WO2020039643A1 - ガスメタルアーク溶接用ソリッドワイヤ - Google Patents

ガスメタルアーク溶接用ソリッドワイヤ Download PDF

Info

Publication number
WO2020039643A1
WO2020039643A1 PCT/JP2019/014537 JP2019014537W WO2020039643A1 WO 2020039643 A1 WO2020039643 A1 WO 2020039643A1 JP 2019014537 W JP2019014537 W JP 2019014537W WO 2020039643 A1 WO2020039643 A1 WO 2020039643A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
wire
welding
solid wire
arc welding
Prior art date
Application number
PCT/JP2019/014537
Other languages
English (en)
French (fr)
Inventor
充志 ▲高▼田
大地 泉
亮 荒尾
渉平 上月
植田 圭治
早川 直哉
山下 賢
鵬 韓
Original Assignee
Jfeスチール株式会社
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社, 株式会社神戸製鋼所 filed Critical Jfeスチール株式会社
Priority to US17/270,045 priority Critical patent/US20210323101A1/en
Priority to CN201980054255.7A priority patent/CN112566750A/zh
Priority to KR1020217005269A priority patent/KR102511652B1/ko
Priority to EP19851917.5A priority patent/EP3838474A4/en
Priority to JP2019540466A priority patent/JP6621572B1/ja
Priority to SG11202101711UA priority patent/SG11202101711UA/en
Publication of WO2020039643A1 publication Critical patent/WO2020039643A1/ja
Priority to PH12021550373A priority patent/PH12021550373A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3073Fe as the principal constituent with Mn as next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods

