WO2022054492A1 - 溶接継手及び溶接継手の製造方法 - Google Patents

溶接継手及び溶接継手の製造方法 Download PDF

Info

Publication number
WO2022054492A1
WO2022054492A1 PCT/JP2021/029579 JP2021029579W WO2022054492A1 WO 2022054492 A1 WO2022054492 A1 WO 2022054492A1 JP 2021029579 W JP2021029579 W JP 2021029579W WO 2022054492 A1 WO2022054492 A1 WO 2022054492A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
composition
steel sheet
welding
welded joint
Prior art date
Application number
PCT/JP2021/029579
Other languages
English (en)
French (fr)
Inventor
充志 ▲高▼田
茂樹 木津谷
正道 鈴木
鵬 韓
Original Assignee
Jfeスチール株式会社
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社, 株式会社神戸製鋼所 filed Critical Jfeスチール株式会社
Priority to CN202180055082.8A priority Critical patent/CN116194610A/zh
Priority to KR1020237007110A priority patent/KR20230042371A/ko
Priority to PE2023001015A priority patent/PE20231720A1/es
Priority to JP2021571815A priority patent/JP7353393B2/ja
Publication of WO2022054492A1 publication Critical patent/WO2022054492A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to a welded joint made by welding wear-resistant steel plates, which is suitable as a member of industrial machinery, transportation equipment, etc., and particularly relates to an improvement in weld crack resistance.
  • a steel plate having excellent wear resistance (wear resistant steel plate) is used as a member. Since the wear resistance strongly depends on the hardness of the steel sheet, a high-hardness steel sheet having a surface hardness of 400 HBW or more is often used as the wear-resistant steel sheet.
  • Patent Document 1 describes "abrasion resistant steel sheet having excellent weldability".
  • the wear-resistant steel sheet described in Patent Document 1 has a mass% of C: 0.38 to 0.50%, Si: 0.05 to 1.0%, Mn: 0.1 to 0.5%, Nb: 0.005 to 0.05%, Ti: 0.005 to 0.05%.
  • B 0.0003-0.0030%
  • Al 0.1% or less
  • P 0.010% or less
  • S 0.005% or less
  • Cu 0.1-1.0%
  • Cr 0.1-1.0%
  • Mo Contains one or more of 0.05-1.0%
  • V 0.005-0.10%
  • W 0.05-1.0%
  • Ceq * is 0.60% or less
  • DI * is 45 or more
  • It is a wear-resistant steel sheet having a composition composed of target impurities.
  • the wear-resistant steel sheet described in Patent Document 1 has a surface hardness of 560 HBW or more, is excellent in weldability, and does not cause low-temperature cracking even when the preheating temperature is as low as 150 ° C.
  • Patent Document 2 describes "wear-resistant steel sheet".
  • the wear-resistant steel sheet described in Patent Document 2 has C: 0.20 to 0.50%, Si: 0.1 to 1.0%, Mn: 0.1 to 2.0%, P: 0.04% or less, S: 0.04% or less, Ti: 0.2 to 1.0. %, Mo: 0.2 to 2.0%, B: 0.0003 to 0.01%, N: 0.01% or less, and Mo and Ti are contained so as to satisfy the formula (1), and the balance Fe.
  • the wear-resistant steel sheet described in Patent Document 2 is said to be able to prevent low-temperature cracking during welding by preheating at 50 ° C to 200 ° C.
  • Patent Document 3 describes "a welding material having excellent impact resistance and wear resistance".
  • the welding material described in Patent Document 3 is a welding material for submerged arc welding or gas metal arc welding, which is excellent in weldability, low temperature impact characteristics and wear resistance.
  • the welding materials described in Patent Document 3 are, in weight%, C: 0.12 to 0.75%, Si: 0.2 to 1.2%, Mn: 15 to 27%, Cr: 2 to 7%, S: 0.025% or less, P. : Contains 0.020% or less, and has a composition consisting of the balance Fe and unavoidable impurities.
  • N 0.4% or less
  • Ni 10% or less
  • V 5% or less
  • Nb 5% or less
  • Mo 7% or less
  • W 6% or less
  • Cu 2%
  • B 0.01% or less
  • Patent Documents 1 and 2 require preheating or postheating of the steel sheet in order to prevent low temperature cracking during welding, and the preheating of the steel sheet during welding is completely omitted. not present. It takes a lot of labor and time to preheat the steel sheet at the time of welding work, and the construction efficiency is lowered. Therefore, further preheating is performed from the viewpoint of improving the welding work efficiency and reducing the cost of the welding work. There is a demand for lowering the temperature or omitting preheating.
  • the present invention can suppress (prevent) the occurrence of weld cracks in a welded joint formed by welding and joining wear-resistant steel plates without applying preheating and postheating. It is an object of the present invention to provide a welded joint having excellent properties.
  • excellent in weld crack resistance means that when a welded joint is manufactured by multi-layer welding with a groove shape of V groove or X groove without preheating, low temperature cracking and It shall mean the case where the occurrence of high temperature cracking is not recognized.
  • the present inventors have diligently studied various factors affecting weld crack resistance in order to achieve the above-mentioned object. As a result, it was found that it is effective to make the weld metal an austenite structure in order to suppress low temperature cracking caused by hydrogen.
  • the austenite structure has a much higher solid solution limit of hydrogen than the ferrite structure, and further, it does not become embrittled with the amount of hydrogen introduced at the time of welding. If the weld metal has an austenite structure, the weld metal absorbs hydrogen introduced during welding and suppresses (prevents) the diffusion of hydrogen to the heat-affected zone that hardens during welding. Therefore, the occurrence of low temperature cracking is suppressed (prevented).
  • the weld metal formed by using the welding material described in Patent Document 3 has an austenite structure, but according to the study by the present inventors, there is a problem that high temperature cracking is likely to occur. Therefore, as a result of investigating the cause of the occurrence of high-temperature cracking, when the amount of Cr is large, Cr carbide (Cr 23 C 6 ) is precipitated at the austenite grain boundaries, and the grain boundaries are embrittled, so that they are introduced at the time of welding. It was found that the openings were caused by thermal strain and high temperature cracking occurred. Further studies by the present inventors have found that the occurrence of such high temperature cracks can be prevented by adjusting the Cr content of the weld metal to 1.9% or less.
  • the present invention has been completed with further studies based on the above findings.
  • the gist of the present invention is as follows.
  • a welded joint made by welding steel plates to each other.
  • the steel sheet is a wear-resistant steel sheet having a surface hardness of 400 HBW or more in Brinell hardness.
  • Welded metal part is by mass%, C: 0.20 to 0.80%, Si: 0.10 to 0.90% Mn: 15.0-28.0%, P: 0.030% or less, S: 0.030% or less, Ni: 0.01-10.00%, Cr: 0.4 to 1.9%, Mo: 0.01 to 5.00%,
  • a welded joint comprising, and having a weld metal part composition consisting of a balance Fe and unavoidable impurities.
  • the wear-resistant steel sheet is C: 0.10 to 0.50%, Si: 0.10 to 0.90%, Mn: 0.40 to 2.00%, P: 0.030% or less, S: 0.030% or less, Cr: 0.10 to% by mass.
  • the welded joint according to any one of [1] to [3], which comprises 2.00%, Mo: 0.10 to 1.00%, and has a steel sheet composition consisting of a balance Fe and unavoidable impurities.
  • [6] A method for manufacturing a welded joint in which steel plates are welded to each other.
  • the steel sheet is a wear-resistant steel sheet having a surface hardness of 400 HBW or more in Brinell hardness.
  • Welded metal part is by mass%, C: 0.20 to 0.80%, Si: 0.10 to 0.90% Mn: 15.0-28.0%, P: 0.030% or less, S: 0.030% or less, Ni: 0.01-10.00%, Cr: 0.4 to 1.9%, Mo: 0.01 to 5.00%,
  • a method for manufacturing a welded joint which comprises, and has a weld metal part composition consisting of a balance Fe and unavoidable impurities.
  • the wear-resistant steel sheet is C: 0.10 to 0.50%, Si: 0.10 to 0.90%, Mn: 0.40 to 2.00%, P: 0.030% or less, S: 0.030% or less, Cr: 0.10 to% by mass.
  • the welding is gas metal arc welding, and the welding material used in the gas metal arc welding is mass%.
  • C 0.20 to 0.90%
  • Si 0.10 to 1.00%
  • Mn 16.0 to 30.0%
  • P 0.030% or less
  • S 0.030% or less
  • Ni 0.01-12.00%
  • Cr 0.1-2.5%
  • Mo 0.10-6.00%
  • the wear-resistant steel sheet is further selected from Cu: 1.0% or less, Ni: 2.0% or less, V: 0.5% or less, Ti: 0.5% or less, Al: 0.20% or less in addition to the steel sheet composition.
  • the solid wire was further selected from among V: 1.0% or less, Ti: 1.0% or less, Nb: 1.0% or less, and W: 1.0% or less in mass% in addition to the wire composition.
