.030%以下、
 S:0.030%以下、        Ni:6.5~10.0%、
 N:0.010%以下、        O:0.010%以下
を含み、残部Feおよび不可避的不純物からなる鋼板組成を有する鋼板とし、
前記溶接金属部が、質量%で、
 C:0.10~0.80%、       Si:0.10~1.00%、
 Mn:13.0~25.0%、       P:0.030%以下、
 S:0.030%以下、        Ni:1.0~12.0%、
 Cr:0.4~3.8%、             Mo:0.1~5.0%、
 N:0.080%以下、        O:0.100%以下
を含み、残部Feおよび不可避的不純物からなる溶接金属部組成と、0.2%耐力WPS:400MPa以上、かつ引張強さWTS:660MPa以上の引張特性と、を有し、かつ
前記鋼板の降伏強さBYSと前記溶接金属部の0.2%耐力WPSとが次(1)式
    [WPS] ≦ [BYS] -100MPa    ……(1)
ここで、WPS:溶接金属部の0.2%耐力(MPa)、BYS:鋼板の降伏強さ(MPa)、
を、また、前記鋼板の引張強さBTSと前記溶接金属部の引張強さWTSとが次(2)式
    [WTS] ≦ [BTS] +100MPa    ……(2)
ここで、WTS:溶接金属部の引張強さ(MPa)、BTS:鋼板の引張強さ(MPa)、
を満足することを特徴とする溶接継手。
[2]前記溶接金属部組成に加えてさらに、質量%で、次の(i)および(ii)から選ばれる1種以上:(i)V:1.0%以下、Ti:1.0%以下、Nb:1.0%以下およびW:1.0%以下のうちの1種または2種以上;および(ii)Cu:2.0%以下、Al:1.0%以下、Ca:0.010%以下およびREM:0.020%以下のうちの1種または2種以上;を含有する溶接金属部組成とすることを特徴とする[1]に記載の溶接継手。
[3]前記鋼板組成に加えてさらに、質量%で、次の(iii)および(iv)から選ばれる1種以上:(iii)Cu:0.5%以下、Al:0.1%以下、Cr:1.0%以下、Mo:1.0%以下、V:0.2%以下、Nb:0.2%以下およびTi:0.2%以下のうちの1種または2種以上;および(iv)B:0.005%以下、Ca:0.005%以下およびREM:0.020%以下のうちの1種または2種以上;を含有する鋼板組成とすることを特徴とする[1]または[2]に記載の溶接継手。
[4]鋼板同士をソリッドワイヤを用いたガスメタルアーク溶接し、溶接金属部を形成して溶接継手とする溶接継手の製造方法であって、
前記鋼板を、質量%で、
 C:0.02~0.20%、       Si:0.05~0.50%、
 Mn:0.10~1.80%、       P:0.030%以下、
 S:0.030%以下、        Ni:6.5~10.0%、
 N:0.010%以下、        O:0.010%以下
を含み、残部Feおよび不可避的不純物からなる鋼板組成を有する鋼板とし、
前記ソリッドワイヤを、質量%で、
 C:0.15~1.00%、       Si:0.15~1.10%、
 Mn:17.0~30.0%、       P:0.030%以下、
 S:0.030%以下、        Ni:0.2~13.0%、
 Cr:0.4~3.8%、             Mo:0.1~5.0%、
 N:0.060%以下、        O:0.020%以下
を含み、残部Feおよび不可避的不純物からなるワイヤ組成を有するワイヤとし、
前記溶接金属部が、質量%で、
 C:0.10~0.80%、       Si:0.10~1.00%、
 Mn:13.0~25.0%、       P:0.030%以下、
 S:0.030%以下、        Ni:1.0~12.0%、
 Cr:0.4~3.8%、             Mo:0.1~5.0%、
 N:0.080%以下、        O:0.100%以下
を含み、残部Feおよび不可避的不純物からなる溶接金属部組成と、0.2%耐力WPS:400MPa以上、かつ引張強さWTS:660MPa以上の引張特性と、を有し、かつ前記溶接金属部の0.2%耐力WPSが、前記鋼板の降伏強さBYSとの関係で次(1)式
    [WPS] ≦ [BYS] -100MPa    ……(1)
(ここで、WPS:溶接金属部の0.2%耐力(MPa)、BYS:鋼板の降伏強さ(MPa))、
を、かつ、前記溶接金属部の引張強さWTSが、前記鋼板の引張強さBTSとの関係で次(2)式
    [WTS] ≦ [BTS] +100MPa    ……(2)
(ここで、WTS:溶接金属部の引張強さ(MPa)、BTS:鋼板の引張強さ(MPa))、