Definitions

  • the present invention relates to a solid wire for gas metal arc welding, and more particularly to a solid wire for welding high Mn steel materials used in a cryogenic environment.
  • Liquefied natural gas (hereinafter also referred to as LNG) does not contain sulfur, and is said to be a clean fuel that does not generate air pollutants such as sulfide oxides, and its demand is increasing.
  • containers (tanks) for transporting or storing LNG are required to maintain excellent cryogenic impact toughness at temperatures below the LNG liquefaction temperature of -162 ° C. .
  • High Mn-containing steel containing about 10 to 35% by mass of Mn has recently been studied as a material for containers (tanks) for transporting or storing LNG.
  • High Mn steels are characterized in that they are in an austenitic phase even at extremely low temperatures, do not cause brittle fracture, and have higher strength than austenitic stainless steels. Therefore, development of a welding material capable of stably welding such a high Mn-containing steel material has been demanded.
  • Patent Literature 1 proposes “a high-strength welded joint excellent in cryogenic impact toughness and a flux cored arc welding wire therefor”.
  • the flux cored arc welding wire described in Patent Document 1 is 0.15 to 0.8% by weight, Si: 0.2 to 1.2%, Mn: 15 to 34%, Cr: 6% or less, Mo: 1.5% by weight.
  • the Charpy impact test at a test temperature of -196 ° C has an excellent low-temperature toughness of 28 J or more, and a normal-temperature tensile strength of 400 MPa or more. It is said that a welded joint having high strength can be effectively obtained, and the wire composition is adjusted to 1.5% or more of Mo, so that a welded joint having excellent hot crack resistance can be secured.
  • Patent Document 1 has a problem that the amount of fume generated during welding increases, and the welder is exposed to an environment with a large amount of fume.
  • the present invention solves the above-mentioned problems of the prior art, and generates a small amount of fume during welding, and is suitable as a welding material for high-Mn steel used in a cryogenic environment, and has high strength and excellent cryogenic toughness. It is an object of the present invention to provide a solid wire for gas metal arc welding, which can produce a welded joint portion having both functions.
  • high strength means that the normal temperature yield strength (0.2% proof stress) of a deposited metal manufactured in accordance with the provisions of JIS Z 3111 is 400 MPa or more, and “excellent electrode strength”.
  • low-temperature toughness refers to a case in which the absorbed energy vE -196 of a deposited metal produced in accordance with JIS Z 3111 in a Charpy impact test at a test temperature of -196 ° C is 28 J or more.
  • the present inventors first studied intensively the factors that affect the amount of fume generated during gas metal arc welding. As a result, they came to the conclusion that it is effective to use a solid wire instead of a flux cored wire as the welding material in order to significantly reduce the amount of fume generation.
  • a solid wire having a larger amount of processing at the time of wire drawing than a flux cored wire, there is a problem that cracks and breaks are likely to occur at the time of wire drawing, particularly when the composition has a high Mn content.
  • the present inventors have found that, in response to such a problem, wire drawing can be performed by suppressing boron nitride and carbides formed in steel.
  • the composition of the solid wire was adjusted to the following ranges, in particular, C was adjusted to 0.2 to 0.8%, Si was adjusted to 0.15 to 0.9%, Mn was adjusted to 17.0 to 28.0%, and Ni was adjusted to 0.01 to 28.0%. Adjusted to a specific range of up to 10.0%, Cr to 0.4 to 4.0%, Mo to 0.01 to 3.5%, and further reduced the impurity B to less than 0.0010% and the carbide forming elements Ti, Nb, and V to 0.04% or less. By doing so, there are no defects such as cracks during wire drawing, and it is excellent in manufacturability of solid wire.
  • the amount of fume generated during welding is small, and the normal temperature yield strength (0.2% proof stress) is 400MPa or more. It was newly found that a welded joint having high strength and excellent cryogenic impact toughness, having an absorbed energy vE -196 of 28J or more in a Charpy impact test at a test temperature of -196 ° C at -196 ° C, can be manufactured.
  • the present invention has been completed based on such findings and further studied, and the gist of the present invention is as follows.
  • a solid wire for gas metal arc welding comprising:
  • a solid wire for gas metal arc welding comprising one or more selected ones.
  • ADVANTAGE OF THE INVENTION According to this invention, it is excellent in wire manufacturability, can significantly suppress the amount of fumes generated during gas metal arc welding, and furthermore, as a welding material for a high Mn-containing steel material, a welded joint having high strength and excellent cryogenic toughness. Can be easily manufactured, and a solid wire for gas metal arc welding can be provided, which has a remarkable industrial effect.
  • the solid wire of the present invention is a solid wire for gas metal arc welding, which is suitable for gas metal arc welding of high Mn-containing steel materials.
  • the solid wire of the present invention can weld high Mn-containing steel materials with a reduced fume generation amount, and a weld metal produced in accordance with JIS Z 3111 has a 0.2% proof stress at room temperature with a high strength of 400 MPa or more.
  • Test temperature This is a welding material that can be used as a welded metal having excellent cryogenic toughness with an absorption energy of -28 J or more in Charpy impact test at -196 ° C to produce a welded joint with high strength and excellent cryogenic toughness.
  • the solid wire of the present invention has the following basic composition in terms of mass%: C: 0.2 to 0.8%, Si: 0.15 to 0.90%, Mn: 17.0 to 28.0%, P: 0.03% or less, S: 0.03% or less, Ni: 0.01 ⁇ 10.00%, Cr: 0.4 ⁇ 4.0%, Mo: 0.01 ⁇ 3.50%, B: less than 0.0010%, N: 0.12% or less, with the balance being Fe and unavoidable impurities.
  • mass% C: 0.2 to 0.8%, Si: 0.15 to 0.90%, Mn: 17.0 to 28.0%, P: 0.03% or less, S: 0.03% or less, Ni: 0.01 ⁇ 10.00%, Cr: 0.4 ⁇ 4.0%, Mo: 0.01 ⁇ 3.50%, B: less than 0.0010%, N: 0.12% or less, with the balance being Fe and unavoidable impurities.
  • C 0.2-0.8% C is an element having the effect of increasing the strength of the weld metal by solid solution strengthening, and C stabilizes the austenite phase and improves the cryogenic impact toughness of the weld metal.
  • the content needs to be 0.2% or more.
  • C is limited to the range of 0.2 to 0.8%.
  • the content is 0.4 to 0.6%.
  • Si 0.15 to 0.90% Si acts as a deoxidizer to increase the yield of Mn, increase the viscosity of the molten metal, stably maintain the bead shape, and reduce spatter generation. To obtain such an effect, a content of 0.15% or more is required. However, if the content exceeds 0.90%, the cryogenic toughness of the weld metal is reduced. In addition, Si segregates at the time of solidification and generates a liquid phase at the interface of the solidification cell, thereby lowering hot cracking resistance. Therefore, Si is limited to the range of 0.15 to 0.90%. Incidentally, the content is preferably 0.2 to 0.7%.
  • Mn 17.0-28.0%
  • Mn is an element that stabilizes the austenite phase at low cost, and in the present invention, it needs to be contained at 17.0% or more. If Mn is less than 17.0%, a ferrite phase is formed in the weld metal, and the toughness at cryogenic temperatures is significantly reduced. On the other hand, if Mn exceeds 28.0%, excessive Mn segregation occurs at the time of solidification, which induces hot cracking. Therefore, Mn was limited to the range of 17.0 to 28.0%. Note that the content is preferably 18.0 to 26.0%.
  • P 0.03% or less
  • P is an element that segregates at crystal grain boundaries and induces hot cracking. In the present invention, it is preferable to reduce as much as possible, but if it is 0.03% or less, P is acceptable. Therefore, P was limited to 0.03% or less. Note that excessive reduction leads to a rise in scouring cost. Therefore, P is preferably adjusted to 0.003% or more.
  • S 0.03% or less S exists in the weld metal as sulfide-based inclusions MnS. Since MnS becomes a starting point of fracture, it lowers cryogenic toughness. Therefore, S is limited to 0.03% or less. Note that excessive reduction leads to a rise in scouring cost. Therefore, S is preferably adjusted to 0.001% or more.
  • Ni 0.01 to 10.00%
  • Ni is an element that strengthens austenite grain boundaries, segregates at the grain boundaries, and improves cryogenic impact toughness. In order to obtain such an effect, the content needs to be 0.01% or more. Further, Ni also has an effect of stabilizing the austenite phase. Therefore, if the content is further increased, the austenite phase is stabilized, and the cryogenic impact toughness of the weld metal is improved. However, Ni is an expensive element, and its content exceeding 10.00% is economically disadvantageous. Therefore, Ni is limited to 0.01 to 10.00%.
  • Cr acts as an element for stabilizing the austenite phase at cryogenic temperatures and improves the cryogenic impact toughness of the weld metal. Further, Cr also has an effect of improving the strength of the weld metal. Further, Cr effectively acts to increase the liquidus of the molten metal and suppress the occurrence of hot cracking. Further, Cr effectively acts to increase the corrosion resistance of the weld metal. To obtain such an effect, the content of 0.4% or more is required. If the Cr content is less than 0.4%, the above effects cannot be secured. On the other hand, if the content exceeds 4.0%, Cr carbide is generated, which causes a decrease in toughness at extremely low temperatures. Further, due to the formation of carbides, the workability during wire drawing decreases. Therefore, Cr is limited to the range of 0.4 to 4.0%. Incidentally, the content is preferably 0.8 to 3.0%.
  • Mo 0.01% to 3.50%
  • Mo is an element that strengthens the austenite grain boundary, segregates at the grain boundary, and improves the strength of the weld metal. Such effects become remarkable when the content is 0.01% or more.
  • the content exceeds 0.01% it also has the effect of improving the strength of the weld metal by solid solution strengthening.
  • Mo was limited to the range of 0.01 to 3.50%.
  • B less than 0.0010% B mixed into steel as an impurity segregates at austenite grain boundaries.
  • B is added in an amount of 0.0010% or more, boron nitride is formed at austenite grain boundaries, and the grain boundary strength is reduced. Due to the decrease in the grain boundary strength, austenite grain boundaries serve as starting points of breakage during wire drawing of the wire, causing wire breakage, lowering wire drawability and reducing wire productivity. Since the formation of this boron nitride can be suppressed by limiting B to less than 0.0010%, B was limited to less than 0.0010%. In addition, it is preferably 0.0009% or less, more preferably 0.0008% or less. Note that excessive reduction leads to a rise in scouring cost. Therefore, B is preferably adjusted to 0.0001% or more.