  • the present invention it is possible to produce a welded joint by suppressing (preventing) the occurrence of welding cracks without applying preheating or postheating of the steel plate at the time of welding, and it is possible to improve welding construction efficiency and reduce welding construction cost. It has a remarkable effect on the industry. Further, according to the present invention, it is possible to provide a welded joint having excellent weld crack resistance.
  • welded joint In the welded joint of the present invention, two or more steel plates are made into wear-resistant steel plates having a surface hardness of 400 HBW or more in Brinell hardness, and the steel plates are welded together to form a weld metal portion. It is a wear-resistant steel welded joint.
  • the wear-resistant steel sheet to be welded shall be a steel sheet having a surface hardness of 400 HBW or more in Brinell hardness in order to secure the desired wear resistance.
  • the upper limit of the Brinell hardness is not particularly limited, but is preferably 600 HBW or less from the viewpoint of avoiding cracking at the time of gas cutting.
  • any wear-resistant steel sheet having a composition range capable of ensuring the above-mentioned surface hardness is suitable.
  • Such a wear-resistant steel sheet has, for example, a mass% in the range of C: 0.10 to 0.50%, and has a steel sheet composition appropriately containing other alloying elements according to desired characteristics (for example, strength, toughness, etc.).
  • the material has a surface hardness of 400 HBW or more, and has a plate thickness of 6 to 100 mm, C: 0.10 to 0.50%, Si: 0.10 to 0.90%, Mn: 0.40 to 2.00%, P: 0.030% or less, S: 0.030%.
  • Cr: 0.10 to 2.00%, Mo: 0.10 to 1.00% are contained as basic alloying elements, or further, Cu: 1.0% or less, Ni: 2.0% or less, V: 0.5% or less, Ti: 0.5% or less, Al:
  • the weld metal portion is mass%, C: 0.20 to 0.80%, Si: 0.10 to 0.90%, Mn: 15.0 to 28.0%, P: 0.030% or less, S: 0.030% or less. , Ni: 0.01 to 10.00%, Cr: 0.4 to 1.9%, Mo: 0.01 to 5.00%, and is characterized by having a composition consisting of a balance Fe and unavoidable impurities (welded metal portion composition).
  • C 0.20-0.80% C is an element that stabilizes the austenite phase, and is an element that contributes to an increase in the strength (hardness) of the weld metal by strengthening the solid solution and has an action of improving wear resistance. In order to obtain such an effect, a content of 0.20% or more is required. On the other hand, if the content exceeds 0.80%, high-temperature cracking during welding is likely to occur. Therefore, C was limited to the range of 0.20 to 0.80%. It should be noted that it is preferably 0.40% or more. Further, it is preferably 0.60% or less.
  • Si 0.10 to 0.90%
  • Si is an element that acts as a deoxidizer and suppresses the precipitation of carbides to dissolve C in the austenite phase and stabilize the austenite phase. In order to obtain such an effect, the content of 0.10% or more is required. On the other hand, if it is contained in excess of 0.90%, segregation occurs during solidification, a liquid phase is formed at the interface of the solidified cell, and the high temperature crack resistance is lowered. Therefore, Si was limited to the range of 0.10 to 0.90%. It should be noted that it is preferably 0.20% or more. Further, it is preferably 0.80% or less.
  • Mn 15.0-28.0%
  • Mn is an element having an action of stabilizing the austenite phase at low cost, and the content of Mn is required to be 15.0% or more in the present invention. If the Mn content is less than 15.0%, the stability of the austenite phase is insufficient, so that a hard martensite phase is formed in the weld metal and low temperature cracking occurs. On the other hand, if it is contained in excess of 28.0%, excessive Mn segregation occurs during solidification and induces high temperature cracking. Therefore, Mn was limited to the range of 15.0 to 28.0%. It should be noted that it is preferably 16.0% or more. Further, it is preferably 26.0% or less.
  • P 0.030% or less
  • P is an element having an action of segregating at grain boundaries and inducing high temperature cracking. In the present invention, it is preferable to reduce it as much as possible, but 0.030% or less is acceptable. Therefore, P was limited to 0.030% or less. It is preferable to adjust P to 0.003% or more because excessive reduction causes an increase in refining cost.
  • S 0.030% or less S is an element having an action of segregating at grain boundaries and inducing high temperature cracking. In the present invention, it is preferable to reduce it as much as possible, but 0.030% or less is acceptable. Therefore, S was limited to 0.030% or less. It is preferable to adjust S to 0.003% or more because excessive reduction causes an increase in refining cost.
  • Ni 0.01-10.00%
  • Ni is an element having an action of strengthening austenite grain boundaries, and suppresses the occurrence of high-temperature cracking by suppressing embrittlement of grain boundaries. In order to obtain such an effect, the content of 0.01% or more is required. Ni also has the effect of stabilizing the austenite phase. On the other hand, Ni is an expensive element, and its content exceeding 10.00% is economically disadvantageous. Therefore, Ni was limited to 0.01 to 10.00%. It is preferably 1.00% or more. Further, it is preferably 8.00% or less.
  • Cr 0.4-1.9% Cr is an element having an action of stabilizing the austenite phase at a low temperature, and Cr also has an action of hardening the weld metal and improving wear resistance. In addition, Cr contributes to improving the corrosion resistance of the weld metal. In order to obtain such an effect, a content of 0.4% or more is required. On the other hand, if it is contained in excess of 1.9%, Cr carbide (Cr 23 C 6 ) is generated at the austenite grain boundaries, the grain boundaries become brittle, and high-temperature cracking is induced. Therefore, Cr was limited to the range of 0.4 to 1.9%. It should be noted that it is preferably 0.4% or more. Further, it is preferably 1.8% or less. More preferably, it is 0.6% or more. Further, it is more preferably 1.6% or less.
  • Mo 0.01-5.00%
  • Mo is an element having an action of strengthening austenite grain boundaries, suppresses grain boundary embrittlement, and suppresses the occurrence of high-temperature cracking. Mo also has the effect of improving wear resistance by hardening the weld metal. In order to obtain such an effect, the content of 0.01% or more is required. On the other hand, if it is contained in excess of 5.00%, the inside of the grain is too hardened, the grain boundary is relatively weakened, and high temperature cracking occurs. Therefore, Mo was limited to the range of 0.01 to 5.00%. It should be noted that it is preferably 0.10% or more. Further, it is preferably 4.00% or less.
  • the above-mentioned components are the basic components of the weld metal part in the welded joint of the present invention.
  • V: 1.0% or less, Ti: 1.0% or less, Nb: 1.0% or less and W: 1.0% are further selected as arbitrary selective elements as necessary.
  • V 1.0% or less
  • Ti 1.0% or less
  • Nb 1.0% or less
  • W 1.0% or less
  • All of V, Ti, Nb and W form carbides.
  • It is an element that contributes to the improvement of wear resistance of the weld metal, and can be selected and contained in one kind or two or more kinds as needed.
  • V is a carbide-forming element, which precipitates fine carbides in austenite grains to improve the wear resistance of the weld metal. In order to obtain such an effect, it is desirable to contain 0.001% or more. However, if it is contained in excess of 1.0%, the inside of the grain is too hardened and the grain boundary is relatively weakened, which induces high temperature cracking during welding. Therefore, when it was contained, V was limited to 1.0% or less. It is preferably 0.01% or more. Further, it is preferably 0.8% or less.
  • Ti is a carbide forming element and precipitates fine carbides to improve the wear resistance of the weld metal.
  • Ti is limited to 1.0% or less. It is preferably 0.01% or more. Further, it is preferably 0.8% or less.
  • Nb like V and Ti, is a carbide-forming element and precipitates fine carbides in the austenite grains to improve the wear resistance of the weld metal. In order to obtain such an effect, it is desirable to contain 0.001% or more. On the other hand, if it is contained in excess of 1.0%, the inside of the grain is too hardened and the grain boundary is relatively weakened, which induces high temperature cracking during welding. Therefore, when it was contained, Nb was limited to 1.0% or less. It is preferably 0.01% or more. Further, it is preferably 0.8% or less.
  • W is a carbide-forming element like V, Ti, and Nb, and fine carbides are deposited in the austenite grains to improve the wear resistance of the weld metal.