を、それぞれ満足するように、前記ガスメタルアーク溶接の溶接条件を、1パス溶接入熱が0.5~6.0kJ/mmとなるように調整することを特徴とする低温靭性に優れた溶接継手の製造方法。
[5]前記ワイヤ組成に加えてさらに、質量%で、次の(v)および(vi)から選ばれる1種以上:(v)V:1.0%以下、Ti:1.0%以下、Nb:1.0%以下およびW:1.0%以下のうちの1種または2種以上;および(vi)Cu:2.0%以下、Al:1.0%以下、Ca:0.010%以下およびREM:0.020%以下のうちの1種または2種以上;を含有するワイヤ組成とし、かつ、前記溶接金属部組成に加えてさらに、質量%で、次の(i)および(ii)から選ばれる1種以上:(i)V:1.0%以下、Ti:1.0%以下、Nb:1.0%以下およびW:1.0%以下のうちの1種または2種以上;および(ii)Cu:2.0%以下、Al:1.0%以下、Ca:0.010%以下およびREM:0.020%以下のうちの1種または2種以上;を含有する溶接金属部組成とすることを特徴とする[4]に記載の溶接継手の製造方法。
[6]前記鋼板組成に加えてさらに、質量%で、次の(iii)および(iv)から選ばれる1種以上:(iii)Cu:0.5%以下、Al:0.1%以下、Cr:1.0%以下、Mo:1.0%以下、V:0.2%以下、Nb:0.2%以下およびTi:0.2%以下のうちの1種または2種以上;および(iv)B:0.005%以下、Ca:0.005%以下およびREM:0.020%以下のうちの1種または2種以上;を含有する鋼板組成とすることを特徴とする[4]または[5]に記載の溶接継手の製造方法。
 本発明によれば、高価なNi基溶接材料を用いることなく、高温割れの発生もなく、高強度と優れた低温靭性を有する溶接継手を容易に作製することができ、産業上格段の効果を奏する。
 また、本発明によれば、高強度と優れた低温靭性とを有する溶接継手を提供することができる。
[溶接継手]
 本発明の溶接継手は、質量%で、C:0.02~0.20%、Si:0.05~0.50%、Mn:0.10~1.80%、Ni:6.5~10.0%を基本組成とする高Ni鋼板同士を溶接金属部を介して溶接接合してなる溶接継手である。溶接接合される高Ni鋼板は2枚又はそれ以上の複数枚とすることができる。なお、以下、組成における質量%は、単に%で記す。
 <高Ni鋼板>
 母材(被溶接材)として使用する高Ni鋼板は、質量%で、C:0.02~0.20%、Si:0.05~0.50%、Mn:0.10~1.80%、P:0.030%、S:0.030%以下、Ni:6.5~10.0%、N:0.010%以下、O:0.010%以下を含み、残部がFeおよび不可避的不純物からなる鋼板組成を有する。なお、必要に応じて、上記した成分以外に選択元素として合金元素を添加してもよい。選択元素としては、強度、靭性の向上が期待できる、Cu:0.5%以下、Al:0.1%以下、Cr:1.0%以下、Mo:1.0%以下、V:0.2%以下、Nb:0.2%以下およびTi:0.2%以下からなる群より選択される1種または2種以上、および/または、靭性の向上が期待できる、B:0.005%以下、Ca:0.005%以下およびREM:0.020%以下からなる群より選択される1種または2種以上、が例示できる。
 <溶接金属部>
 そして、本発明の溶接継手における溶接金属部は、質量%で、C:0.10~0.80%、Si:0.10~1.00%、Mn:13.0~25.0%、P:0.030%以下、S:0.030%以下、Ni:1.0~12.0%、Cr:0.4~3.8%、Mo:0.1~5.0%、N:0.080%以下、O:0.100%以下を含み、残部Feおよび不可避的不純物からなる組成(溶接金属部組成)を有する。
 まず、溶接金属部の組成の限定理由について説明する。
 C:0.10~0.80%
 Cは、オーステナイトを安定化させる元素であり、また、固溶強化により、溶接金属の強度を上昇させる作用を有する元素である。このような効果を得るためには、0.10%以上の含有を必要とする。しかし、0.80%を超えて含有すると、溶接時の高温割れが生じやすくなる。そのため、Cは0.10~0.80%の範囲に限定した。なお、好ましくは、0.15%以上である。また好ましくは0.60%以下である。
 Si:0.10~1.00%
 Siは、炭化物の析出を抑制することで、Cをオーステナイトに固溶させ、オーステナイトを安定化させる。そのような効果を得るためには、0.10%以上の含有を必要とする。しかし、1.00%を超えて含有すると、Siは、凝固時に偏析し、凝固セル界面に液相を生成して、耐高温割れ性を低下させる。そのため、Siは0.10~1.00%の範囲に限定した。なお、好ましくは0.20%以上である。また好ましくは0.90%以下である。