  • N 0.12% or less
  • N is an unavoidable element, but, like C, effectively contributes to improving the strength of the weld metal, stabilizes the austenite phase, and stably improves the cryogenic toughness. Element. Such an effect becomes remarkable when the content is 0.003% or more, so it is desirable to contain 0.003% or more. However, if the content exceeds 0.12%, nitrides are formed and the low-temperature toughness is reduced. Therefore, N was limited to 0.12% or less.
  • the above-described components are basic components.
  • V 0.04% or less
  • Ti 0.04% or less
  • Nb One or more selected from 0.04% or less, and / or Cu: 1.0% or less
  • Al 0.1% or less
  • Ca 0.1% or less
  • REM 0.02% or less
  • One or two or more may be selected and contained.
  • V: 0.04% or less, Ti: 0.04% or less, and Nb: 0.04% or less V, Ti, and Nb all promote the formation of carbides and the strength of the weld metal. It is an element contributing to the improvement, and one or two or more of them can be selected as necessary.
  • V 0.04% or less
  • V is a carbide forming element and precipitates fine carbides, thereby contributing to the improvement of the strength of the weld metal.
  • the content be 0.001% or more.
  • the carbide becomes coarse and becomes a starting point of cracking at the time of wire drawing of a solid wire. The workability is reduced, and the productivity of the wire is reduced. Therefore, when it is contained, V is limited to 0.04% or less.
  • Ti 0.04% or less
  • Ti is a carbide forming element and precipitates fine carbides, thereby contributing to the improvement of the strength of the weld metal. Further, Ti precipitates carbides at the solidification cell interface of the weld metal, thereby contributing to the suppression of hot cracking. In order to obtain such effects, it is desirable to contain 0.001% or more. However, if the content of Ti exceeds 0.04%, the carbides become coarse and serve as starting points of cracks during wire drawing of a solid wire, thereby reducing wire drawing workability and reducing wire productivity. Therefore, when contained, Ti is limited to 0.04% or less.
  • Nb 0.04% or less
  • Nb is a carbide-forming element, and is an element that precipitates carbide and contributes to improving the strength of the weld metal.
  • Nb precipitates carbides at the solidification cell interface of the weld metal, thereby contributing to suppression of hot cracking.
  • Nb exceeds 0.04%, the carbides become coarse and serve as starting points for cracks during wire drawing of a solid wire, thereby reducing wire drawing workability and reducing wire productivity. Therefore, when it is contained, Nb is limited to 0.04% or less.
  • Cu 1.0% or less
  • Al 0.1% or less
  • Ca 0.01% or less
  • REM 0.02% or less
  • Cu is an element contributing to stabilization of austenite
  • Al is welding
  • Ca and REM are elements that improve workability, and are elements that contribute to the improvement of workability.
  • One or more of them may be selected as necessary.
  • Cu: 1.0% or less Cu is an element that stabilizes the austenite phase, stabilizes the austenite phase even at extremely low temperatures, and improves the cryogenic impact toughness of the weld metal. In order to obtain such effects, it is desirable to contain 0.01% or more. However, if it is contained in a large amount exceeding 1.0%, the hot ductility decreases and the productivity of the wire decreases. Therefore, when it is contained, Cu is limited to 1.0% or less.
  • Al acts as a deoxidizing agent, has an important effect of increasing the viscosity of the molten metal, stably maintaining a bead shape, and reducing generation of spatter. Further, Al increases the liquidus temperature of the molten metal and contributes to suppressing the occurrence of hot cracking of the weld metal. Such an effect becomes remarkable when the content is 0.005% or more, so it is desirable to contain 0.005% or more. However, if the content exceeds 0.1%, the viscosity of the molten metal becomes too high, and conversely, the spatter increases, the beads do not spread, and defects such as poor fusion increase. Therefore, when contained, Al was limited to a range of 0.1% or less. Note that the content is preferably 0.005 to 0.06%.
  • Ca 0.01% or less Ca combines with S in the molten metal to form sulfide CaS having a high melting point. Since CaS has a higher melting point than MnS, it does not evolve in the rolling direction during hot working of a solid wire, maintains a spherical shape, and works advantageously for improving the workability of the solid wire. Such effects become remarkable when the content is 0.001% or more. On the other hand, if the content exceeds 0.01%, the arc will be disturbed during welding, and stable welding will be difficult. Therefore, when it is contained, the content of Ca is limited to 0.01% or less.
  • REM 0.02% or less REM is a strong deoxidizer and exists in the form of REM oxide in weld metal.
  • the REM oxide serves as a nucleation site during solidification, thereby refining the crystal grains and contributing to an improvement in the strength of the weld metal. Such effects become remarkable when the content is 0.001% or more. However, if the content exceeds 0.02%, the stability of the arc decreases. Therefore, when contained, the REM was limited to 0.02% or less.
  • the balance other than the above components consists of Fe and inevitable impurities.
  • the production of the solid wire of the present invention is not particularly limited, except that the molten steel having the above-described composition is used and the annealing temperature is set to 900 to 1200 ° C. Either method can be applied. That is, a molten steel having the above-described composition is melted in a conventional melting furnace such as an electric furnace or a vacuum melting furnace, and a casting step of casting the same in a mold or the like having a predetermined shape.
  • a conventional melting furnace such as an electric furnace or a vacuum melting furnace
  • a heating step of heating to a temperature and a hot rolling step of subjecting the heated steel ingot to hot rolling to form a steel material (rod shape) having a predetermined shape are sequentially performed, and then, the obtained steel material (rod shape).
  • cold rolling cold wire drawing
  • a flux cored wire in which the components of the metal powder and the flux were adjusted so as to have the wire composition shown in Table 2 was produced and used as a comparative example.
  • a thin steel plate (sheet thickness 0.5 mm) having a composition of 0.1% C-0.2% Si-0.5% Mn-balance Fe by mass% was used as the outer skin.
  • the metal powder and the flux whose components were adjusted were sealed in the above-mentioned outer skin, and drawn to a diameter of 1.2 mm.
  • the components shown in Table 2 are the total value of the outer skin, the metal powder, and the flux.
  • gas metal arc welding was performed in a welding fume collector in accordance with the provisions of JIS Z 3390.
  • the generated fume was collected by a filter (made of glass fiber), and the amount of generated fume (mg / min) was measured.
  • the welding conditions were as follows: current: 250 A, voltage: 34 V, welding speed: 30 cm / min, shielding gas: 80% Ar + 20% CO 2 (flow rate: 20 L / min).
  • a cryogenic high-Mn steel plate (sheet thickness: 12 mm) is prepared and butted to form a 45 ° V groove, and the obtained solid is obtained.
  • Gas metal arc welding was performed using the wire as a welding material to obtain a weld metal in the groove.
  • the steel plate used as a test plate was a high-temperature low-Mn steel plate having a composition of 0.5% C-0.4% Si-25% Mn-3% Cr-balance Fe by mass%.
  • Welding was performed using a solid wire (diameter 1.2 mm) or a flux cored wire (diameter 1.2 mm) having the composition shown in Tables 1 and 2, without preheating, in a downward position, and a current of 180 to 330 A (DCEP).
  • the test was performed under the following conditions: voltage: 24 to 33 V, welding speed: 30 cm / min, interpass: 100 to 150 ° C., shielding gas: 80% Ar + 20% CO 2 .
  • the weld metal was observed with an optical microscope to determine the presence or absence of weld cracks.
  • the weld crack was a hot crack, and if cracking was observed, it was evaluated as "x" because the hot crack resistance was reduced. When cracking was not observed, it was evaluated as "O" because of excellent hot cracking resistance.
  • the bead appearance was visually observed to determine the bead appearance. When undercuts, overlaps, and pits were observed, the appearance of the weld bead was poor and evaluated as "x". When these were not observed, the bead appearance was evaluated as good and evaluated as “ ⁇ ”.
  • a tensile test specimen (parallel diameter 6 mm ⁇ ) and a Charpy impact test specimen (V notch) of the weld metal were collected in accordance with the provisions of JIS Z 3111, and a tensile test and an impact test were conducted. The test was performed.
  • All of the examples of the present invention are excellent in wire manufacturability, conform to JIS Z 3930-2013, and generate a fume amount of 1200 mg / min or less when performing gas metal arc welding at a welding current of 250 A. It can be said that this is a welding material with a small amount of generation.
  • all of the examples of the present invention have excellent resistance to high-temperature cracking without welding cracks (high-temperature cracking) during welding, and have a yield strength (0.2% proof stress) at room temperature of 400 MPa or more, and a test temperature of -196. It can be said that it is a welding material (solid wire) that can obtain a weld metal having both high strength and excellent cryogenic toughness, having an absorbed energy vE -196 of 28 J or more in a Charpy impact test at ° C.
  • the fume generation amount is more than 1200 mg / min, the productivity of the wire is poor, or welding cracks (hot cracking) occur and the hot cracking resistance is reduced.
  • dolphin whether there is a defect in the weld bead, or whether a 0.2% yield strength at room temperature is less than 400 MPa, the absorbed energy vE -196 to whether it is less than 28 J, less fume generation amount during a desired welding, high A weld metal having both strength and excellent cryogenic toughness has not been obtained.
  • Wires No. 14 and No. 15 have low C and Cr contents outside the range of the present invention, so that the 0.2% proof stress of the deposited metal is less than 400 MPa, and the desired high strength cannot be secured.
  • Wires No. 16, No. 17, No. 18, and No. 19 have high Mn or Ti, B, Cr and Nb contents outside the range of the present invention. And the wire could not be drawn to a desired wire diameter. Further, the wire No.20 (Comparative Example), since Mn is outside lower the scope of the present invention, the stability of the austenite phase is low, therefore, the absorbed energy vE -196 and less than 28 J, reduced cryogenic toughness are doing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Arc Welding In General (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

