JP6953870B2 - ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法 - Google Patents

ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法 Download PDF

Info

Publication number
JP6953870B2
JP6953870B2 JP2017148208A JP2017148208A JP6953870B2 JP 6953870 B2 JP6953870 B2 JP 6953870B2 JP 2017148208 A JP2017148208 A JP 2017148208A JP 2017148208 A JP2017148208 A JP 2017148208A JP 6953870 B2 JP6953870 B2 JP 6953870B2
Authority
JP
Japan
Prior art keywords
flux
cored wire
wire
oxide
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017148208A
Other languages
English (en)
Other versions
JP2019025525A (ja
Inventor
孟 松尾
孟 松尾
富士本 博紀
博紀 富士本
耕太郎 渡邊
耕太郎 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2017148208A priority Critical patent/JP6953870B2/ja
Publication of JP2019025525A publication Critical patent/JP2019025525A/ja
Application granted granted Critical
Publication of JP6953870B2 publication Critical patent/JP6953870B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法に関する。
近年、構造物材料の安全性に対する要求がますます厳しくなっている。その要求には、例えば機械的特性(引張強さ、及び靱性)並びに耐疲労特性がある。耐疲労特性とは、繰り返し応力に対する耐破壊特性のことであり、疲労強度によって評価される。疲労強度とは、材料に繰り返し応力を加えた場合に、応力を無限回数負荷しても破壊しない応力振幅の上限のことであり、疲労試験によって求められる。耐疲労特性が高い材料は、激しい振動に定期的に晒される構造物に適する。
一般的に、構造物の溶接部(溶接中に溶融凝固した金属である溶接金属と、溶接熱で組織、治金的性質、及び機械的性質等に変化が生じたが溶融凝固していない母材の部分である熱影響部とを含んだ部分の総称)の耐疲労特性は、母材と比較して低い傾向にあり、従って溶接部は疲労破壊の起点となりやすい。溶接部の耐疲労特性を高めるために、特許文献1及び2に開示されるような技術が提案されてきた。
特許文献1は、フラックス入りワイヤにNiを添加することで、溶接金属の相変態温度を低下させ、疲労強度に優れた溶接部を得ることを目的とした高Niフラックス入りワイヤが開示されている。この溶接ワイヤを用いた溶接では、溶接金属を低温域でマルテンサイト変態させて、変態時の体積膨張を利用して溶接部に圧縮残留応力を発生させ、溶接部の引張残留応力を低減するかあるいは溶接部に圧縮残留応力を付与することにより、溶接部の疲労強度を改善している。
特許文献2には、高Niフラックス入りワイヤにCaF2を添加することで、溶接金属の酸素を下げ、これにより、溶接部の疲労強度と溶接金属の靭性とを改善するフラックス入りワイヤが開示されている。
しかしながら、特許文献1及び特許文献2に開示されたメタル系フラックス入りワイヤは、全姿勢溶接できないという問題を有する。溶接姿勢が限定されるフラックス入りワイヤは、その適用範囲が限られる。特に大型構造物の溶接に用いられるフラックス入りワイヤは、立向上進溶接が可能である必要がある。
さらに、特許文献1及び特許文献2に開示されたメタル系フラックス入りワイヤは、溶接金属に低温割れが発生するという問題も有する。低温割れとは、溶接後、溶接部の温度が常温付近に低下してから溶接部に発生する割れの総称であり、ビード下割れ及び止端割れ等はこの割れに属する。低温割れは、一般にその形状が鋭い切り欠きになるので、溶接欠陥の中でも特に重大な欠陥の一つである。低温割れの発生は、溶接施工の際に溶接部に予熱を行うことにより抑制可能であるが、予熱工程は溶接施工の費用及び工期を大きく増大させる。