 Mn:13.0~25.0%
 Mnは、安価に、オーステナイト相を安定化する元素であり、本発明では13.0%以上の含有を必要とする。Mnが13.0%未満では、オーステナイトの安定度が不足するため、溶接金属中に硬質のマルテンサイト相が生成し、靭性が低下する。一方、Mnが25.0%を超えると、凝固時に過度のMn偏析が発生し、高温割れを誘発する。そのため、Mnは13.0~25.0%の範囲に制限した。なお、好ましくは15.0%以上である。また好ましくは22.0%以下である。
 P:0.030%以下
 Pは、結晶粒界に偏析し、高温割れを誘発する元素であり、本発明では、できるだけ低減することが好ましいが、0.030%以下であれば、許容できる。そのため、Pは0.030%以下に限定した。なお、過度の低減は、精練コストの高騰を招く。そのため、Pは0.002%以上に調整することが好ましい。
 S:0.030%以下
 Sは、結晶粒界に偏析し、高温割れを誘発する元素であり、本発明では、できるだけ低減することが好ましいが、0.030%以下であれば、許容できる。そのため、Sは0.030%以下に限定した。なお、過度の低減は、精練コストの高騰を招く。そのため、Sは0.001%以上に調整することが好ましい。
 Ni:1.0~12.0%
 Niは、オーステナイト粒界を強化する元素であり、粒界の脆化を抑制することで、高温割れの発生を抑制する。このような効果を得るためには、1.0%以上の含有を必要とする。また、Niは、オーステナイト相を安定化させる効果もある。しかし、Niは高価な元素であり、12.0%を超える含有は、経済的に不利となる。そのため、Niは1.0~12.0%の範囲に限定した。なお、好ましくは2.0%以上である。また好ましくは11.0%以下である。
 Cr:0.4~3.8%
 Crは、極低温ではオーステナイト相を安定化させる元素として働き、溶接金属の低温靭性(極低温靭性)を向上させる。また、Crは、溶接金属の強度を向上させる作用も有する。また、Crは、固液共存温度範囲を小さくして、高温割れの発生を抑制するのに有効に作用する。さらに、Crは、溶接金属の耐食性を高めるのにも有効に作用する。このような効果を得るためには0.4%以上の含有を必要とする。Crが0.4%未満では、上記した効果を確保できない。一方、3.8%を超えて含有すると、粒界にCr炭化物を析出するために粒界が脆化し、これが溶接時に導入される熱ひずみで開口し、高温割れが発生する。そのため、Crは0.4~3.8%の範囲に限定した。なお、好ましくは、0.6%以上である。また好ましくは3.5%以下である。
 Mo:0.1~5.0%
 Moは、オーステナイト粒界を強化する元素であり、粒界の脆化を抑制することで、高温割れの発生を抑制する。なお、Moは溶接金属を硬化させることで耐摩耗性を向上させる作用も有する。このような効果を得るためには、0.1%以上の含有を必要とする。一方、5.0%を超えて含有すると、粒内が硬化しすぎて、相対的に粒界が弱くなり、高温割れが発生する。そのため、Moは0.1~5.0%の範囲に限定した。なお、好ましくは0.5%以上である。また好ましくは4.0%以下である。
 O:0.100%以下
 O(酸素)は、不可避的に混入する元素であるが、溶接金属中で、Al系酸化物や、Si系酸化物を形成し、凝固組織の粗大化抑制に寄与する。このような効果は、0.003%以上の含有で著しくなるため、0.003%以上含有することが好ましいが、0.100%を超えて多量に含有すると、酸化物の粗大化が著しくなる。そのため、O(酸素)は0.100%以下に限定した。なお、好ましくは0.003%以上である。また好ましくは0.060%以下である。
 N:0.080%以下
 Nは、不可避的に混入する元素であるが、Cと同様に、溶接金属の強度向上に有効に寄与するとともに、オーステナイト相を安定化し、極低温靱性を安定的に向上させる元素である。このような効果は、0.003%以上の含有で顕著となるため、0.003%以上含有することが好ましい。しかし、0.080%を超えて含有すると、窒化物を形成し、低温靱性が低下する。そのため、Nは0.080%以下に限定した。なお、より好ましくは0.004%以上である。また好ましくは0.060%以下である。
 上記した成分が、本発明溶接継手の溶接金属部における基本の成分であるが、本発明では、上記した基本の成分に加えてさらに、任意の選択成分として必要に応じて、V:1.0%以下、Ti:1.0%以下、Nb:1.0%以下およびW:1.0%以下からなる群より選択される1種または2種以上、および/または、Cu:2.0%以下、Al:1.0%以下、Ca:0.010%以下およびREM:0.020%以下からなる群より選択される1種または2種以上、を含有することができる。