本願発明は、溶接時にはヒューム発生量が少なく、高Mn鋼材用の溶接材料として好適な、ガスメタルアーク溶接用ソリッドワイヤを提供する。本願発明のガスメタルアーク溶接用ソリッドワイヤは、質量%で、C:0.2-0.8%、Si:0.15-0.90%、Mn:17.0-28.0%、P:0.03%以下、S:0.03%以下、Ni:0.01-10.00%、Cr:0.4-4.0%、Mo:0.01-3.50%、B:0.0010%未満、N:0.12%以下を含み、残部Feおよび不可避的不純物からなる組成を有する。なお、必要に応じて、V、TiおよびNbのうちから選ばれた1種または2種以上、Cu、Al、CaおよびREMのうちから選ばれた1種または2種以上を含有してもよい。

Description

ガスメタルアーク溶接用ソリッドワイヤ
 本発明は、ガスメタルアーク溶接用ソリッドワイヤに係り、とくに、極低温環境下で使用される高Mn鋼材溶接用ソリッドワイヤに関する。
 近年、環境に対する規制が厳しくなっている。液化天然ガス(以下、LNGともいう)は、硫黄を含まないため、硫化酸化物等の大気汚染物質を発生させないクリーンな燃料と言われ、その需要が増加している。LNGの輸送または保管のために、LNGを輸送または貯蔵する容器(タンク)は、LNGの液化温度である-162℃以下の温度で、優れた極低温衝撃靭性を保持することが求められている。
 しかし、優れた極低温衝撃靭性を保持することの必要性から、容器(タンク)等の材料用として、従来、アルミニウム合金、9%Ni鋼、オーステナイト系ステンレス鋼等が、用いられてきた。
 しかし、アルミニウム合金は、引張強さが低いため、構造物の板厚を大きく設計する必要があり、また溶接性が悪いという問題がある。また、9%Ni鋼は、溶接材料として高価なNi基材料を用いることが必要なため、経済的に不利となる。また、オーステナイト系ステンレス鋼は、高価であり、母材強度も低いという問題がある。
 このような問題から、LNGを輸送または貯蔵する容器(タンク)用の材料として、最近では、質量%で、Mnを10~35%程度含有する高Mn含有鋼の適用が検討されている。高Mn鋼は、極低温においても、オーステナイト相であり、脆性破壊が発生せず、またオーステナイト系ステンレス鋼と比較して、高い強度を有するという特徴がある。そこで、このような高Mn含有鋼材を安定して溶接できる溶接材料の開発が要望されていた。
 このような要望に対して、例えば特許文献1には、「極低温衝撃靭性に優れた高強度溶接継手部及びこのためのフラックスコアードアーク溶接用ワイヤ」が提案されている。特許文献1に記載されたフラックスコアードアーク溶接用ワイヤは、重量%で、C:0.15~0.8%、Si:0.2~1.2%、Mn:15~34%、Cr:6%以下、Mo:1.5~4%、S:0.02%以下、P:0.02%以下、B:0.01%以下、Ti:0.09~0.5%、N:0.001~0.3%、TiO2:4~15%、SiO2、ZrO2及びAl2O3のうちから選択された1種以上の合計:0.01~9%、K、Na及びLiのうちから選択された1種以上の合計:0.5~1.7%、FとCaのうち1種以上:0.2~1.5%、残部Fe及びその他の不可避的不純物を含む組成を有するワイヤである。特許文献1に記載されたフラックスコアードアーク溶接用ワイヤを用いて溶接すれば、試験温度:-196℃におけるシャルピー衝撃試験吸収エネルギーが28J以上の優れた低温靭性および、常温引張強さが400MPa以上の高強度を有する溶接継手部が効果的に得られ、また、ワイヤ組成をMo:1.5%以上に調整しており、優れた耐高温割れ性を有する溶接継手部を確保できるとしている。
特表2017-502842号公報
 しかしながら、本発明者らの検討によれば、特許文献1に記載された技術では、溶接時にヒュームの発生量が多くなり、溶接者がヒューム量の多い環境下に晒されるという問題があった。
 本発明は、上記した従来技術の問題を解決し、溶接時にはヒューム発生量が少なく、かつ極低温環境下で使用される高Mn鋼材用の溶接材料として好適な、高強度と優れた極低温靭性とを兼備した溶接継手部を作製できる、ガスメタルアーク溶接用ソリッドワイヤを提供することを目的とする。
 なお、ここでいう「溶接時のヒューム発生量が少ない」とは、JIS Z 3930-2013に準拠して、シールドガス組成:80%Ar+20%CO2、溶接電流:250Aでガスメタルアーク溶接を行ったときのヒューム発生量が1200mg/min以下である場合をいうものとする。
 また、ここでいう「高強度」とは、JIS Z 3111の規定に準拠して作製した溶着金属の常温降伏強さ(0.2%耐力)が400MPa以上である場合をいい、また、「優れた極低温靭性」とは、JIS Z 3111の規定に準拠して作製した溶着金属の、試験温度:-196℃でのシャルピー衝撃試験の吸収エネルギーvE-196が28J以上である場合をいうものとする。
 本発明者らは、上記した目的を達成するために、まず、ガスメタルアーク溶接時のヒューム発生量に影響する要因について、鋭意検討した。その結果、ヒューム発生量を著しく低減するためには、溶接材料を、フラックスコアードワイヤではなく、ソリッドワイヤとすることが有効であることに思い至った。しかし、フラックスコアードワイヤよりも伸線加工時の加工量が大きいソリッドワイヤでは、とくに高Mn含有組成の場合に伸線加工時に割れや断線が発生しやすいという問題があった。本発明者らは、このような問題に対して、鋼中で形成される窒化ホウ素および炭化物を抑制することで伸線加工が可能となることを知見した。このような検討結果から、ソリッドワイヤの組成を、下記の範囲内に、とくに、Cを0.2~0.8%で、Siを0.15~0.9%に調整し、さらにMnを17.0~28.0%、Niを0.01~10.0%、Crを0.4~4.0%、Moを0.01~3.5%の特定範囲に調整し、さらに不純物であるBを0.0010%未満、炭化物形成元素であるTi、Nb、Vを0.04%以下に低減することにより、伸線加工時の割れ等の欠陥発生がなくソリッドワイヤの製造性に優れ、さらに溶接時に、ヒューム発生量が少なく、しかも、常温降伏強さ(0.2%耐力)が400MPa以上の高強度で、試験温度:-196℃でのシャルピー衝撃試験の吸収エネルギーvE-196が28J以上となる、高強度で極低温衝撃靭性に優れた溶接継手部を製造できることを、新規に知見した。
 本発明は、かかる知見に基づき、さらに検討を加えて完成されたものであり、本発明の要旨は、次のとおりである。
(1)質量%で、
 C:0.2~0.8%、          Si:0.15~0.90%、
 Mn:17.0~28.0%、         P:0.03%以下、
 S:0.03%以下、          Ni:0.01~10.00%、
 Cr:0.4~4.0%、          Mo:0.01~3.50%、
 B:0.0010%未満、         N:0.12%以下
を含み、残部Feおよび不可避的不純物からなる組成を有することを特徴とするガスメタルアーク溶接用ソリッドワイヤ。
(2)前記(1)において、前記組成に加えてさらに、質量%で、V:0.04%以下、Ti:0.04%以下、およびNb:0.04%以下のうちから選ばれた1種または2種以上を含有することを特徴とするガスメタルアーク溶接用ソリッドワイヤ。
(3)前記(1)または(2)において、前記組成に加えてさらに、質量%で、Cu:1.0%以下、Al:0.1%以下、Ca:0.01%以下およびREM:0.02%以下のうちから選ばれた1種または2種以上を含有することを特徴とするガスメタルアーク溶接用ソリッドワイヤ。
 本発明によれば、ワイヤ製造性に優れ、ガスメタルアーク溶接時にヒューム発生量を顕著に抑制でき、さらに、高Mn含有鋼材の溶接材料として、高強度でかつ極低温靭性に優れた溶接継手部を容易に製造できる、ガスメタルアーク溶接用ソリッドワイヤを提供でき、産業上格段の効果を奏する。
 本発明のソリッドワイヤは、高Mn含有鋼材のガスメタルアーク溶接用として好適な、ガスメタルアーク溶接用ソリッドワイヤである。本発明ソリッドワイヤは、高Mn含有鋼材同士をヒューム発生量を少なくして溶接でき、かつ、JIS Z 3111に準拠して作製した溶着金属が、常温における0.2%耐力で400MPa以上の高強度で、試験温度:-196℃でのシャルピー衝撃試験の吸収エネルギーが28J以上の極低温靭性に優れた溶着金属となり、高強度で極低温靭性に優れた溶接継手部を作製できる溶接材料である。
 本発明ソリッドワイヤは、基本組成として、質量%で、C:0.2~0.8%、Si:0.15~0.90%、Mn:17.0~28.0%、P:0.03%以下、S:0.03%以下、Ni:0.01~10.00%、Cr:0.4~4.0%、Mo:0.01~3.50%、B:0.0010%未満、N:0.12%以下を含み、残部Feおよび不可避的不純物からなる組成を有する。