  • it is desirable to contain 0.001% or more.
  • W was limited to 1.0% or less. It is preferably 0.01% or more. Further, it is preferably 0.8% or less.
  • Cu is an element having an action of stabilizing the austenite phase.
  • Al are elements that act as deoxidizers, and Ca and REM are elements that contribute to the suppression of high temperature cracking, and can be selected and contained as necessary.
  • Cu is an element that stabilizes the austenite phase, and it is desirable that it be contained in an amount of 0.01% or more in order to obtain such an effect. However, if it is contained in a large amount exceeding 1.0%, a liquid phase having a low melting point is formed at the austenite grain boundaries, so that high-temperature cracking occurs. Therefore, when it is contained, it is preferable to limit Cu to 1.0% or less. It is more preferably 0.1% or more. Further, it is more preferably 0.8% or less.
  • Al acts as a deoxidizing agent, increases the viscosity of the molten metal, stably maintains the bead shape, and has the effect of reducing the occurrence of spatter.
  • Al raises the liquidus temperature of the molten metal and contributes to suppressing the occurrence of high-temperature cracking of the weld metal.
  • it is desirable to contain 0.001% or more.
  • it is preferable to limit Al to 0.10% or less. It should be noted that it is more preferably 0.002% or more. Further, it is more preferably 0.06% or less.
  • both Ca and REM are elements that contribute to the suppression of high-temperature cracking, and can be selected and contained as necessary.
  • Ca binds to S in the molten metal to form a high melting point sulfide CaS and suppresses the occurrence of high temperature cracking. Such an effect becomes remarkable when the content is 0.001% or more. On the other hand, if the content exceeds 0.010%, the arc is disturbed during welding, which makes stable welding difficult. Therefore, when it is contained, it is preferable to limit Ca to 0.010% or less. It is more preferably 0.002% or more. Further, it is more preferably 0.008% or less.
  • REM 0.020% or less REM is a powerful deoxidizer and exists in the form of REM oxide in weld metals.
  • the REM oxide becomes a nucleation site during solidification, which changes the solidification form of the weld metal and contributes to the suppression of high-temperature cracking.
  • the content of 0.001% or more is required.
  • REM was limited to 0.020% or less. It is more preferably 0.001% or more. Further, it is more preferably 0.015% or less.
  • REM is a general term for rare earth elements such as La and Ce, and the content also means the total amount of these elements.
  • N 0.120% or less
  • O (oxygen) 0.100% or less are acceptable.
  • N is an element that is inevitably mixed, but if it is contained in excess of 0.120%, it forms a nitride and reduces the toughness of the weld metal. Therefore, it is preferable to limit N to 0.120% or less.
  • O (oxygen) is an element that is inevitably mixed, but if it is contained in excess of 0.100%, an oxide is formed in the weld metal and the toughness of the weld metal is lowered. Therefore, it is preferable to limit O (oxygen) to 0.100% or less.
  • the grooved steel plates are welded together using a welding material to form a welded metal part, and a welded joint is manufactured.
  • the welding method used is not particularly limited, but gas metal arc welding (“melting gas shield arc”) capable of forming a weld metal portion having the above-mentioned composition and desired characteristics by using a solid wire is possible. Also referred to as "welding").
  • the welding material used is a solid wire capable of forming a weld metal portion having the above composition.
  • the wire composition of the solid wire is C: 0.20 to 0.90%, Si: 0.10 to 1.00%, Mn: 16.0 to 30.0%, P: 0.030% or less, S: 0.030% or less, Ni: 0.01 to 12.00. %, Cr: 0.1-2.5% and Mo: 0.10-6.00% as basic alloying elements, or further, V: 1.0% or less, Ti: 1.0% or less, Nb: 1.0% or less and W: 1.0% or less.
  • the above may be contained as an arbitrary alloying element, and a wire composition composed of the balance Fe and unavoidable impurities can be exemplified.
  • the composition of the weld metal of the first layer is usually higher because the weld metal of the first layer (first layer) has a higher penetration ratio (dilution ratio) of the steel sheet than the weld metal of the other layers. It is preferable to adjust the penetration ratio of the steel sheet so that the above-mentioned weld metal portion composition is within the range.
  • the penetration ratio of the steel plate of the weld metal of the first layer changes depending on the plate thickness, groove shape, and welding conditions. In particular, since the influence of the welding heat input is large, the welding heat input is changed to change the welding ratio. It is preferable to adjust.
  • the amount of heat input to the weld is preferably in the range of 5 to 70 kJ / cm from the viewpoint of preventing high temperature cracking.
  • any of the conventional methods for manufacturing the wear-resistant steel sheet can be applied.
  • the molten steel having the above-mentioned steel sheet composition is melted by a conventional melting method such as a converter or an electric furnace, and is predetermined by a conventional casting method such as a continuous casting method or an ingot-decomposition rolling method.
  • a conventional melting method such as a converter or an electric furnace
  • a conventional casting method such as a continuous casting method or an ingot-decomposition rolling method.
  • Obtain a steel material such as a slab of dimensions.
  • secondary refining may be carried out by a vacuum degassing furnace or the like. It is preferable that the obtained steel material is further heated, hot-rolled, and then cooled to obtain a wear-resistant steel sheet having a surface hardness of 400 HBW or more.
  • a preferable manufacturing method of the welding material (solid wire) is as follows. Any of the conventional welding material (solid wire) manufacturing methods can be applied to the manufacturing of the welding material (solid wire) used for manufacturing the welded joint in the present invention.
  • molten steel having the above-mentioned wire composition is melted by a common melting method such as an electric furnace or a vacuum melting furnace, and cast into a mold having a predetermined shape. Then, the obtained ingot is heated to a predetermined temperature, and the heated ingot is hot-rolled to obtain a steel material (rod shape) having a predetermined shape. Then, it is preferable that the obtained steel material (rod-shaped) is cold-rolled (cold wire drawing) a plurality of times and annealed if necessary to obtain a wire having a predetermined size.
  • the annealing is preferably performed at an annealing temperature of 800 to 1200 ° C.
  • a wear-resistant steel sheet (plate thickness: 50 mm) having the steel sheet composition shown in Table 1 and having a surface hardness of 400 HBW to 560 HBW in Brinell hardness was prepared.
  • a test plate for joint production was collected from the prepared wear-resistant steel plate and grooved.
  • the groove was a V groove (groove angle: 45 °).
  • gas metal arc welding shielded gas atmosphere: 80% Ar + 20% CO 2
  • a solid wire 1.2 mm ⁇
  • Welding is performed by gas metal arc welding with a downward posture under the conditions of current: 180-350A, voltage: 24-35V, welding speed: 30cm / min, and inter-pass temperature: 100-250 ° C without preheating. went.
  • the temperature at the time of welding was 20 ° C and the humidity was 60%.
  • the welding material (solid wire) used was manufactured as follows.
  • the molten steel having the composition (wire composition) shown in Table 2 was melted in a vacuum melting furnace to obtain a steel ingot (100 kgf).
  • the obtained ingot was heated to 1200 ° C. and then hot-rolled to obtain a rod-shaped steel material.
  • the obtained rod-shaped steel material was further subjected to cold drawing a plurality of times with annealing sandwiched between them to obtain a solid wire for welding (1.2 mm ⁇ ).
  • weld metal part and the weld heat-affected zone were observed with an optical microscope (magnification: 100 times) to determine the presence or absence of weld cracks.
  • all of the examples of the present invention are welded joints having excellent weld crack resistance without the occurrence of weld cracks (high temperature cracks and low temperature cracks).
  • the welded joint has weld cracking (high temperature cracking or low temperature cracking) and the welding cracking resistance is lowered.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Arc Welding In General (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