 V:1.0%以下、Ti:1.0%以下、Nb:1.0%以下およびW:1.0%以下からなる群より選択される1種または2種以上
 V、Ti、NbおよびWはいずれも、炭化物形成元素で、オーステナイト粒内に微細な炭化物を析出させて溶接金属の強度増加に寄与する元素であり、必要に応じて選択して1種または2種以上含有できる。
 Vは、炭化物形成元素で、オーステナイト粒内に微細な炭化物を析出させて、溶接金属の強度向上に寄与する。このような効果を得るためには、Vは0.001%以上含有することが好ましい。しかし、1.0%を超えて含有すると、過剰な炭化物が破壊の発生起点となるため、低温靭性が低下する。そのため、含有する場合には、Vは1.0%以下に限定することが好ましい。なお、より好ましくは0.002%以上である。また、より好ましくは0.600%以下である。
 また、TiもVと同様に、炭化物形成元素で、微細な炭化物を析出させて、溶接金属の強度向上に寄与する。このような効果を得るためには、Tiは0.001%以上含有することが好ましい。しかし、1.0%を超えて含有すると、過剰な炭化物が破壊の発生起点となるため、低温靭性が低下する。そのため、含有する場合には、Tiは1.0%以下に限定することが好ましい。なお、より好ましくは0.002%以上である。また、より好ましくは0.600%以下である。
 また、NbもV、Tiと同様に、炭化物形成元素で、微細な炭化物を析出させて、溶接金属の強度向上に寄与する。このような効果を得るためには、Nbは0.001%以上含有することが好ましい。しかし、1.0%を超えて含有すると、過剰な炭化物が破壊の発生起点となるため、低温靭性が低下する。そのため、含有する場合には、Nbは1.0%以下に限定することが好ましい。なお、より好ましくは0.002%以上である。また、より好ましくは0.600%以下である。
 また、WもV、Ti、Nbと同様に、炭化物形成元素で、微細な炭化物を析出させて、溶接金属の強度向上に寄与する。このような効果を得るためには、Wは0.001%以上含有することが好ましい。しかし、1.0%を超えて含有すると、過剰な炭化物が破壊の発生起点となるため、低温靭性が低下する。そのため、含有する場合には、Wは1.0%以下に限定することが好ましい。なお、より好ましくは0.002%以上である。また、より好ましくは0.600%以下である。
 Cu:2.0%以下、Al:1.0%以下、Ca:0.010%以下およびREM:0.020%以下からなる群より選択される1種または2種以上
 Cuはオーステナイト安定化に寄与する元素であり、Alは脱酸剤として作用する元素であり、また、Ca、REMは高温割れの抑制に寄与する元素であり、必要に応じて選択して含有できる。
 Cu:2.0%以下
 Cuは、オーステナイト相を安定化する元素であり、このような効果を得るためには、0.01%以上含有することが好ましい。しかし、2.0%を超えて多量に含有すると、オーステナイト粒界で低融点の液相が生成するため、高温割れが発生する。そのため、含有する場合には、Cuは2.0%以下に限定することが好ましい。なお、より好ましくは0.02%以上である。また、より好ましくは1.6%以下である。
 Al:1.0%以下
 Alは、脱酸剤として作用し、溶融金属の粘性を高め、ビード形状を安定的に保持し、スパッタの発生を低減する重要な作用を有する。また、Alは、固液共存温度範囲を小さくして、溶接金属の高温割れ発生の抑制に寄与する。このような効果は、0.001%以上の含有で顕著となるため、0.001%以上含有することが好ましい。しかし、1.0%を超えて含有すると、溶融金属の粘性が高くなりすぎて、逆に、スパッタの増加や、ビードが広がらず融合不良などの欠陥が増加する。そのため、含有する場合には、Alは1.0%以下の範囲に限定することが好ましい。なお、より好ましくは0.002%以上である。また、より好ましくは0.8%以下である。
 Ca:0.010%以下およびREM:0.020%以下のうちの1種または2種
 Ca、REMはいずれも、高温割れの抑制に寄与する元素である。Caは、溶融金属中でSと結合し、高融点の硫化物CaSを形成することで、高温割れを抑制する。このような効果は0.001%以上の含有で顕著となる。一方、0.010%を超えて含有すると、溶接時にアークに乱れが生じ、安定な溶接が困難となる。そのため、含有する場合には、Caは0.010%以下に限定することが好ましい。なお、より好ましくは0.002%以上である。また、より好ましくは0.008%以下である。