 まず、組成の限定理由について説明する。なお、以下、組成における「質量%」は、単に「%」で記す。
 C:0.2~0.8%
 Cは、固溶強化により、溶接金属の強度を上昇させる作用を有する元素であり、また、Cは、オーステナイト相を安定化させ、溶接金属の極低温衝撃靭性を向上させる。このような効果を得るためには、0.2%以上の含有を必要とする。しかし、0.8%を超えて含有すると、炭化物が析出し、極低温靭性が低下し、さらに、溶接時の高温割れが生じやすくなる。そのため、Cは0.2~0.8%の範囲に限定した。なお、好ましくは、0.4~0.6%である。
 Si:0.15~0.90%
 Siは、脱酸剤として作用し、Mnの歩留りを高めるとともに、溶融金属の粘性を高め、ビード形状を安定的に保持し、スパッタの発生を低減する効果がある。そのような効果を得るためには、0.15%以上の含有を必要とする。しかし、0.90%を超えて含有すると、溶接金属の極低温靭性を低下させる。また、Siは、凝固時に偏析し、凝固セル界面に液相を生成して、耐高温割れ性を低下させる。そのため、Siは0.15~0.90%の範囲に限定した。なお、好ましくは0.2~0.7%である。
 Mn:17.0~28.0%
 Mnは、安価に、オーステナイト相を安定化する元素であり、本発明では17.0%以上の含有を必要とする。Mnが17.0%未満では、溶接金属中にフェライト相が生成し,極低温での靭性が著しく低下する。一方、Mnが28.0%を超えると、凝固時に過度のMn偏析が発生し,高温割れを誘発する。そのため、Mnは17.0~28.0%の範囲に制限した。なお、好ましくは18.0~26.0%である。
 P:0.03%以下
 Pは、結晶粒界に偏析し、高温割れを誘発する元素であり、本発明では、できるだけ低減することが好ましいが、0.03%以下であれば、許容できる。そのため、Pは0.03%以下に限定した。なお、過度の低減は、精練コストの高騰を招く。そのため、Pは0.003%以上に調整することが好ましい。
 S:0.03%以下
 Sは、溶接金属中では、硫化物系介在物MnSとして存在する。MnSは、破壊の発生起点となるため、極低温靭性を低下させる。そのため、Sは0.03%以下に限定した。なお、過度の低減は、精練コストの高騰を招く。そのため、Sは0.001%以上に調整することが好ましい。
 Ni:0.01~10.00%
 Niは、オーステナイト粒界を強化する元素であり、粒界に偏析し、極低温衝撃靱性を向上させる。このような効果を得るためには、0.01%以上の含有を必要とする。また、Niは、オーステナイト相を安定化する効果もあるため、さらに含有量を増加すれば、オーステナイト相を安定化させて、溶接金属の極低温衝撃靭性を向上させる。しかし、Niは高価な元素であり、10.00%を超える含有は、経済的に不利となる。そのため、Niは0.01~10.00%に限定した。
 Cr:0.4~4.0%
 Crは、極低温ではオーステナイト相を安定化させる元素として働き、溶接金属の極低温衝撃靭性を向上させる。また、Crは、溶接金属の強度を向上させる作用も有する。また、Crは、溶融金属の液相線を高めて、高温割れの発生を抑制するのに有効に作用する。さらに、Crは、溶接金属の耐食性を高めるのにも有効に作用する。このような効果を得るためには0.4%以上の含有を必要とする。Crが0.4%未満では、上記した効果を確保できない。一方、4.0%を超えて含有すると、Cr炭化物が生成し、極低温靭性の低下を招く。またさらに、炭化物の生成により、ワイヤ伸線時の加工性が低下する。そのため、Crは0.4~4.0%の範囲に限定した。なお、好ましくは、0.8~3.0%である。
 Mo:0.01%~3.50%
 Moは、オーステナイト粒界を強化する元素であり、粒界に偏析し、溶接金属の強度を向上させる。このような効果は0.01%以上の含有で顕著となる。なお、0.01%を超える含有では、固溶強化により溶接金属の強度を向上させる作用も有する。一方、3.50%を超えて含有すると、炭化物として析出し、熱間加工性が低下し、また、ワイヤの伸線時に割れを誘発させるなど、ワイヤの製造性が低下する。そのため、Moは0.01~3.50%の範囲に限定した。
B:0.0010%未満
 不純物として鋼中に混入したBは、オーステナイト粒界に偏析する。Bが0.0010%以上混入した場合は、オーステナイト粒界で窒化ホウ素を形成し、粒界強度を低下させる。この粒界強度の低下によって、ワイヤの伸線加工時に、オーステナイト粒界が破壊発生起点となり断線を生じさせ、伸線加工性を低下させ、ワイヤの製造性を低下させる。この窒化ホウ素の形成は、Bを0.0010%未満に制限することで抑制できるため、Bは0.0010%未満に制限した。なお、好ましくは0.0009%以下であり、より好ましくは0.0008%以下である。なお、過度の低減は、精練コストの高騰を招く。そのため、Bは 0.0001%以上に調整することが好ましい。
 N:0.12%以下
 Nは、不可避的に混入する元素であるが、Cと同様に、溶接金属の強度向上に有効に寄与するとともに、オーステナイト相を安定化し、極低温靱性を安定的に向上させる元素である。このような効果は、0.003%以上の含有で顕著となるため、0.003%以上含有することが望ましい。しかし、0.12%を超えて含有すると、窒化物を形成し、低温靱性が低下する。そのため、Nは0.12%以下に限定した。
 本発明ソリッドワイヤは、上記した成分が基本の成分であり、本発明では、上記した基本組成に加えてさらに、選択成分として必要に応じて、V:0.04%以下、Ti:0.04%以下、およびNb:0.04%以下のうちから選ばれた1種または2種以上、および/または、Cu:1.0%以下、Al:0.1%以下、Ca:0.01%以下およびREM:0.02%以下のうちから選ばれた1種または2種以上を選択して含有できる。
 V:0.04%以下、Ti:0.04%以下、およびNb:0.04%以下のうちから選ばれた1種または2種以上
 V、Ti、Nbはいずれも、炭化物の形成を促進し、溶接金属の強度向上に寄与する元素であり、必要に応じて選択して1種または2種以上を含有できる。
 V:0.04%以下
 Vは、炭化物形成元素であり、微細な炭化物を析出させて、溶接金属の強度向上に寄与する。このような効果を得るためには0.001%以上含有することが望ましいが、しかし、0.04%を超えて含有すると、炭化物が粗大化して、ソリッドワイヤの伸線加工時に割れの発生起点となり、伸線加工性を低下させ、ワイヤの製造性を低下させる。そのため、含有する場合には、Vは0.04%以下に限定した。
 Ti:0.04%以下
 また、Tiは、炭化物形成元素であり、微細な炭化物を析出させて、溶接金属の強度向上に寄与する。また、Tiは、溶接金属の凝固セル界面に炭化物を析出させて、高温割れの発生抑制に寄与する。このような効果を得るためには0.001%以上含有することが望ましい。しかし、Ti:0.04%を超えて含有すると、炭化物が粗大化して、ソリッドワイヤの伸線加工時に割れの発生起点となり、伸線加工性を低下させ、ワイヤの製造性を低下させる。そのため、含有する場合には、Tiは0.04%以下に限定した。
 Nb:0.04%以下
 また、Nbは、炭化物形成元素であり、炭化物を析出させて、溶接金属の強度向上に寄与する元素である。また、Nbは、溶接金属の凝固セル界面に炭化物を析出させて、高温割れの発生抑制に寄与する。このような効果を得るためには0.001%以上含有することが望ましい。しかし、Nbが0.04%を超えると、炭化物が粗大化して、ソリッドワイヤの伸線加工時に割れの発生起点となり、伸線加工性を低下させ、ワイヤの製造性を低下させる。そのため、含有する場合には、Nbは0.04%以下に限定した。
 Cu:1.0%以下、Al:0.1%以下、Ca:0.01%以下およびREM:0.02%以下のうちから選ばれた1種または2種以上
 Cuはオーステナイト安定化に寄与する元素であり、Alは溶接作業性を向上させる元素であり、Ca、REMは加工性向上に寄与する元素であり、必要に応じて選択して1種または2種以上を含有できる。
 Cu:1.0%以下
 Cuは、オーステナイト相を安定化する元素であり、極低温でもオーステナイト相を安定化させて、溶接金属の極低温衝撃靭性を向上させる。このような効果を得るためには、0.01%以上含有することが望ましい。しかし、1.0%を超えて多量に含有すると、熱間延性が低下し、ワイヤの製造性が低下する。そのため、含有する場合には、Cuは1.0%以下に限定した。
 Al:0.1%以下