本発明は、耐溶接割れ性に優れた溶接継手を提供する。ブリネル硬さで400HBW以上の表面硬さを有する耐摩耗鋼板同士を溶接し、溶接継手とする。溶接に際し、溶接金属部が、質量%で、C:0.20~0.80%、Si:0.10~0.90%、Mn:15.0~28.0%、P:0.030%以下、S:0.030%以下、Ni:0.01~10.00%、Cr:0.4~1.9%、Mo:0.01~5.00%、を含む組成となるように、被溶接材である鋼板と溶接材料、溶接条件等を調整する。これにより、予熱または後熱を行うことなく、溶接割れの発生を防止して、溶接継手を製造することができる。

Description

溶接継手及び溶接継手の製造方法
 本発明は、産業機械、運搬機器等の部材として好適な、耐摩耗鋼板同士を溶接してなる溶接継手に係り、とくに耐溶接割れ性の向上に関する。
 建設、土木、鉱山等の分野で使用される産業機械、運搬機器等では、一般に、部材の摩耗量によりその寿命が決定される場合が多い。そのため、部材として、耐摩耗性に優れた鋼板(耐摩耗鋼板)が用いられている。耐摩耗性は、鋼板の硬さに強く依存することから、耐摩耗鋼板として、表面硬さがブリネル硬さで400HBW以上の高硬度鋼板を用いることが多い。
 高硬度の耐摩耗鋼板は、溶接時に熱影響部で水素に起因した低温割れが発生しやすいことが知られている。低温割れの防止には、一般的に溶接前の予熱または溶接後の後熱を行って、拡散性水素を放出することが有効である。特に、表面ブリネル硬さが400HBW以上で、かつ板厚50mm以上の厚肉耐摩耗鋼板では、一般的に、溶接時に75℃以上の予熱を行うことが推奨されている。
 しかし、溶接時に高温での予熱を施すことは、労力と時間を要し、溶接施工能率を低下させる。このため、耐摩耗鋼板の合金元素量を調整することで、溶接時の低温割れを防止する検討がなされてきた。
 例えば、特許文献1には、「溶接性に優れた耐摩耗鋼板」が記載されている。特許文献1に記載された耐摩耗鋼板は、質量%で、C:0.38~0.50%、Si:0.05~1.0%、Mn:0.1~0.5%、Nb:0.005~0.05%、Ti:0.005~0.05%、B:0.0003~0.0030%、Al:0.1%以下、P:0.010%以下、S:0.005%以下、更にCu:0.1~1.0%、Ni:0.1~2.0%、Cr:0.1~1.0%、Mo:0.05~1.0%、V:0.005~0.10%、W:0.05~1.0%の1種または2種以上を含有し、Ceq*が0.60%以下であり、DI*が45以上であり、残部Feおよび不可避的不純物からなる組成を有する耐摩耗鋼板である。特許文献1に記載された耐摩耗鋼板は、表面硬さが560HBW以上で、溶接性に優れ、予熱温度を150℃と低くしても、低温割れが発生しない、とされる。
 また、特許文献2には、「耐摩耗鋼板」が記載されている。特許文献2に記載された耐摩耗鋼板は、C:0.20~0.50%、Si:0.1~1.0%、Mn:0.1~2.0%、P:0.04%以下、S:0.04%以下、Ti:0.2~1.0%、Mo:0.2~2.0%、B:0.0003~0.01%、N:0.01%以下を含み、かつMoとTiをMo/Ti≧1.0‥‥(1)式を満足するように含有し、残部Feおよび不可避的不純物からなる組成と、平均粒径:0.5μm以上のTi炭化物およびTiとMoの複合炭化物を合計で、400個/mm2以上含む組織を有する耐摩耗鋼板である。なお、さらに、Cu、Ni、Cr、さらにAlを含んでも良いとしている。特許文献2に記載された耐摩耗鋼板は、50℃~200℃の予熱で溶接時の低温割れを防止できるとしている。
 また、特許文献3には、「耐衝撃性と耐摩耗性に優れた溶接材料」が記載されている。特許文献3に記載された溶接材料は、溶接性に優れるうえ、低温衝撃特性や耐摩耗性にも優れた、サブマージドアーク溶接用あるいはガスメタルアーク溶接用の溶接材料である。特許文献3に記載された溶接材料は、重量%で、C:0.12~0.75%、Si:0.2~1.2%、Mn:15~27%、Cr:2~7%、S:0.025%以下、P:0.020%以下を含み、残部Fe及び不可避不純物からなる組成を有する。なお、上記した組成に加えて、さらにN:0.4%以下、Ni:10%以下、V:5%以下、Nb:5%以下、Mo:7%以下、W:6%以下、Cu:2%以下、B:0.01%以下を含有してもよい、としている。この溶接材料を用いれば、低温衝撃特性および耐摩耗特性に優れた溶接継手を作製できるとしている。
特開2008-214651号公報 特許第4894288号公報 WO 2015/083928 A1号
 しかしながら、特許文献1、2に記載された技術では、溶接時に低温割れを防止するためには鋼板の予熱または後熱を必要とし、溶接時の鋼板の予熱等を完全に省略するまでには至っていない。溶接施工時に、鋼板の予熱等を実施するには、多大の労力と時間とを要し、施工能率を低下させるため、溶接施工能率の向上および溶接施工の低コスト化の観点から、更なる予熱等の温度の低下または予熱等の省略が要望されている。
 また、本発明者らの検討によれば、特許文献3に記載された溶接材料を用いて多層盛溶接金属を形成した場合に、溶接金属の再熱部に割れ(高温割れ)が発生しやすいという問題があることを知見した。
 このような従来技術の問題に鑑み、本発明は、耐摩耗鋼板同士を溶接接合してなる溶接継手において、予熱および後熱を施すことなく溶接割れの発生を抑制(防止)できる、耐溶接割れ性に優れた溶接継手を提供することを目的とする。なお、ここでいう「耐溶接割れ性に優れた」とは、予熱なしで、開先形状をV開先またはX開先とし、多層盛溶接して溶接継手を作製した場合に、低温割れおよび高温割れの発生が認められない場合をいうものとする。
 本発明者らは、上記した目的を達成するために、耐溶接割れ性に及ぼす各種要因について鋭意検討した。その結果、水素に起因した低温割れを抑制するためには、溶接金属をオーステナイト組織とすることが有効であることに思い至った。オーステナイト組織は水素の固溶限がフェライト組織と比較してはるかに高く、さらに、溶接時に導入される程度の水素量では脆化しない。そして、溶接金属をオーステナイト組織とすれば、溶接金属が溶接時に導入された水素を吸収し、溶接時に硬化する熱影響部への水素の拡散を抑制(防止)する。このため、低温割れの発生は抑制(防止)されることになる。
 なお、特許文献3に記載された溶接材料を用いて形成された溶接金属は、オーステナイト組織となるが、本発明者らの検討によれば、高温割れを発生しやすいという問題があった。そこで、高温割れ発生の原因を調査した結果、Cr量が多い場合には、オーステナイト粒界にCr炭化物(Cr23C6)が析出し、該粒界が脆化するため、溶接時に導入される熱ひずみで開口し、高温割れが発生することを見出した。本発明者らの更なる検討により、このような高温割れの発生は、溶接金属のCr含有量を1.9%以下に調整することにより、防止できることを知見した。
 本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。本発明の要旨は、次のとおりである。
[1]鋼板同士を溶接してなる溶接継手であって、
前記鋼板が、ブリネル硬さで400HBW以上の表面硬さを有する耐摩耗鋼板であり、
溶接金属部が、質量%で、
 C:0.20~0.80%、       Si:0.10~0.90%
 Mn:15.0~28.0%、       P:0.030%以下、
 S:0.030%以下、        Ni:0.01~10.00%、
 Cr:0.4~1.9%、        Mo:0.01~5.00%、
を含み、残部Feおよび不可避的不純物からなる溶接金属部組成を有することを特徴とする溶接継手。
[2]前記溶接金属部組成に加えてさらに、質量%で、V:1.0%以下、Ti:1.0%以下、Nb:1.0%以下、W:1.0%以下のうちから選ばれた1種または2種以上を含有する溶接金属部組成とすることを特徴とする[1]に記載の溶接継手。
[3]前記溶接金属部組成に加えてさらに、質量%で、Cu:1.0%以下、Al:0.10%以下、Ca:0.010%以下、REM:0.020%以下のうちから選ばれた1種または2種以上を含有する溶接金属部組成とすることを特徴とする[1]または[2]に記載の溶接継手。
[4]前記耐摩耗鋼板が、質量%で、C:0.10~0.50%、Si:0.10~0.90%、Mn:0.40~2.00%、P:0.030%以下、S:0.030%以下、Cr:0.10~2.00%、Mo:0.10~1.00%を含み、残部Feおよび不可避的不純物からなる鋼板組成を有することを特徴とする[1]~[3]のいずれかに記載の溶接継手。
[5]前記鋼板組成に加えてさらに、質量%で、Cu:1.0%以下、Ni:2.0%以下、V:0.5%以下、Ti:0.5%以下、Al:0.20%以下のうちから選ばれた1種または2種以上を含有する鋼板組成とすることを特徴とする[4]に記載の溶接継手。
[6]鋼板同士を溶接する溶接継手の製造方法であって、
前記鋼板が、ブリネル硬さで400HBW以上の表面硬さを有する耐摩耗鋼板であり、
溶接金属部が、質量%で、
 C:0.20~0.80%、      Si:0.10~0.90%
 Mn:15.0~28.0%、      P:0.030%以下、
 S:0.030%以下、       Ni:0.01~10.00%、
 Cr:0.4~1.9%、       Mo:0.01~5.00%、
を含み、残部Feおよび不可避的不純物からなる溶接金属部組成を有することを特徴とする溶接継手の製造方法。
[7]前記溶接金属部組成に加えてさらに、質量%で、V:1.0%以下、Ti:1.0%以下、Nb:1.0%以下およびW:1.0%以下のうちから選ばれた1種または2種以上を含有する溶接金属部組成とすることを特徴とする[6]に記載の溶接継手の製造方法。
[8]前記溶接金属部組成に加えてさらに、質量%で、Cu:1.0%以下、Al:0.10%以下、Ca:0.010%以下およびREM:0.020%以下のうちから選ばれた1種または2種以上を含有する溶接金属部組成とすることを特徴とする[6]または[7]に記載の溶接継手の製造方法。