 REMは、強力な脱酸剤であり、溶接金属中でREM酸化物の形態で存在する。REM酸化物は凝固時の核生成サイトとなることで、溶接金属の凝固形態を変化させ、高温割れの抑制に寄与する。このような効果は0.001%以上の含有で顕著となる。しかし、0.020%を超えて含有すると、アークの安定性が低下する。そのため、含有する場合には、REMは0.020%以下に限定することが好ましい。なお、より好ましくは0.002%以上である。また、より好ましくは0.016%以下である。
 上記した成分以外の残部は、Feおよび不可避的不純物からなる。なお、不可避的不純物としては、Bi、Sn、Sb等が例示でき、合計で0.2%以下であれば許容できる。
 上記した組成の溶接金属部は、0.2%耐力WPS:400MPa以上、引張強さWTS:660MPa以上の引張特性を有する高強度で、かつ優れた低温靭性を有する溶接金属部である。
 上記した溶接金属部組成の範囲内でかつ、溶接金属部の0.2%耐力WPSが鋼板の降伏強さBYSとの関係で次(1)式
    [WPS] ≦ [BYS] -100MPa    ……(1)
を、さらに、溶接金属の引張強さWTSが鋼板の引張強さBTSとの関係で次(2)式
    [WTS] ≦ [BTS] +100MPa    ……(2)
を、満足するように、溶接条件を調整する。具体的には、1パスの溶接入熱が0.5~6.0kJ/mmとなるように、溶接条件を調整する。
 なお、上記した(1)および(2)式をともに満足する溶接金属部であれば、溶接ボンド部における破壊の進行は溶接金属部側となり、高い吸収エネルギーを示し、低温靭性(極低温靭性)に優れた溶接ボンド部となる。
[溶接継手の製造方法]
 つぎに、本発明の溶接継手の好ましい製造方法について説明する。
 まず、被溶接材として、所望の板厚を有し、上記した鋼板組成を有する高Ni鋼板を2枚又はそれ以上の複数枚、用意する。そして、用意した鋼板同士が所定の開先形状を形成するように、開先加工を行う。形成する開先形状については、とくに限定する必要はないが、溶接構造物として通常のレ開先、V開先等が例示できる。
 ついで、開先加工された鋼板同士を突き合せ、溶接材料(ソリッドワイヤ)を用いて溶接を行い、多層溶接金属部の形成を介して溶接接合し、溶接継手を製造する。
 <溶接法>
 使用する溶接法は、所望の特性を有する溶接金属部(多層)を形成できればよく、とくに限定する必要はないが、所望の強度、優れた低温靭性を有する溶接金属部およびボンド部を形成するためには、1パス入熱量:0.5~6.0kJ/mmの多層盛ガスメタルアーク溶接が好ましい。また、使用する溶接材料としては、上記した溶接金属部が形成できる溶接材料であればよく、とくに限定する必要はない。
 <溶接材料>
 また、使用する溶接材料(ソリッドワイヤ)の好ましい製造方法について説明する。
 本発明で使用するソリッドワイヤでは、常用の溶接用ソリッドワイヤの製造方法がいずれも適用できる。
 使用するソリッドワイヤは、上記した溶接金属部が形成できるように、C:0.15~1.00%、Si:0.15~1.10%、Mn:17.0~30.0%、P:0.030%以下、S:0.030%以下、Ni:0.2~13.0%、Cr:0.4~3.8%、Mo:0.1~5.0%、N:0.060%以下、O:0.020%以下を基本の元素として含み、あるいはさらに、V:1.0%以下、Ti:1.0%以下、Nb:1.0%以下およびW:1.0%以下からなる群より選択される1種または2種以上、および/または、Cu:2.0%以下、Al:1.0%以下、Ca:0.010%以下およびREM:0.020%以下からなる群より選択される1種または2種以上、を任意の合金元素として含有してもよく、残部Feおよび不可避的不純物からなるワイヤ組成を有するワイヤとすることが好ましい。
 上記したワイヤ組成を有する溶鋼を、電気炉、真空溶解炉等の常用の溶製方法で溶製し、所定形状の鋳型等に鋳造して鋼塊等の鋼素材を得る鋳造工程と、ついで、得られた鋼塊等の鋼素材を、所定の温度に加熱する加熱工程と、加熱された鋼素材に、熱間圧延を施し、所定形状の棒状体を得る熱延工程と、を順次行う。ついで得られた棒状体を複数回の冷間圧延(冷間伸線加工)と必要に応じて焼鈍を施して、所望寸法のワイヤを得る冷延工程を行う、ことが好ましい。なお、焼鈍は、焼鈍温度:1000~1200℃で行うことが好ましい。
 以下、実施例に基づき、さらに本発明について説明する。
 まず、試験板として、表1に示す鋼板組成を有する、板厚:30mmの高Ni鋼板を用意した。なお、鋼板の板厚中央部位置から採取したJIS Z 2241に規定される10号試験片を用いて、常温で引張試験を行った。得られた鋼板の引張特性(降伏強さBYS、引張強さBTS)を表1に併記した。
 つぎに、溶接材料(ソリッドワイヤ)を作製した。