 Alは、脱酸剤として作用し、溶融金属の粘性を高め、ビード形状を安定的に保持し、スパッタの発生を低減する重要な作用を有する。また、Alは、溶融金属の液相線温度を高め、溶接金属の高温割れ発生の抑制に寄与する。このような効果は、0.005%以上の含有で顕著となるため、0.005%以上含有することが望ましい。しかし、0.1%を超えて含有すると、溶融金属の粘性が高くなりすぎて、逆に、スパッタの増加や、ビードが広がらず融合不良などの欠陥が増加する。そのため、含有する場合には、Alは0.1%以下の範囲に限定した。なお、好ましくは0.005~0.06%である。
 Ca:0.01%以下
 Caは、溶融金属中でSと結合し、高融点の硫化物CaSを形成する。CaSは、MnSよりも高融点であるため、ソリッドワイヤの熱間加工時に圧延方向に進展せずに球形を維持し、ソリッドワイヤの加工性向上に有利に働く。このような効果は0.001%以上の含有で顕著となる。一方、0.01%を超えて含有すると、溶接時にアークに乱れが生じ、安定な溶接が困難となる。そのため、含有する場合には、Caは0.01%以下に限定した。
 REM:0.02%以下
 REMは、強力な脱酸剤であり、溶接金属中でREM酸化物の形態で存在する。REM酸化物は凝固時の核生成サイトとなることで、結晶粒を微細化し、溶接金属の強度の向上に寄与する。このような効果は0.001%以上の含有で顕著となる。しかし、0.02%を超えて含有すると、アークの安定性が低下する。そのため、含有する場合には、REMは0.02%以下に限定した。
 上記した成分以外の残部は、Feおよび不可避的不純物からなる。
 つぎに、本発明ソリッドワイヤの製造方法について説明する。
 本発明ソリッドワイヤの製造は、上記した組成を有する溶鋼を用いること、および焼鈍温度を900~1200℃とする以外は、とくにその製造方法を限定する必要はなく、常用の溶接用ソリッドワイヤの製造方法がいずれも適用できる。すなわち、上記した組成を有する溶鋼を、電気炉、真空溶解炉等の常用の溶製炉で溶製し、所定形状の鋳型等に鋳造する鋳造工程と、ついで、得られた鋼塊を、所定温度に加熱する加熱工程と、加熱された鋼塊に、熱間圧延を施し、所定形状の鋼素材(棒状)とする熱延工程と、を順次行い、ついで、得られた鋼素材(棒状)を複数回の冷間圧延(冷間伸線加工)と必要に応じて焼鈍を施して、所望寸法のワイヤとする冷延工程を行う、ことが好ましい。
 以下、実施例に基づき、さらに本発明について説明する。
 表1に示す組成の溶鋼を、真空溶解炉で溶製し、鋳造して鋼塊1000kgとした。得られた鋼塊を、1200℃に加熱したのち、熱間圧延と、その後の冷間圧延とにより、1.2mmφのガスメタルアーク溶接用ソリッドワイヤとした。なお、ワイヤ製造に際しては、圧延荷重(伸線荷重)の測定、割れの観察、ワイヤ断面の観察等を行って、各ソリッドワイヤの製造性を評価した。圧延荷重(伸線荷重)が高く、圧延(伸線)加工が不可能であると判断された場合や、割れの発生が認められる場合や、発生した割れに起因して、それ以上工程を進めることができなくなる場合等を「×」と評価した。それ以外は、「○」と評価した。
 また、表2に示すワイヤ組成となるように、金属粉末およびフラックスの成分を調整したフラックスコアードワイヤを作製し、比較例とした。なお、外皮としては、質量%で0.1%C-0.2%Si-0.5%Mn-残部Feからなる組成を有する薄鋼板(板厚0.5mm)を用いた。成分を調整した金属粉末およびフラックスを上記した外皮で封入し、直径1.2mmまで伸線した。なお表2に示す成分は、外皮、金属粉末およびフラックスの合計値である。
 まず、表1および表2に示す組成の、得られたソリッドワイヤまたはフラックスコアードワイヤを溶接材料として、JIS Z 3390の規定に準拠して、溶接ヒューム捕集装置内で、ガスメタルアーク溶接し、発生したヒュームをろ過材(ガラス繊維製)で捕集し、ヒューム発生量(mg/min)を測定した。その際の溶接条件は、電流:250A、電圧:34V、溶接速度:30cm/min、シールドガス:80%Ar+20%CO2(流量:20L/min)とした。
 また、これとは別に、JIS Z 3111に準拠して、試験板として、極低温用高Mn鋼板(板厚:12mm)を用意し突き合わせて、45°V開先を形成し、得られたソリッドワイヤを溶接材料として、ガスメタルアーク溶接を行って、該開先内に溶着金属を得た。なお、試験板として使用した鋼板は、質量%で、0.5%C-0.4%Si-25%Mn-3%Cr-残部Feからなる組成を有する極低温用高Mn鋼板である。
 溶接は、表1および表2に示す組成の各ソリッドワイヤ(直径1.2mm)またはフラックスコアードワイヤ(直径1.2mm)を用いて、予熱なし、下向き姿勢で、電流:180~330A(DCEP)、電圧:24~33V、溶接速度:30cm/minで、パス間:100~150℃、シールドガス:80%Ar+20%CO2、とからなる条件で、実施した。
 溶接後、溶接金属を光学顕微鏡で観察し、溶接割れの有無を判定した。溶接割れは、高温割れであり、割れ発生が認められる場合は耐高温割れ性が低下しているとして「×」と評価した。割れ発生が認められない場合は、耐高温割れ性に優れるとして「○」と評価した。
 ビード外観については、目視によって観察し、ビード外観の判定を実施した。アンダーカットやオーバーラップ、ピットが認められる場合は溶接ビード外観が不良として「×」と評価した。これらが認められない場合は、ビード外観が良好として「○」と評価した。
 得られた溶着金属から、JIS Z 3111の規定に準拠して、溶着金属の引張試験片(平行部径6mmφ)、および溶着金属のシャルピー衝撃試験片(Vノッチ)を採取し、引張試験、衝撃試験を実施した。
 引張試験は、室温で、各3本実施し、得られた値(0.2%耐力)の平均値を当該ソリッドワイヤを用いた溶着金属の引張特性とした。また、シャルピー衝撃試験は、各3本実施し、試験温度:-196℃における吸収エネルギーvE-196を求め、その平均値を当該ソリッドワイヤを用いた溶着金属の極低温衝撃靭性とした。
 得られた結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明例はいずれも、ワイヤの製造性に優れ、JIS Z 3930-2013に準拠して、溶接電流:250Aでガスメタルアーク溶接を行ったときのヒューム発生量が1200mg/min以下であり、ヒューム発生量の少ない溶接材料である、といえる。
 また、本発明例はいずれも、溶接時に溶接割れ(高温割れ)の発生がなく耐高温割れ性に優れ、さらに、常温における降伏強さ(0.2%耐力)が400MPa以上で、試験温度:-196℃におけるシャルピー衝撃試験の吸収エネルギーvE-196が、28J以上と、高強度と優れた極低温靭性を兼備する溶接金属を得ることができる溶接材料(ソリッドワイヤ)である、といえる。
 一方、本発明の範囲を外れる比較例では、ヒューム発生量が1200mg/minを超えて多いか、ワイヤの製造性が劣るか、溶接割れ(高温割れ)が発生し耐高温割れ性が低下しているか、溶接ビードに欠陥があるか、あるいは、常温における0.2%耐力が400MPa未満であるか、吸収エネルギーvE-196が28J未満であるかして、所望の溶接時のヒューム発生量が少なく、高強度と優れた極低温靭性を兼備する溶着金属が得られていない。
 ワイヤNo.14、No.15(比較例)は、C、Cr量が本発明の範囲を低く外れているため、溶着金属の0.2%耐力が400MPa未満と所望の高強度を確保できていない。また、ワイヤNo.16、No.17、No.18、No.19(比較例)は、MnまたはTi、B、CrおよびNb量が本発明の範囲を高く外れているため、伸線加工性が低下し、所望のワイヤ径まで伸線できなかった。また、ワイヤNo.20(比較例)は、Mnが本発明の範囲を低く外れているため、オーステナイト相の安定性が低く、そのため、吸収エネルギーvE-196が28J未満と、極低温靭性が低下している。また、No.21(比較例)は、Ni量が本発明の範囲を低く外れているため、吸収エネルギーvE-196が28J未満と、極低温靭性が低下している。また、ワイヤNo.22、No.23、No.24(比較例)は、Si、P、C量が本発明の範囲を高く外れているため、溶接割れが発生し、耐高温割れ性が低下している。また、ワイヤNo.25(比較例)は、Si量が本発明の範囲を低く外れているため、また、ワイヤNo.26(比較例)は、Al量が本発明の範囲を高く外れているため、良好なビード形状が得られず、ピットまたはオーバーラップが発生した。また、比較例であるワイヤNo.27、No.28、No.29、No.30はフラックスコアードワイヤであるため、ヒューム発生量が1200mg/minよりも多かった。
 