以上述べられた理由により、産業界では、機械的特性(引張強さ及び靱性)並びに耐疲労特性に優れた溶接金属を製造可能であり、全姿勢溶接(特に立向上進溶接)が可能であり、且つ予熱作業を行うことなく、又は簡易的な予熱作業のみで低温割れの発生を抑制可能な溶加材、及び溶接方法(溶接継手の製造方法)が待望されている。
特開2007−296535号公報 特開2014−050882号公報
本発明は、上記背景技術の問題点に鑑み、溶接部に高い機械的特性(引張強さ及び靱性)を付与しながら、溶接部の疲労強度を改善することができ、耐低温割れ性に優れ、溶接作業性が高く、且つ全姿勢溶接が可能なガスシールドアーク溶接用フラックス入りワイヤと、溶接継手の製造方法とを提供することを目的とする。
本発明の要旨は次のとおりである。
(1)本発明の一態様に係るガスシールドアーク溶接用フラックス入りワイヤは、鋼製外皮と、前記鋼製外皮の内部に充填されたフラックスと、を備え、前記フラックスが、前記フラックス入りワイヤの全質量に対する質量%で合計0.10〜3.00%の、CaF、MgF、LiF、NaF、KZrF、KSiF、及びNaAlFからなる群から選択される1種または2種以上である弗化物と、前記フラックス入りワイヤの前記全質量に対するTiO換算値が4.00〜7.50%のTi酸化物と、前記フラックス入りワイヤの前記全質量に対する、FeO、NaO、SiO、ZrO、MgO、Al、MnO及びKOの各々の換算値で合計0.05〜2.00%の、Fe酸化物、Na酸化物、Si酸化物、Zr酸化物、Mg酸化物、Al酸化物、Mn酸化物、及びK酸化物からなる群から選択される1種または2種以上である酸化物と、前記フラックス入りワイヤの前記全質量に対する質量%で合計0〜0.60%の、MgCO、NaCO、LiCO、CaCO、KCO、FeCO、及びMnCOからなる群から選択される1種または2種以上である炭酸塩と、を含み、前記CaFの含有量が、前記フラックス入りワイヤの前記全質量に対する質量%で0〜2.00%であり、CaO換算でのCa酸化物の含有量が、前記フラックス入りワイヤの前記全質量に対する質量%で0%以上0.20%未満であり、前記フラックス入りワイヤの、前記弗化物、前記酸化物、前記Ti酸化物、前記Ca酸化物、および前記炭酸塩を除く化学成分が、前記フラックス入りワイヤの前記全質量に対する質量%で、C:0.003〜0.150%、Si:0.35〜1.00%、Mn:0.01〜2.00%、P:0.030%以下、S:0.020%以下、Al:0.001〜0.500%、Ni:0.60%超16.00%以下、Cr:0〜16.00%、Mg:0.10〜0.90%、Ti:0〜0.10%、B:0〜0.0200%、Mo:0〜1.00%、Cu:0〜0.50%、Nb:0〜0.20%、V:0〜0.20%、Bi:0〜0.030%、Ca:0〜0.50%、及びREM:0〜0.010%を含み、残部がFe及び不純物からなり、式1によって算出されるCeqが0.35〜4.50%であり、式2によって算出されるMs点が450℃以下であり、さらに式3が満たされる。
Ceq=[C]+[Si]/24+[Mn]/6+[Ni]/40+[Cr]/5+[Mo]/4+[V]/14:式1
Ms=613−406×[C]−64×[Mn]−32×[V]−18×[Cr]−15×[Ni]−9×[Cu]−5×[Mo]:式2
6.00≦[Ni]+[Cr]≦30.00:式3
式1、式2、及び式3中の角括弧で囲まれた元素記号は、前記フラックス入りワイヤの、前記弗化物、前記酸化物、前記Ti酸化物、前記Ca酸化物、および前記炭酸塩を除く、前記化学成分における各前記元素記号に対応する元素の、前記フラックス入りワイヤの前記全質量に対する質量%での含有量である。
(2)上記(1)に記載のガスシールドアーク溶接用フラックス入りワイヤでは、式4によって算出されるX値が2.00%以下であってもよい。
X=0.3×([NaAlF]+[NaF]+[MgF])+0.4×([KSiF]+[KZrF])+0.5×([LiF])+1.8×([CaF]):式4
式4中の角括弧で囲まれた化学式は、各前記化学式に対応する化合物の、前記フラックス入りワイヤの前記全質量に対する質量%での含有量である。
(3)上記(1)又は(2)に記載のガスシールドアーク溶接用フラックス入りワイヤでは、式5によって算出されるY値が5.0以上27.0以下であってもよい。