 表2に示す組成(ワイヤ組成)の溶鋼を、真空溶解炉で溶製し、鋳造して鋼塊(100kgf)を得た。得られた鋼塊を1200℃に加熱したのち、熱間圧延を施し棒状の鋼素材を得た。ついで、得られた棒状の鋼素材にさらに、焼鈍を挟んで複数回の冷間圧延(冷間伸線)を施し、1.2mmφの溶接用ソリッドワイヤを得た。
 ついで、用意した試験板(高Ni鋼板:板厚30mm×幅150mm×長さ400mm)に、レ開先(開先角度:45°)が形成できるように、開先加工を施した。そして、その開先内に、得られた溶接用ソリッドワイヤを溶接材料として、シールドガス中で、ガスメタルアーク溶接を行い、多層盛の溶接金属部を形成し、溶接継手を得た。なお、溶接条件は、下向き姿勢で、電流:150~450A(DCEP)、電圧:20~40V、溶接速度:15~60cm/minで、パス間温度:100~200℃、シールドガス:80%Ar-20%CO2とからなる条件とした。なお、溶接金属の強度調整のために、本発明例では1パスの溶接入熱を0.5~6.0kJ/mmの範囲に調整した(表3参照)。溶接時の気温は18℃、湿度は40%であった。
 得られた溶接継手の溶接金属部の板厚および幅中央位置のφ10mmの範囲から、分析用試験片を採取し、化学分析により、溶接金属部の化学成分を分析した。得られた結果を表3に示す。
 ついで、得られた溶接継手の溶接金属部および溶接熱影響部について、光学顕微鏡(倍率:100倍)を用いて観察し、溶接割れ(高温割れ)の有無を調査した。溶接金属部で割れが認められる場合は溶接割れ「有」と評価し、割れが認められない場合は、溶接割れ「無」と評価した。
 また、得られた溶接継手の溶接金属部の板厚および幅中央位置から、JIS Z 2241の規定に準拠して、14A号引張試験片(平行部径12.5mmφ)を採取し、常温で引張試験を実施し、溶接金属部の強度(0.2%耐力WPS、引張強さWTS)を求めた。なお、引張試験は各3本実施し、その平均値を当該溶接金属部の強度とした。
 なお、得られた溶接金属部の0.2%耐力WPS、引張強さWTSと、表1に示す鋼板の降伏強さBYS、引張強さBTSとを用いて、(1)式および(2)式の右辺値、左辺値をそれぞれ算出し、(1)式、(2)式を満足する場合を「〇」、(1)式、(2)式を満足しない場合を「×」と評価した。
 また、得られた溶接継手からシャルピー衝撃試験片(Vノッチ:10mm厚)を採取し、JIS Z 2242の規定に準拠して試験温度:-196℃でシャルピー衝撃試験を実施し、試験温度:-196℃における吸収エネルギーE-196(J)を求めた。試験片は溶接金属部測定用と溶接ボンド部測定用を各3本とし、その各平均値を当該溶接継手の溶接金属部と溶接ボンド部の各吸収エネルギーE-196とした。なお、両シャルピー衝撃試験片は、その試験片厚さの中心位置が鋼板表面から、板厚方向に7mmの位置となるように、採取した。そして、溶接金属部測定用および溶接ボンド部測定用のシャルピー衝撃試験片のノッチ位置が、それぞれ、溶接金属部幅方向中央位置および溶接ボンド部となるように採取した。
 また、試験後のシャルピー衝撃試験片のうち、ノッチ位置が溶接ボンド部の試験片について、シャルピー衝撃試験片の厚み中央位置を切断したのち、切断面を2%ナイタールで腐食し、その切断面を光学顕微鏡(倍率:50倍)で、ノッチから発生した亀裂が、溶接金属部、熱影響部(HAZ)のどちらを伝播しているかを観察し、ノッチからの破壊伝播経路を調査した。
 得られた結果を表4に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-I000006
 本発明例ではいずれも、溶接割れ(高温割れ)の発生は認められなかった。また、本発明例では、得られた溶接金属部はいずれも、常温における降伏強さ(0.2%耐力)が400MPa以上、引張強さが660MPa以上と高強度で、かつ試験温度:-196℃におけるシャルピー衝撃試験の吸収エネルギーvE-196が27J以上と、優れた低温靭性を有している。また、溶接ボンド部も、吸収エネルギーvE-196が27J以上と優れた低温靭性を有している。従って、得られた溶接継手は、高強度で低温靭性に優れた溶接継手である、といえる。
 一方、本発明の範囲を外れる比較例では、溶接割れが発生しているか、あるいは、溶接金属部の強度が不足しているか、あるいは溶接金属部の低温靭性が低下しているか、または、溶接ボンド部の低温靭性が低下しているか、して、所望の溶接継手が得られていない。
 なお、溶接金属部の0.2%耐力が(1)式、および/または、溶接金属部の引張強さが(2)式、を満足しない比較例では、亀裂の伝播経路(亀裂進展位置)が熱影響部(HAZ部)となり、低温靭性が低下している。溶接金属部の0.2%耐力が(1)式、および、溶接金属部の引張強さが(2)式、を満足する場合には、亀裂の伝播経路が溶接金属部となっている。