 

Claims (3)

  1.  質量%で、
     C:0.2~0.8%、          Si:0.15~0.90%、
     Mn:17.0~28.0%、         P:0.03%以下、
     S:0.03%以下、          Ni:0.01~10.00%、
     Cr:0.4~4.0%、          Mo:0.01~3.50%、
     B:0.0010%未満、         N:0.12%以下
    を含み、残部Feおよび不可避的不純物からなる組成を有することを特徴とするガスメタルアーク溶接用ソリッドワイヤ。
  2.  前記組成に加えてさらに、質量%で、V:0.04%以下、Ti:0.04%以下、およびNb:0.04%以下のうちから選ばれた1種または2種以上を含有することを特徴とする請求項1に記載のガスメタルアーク溶接用ソリッドワイヤ。
  3.  前記組成に加えてさらに、質量%で、Cu:1.0%以下、Al:0.1%以下、Ca:0.01%以下およびREM:0.02%以下のうちから選ばれた1種または2種以上を含有することを特徴とする請求項1または2に記載のガスメタルアーク溶接用ソリッドワイヤ。
PCT/JP2019/014537 2018-08-23 2019-04-01 ガスメタルアーク溶接用ソリッドワイヤ WO2020039643A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US17/270,045 US20210323101A1 (en) 2018-08-23 2019-04-01 Solid wire for gas metal arc welding
CN201980054255.7A CN112566750A (zh) 2018-08-23 2019-04-01 气体保护金属极电弧焊用实心焊丝
KR1020217005269A KR102511652B1 (ko) 2018-08-23 2019-04-01 가스 메탈 아크 용접용 솔리드 와이어
EP19851917.5A EP3838474A4 (en) 2018-08-23 2019-04-01 SOLID WIRE FOR ARC WELDING OF GAS PROTECTED METAL
JP2019540466A JP6621572B1 (ja) 2018-08-23 2019-04-01 ガスメタルアーク溶接用ソリッドワイヤ
SG11202101711UA SG11202101711UA (en) 2018-08-23 2019-04-01 Solid wire for gas metal arc welding
PH12021550373A PH12021550373A1 (en) 2018-08-23 2021-02-22 Solid wire for gas metal arc welding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-156021 2018-08-23
JP2018156021 2018-08-23

Publications (1)

Publication Number Publication Date
WO2020039643A1 true WO2020039643A1 (ja) 2020-02-27

Family

ID=69592517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014537 WO2020039643A1 (ja) 2018-08-23 2019-04-01 ガスメタルアーク溶接用ソリッドワイヤ

Country Status (7)

Country Link
US (1) US20210323101A1 (ja)
EP (1) EP3838474A4 (ja)
KR (1) KR102511652B1 (ja)
CN (1) CN112566750A (ja)
PH (1) PH12021550373A1 (ja)
SG (1) SG11202101711UA (ja)
WO (1) WO2020039643A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022054492A1 (ja) * 2020-09-10 2022-03-17
WO2022186096A1 (ja) * 2021-03-01 2022-09-09 Jfeスチール株式会社 サブマージアーク溶接継手
WO2022186097A1 (ja) * 2021-03-01 2022-09-09 Jfeスチール株式会社 Tig溶接継手
KR20230098880A (ko) 2020-12-17 2023-07-04 제이에프이 스틸 가부시키가이샤 서브 머지 아크 용접용 와이어 및 그것을 이용한 용접 조인트부의 제조 방법
KR20230104271A (ko) 2020-12-17 2023-07-07 제이에프이 스틸 가부시키가이샤 Tig 용접용 용가재 및 그것을 이용한 용접 조인트부의 제조 방법