Y=([TiO]+1.2×[SiO]+1.4×[Al]+1.5×[ZrO])/(F)1/2:式5
式5中の角括弧で囲まれた化学式について、[TiO ]はTi酸化物のTiO 換算値、[SiO ]はSi酸化物のSiO 換算値、[Al ]はAl酸化物のAl 換算値、[ZrO ]はZr酸化物のZrO 換算値での、前記フラックス入りワイヤの前記全質量に対する含有量であり、式5中のFは、前記弗化物のF換算値での合計含有量である。
(4)上記(1)〜(3)のいずれか一項に記載のガスシールドアーク溶接用フラックス入りワイヤでは、前記フラックスが、前記フラックス入りワイヤの全質量に対する質量%で0%以上15.0%未満の鉄粉をさらに含んでもよい。
(5)上記(1)〜(4)のいずれか一項に記載のガスシールドアーク溶接用フラックス入りワイヤでは、前記鋼製外皮がシームレス形状を有してもよい。
(6)上記(1)〜(5)のいずれか一項に記載のガスシールドアーク溶接用フラックス入りワイヤでは、前記鋼製外皮がスリット状の隙間を有してもよい。
(7)上記(1)〜(6)のいずれか一項に記載のガスシールドアーク溶接用フラックス入りワイヤは、さらに、前記フラックス入りワイヤの表面にパーフルオロポリエーテル油を備えてもよい。
(8)本発明の別の態様に係る溶接継手の製造方法は、1パスから最終パスのいずれか1つ以上において、上記(1)〜(7)のいずれか一項に記載のガスシールドアーク溶接用フラックス入りワイヤを用いて、ガスシールドアーク溶接する工程を備える。
(9)本発明の別の態様に係る溶接継手の製造方法は、上記(1)〜(7)のいずれか一項に記載のガスシールドアーク溶接用フラックス入りワイヤを用いて、ガスシールドアーク溶接することで、溶接止端部に付加溶接をする工程を備える。
本発明に係るフラックス入りワイヤは、引張強さ、靱性、疲労強度及び耐低温割れ性に優れ、良好なビード形状を有する溶接部を得ることができる。さらに、本発明に係るフラックス入りワイヤを用いて溶接をした場合、溶接作業性が高い。本発明に係るフラックス入りワイヤは、あらゆる種類のシールドガスと組み合わせても上述の効果を得ることができるが、特に、ArとCOの混合ガスをシールドガスとして用いる溶接に供された場合に顕著な優位性を示す。さらに、本発明に係る溶接継手の製造方法は、全姿勢溶接への適用が可能であり、且つ溶接金属の割れを防止するための予熱作業が不要となるか、または、予熱作業を著しく低減できる。
フラックス入りワイヤのX値と、スパッタ量との関係を示すグラフである。 2mmVノッチシャルピー衝撃試験片及び丸棒引張り試験片の採取位置を示す概略図である。 疲労試験体(角回し継手)を示す概略図である。
本実施形態に係るフラックス入りワイヤは、鋼製外皮と、鋼製外皮の内部に充填されたフラックスとを備える。以下、本実施形態に係るフラックス入りワイヤを構成する要件の限定理由について説明する。
まず、本実施形態に係るフラックス入りワイヤのフラックスに含まれる成分について説明する。
本実施形態に係るフラックス入りワイヤのフラックスは、弗化物と、Ti酸化物と、酸化物(Ti酸化物およびCa酸化物を除く)と、を含み、好ましくは、さらに炭酸塩を含む。また、本実施形態に係るフラックス入りワイヤのフラックスには、Ca酸化物及び鉄粉がさらに含まれても良いが、Ca酸化物及び鉄粉は本実施形態に係るフラックス入りワイヤの課題を解決するために不要である。以下に、これら成分について詳細に説明する。なお、以下の説明において「%」は、特に説明がない限り、「フラックス入りワイヤの全質量に対する質量%」を意味する。
(Ti酸化物のTiO換算値:フラックス入りワイヤの全質量に対する質量%で4.00〜7.50%)
本実施形態に係るフラックス入りワイヤのフラックスは、TiO換算値で、フラックス入りワイヤの全質量に対する質量%で4.0〜7.5%のTi酸化物を含む。なお、Ti酸化物のTiO換算値とは、Tiの酸化物が全てTiOであると仮定した場合の、TiOの含有量を意味する。以下、「Ti酸化物のTiO換算値での含有量」を「Ti酸化物の含有量」と略す場合がある。TiO換算値は、フラックス入りワイヤに含まれる酸化物として存在するTiの質量をEPMA等の分析機器を用いて分析し、この酸化物としてのTiの質量に基づき算出することで求められる。なお、以下で説明するCa酸化物などについても、Ti酸化物に関し上述した事項と同様とする。