Claims (6)

  1.  鋼板同士が溶接金属部を介して溶接接合された溶接継手であって、
    前記鋼板を、質量%で、
     C:0.02~0.20%、       Si:0.05~0.50%、
     Mn:0.10~1.80%、       P:0.030%以下、
     S:0.030%以下、        Ni:6.5~10.0%、
     N:0.010%以下、        O:0.010%以下
    を含み、残部Feおよび不可避的不純物からなる鋼板組成を有する鋼板とし、
    前記溶接金属部が、質量%で、
     C:0.10~0.80%、       Si:0.10~1.00%、
     Mn:13.0~25.0%、       P:0.030%以下、
     S:0.030%以下、        Ni:1.0~12.0%、
     Cr:0.4~3.8%、             Mo:0.1~5.0%、
     N:0.080%以下、        O:0.100%以下
    を含み、残部Feおよび不可避的不純物からなる溶接金属部組成と、0.2%耐力WPS:400MPa以上、かつ引張強さWTS:660MPa以上の引張特性と、を有し、かつ
    前記鋼板の降伏強さBYSと前記溶接金属部の0.2%耐力WPSとが下記(1)式を、また、前記鋼板の引張強さBTSと前記溶接金属部の引張強さWTSとが下記(2)式を満足することを特徴とする溶接継手。
               記
        [WPS] ≦ [BYS] -100MPa    ……(1)
        [WTS] ≦ [BTS] +100MPa    ……(2)
    ここで、WPS:溶接金属部の0.2%耐力(MPa)、WTS:溶接金属部の引張強さ(MPa)、
        BYS:鋼板の降伏強さ(MPa)、BTS:鋼板の引張強さ(MPa)
  2.  前記溶接金属部組成に加えてさらに、質量%で、次の(i)および(ii)から選ばれる1種以上:(i)V:1.0%以下、Ti:1.0%以下、Nb:1.0%以下およびW:1.0%以下のうちの1種または2種以上;および(ii)Cu:2.0%以下、Al:1.0%以下、Ca:0.010%以下およびREM:0.020%以下のうちの1種または2種以上;を含有する溶接金属部組成とすることを特徴とする請求項1に記載の溶接継手。
  3.  前記鋼板組成に加えてさらに、質量%で、次の(iii)および(iv)から選ばれる1種以上:(iii)Cu:0.5%以下、Al:0.1%以下、Cr:1.0%以下、Mo:1.0%以下、V:0.2%以下、Nb:0.2%以下およびTi:0.2%以下のうちの1種または2種以上;および(iv)B:0.005%以下、Ca:0.005%以下およびREM:0.020%以下のうちの1種または2種以上;を含有する鋼板組成とすることを特徴とする請求項1または2に記載の溶接継手。
  4.  鋼板同士をソリッドワイヤを用いたガスメタルアーク溶接し、溶接金属部を形成して溶接継手とする溶接継手の製造方法であって、
    前記鋼板を、質量%で、
     C:0.02~0.20%、       Si:0.05~0.50%、
     Mn:0.10~1.80%、       P:0.030%以下、
     S:0.030%以下、        Ni:6.5~10.0%、
     N:0.010%以下、        O:0.010%以下
    を含み、残部Feおよび不可避的不純物からなる鋼板組成を有する鋼板とし、
    前記ソリッドワイヤを、質量%で、
     C:0.15~1.00%、       Si:0.15~1.10%、
     Mn:17.0~30.0%、       P:0.030%以下、
     S:0.030%以下、        Ni:0.2~13.0%、
     Cr:0.4~3.8%、             Mo:0.1~5.0%、
     N:0.060%以下、        O:0.020%以下
    を含み、残部Feおよび不可避的不純物からなるワイヤ組成を有するワイヤとし、
    前記溶接金属部が、質量%で、
     C:0.10~0.80%、       Si:0.10~1.00%、
     Mn:13.0~25.0%、       P:0.030%以下、
     S:0.030%以下、        Ni:1.0~12.0%、
     Cr:0.4~3.8%、             Mo:0.1~5.0%、
     N:0.080%以下、        O:0.100%以下
    を含み、残部Feおよび不可避的不純物からなる溶接金属部組成と、0.2%耐力WPS:400MPa以上、かつ引張強さWTS:660MPa以上の引張特性と、を有し、かつ前記溶接金属部の0.2%耐力WPSが、前記鋼板の降伏強さBYSとの関係で下記(1)式を、かつ前記溶接金属部の引張強さWTSが、前記鋼板の引張強さBTSとの関係で下記(2)式を、それぞれ満足するように、前記ガスメタルアーク溶接の溶接条件を、1パス溶接入熱が0.5~6.0kJ/mmとなるように調整することを特徴とする低温靭性に優れた溶接継手の製造方法。
               記
        [WPS] ≦ [BYS] -100MPa    ……(1)
        [WTS] ≦ [BTS] +100MPa    ……(2)
    ここで、WPS:溶接金属部の0.2%耐力(MPa)、WTS:溶接金属部の引張強さ(MPa)、
        BYS:鋼板の降伏強さ(MPa)、BTS:鋼板の引張強さ(MPa)
  5.  前記ワイヤ組成に加えてさらに、質量%で、次の(v)および(vi)から選ばれる1種以上:(v)V:1.0%以下、Ti:1.0%以下、Nb:1.0%以下およびW:1.0%以下のうちの1種または2種以上;および(vi)Cu:2.0%以下、Al:1.0%以下、Ca:0.010%以下およびREM:0.020%以下のうちの1種または2種以上;を含有するワイヤ組成とし、かつ、前記溶接金属部組成に加えてさらに、質量%で、次の(i)および(ii)から選ばれる1種以上:(i)V:1.0%以下、Ti:1.0%以下、Nb:1.0%以下およびW:1.0%以下のうちの1種または2種以上;および(ii)Cu:2.0%以下、Al:1.0%以下、Ca:0.010%以下およびREM:0.020%以下のうちの1種または2種以上;を含有する溶接金属部組成とすることを特徴とする請求項4に記載の溶接継手の製造方法。
  6.  前記鋼板組成に加えてさらに、質量%で、次の(iii)および(iv)から選ばれる1種以上:(iii)Cu:0.5%以下、Al:0.1%以下、Cr:1.0%以下、Mo:1.0%以下、V:0.2%以下、Nb:0.2%以下およびTi:0.2%以下のうちの1種または2種以上;および(iv)B:0.005%以下、Ca:0.005%以下およびREM:0.020%以下のうちの1種または2種以上;を含有する鋼板組成とすることを特徴とする請求項4または5に記載の溶接継手の製造方法。
                                                                                    