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210143296A (ko) * 2019-03-29 2021-11-26 제이에프이 스틸 가부시키가이샤 Tig 용접용 용가재
CN113215502A (zh) * 2021-05-12 2021-08-06 南京钢铁股份有限公司 一种焊接用高锰钢盘条及其轧钢工艺
CN113634948A (zh) * 2021-06-30 2021-11-12 南京钢铁股份有限公司 超低温高锰钢的co2气体保护焊焊丝及制备方法
CN113547255B (zh) * 2021-07-20 2022-09-06 武汉铁锚焊接材料股份有限公司 适用于全位置焊接的超低温高锰钢用药芯焊丝及其应用
CN114289929A (zh) * 2022-01-30 2022-04-08 武汉科技大学 用于高锰奥氏体低温钢的mig焊实芯焊丝及其焊接工艺
CN114289930A (zh) * 2022-01-30 2022-04-08 武汉科技大学 高锰奥氏体低温钢用激光-电弧复合焊实芯焊丝及焊接工艺
CN114289931A (zh) * 2022-01-30 2022-04-08 武汉科技大学 高锰奥氏体低温钢埋弧横焊用实芯焊丝及其焊接工艺
CN116079278B (zh) * 2023-04-06 2023-12-08 中国科学院合肥物质科学研究院 一种高吸能高锰钢实心焊丝及其焊接工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524701A (en) * 1978-08-08 1980-02-22 Japan Steel Works Ltd:The Welding material for high mn stable austenite non- magnetic steel
JPH11197838A (ja) * 1998-01-08 1999-07-27 Kobe Steel Ltd 極低温用高Mnステンレス鋼材の狭開先MIG溶接方法および極低温靱性に優れた溶接構造物
JP2016084529A (ja) * 2014-10-22 2016-05-19 新日鐵住金株式会社 高Mn鋼材及びその製造方法
JP2017502842A (ja) 2013-12-06 2017-01-26 ポスコPosco 極低温衝撃靭性に優れた高強度溶接継手部及びこのためのフラックスコアードアーク溶接用ワイヤ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA57797C2 (uk) * 1997-07-28 2003-07-15 Ексонмобіл Апстрім Рісерч Компані Низьколегована, боровмісна сталь
GC0000233A (en) * 2000-08-07 2006-03-29 Exxonmobil Upstream Res Co Weld metals with superior low temperature toughness for joining high strength, low alloy steels
JP5013030B1 (ja) * 2011-02-14 2012-08-29 住友金属工業株式会社 二相ステンレス溶接継手
CN102218622B (zh) * 2011-06-03 2013-09-11 甘肃省机械科学研究院 一种高锰钢堆焊实芯焊丝及其制造方法
JP5842473B2 (ja) * 2011-08-31 2016-01-13 Jfeスチール株式会社 高一様伸び特性を備えかつ溶接部靱性に優れた高強度溶接鋼管、およびその製造方法
ES2709028T3 (es) * 2012-03-30 2019-04-12 Nippon Steel & Sumitomo Metal Corp Proceso para la producción de junta soldada
WO2015099219A1 (ko) * 2013-12-24 2015-07-02 주식회사 포스코 충격인성이 우수한 초고강도 가스메탈 아크 용접이음부 및 이를 제조하기 위한 솔리드 와이어
JP6322093B2 (ja) * 2014-09-03 2018-05-09 株式会社神戸製鋼所 ガスシールドアーク溶接用フラックス入りワイヤ
JP2019520473A (ja) * 2016-05-02 2019-07-18 エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company 高マンガン鋼スラリーパイプラインのための現場での円周溶接技術
CN106938375B (zh) * 2017-03-28 2019-03-19 武汉科技大学 适用于-196℃工作温度的熔化极气体保护焊焊丝
CN107186382B (zh) * 2017-06-09 2019-12-31 南京钢铁股份有限公司 一种高锰超低温钢焊丝及其焊接工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524701A (en) * 1978-08-08 1980-02-22 Japan Steel Works Ltd:The Welding material for high mn stable austenite non- magnetic steel
JPH11197838A (ja) * 1998-01-08 1999-07-27 Kobe Steel Ltd 極低温用高Mnステンレス鋼材の狭開先MIG溶接方法および極低温靱性に優れた溶接構造物
JP2017502842A (ja) 2013-12-06 2017-01-26 ポスコPosco 極低温衝撃靭性に優れた高強度溶接継手部及びこのためのフラックスコアードアーク溶接用ワイヤ
JP2016084529A (ja) * 2014-10-22 2016-05-19 新日鐵住金株式会社 高Mn鋼材及びその製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022054492A1 (ja) * 2020-09-10 2022-03-17
WO2022054492A1 (ja) * 2020-09-10 2022-03-17 Jfeスチール株式会社 溶接継手及び溶接継手の製造方法
JP7353393B2 (ja) 2020-09-10 2023-09-29 Jfeスチール株式会社 溶接継手及び溶接継手の製造方法
KR20230098880A (ko) 2020-12-17 2023-07-04 제이에프이 스틸 가부시키가이샤 서브 머지 아크 용접용 와이어 및 그것을 이용한 용접 조인트부의 제조 방법
KR20230104271A (ko) 2020-12-17 2023-07-07 제이에프이 스틸 가부시키가이샤 Tig 용접용 용가재 및 그것을 이용한 용접 조인트부의 제조 방법
WO2022186096A1 (ja) * 2021-03-01 2022-09-09 Jfeスチール株式会社 サブマージアーク溶接継手
WO2022186097A1 (ja) * 2021-03-01 2022-09-09 Jfeスチール株式会社 Tig溶接継手
JP7188646B1 (ja) * 2021-03-01 2022-12-13 Jfeスチール株式会社 サブマージアーク溶接継手
JP7188647B1 (ja) * 2021-03-01 2022-12-13 Jfeスチール株式会社 Tig溶接継手
KR20230130122A (ko) 2021-03-01 2023-09-11 제이에프이 스틸 가부시키가이샤 Tig 용접 이음매
KR20230133347A (ko) 2021-03-01 2023-09-19 제이에프이 스틸 가부시키가이샤 서브머지드 아크 용접 이음

Also Published As

Publication number Publication date
KR20210033519A (ko) 2021-03-26
SG11202101711UA (en) 2021-03-30
KR102511652B1 (ko) 2023-03-17
EP3838474A1 (en) 2021-06-23
EP3838474A4 (en) 2021-09-29
PH12021550373A1 (en) 2021-11-08
US20210323101A1 (en) 2021-10-21
CN112566750A (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
KR102511652B1 (ko) 가스 메탈 아크 용접용 솔리드 와이어
JP6621572B1 (ja) ガスメタルアーク溶接用ソリッドワイヤ
JP6978613B2 (ja) 極低温用高強度溶接継手の製造方法
JP6978615B2 (ja) Tig溶接用溶加材
JP7024931B1 (ja) ガスメタルアーク溶接用ソリッドワイヤ
KR102639546B1 (ko) 가스 메탈 아크 용접용 솔리드 와이어 및 가스 메탈 아크 용접 방법
KR101840914B1 (ko) 고강도 2.25Cr-1Mo-V강용 서브머지드 아크 용접 와이어 및 용접 금속
JP7188646B1 (ja) サブマージアーク溶接継手
JP7276597B2 (ja) サブマージアーク溶接用ワイヤおよびそれを用いた溶接継手部の製造方法
TWI775607B (zh) 焊接接頭及其製造方法
JP7188647B1 (ja) Tig溶接継手
JP7414126B2 (ja) Tig溶接用溶加材およびそれを用いた溶接継手部の製造方法
JP2022120717A (ja) フラックス入りワイヤ、溶接金属、ガスシールドアーク溶接方法及び溶接継手の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019540466

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851917

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217005269

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019851917

Country of ref document: EP

Effective date: 20210319