[9]前記耐摩耗鋼板が、質量%で、C:0.10~0.50%、Si:0.10~0.90%、Mn:0.40~2.00%、P:0.030%以下、S:0.030%以下、Cr:0.10~2.00%、Mo:0.10~1.00%を含み、残部Feおよび不可避的不純物からなる鋼板組成を有し、
前記溶接がガスメタルアーク溶接であり、該ガスメタルアーク溶接で用いる溶接材料が、質量%で、
 C:0.20~0.90%、      Si:0.10~1.00%
 Mn:16.0~30.0%、      P:0.030%以下、
 S:0.030%以下、       Ni:0.01~12.00%、
 Cr:0.1~2.5%、       Mo:0.10~6.00%
を含み、残部Feおよび不可避的不純物からなるワイヤ組成を有するソリッドワイヤである、ことを特徴とする[6]~[8]のいずれかに記載の溶接継手の製造方法。
[10]前記耐摩耗鋼板が、前記鋼板組成に加えてさらに、Cu:1.0%以下、Ni:2.0%以下、V:0.5%以下、Ti:0.5%以下、Al:0.20%以下のうちから選ばれた1種または2種以上を含有する鋼板組成を有することを特徴とする[9]に記載の溶接継手の製造方法。
[11]前記ソリッドワイヤが、前記ワイヤ組成に加えてさらに、質量%で、V:1.0%以下、Ti:1.0%以下、Nb:1.0%以下およびW:1.0%以下のうちから選ばれた1種または2種以上、および/または、Cu:1.0%以下、Al:0.10%以下、Ca:0.010%以下およびREM:0.020%以下のうちから選ばれた1種または2種以上を含有するワイヤ組成を有することを特徴とする[9]または[10]に記載の溶接継手の製造方法。
 本発明によれば、溶接時に鋼板の予熱または後熱を施すことなく、溶接割れの発生を抑制(防止)して溶接継手を作製でき、溶接施工能率の向上や溶接施工コストの低減が図れ、産業上格段の効果を奏する。
 また、本発明によれば、耐溶接割れ性に優れた溶接継手を提供することができる。
[溶接継手]
 本発明の溶接継手は、2枚又はそれ以上の複数枚の鋼板を、ブリネル硬さで400HBW以上の表面硬さを有する耐摩耗鋼板とし、該鋼板同士を溶接金属部を形成して溶接接合してなる耐摩耗鋼溶接継手である。
 <耐摩耗鋼板>
 被溶接材である耐摩耗鋼板は、所望の耐摩耗性を確保するために、ブリネル硬さで400HBW以上の表面硬さを有する鋼板とする。ブリネル硬さの上限値は、特に限定されないが、ガス切断時の割れ回避の観点から600HBW以下であることが好ましい。耐摩耗鋼板は、上記した表面硬さを確保できる組成範囲の、耐摩耗鋼板がいずれも好適である。このような耐摩耗鋼板は、例えば、質量%で、C:0.10~0.50%の範囲とし、所望の特性(例えば、強度、靭性等)に応じて、他の合金元素を適宜含有する鋼板組成とすればよく、とくに限定する必要はない。例えば、400HBW以上の表面硬さを有し、板厚:6~100mmでC:0.10~0.50%、Si:0.10~0.90%、Mn:0.40~2.00%、P:0.030%以下、S:0.030%以下、Cr:0.10~2.00%、Mo:0.10~1.00%を基本の合金元素として含み、あるいはさらに、Cu:1.0%以下、Ni:2.0%以下、V:0.5%以下、Ti:0.5%以下、Al:0.20%以下のうちから選ばれた1種または2種以上を任意の合金元素として含有し得る、残部Feおよび不可避的不純物からなる組成の鋼板が例示される。
 <溶接金属部>
 そして、本発明の溶接継手では、溶接金属部が、質量%で、C:0.20~0.80%、Si:0.10~0.90%、Mn:15.0~28.0%、P:0.030%以下、S:0.030%以下、Ni:0.01~10.00%、Cr:0.4~1.9%、Mo:0.01~5.00%を含み、残部Feおよび不可避的不純物からなる組成(溶接金属部組成)を有することを特徴とする。このような組成を基本の組成とする溶接金属部を形成することにより、溶接時に予熱あるいは後熱を施すことなく、溶接割れの発生を抑制(防止)して溶接継手を作製することができる。
 まず、上記した溶接金属部の組成限定の理由について説明する。なお、以下、組成における「質量%」は単に「%」で記す。
 C:0.20~0.80%
 Cは、オーステナイト相を安定化させる元素であり、また、固溶強化により、溶接金属の強度(硬さ)上昇に寄与し、耐摩耗性を向上させる作用を有する元素である。このような効果を得るためには、0.20%以上の含有を必要とする。一方、0.80%を超えて含有すると、溶接時の高温割れが生じやすくなる。このため、Cは0.20~0.80%の範囲に限定した。なお、好ましくは、0.40%以上である。また好ましくは0.60%以下である。
 Si:0.10~0.90%
 Siは、脱酸剤として作用するとともに、炭化物の析出を抑制することで、Cをオーステナイト相に固溶させ、オーステナイト相を安定化させる作用を有する元素である。このような効果を得るためには、0.10%以上の含有を必要とする。一方、0.90%を超えて含有すると、凝固時に偏析し、凝固セル界面に液相を生成して、耐高温割れ性を低下させる。このため、Siは0.10~0.90%の範囲に限定した。なお、好ましくは0.20%以上である。また好ましくは0.80%以下である。
 Mn:15.0~28.0%
 Mnは、安価に、オーステナイト相を安定化する作用を有する元素であり、本発明では15.0%以上の含有を必要とする。Mn含有量が15.0%未満では、オーステナイト相の安定度が不足するため、溶接金属中に硬質のマルテンサイト相が生成し、低温割れが発生する。一方、28.0%を超えて含有すると、凝固時に過度のMn偏析が発生し、高温割れを誘発する。そのため、Mnは15.0~28.0%の範囲に制限した。なお、好ましくは16.0%以上である。また好ましくは26.0%以下である。
 P:0.030%以下
 Pは、結晶粒界に偏析し、高温割れを誘発する作用を有する元素であり、本発明では、できるだけ低減することが好ましいが、0.030%以下であれば許容できる。このため、Pは0.030%以下に限定した。なお、過度の低減は、精練コストの高騰を招くため、Pは0.003%以上に調整することが好ましい。
 S:0.030%以下
 Sは、結晶粒界に偏析し、高温割れを誘発する作用を有する元素であり、本発明では、できるだけ低減することが好ましいが、0.030%以下であれば、許容できる。このため、Sは0.030%以下に限定した。なお、過度の低減は、精練コストの高騰を招くため、Sは0.003%以上に調整することが好ましい。
 Ni:0.01~10.00%
 Niは、オーステナイト粒界を強化する作用を有する元素であり、粒界の脆化を抑制することにより、高温割れの発生を抑制する。このような効果を得るためには、0.01%以上の含有を必要とする。また、Niはオーステナイト相を安定化させる効果もある。一方、Niは高価な元素であり、10.00%を超える含有は、経済的に不利となる。このため、Niは0.01~10.00%に限定した。なお、好ましくは1.00%以上である。また好ましくは8.00%以下である。
 Cr:0.4~1.9%
 Crは、低温では、オーステナイト相を安定化する作用を有する元素であり、また、Crは、溶接金属を硬化させ、耐摩耗性を向上させる作用も有する。また、Crは、溶接金属の耐食性向上に寄与する。このような効果を得るためには0.4%以上の含有を必要とする。一方、1.9%を超えて含有すると、オーステナイト粒界でCr炭化物(Cr23C6)が生成し、粒界が脆化し、高温割れを誘発する。このため、Crは0.4~1.9%の範囲に限定した。なお、好ましくは、0.4%以上である。また好ましくは1.8%以下である。さらに好ましくは0.6%以上である。また、さらに好ましくは1.6%以下である。
 Mo:0.01~5.00%
 Moは、オーステナイト粒界を強化する作用を有する元素であり、粒界脆化を抑制して、高温割れの発生を抑制する。また、Moは溶接金属を硬化させることで耐摩耗性を向上させる作用も有する。このような効果を得るためには、0.01%以上の含有を必要とする。一方、5.00%を超えて含有すると、粒内が硬化しすぎて、相対的に粒界が弱くなり、高温割れが発生する。そのため、Moは0.01~5.00%の範囲に限定した。なお、好ましくは、0.10%以上である。また好ましくは4.00%以下である。
 上記した成分が、本発明溶接継手における溶接金属部の基本の成分である。本発明では、上記した基本の成分に加えてさらに、任意の選択元素として、必要に応じて選択して、V:1.0%以下、Ti:1.0%以下、Nb:1.0%以下およびW:1.0%以下のうちから選ばれた1種または2種以上、および/または、Cu:1.0%以下、Al:0.10%以下、Ca:0.010%以下およびREM:0.020%以下のうちから選ばれた1種または2種以上、を含有できる。
 V:1.0%以下、Ti:1.0%以下、Nb:1.0%以下およびW:1.0%以下のうちから選ばれた1種または2種以上
 V、Ti、NbおよびWはいずれも、炭化物を形成し、溶接金属の耐摩耗性向上に寄与する元素であり、必要に応じ選択して1種または2種以上を含有できる。
 Vは、炭化物形成元素であり、オーステナイト粒内に微細な炭化物を析出させて、溶接金属の耐摩耗性を向上させる。このような効果を得るためには0.001%以上含有することが望ましい。しかし、1.0%を超えて含有すると、粒内が硬化しすぎて、相対的に粒界が弱くなるため、溶接時の高温割れを誘発する。そのため、含有する場合には、Vは1.0%以下に限定した。なお、好ましくは0.01%以上である。また好ましくは0.8%以下である。
 また、Tiは、炭化物形成元素であり、微細な炭化物を析出させて、溶接金属の耐摩耗性を向上させる。このような効果を得るためには0.001%以上含有することが望ましい。しかし、1.0%を超えて含有すると、オーステナイト粒内が硬化しすぎて、相対的に粒界が弱くなるため、溶接時の高温割れを誘発する。そのため、含有する場合には、Tiは1.0%以下に限定した。なお、好ましくは0.01%以上である。また好ましくは0.8%以下である。