Ti酸化物は主にスラグ形成剤として作用する。Ti酸化物の含有量が4.00%未満であるフラックス入りワイヤを用いて立向上進溶接を行う場合、溶融金属を垂れ落ちないように支えるために十分な量のスラグを確保することができないので、立向溶接性が確保できない。従って、Ti酸化物の含有量の下限値を4.00%とする。Ti酸化物の含有量の下限値は、より好適には4.20%である。立向溶接性を向上させるために、Ti酸化物の含有量の下限値を、4.40%、4.60%、4.80%、又は、5.30%としてもよい。
一方、7.50%を超えるTi酸化物は、スラグ量を過剰に増大させるので、スラグまきこみの欠陥を増加させる。従って、Ti酸化物の含有量の上限値を7.50%とする。Ti酸化物の含有量の上限値は、より好適には7.00%である。必要に応じて、Ti酸化物の含有量の上限値を、6.70%、6.40%、6.20%、6.00%、5.90%、又は、5.80%としてもよい。
(弗化物の、フラックス入りワイヤの全質量に対する質量%での合計含有量:0.10〜3.00%)
本実施形態に係るフラックス入りワイヤのフラックスは、フラックス入りワイヤの全質量に対する質量%で合計0.10〜3.00%の弗化物を含む。フラックス中の弗化物は、溶接金属中の拡散性水素量を減少させて、溶接金属の耐低温割れ性を顕著に向上させる働きを有する。この理由は明らかではないが、弗化物中のFと水素(H)とが溶接中に結合して弗化水素(HF)となり、このHFが溶接金属外に放出されるからであると推測される。しかしながら、フラックス中の弗化物量の合計が0.10%未満である場合、溶接金属中の拡散性水素量が十分に低減されないので、溶接金属の耐低温割れ性が不十分になる。従って、本実施形態に係るフラックス入りワイヤのフラックスは、合計0.10%以上の弗化物を含むことが必要とされる。溶接金属の拡散性水素量をさらに低減するために、弗化物の合計量の下限を0.15%、0.20%、又は0.25%としてもよい。
一方、弗化物の含有量が過剰である場合、溶接中のスパッタ量が増大する。従って、弗化物の、フラックス入りワイヤの全質量に対する質量%での合計含有量は3.00%以下とされる。拡散性水素量の低減よりもスパッタ発生量の低減を優先させたい場合には、弗化物の合計量の上限を2.50%、2.00%、1.50%、1.00%、又は、0.50%としても差し支えない。
(弗化物の種類:CaF、MgF、LiF、NaF、KZrF、KSiF、及びNaAlFからなる群から選択される1種または2種以上)
本実施形態に係るフラックス入りワイヤの弗化物は、CaF、MgF、LiF、NaF、KZrF、KSiF、及びNaAlFからなる群から選択される1種または2種以上である。これら弗化物が電離して生じたCa、Mg、Li、Na、K、Zr、Si、およびAlは、酸素と結合して溶接金属中の酸素量を低減させる、脱酸元素として作用する。これら各種の弗化物の含有量の下限値は、弗化物の合計が0.10%以上となる限り、特に限定されない。
上述された弗化物の合計含有量、および後述するCaFの含有量が規定範囲内である限り、弗化物の種類および組成は限定されない。しかし、KZrF及びKSiFはアーク安定剤としても機能するので、本実施形態に係るフラックス入りワイヤの弗化物は、KZrF及びKSiFを含むことが好ましい。また、アークの安定性の観点からは、複数種類の弗化物をフラックスに含有させ、これにより単一種類の弗化物の含有量を2.0%以下にすることが好ましい。さらに、弗化物は、後述するスパッタ発生指数Xを増大させにくいNaAlF、NaF、及びMgFのいずれかを含むことが好ましい。従って、フラックス入りワイヤの全質量に対する質量%での弗化物の合計含有量に対する、フラックス入りワイヤの全質量に対する質量%でのNaAlF、NaF、およびMgFの合計含有量が、50%以上であることがより好ましく、60%以上、80%以上、90%以上又は100%であることが一層好ましい。
(スパッタ発生指数X(X値):好ましくは2.00%以下)
弗化物の含有量が大きすぎる場合、溶接の際に生じるスパッタの量が過剰になり、溶接性が劣化する。本発明者らは、弗化物量を可能な限り増加させ、かつスパッタ量を許容範囲内まで減少させる方法について検討を行った。その結果、本発明者らは、NaAlF、NaF、およびMgFは他の種類の弗化物よりもスパッタ量を増大させにくく、CaFは他の種類の弗化物よりもスパッタ量を増大させやすいことを見出した。そして本発明者らはさらなる検討を行った結果、以下の式4によって算出されるスパッタ発生指数X(X値)とスパッタ量との間に良好な相関関係があることを見いだした。