PCT/JP2021/033208 2020-11-26 2021-09-09 溶接継手およびその製造方法 WO2022113473A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/253,839 US20240003367A1 (en) 2020-11-26 2021-09-09 Weld joint and production method therefor
KR1020237013486A KR20230070296A (ko) 2020-11-26 2021-09-09 용접 이음매 및 그 제조 방법
JP2021576763A JP7029034B1 (ja) 2020-11-26 2021-09-09 溶接継手およびその製造方法
EP21897451.7A EP4252959A1 (en) 2020-11-26 2021-09-09 Welded joint and production method therefor
CN202180079377.9A CN116529407A (zh) 2020-11-26 2021-09-09 焊接接头及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020195753 2020-11-26
JP2020-195753 2020-11-26

Publications (1)

Publication Number Publication Date
WO2022113473A1 true WO2022113473A1 (ja) 2022-06-02

Family

ID=81754519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033208 WO2022113473A1 (ja) 2020-11-26 2021-09-09 溶接継手およびその製造方法

Country Status (2)

Country Link
TW (1) TWI775607B (ja)
WO (1) WO2022113473A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024069986A1 (ja) * 2022-09-30 2024-04-04 日本製鉄株式会社 溶接金属、溶接継手、及び溶接構造物
WO2024111595A1 (ja) * 2022-11-24 2024-05-30 日本製鉄株式会社 鋼材、ソリッドワイヤ、及び鋼製外皮
JP7510104B1 (ja) 2022-09-30 2024-07-03 日本製鉄株式会社 溶接金属、溶接継手、及び溶接構造物

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4952737A (ja) 1972-09-25 1974-05-22
JPH0321572B2 (ja) 1983-12-27 1991-03-25 Ube Industries
JP2017502842A (ja) 2013-12-06 2017-01-26 ポスコPosco 極低温衝撃靭性に優れた高強度溶接継手部及びこのためのフラックスコアードアーク溶接用ワイヤ
JP2018144045A (ja) 2017-03-01 2018-09-20 日鐵住金溶接工業株式会社 9%Ni鋼溶接用フラックス入りワイヤ
JP2019519675A (ja) * 2016-05-02 2019-07-11 エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company 強化された耐摩耗性高マンガン鋼のための現場での異種金属溶接技術
WO2020203335A1 (ja) * 2019-03-29 2020-10-08 Jfeスチール株式会社 極低温用高強度溶接継手の製造方法
WO2020203334A1 (ja) * 2019-03-29 2020-10-08 Jfeスチール株式会社 Tig溶接用溶加材
WO2020208735A1 (ja) * 2019-04-10 2020-10-15 日本製鉄株式会社 ソリッドワイヤ及び溶接継手の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4903918B1 (ja) * 2010-06-07 2012-03-28 新日本製鐵株式会社 超高強度溶接継手およびその製造方法
CN107186382B (zh) * 2017-06-09 2019-12-31 南京钢铁股份有限公司 一种高锰超低温钢焊丝及其焊接工艺

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4952737A (ja) 1972-09-25 1974-05-22
JPH0321572B2 (ja) 1983-12-27 1991-03-25 Ube Industries
JP2017502842A (ja) 2013-12-06 2017-01-26 ポスコPosco 極低温衝撃靭性に優れた高強度溶接継手部及びこのためのフラックスコアードアーク溶接用ワイヤ
JP2019519675A (ja) * 2016-05-02 2019-07-11 エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company 強化された耐摩耗性高マンガン鋼のための現場での異種金属溶接技術
JP2018144045A (ja) 2017-03-01 2018-09-20 日鐵住金溶接工業株式会社 9%Ni鋼溶接用フラックス入りワイヤ
WO2020203335A1 (ja) * 2019-03-29 2020-10-08 Jfeスチール株式会社 極低温用高強度溶接継手の製造方法
WO2020203334A1 (ja) * 2019-03-29 2020-10-08 Jfeスチール株式会社 Tig溶接用溶加材
WO2020208735A1 (ja) * 2019-04-10 2020-10-15 日本製鉄株式会社 ソリッドワイヤ及び溶接継手の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024069986A1 (ja) * 2022-09-30 2024-04-04 日本製鉄株式会社 溶接金属、溶接継手、及び溶接構造物
JP7510104B1 (ja) 2022-09-30 2024-07-03 日本製鉄株式会社 溶接金属、溶接継手、及び溶接構造物
WO2024111595A1 (ja) * 2022-11-24 2024-05-30 日本製鉄株式会社 鋼材、ソリッドワイヤ、及び鋼製外皮

Also Published As

Publication number Publication date
TW202220779A (zh) 2022-06-01
TWI775607B (zh) 2022-08-21

Similar Documents

Publication Publication Date Title
JP6978613B2 (ja) 極低温用高強度溶接継手の製造方法
EP1500457A1 (en) Method for producing an ultrahigh strength welded steel pipe excellent in cold cracking resistance of weld metal
WO2020039643A1 (ja) ガスメタルアーク溶接用ソリッドワイヤ
JP6978615B2 (ja) Tig溶接用溶加材
JPWO2020039643A1 (ja) ガスメタルアーク溶接用ソリッドワイヤ
JP7024931B1 (ja) ガスメタルアーク溶接用ソリッドワイヤ
KR102639546B1 (ko) 가스 메탈 아크 용접용 솔리드 와이어 및 가스 메탈 아크 용접 방법
WO2015111641A1 (ja) Ni基耐熱合金用溶接材料ならびにそれを用いてなる溶接金属および溶接継手
JP7188646B1 (ja) サブマージアーク溶接継手
WO2022113473A1 (ja) 溶接継手およびその製造方法
JP7276597B2 (ja) サブマージアーク溶接用ワイヤおよびそれを用いた溶接継手部の製造方法
JP7029034B1 (ja) 溶接継手およびその製造方法
KR20230130122A (ko) Tig 용접 이음매
JP7414126B2 (ja) Tig溶接用溶加材およびそれを用いた溶接継手部の製造方法
JP7267521B1 (ja) サブマージアーク溶接方法
WO2023026763A1 (ja) サブマージアーク溶接用メタルコアードワイヤおよびそれを用いたサブマージアーク溶接方法
WO2022230615A1 (ja) サブマージアーク溶接継手
US20240227088A9 (en) Tig welded joint

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021576763

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897451

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237013486

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18253839

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180079377.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021897451

Country of ref document: EP

Effective date: 20230626