 また、Nbは、V、Tiと同様に、炭化物形成元素であり、オーステナイト粒内に微細な炭化物を析出させて、溶接金属の耐摩耗性を向上させる。このような効果を得るためには0.001%以上含有することが望ましい。一方、1.0%を超えて含有すると、粒内が硬化しすぎて、相対的に粒界が弱くなるため、溶接時に高温割れを誘発する。そのため、含有する場合には、Nbは1.0%以下に限定した。なお、好ましくは0.01%以上である。また好ましくは0.8%以下である。
 Wは、V、Ti、Nbと同様に、炭化物形成元素であり、オーステナイト粒内に微細な炭化物を析出させて、溶接金属の耐摩耗性を向上させる。このような効果を得るためには0.001%以上含有することが望ましい。しかし、1.0%を超えて含有すると、粒内が硬化しすぎて、相対的に粒界が弱くなるため、溶接時の高温割れを誘発する。そのため、含有する場合には、Wは1.0%以下に限定した。なお、好ましくは0.01%以上である。また好ましくは0.8%以下である。
 Cu:1.0%以下、Al:0.10%以下、Ca:0.010%以下およびREM:0.020%以下のうちから選ばれた1種または2種以上
 Cuは、オーステナイト相を安定化する作用を有する元素であり、Alは、脱酸剤として作用する元素であり、CaおよびREMは高温割れ抑制に寄与する元素であり、必要に応じて選択して含有できる。
 Cuは、オーステナイト相を安定化する元素であり、このような効果を得るためには、0.01%以上含有することが望ましい。しかし、1.0%を超えて多量に含有すると、オーステナイト粒界で低融点の液相が生成するため、高温割れが発生する。そのため、含有する場合には、Cuは1.0%以下に限定することが好ましい。なお、より好ましくは0.1%以上である。また、より好ましくは0.8%以下である。
 Alは、脱酸剤として作用するとともに、溶融金属の粘性を高め、ビード形状を安定的に保持し、スパッタの発生を低減する作用を有する。また、Alは、溶融金属の液相線温度を高め、溶接金属の高温割れ発生の抑制に寄与する。このような効果を得るためには、0.001%以上含有することが望ましい。しかし、0.10%を超えて含有すると、溶融金属の粘性が高くなりすぎて、逆に、スパッタの増加や、ビードが広がらず融合不良などの欠陥が増加する。そのため、含有する場合には、Alは0.10%以下に限定することが好ましい。なお、より好ましくは0.002%以上である。また、より好ましくは0.06%以下である。
 また、Ca、REMはいずれも、高温割れ抑制に寄与する元素であり、必要に応じて選択して含有できる。
 Caは、溶融金属中でSと結合し、高融点の硫化物CaSを形成し、高温割れの発生を抑制する。このような効果は0.001%以上の含有で顕著となる。一方、0.010%を超えて含有すると、溶接時にアークに乱れが生じ、安定な溶接が困難となる。このため、含有する場合には、Caは0.010%以下に限定することが好ましい。なお、より好ましくは0.002%以上である。また、より好ましくは0.008%以下である。
 REM:0.020%以下
 REMは、強力な脱酸剤であり、溶接金属中ではREM酸化物の形態で存在する。REM酸化物は凝固時の核生成サイトとなることで、溶接金属の凝固形態を変化させ、高温割れの抑制に寄与する。このような効果を得るためには0.001%以上の含有が必要である。しかし、0.020%を超えて含有すると、アークの安定性が低下する。このため、含有する場合には、REMは0.020%以下に限定した。なお、より好ましくは0.001%以上である。またより好ましくは0.015%以下である。なお、REMは、La、Ce等の希土類元素の総称で、含有量もそれら元素の合計量を意味する。
 上記した成分以外の残部は、Feおよび不可避的不純物である。不可避的不純物としては、N:0.120%以下、O(酸素):0.100%以下が許容できる。Nは、不可避的に混入する元素であるが、0.120%を超えて含有すると、窒化物を形成し、溶接金属靭性を低下させる。このため、Nは0.120%以下に限定することが好ましい。O(酸素)は、不可避的に混入する元素であるが、0.100%を超えて含有すると、溶接金属中に酸化物を形成し、溶接金属靭性を低下させる。このため、O(酸素)は0.100%以下に限定することが好ましい。
[溶接継手の製造方法]
 ついで、本発明の溶接継手の好ましい製造方法について説明する。
 まず、上記した表面硬さを有する耐摩耗鋼板を2枚又はそれ以上の複数枚、用意する。そして、用意した鋼板同士が所定形状の開先を形成するように、開先加工を行う。形成する開先形状については、とくに限定する必要はないが、溶接構造物用として常用のV開先、X開先等とすることが好ましい。
 ついで、開先加工された鋼板同士を、溶接材料を用いて溶接して、溶接金属部を形成し、溶接継手を製造する。
 <溶接法>
 用いる溶接法は、とくに限定する必要はないが、ソリッドワイヤを用いて、上記した組成を有し且つ所望の特性を有する溶接金属部を形成できる、ガスメタルアーク溶接(「溶極式ガスシールドアーク溶接」とも称される)とすることが好ましい。
 <溶接材料>
 なお、使用する溶接材料は、上記した組成の溶接金属部が形成できるソリッドワイヤとする。ソリッドワイヤのワイヤ組成としては、質量%で、C:0.20~0.90%、Si:0.10~1.00%、Mn:16.0~30.0%、P:0.030%以下、S:0.030%以下、Ni:0.01~12.00%、Cr:0.1~2.5%およびMo:0.10~6.00%を基本の合金元素として含み、あるいはさらに、V:1.0%以下、Ti:1.0%以下、Nb:1.0%以下およびW:1.0%以下のうちから選ばれた1種または2種以上、および/または、Cu:1.0%以下、Al:0.10%以下、Ca:0.010%以下およびREM:0.020%以下のうちから選ばれた1種または2種以上、を任意の合金元素として含有してもよく、残部Feおよび不可避的不純物からなるワイヤ組成が例示できる。
 <溶接金属部の形成>
 通常、鋼板同士を溶接材料を用いて溶接する場合には、鋼板由来の溶湯(溶融部金属)と、溶接材料由来の溶湯(溶着金属)とが、混り合って溶接金属を形成する。多層盛溶接では、通常とくに、第1層(初層)の溶接金属が、他の層の溶接金属に比べて鋼板の溶け込み割合(希釈率)が高くなるため、第1層の溶接金属の組成が上記した溶接金属部組成の範囲内となるように、鋼板の溶け込み割合を調整することが好ましい。第1層の溶接金属の鋼板の溶け込み割合は、板厚、開先形状、溶接条件によって変化するが、とくに、溶接入熱量の影響が大きいため、溶接入熱量を変化させて鋼板の溶け込み割合を調整することが好ましい。なお、溶接入熱量は、高温割れ防止の観点から、5~70kJ/cmの範囲とすることが好ましい。
 <耐磨耗鋼板の製造方法>
 なお、被溶接材である耐摩耗鋼板の製造方法は、常用の耐摩耗鋼板の製造方法がいずれも適用できる。好ましくは、上記した鋼板組成を有する溶鋼を、転炉、電気炉等の、常用の溶製方法で溶製し、連続鋳造法あるいは造塊-分解圧延法等の、常用の鋳造方法により、所定寸法のスラブ等の鋼素材を得る。なお、溶製に際しては、真空脱ガス炉等による2次精錬を実施してもよい。得られた鋼素材は、更に、加熱されて、熱間圧延およびその後の冷却を施されて、表面硬さが400HBW以上である耐摩耗鋼板を得ることが好ましい。
 <溶接材料の製造方法>
 また、溶接材料(ソリッドワイヤ)の好ましい製造方法は次のとおりである。
 本発明で溶接継手の製造に使用される溶接材料(ソリッドワイヤ)の製造には、常用の溶接材料(ソリッドワイヤ)の製造方法がいずれも適用できる。
 例えば、上記したワイヤ組成を有する溶鋼を、電気炉、真空溶解炉等の常用の溶製方法で溶製し、所定形状の鋳型等に鋳造する。ついで、得られた鋼塊を、所定温度に加熱し、加熱された鋼塊に熱間圧延を施し、所定形状の鋼素材(棒状)を得る。ついで、得られた鋼素材(棒状)を複数回の冷間圧延(冷間伸線加工)と必要に応じて焼鈍を施して、所定寸法のワイヤを得る、ことが好ましい。なお、焼鈍は、焼鈍温度:800~1200℃で行うことが好ましい。
 以下、さらに実施例に基づき、本発明について説明する。
 表1に示す鋼板組成を有し、ブリネル硬さで400HBW~560HBWの表面硬さを有する耐摩耗鋼板(板厚:50 mm)を用意した。用意した耐摩耗鋼板から継手作製用試験板を採取し、開先加工を施した。開先は、V開先(開先角度:45°)とした。そして、その開先内に、表2に示す組成のソリッドワイヤ(1.2mmφ)を溶接材料としてガスメタルアーク溶接(シールドガス雰囲気:80%Ar+20%CO2)を行い、多層盛の溶接金属部を形成して、溶接継手を得た。なお、溶接は、予熱なしで、電流:180~350A、電圧:24~35V、溶接速度:30cm/min、パス間温度:100~250℃、とする条件の、下向き姿勢のガスメタルアーク溶接で行った。溶接時の気温は20℃、湿度は60%であった。
 使用した溶接材料(ソリッドワイヤ)はつぎのようにして製造した。
 表2に示す組成(ワイヤ組成)の溶鋼を、真空溶解炉で溶製し、鋼塊(100kgf)とした。得られた鋼塊を1200℃に加熱したのち、熱間圧延を施し、棒状の鋼素材を得た。得られた棒状の鋼素材にさらに、焼鈍を挟んで複数回の冷間伸線を施し、溶接用ソリッドワイヤ(1.2mmφ)を得た。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 溶接後、溶接金属部の板厚および幅中央位置のφ10mmの範囲から分析用試験片を採取し、湿式化学分析を用いて元素分析を実施した。
 また、溶接金属部および溶接熱影響部を光学顕微鏡(倍率:100倍)で観察し、溶接割れの有無を判定した。溶接熱影響部または溶接金属部で割れ発生が認められる場合は溶接割れ「有」と評価し、割れ発生が認められない場合は、溶接割れ「無」と評価した。
 得られた結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-I000004
 本発明例はいずれも、溶接割れ(高温割れおよび低温割れ)の発生が認められず、耐溶接割れ性に優れる溶接継手である、といえる。一方、本発明の範囲を外れる比較例では、溶接割れ(高温割れあるいは低温割れ)が発生しており、耐溶接割れ性が低下した溶接継手であるといえる。

Claims (11)

  1.  鋼板同士を溶接してなる溶接継手であって、
    前記鋼板が、ブリネル硬さで400HBW以上の表面硬さを有する耐摩耗鋼板であり、
    溶接金属部が、質量%で、
     C:0.20~0.80%、      Si:0.10~0.90%
     Mn:15.0~28.0%、      P:0.030%以下、
     S:0.030%以下、       Ni:0.01~10.00%、
     Cr:0.4~1.9%、       Mo:0.01~5.00%、
    を含み、残部Feおよび不可避的不純物からなる溶接金属部組成を有することを特徴とする溶接継手。
  2.  前記溶接金属部組成に加えてさらに、質量%で、V:1.0%以下、Ti:1.0%以下、Nb:1.0%以下、W:1.0%以下のうちから選ばれた1種または2種以上を含有する溶接金属部組成とすることを特徴とする請求項1に記載の溶接継手。
  3.  前記溶接金属部組成に加えてさらに、質量%で、Cu:1.0%以下、Al:0.10%以下、Ca:0.010%以下、REM:0.020%以下のうちから選ばれた1種または2種以上を含有する溶接金属部組成とすることを特徴とする請求項1または2に記載の溶接継手。
  4.  前記耐摩耗鋼板が、質量%で、C:0.10~0.50%、Si:0.10~0.90%、Mn:0.40~2.00%、P:0.030%以下、S:0.030%以下、Cr:0.10~2.00%、Mo:0.10~1.00%を含み、残部Feおよび不可避的不純物からなる鋼板組成を有することを特徴とする請求項1~3のいずれか1項に記載の溶接継手。
  5.  前記鋼板組成に加えてさらに、質量%で、Cu:1.0%以下、Ni:2.0%以下、V:0.5%以下、Ti:0.5%以下、Al:0.20%以下のうちから選ばれた1種または2種以上を含有する鋼板組成とすることを特徴とする請求項4に記載の溶接継手。
  6.  鋼板同士を溶接する溶接継手の製造方法であって、
    前記鋼板が、ブリネル硬さで400HBW以上の表面硬さを有する耐摩耗鋼板であり、
    溶接金属部が、質量%で、
     C:0.20~0.80%、      Si:0.10~0.90%
     Mn:15.0~28.0%、      P:0.030%以下、
     S:0.030%以下、       Ni:0.01~10.00%、
     Cr:0.4~1.9%、       Mo:0.01~5.00%、
    を含み、残部Feおよび不可避的不純物からなる溶接金属部組成を有することを特徴とする溶接継手の製造方法。
  7.  前記溶接金属部組成に加えてさらに、質量%で、V:1.0%以下、Ti:1.0%以下、Nb:1.0%以下およびW:1.0%以下のうちから選ばれた1種または2種以上を含有する溶接金属部組成とすることを特徴とする請求項6に記載の溶接継手の製造方法。
  8.  前記溶接金属部組成に加えてさらに、質量%で、Cu:1.0%以下、Al:0.10%以下、Ca:0.010%以下およびREM:0.020%以下のうちから選ばれた1種または2種以上を含有する溶接金属部組成とすることを特徴とする請求項6または7に記載の溶接継手の製造方法。
  9.  前記耐摩耗鋼板が、質量%で、C:0.10~0.50%、Si:0.10~0.90%、Mn:0.40~2.00%、P:0.030%以下、S:0.030%以下、Cr:0.10~2.00%、Mo:0.10~1.00%を含み、残部Feおよび不可避的不純物からなる鋼板組成を有し、
     前記溶接がガスメタルアーク溶接であり、該ガスメタルアーク溶接で用いる溶接材料が、質量%で、
     C:0.20~0.90%、      Si:0.10~1.00%
     Mn:16.0~30.0%、      P:0.030%以下、
     S:0.030%以下、       Ni:0.01~12.00%、
     Cr:0.1~2.5%、       Mo:0.10~6.00%
    を含み、残部Feおよび不可避的不純物からなるワイヤ組成を有するソリッドワイヤである、ことを特徴とする請求項6~8のいずれか1項に記載の溶接継手の製造方法。
  10.  前記耐摩耗鋼板が、前記鋼板組成に加えてさらに、Cu:1.0%以下、Ni:2.0%以下、V:0.5%以下、Ti:0.5%以下、Al:0.20%以下のうちから選ばれた1種または2種以上を含有する鋼板組成を有することを特徴とする請求項9に記載の溶接継手の製造方法。
  11.  前記ソリッドワイヤが、前記ワイヤ組成に加えてさらに、質量%で、V:1.0%以下、Ti:1.0%以下、Nb:1.0%以下およびW:1.0%以下のうちから選ばれた1種または2種以上、および/または、Cu:1.0%以下、Al:0.10%以下、Ca:0.010%以下およびREM:0.020%以下のうちから選ばれた1種または2種以上を含有するワイヤ組成を有することを特徴とする請求項9または10に記載の溶接継手の製造方法。
     
PCT/JP2021/029579 2020-09-10 2021-08-10 溶接継手及び溶接継手の製造方法 WO2022054492A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180055082.8A CN116194610A (zh) 2020-09-10 2021-08-10 焊接接头和焊接接头的制造方法
KR1020237007110A KR20230042371A (ko) 2020-09-10 2021-08-10 용접 조인트 및 용접 조인트의 제조 방법
PE2023001015A PE20231720A1 (es) 2020-09-10 2021-08-10 Junta de soldadura y metodo de fabricacion de la junta de soldadura
JP2021571815A JP7353393B2 (ja) 2020-09-10 2021-08-10 溶接継手及び溶接継手の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020151814 2020-09-10
JP2020-151814 2020-09-10

Publications (1)

Publication Number Publication Date
WO2022054492A1 true WO2022054492A1 (ja) 2022-03-17

Family

ID=80632568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029579 WO2022054492A1 (ja) 2020-09-10 2021-08-10 溶接継手及び溶接継手の製造方法

Country Status (6)

Country Link
JP (1) JP7353393B2 (ja)
KR (1) KR20230042371A (ja)
CN (1) CN116194610A (ja)
CL (1) CL2023000592A1 (ja)
PE (1) PE20231720A1 (ja)
WO (1) WO2022054492A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115446497A (zh) * 2022-10-18 2022-12-09 包头钢铁(集团)有限责任公司 一种稀土处理的nm500耐磨钢焊接方法
WO2023026763A1 (ja) * 2021-08-26 2023-03-02 Jfeスチール株式会社 サブマージアーク溶接用メタルコアードワイヤおよびそれを用いたサブマージアーク溶接方法
WO2024069986A1 (ja) * 2022-09-30 2024-04-04 日本製鉄株式会社 溶接金属、溶接継手、及び溶接構造物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2592168A1 (en) * 2011-11-11 2013-05-15 Tata Steel UK Limited Abrasion resistant steel plate with excellent impact properties and method for producing said steel plate
JP2017502842A (ja) * 2013-12-06 2017-01-26 ポスコPosco 極低温衝撃靭性に優れた高強度溶接継手部及びこのためのフラックスコアードアーク溶接用ワイヤ
WO2020039643A1 (ja) * 2018-08-23 2020-02-27 Jfeスチール株式会社 ガスメタルアーク溶接用ソリッドワイヤ
WO2020203335A1 (ja) * 2019-03-29 2020-10-08 Jfeスチール株式会社 極低温用高強度溶接継手の製造方法
WO2020203334A1 (ja) * 2019-03-29 2020-10-08 Jfeスチール株式会社 Tig溶接用溶加材

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4894288B2 (ja) 2005-12-28 2012-03-14 Jfeスチール株式会社 耐摩耗鋼板
JP2008214651A (ja) 2007-02-28 2008-09-18 Jfe Steel Kk 溶接性に優れた耐磨耗鋼板
CN103205627B (zh) 2013-03-28 2015-08-26 宝山钢铁股份有限公司 一种低合金高性能耐磨钢板及其制造方法
KR20150066372A (ko) 2013-12-06 2015-06-16 주식회사 포스코 내충격성 및 내마모성이 우수한 서브머지드아크용접 및 가스금속아크용접용 용접재료
CN109835014B (zh) 2017-11-28 2021-03-12 宝山钢铁股份有限公司 一种高强高韧耐磨复合钢板及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2592168A1 (en) * 2011-11-11 2013-05-15 Tata Steel UK Limited Abrasion resistant steel plate with excellent impact properties and method for producing said steel plate
JP2017502842A (ja) * 2013-12-06 2017-01-26 ポスコPosco 極低温衝撃靭性に優れた高強度溶接継手部及びこのためのフラックスコアードアーク溶接用ワイヤ
WO2020039643A1 (ja) * 2018-08-23 2020-02-27 Jfeスチール株式会社 ガスメタルアーク溶接用ソリッドワイヤ
WO2020203335A1 (ja) * 2019-03-29 2020-10-08 Jfeスチール株式会社 極低温用高強度溶接継手の製造方法
WO2020203334A1 (ja) * 2019-03-29 2020-10-08 Jfeスチール株式会社 Tig溶接用溶加材

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023026763A1 (ja) * 2021-08-26 2023-03-02 Jfeスチール株式会社 サブマージアーク溶接用メタルコアードワイヤおよびそれを用いたサブマージアーク溶接方法
JP7235185B1 (ja) * 2021-08-26 2023-03-08 Jfeスチール株式会社 サブマージアーク溶接用メタルコアードワイヤおよびそれを用いたサブマージアーク溶接方法
WO2024069986A1 (ja) * 2022-09-30 2024-04-04 日本製鉄株式会社 溶接金属、溶接継手、及び溶接構造物
JP7510104B1 (ja) 2022-09-30 2024-07-03 日本製鉄株式会社 溶接金属、溶接継手、及び溶接構造物
CN115446497A (zh) * 2022-10-18 2022-12-09 包头钢铁(集团)有限责任公司 一种稀土处理的nm500耐磨钢焊接方法

Also Published As

Publication number Publication date
JP7353393B2 (ja) 2023-09-29
PE20231720A1 (es) 2023-10-24
KR20230042371A (ko) 2023-03-28
CL2023000592A1 (es) 2023-09-29
JPWO2022054492A1 (ja) 2022-03-17
CN116194610A (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
JP7353393B2 (ja) 溶接継手及び溶接継手の製造方法
EP2130937B1 (en) High-strength welded steel pipe and process for manufacturing it
CN111183239B (zh) 奥氏体系不锈钢焊接金属以及焊接结构物
RU2393262C1 (ru) Стальной лист для дуговой сварки под флюсом
WO2012108517A1 (ja) クリープ特性に優れた溶接金属
JPWO2018185851A1 (ja) 縦シーム溶接鋼管
JP5493659B2 (ja) 大入熱溶接熱影響部の靭性に優れた高強度鋼
US20240051070A1 (en) Submerged arc welded joint
JP4427416B2 (ja) 溶接金属の靱性に優れた大入熱サブマージアーク溶接方法。
WO2019070002A1 (ja) オーステナイト系耐熱鋼用溶接材料、溶接金属および溶接構造物ならびに溶接金属および溶接構造物の製造方法
JP5005395B2 (ja) 高強度高靭性鋼用溶接ワイヤ
JP4673710B2 (ja) 溶接金属の靱性に優れた2電極片面1パス大入熱サブマージアーク溶接方法
TWI775607B (zh) 焊接接頭及其製造方法
WO2015159806A1 (ja) 強度、靭性および耐sr割れ性に優れた溶接金属
KR102506230B1 (ko) 오스테나이트계 스테인리스강
JPWO2018185853A1 (ja) 縦シーム溶接鋼管
JP4949210B2 (ja) 溶接熱影響部の靭性が優れた鋼およびその製造方法
JP4358898B1 (ja) 溶接性と継手低温靭性に優れる引張強さ780MPa以上の高張力厚鋼板の製造方法
JP4276576B2 (ja) 大入熱溶接熱影響部靭性に優れた厚手高強度鋼板
KR20230130122A (ko) Tig 용접 이음매
WO2018066573A1 (ja) オーステナイト系耐熱合金およびそれを用いた溶接継手
JP2022061854A (ja) 溶接継手の製造方法
JP2002371338A (ja) レーザー溶接部の靭性に優れた鋼
JP6515287B2 (ja) 溶接継手の製造方法
JP7272471B2 (ja) 鋼板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021571815

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866452

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202317011714

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20237007110

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21866452

Country of ref document: EP

Kind code of ref document: A1