X=0.3×([NaAlF]+[NaF]+[MgF])+0.4×([KSiF]+[KZrF])+0.5×([LiF])+1.8×([CaF]):式4
なお、含有されない弗化物については、上式にゼロを代入する。
上述の式4において、角括弧で囲まれた化学式は、各化学式に対応する弗化物の、フラックス入りワイヤの全質量に対する質量%での含有量である。本発明者らは、各種弗化物の添加量とスパッタ発生量との関係を調査し、各弗化物がスパッタの発生量に及ぼす影響を明らかにする回帰式を得た。図1は、フラックス入りワイヤのX値とスパッタ量との関係を示すグラフである。図1のグラフの横軸は、上述の式4によって得られるX値であり、縦軸はスパッタ発生量である。スパッタ発生量は、溶接姿勢が下向き、ワイヤ径が1.2mm、電極極性がプラス、電流値が220A、電圧値が22V、速度が25cm/min、シールドガス種がAr−20%COガス、及びシールドガス流量が25L/minである直流ガスシールドアーク溶接を行った際に発生したスパッタの重量を、溶接時間で割った値である。
図1のグラフから、X値とスパッタ量との間に良好な相関関係があり、スパッタ量を3.5g/min以下にするためにはX値を2.0%以下にすることが好ましいとわかる。従って、本実施形態に係るフラックス入りワイヤでは、X値が2.00%以下となるように弗化物の含有量を制御することが好ましい。弗化物の含有量の単なる合計値を上述のように管理することによってもスパッタ量は制御可能であるが、X値を用いて弗化物の含有量を管理することは、スパッタ量抑制と溶接金属の水素量低減との両方を達成しやすくなるので、好ましい。X値の好ましい上限値は1.80%である。スパッタ発生量をさらに低減させたい場合、X値の上限値を1.60%、1.40%、1.20%、1.00%、0.90%、0.80%、又は、0.70%としてもよい。
X値の下限値を限定する必要はない。しかしながら、弗化物の合計量を0.10%以上とする必要があるので、弗化物量の規定を満たし得るX値の最小値を、X値の下限値としてもよい。すなわち、X値が最小となるのは、弗化物の合計が最低値であり、且つ、弗化物がNaAlF、NaF、MgFのいずれかからなる場合である。従って、X値の下限値が0.03%(=0.3×0.10)を下回る可能性はない。このため、X値の下限値を0.03%としてもよい。拡散性水素量の一層の低減を図る場合には、X値の下限値を0.05%、0.07%、0.09%、0.11%としても差し支えない。X値は、弗化物の合計が上述した下限値以上である限り、小さい方が好ましい。
(CaFの含有量:フラックス入りワイヤの全質量に対する質量%で0〜2.00%)
CaFは、特にスパッタ量を増大させやすい弗化物である。本発明者らは、2.00%超のCaFは、多量のスパッタを発生させ、溶接作業性を悪化させることを知見した。従って、本実施形態に係るフラックス入りワイヤでは、CaFの含有量を2.00%以下とする必要がある。CaFの含有量の好ましい上限値は1.50%である。必要に応じて、CaFの含有量を、1.00%以下、0.50%以下、又は0.05%以下としてもよい。また、本実施形態に係るフラックス入りワイヤはCaFを必須としないので、CaFの含有量の下限値は0%である。
(Ti酸化物及びCa酸化物を除く酸化物の含有量の合計量:フラックス入りワイヤの全質量に対する質量%で0.05〜2.00%)
(Ti酸化物及びCa酸化物を除く酸化物の種類:Fe酸化物、Na酸化物、Si酸化物、Zr酸化物、Mg酸化物、Al酸化物、Mn酸化物、及びK酸化物からなる群から選択される1種または2種以上)
本実施形態に係るフラックス入りワイヤのフラックスは、上述の通りTi酸化物を含む。また、後述の通り、本実施形態に係るフラックス入りワイヤのフラックスでは、Ca酸化物の含有量(CaO換算値)が0.10%以下とされる。本実施形態に係るフラックス入りワイヤのフラックスは、これらTi酸化物およびCa酸化物以外の酸化物も、スラグ形成剤として含む。本実施形態に係るフラックス入りワイヤにおいて、スラグ形成剤としての酸化物は、Fe酸化物、Na酸化物、Si酸化物、Zr酸化物、Mg酸化物、Al酸化物、Mn酸化物、及びK酸化物からなる群から選択される1種または2種以上である。以降、単に「酸化物」と記載した場合、その用語は上述の酸化物群を意味し、Ti酸化物及びCa酸化物を含まない。
TiO換算値で管理される上述のTi酸化物の含有量と同様に、Fe酸化物、Na酸化物、Si酸化物、Zr酸化物、Mg酸化物、Al酸化物、Mn酸化物、及びK酸化物の含有量は、FeO、NaO、SiO、ZrO、MgO、Al、MnO及びKOの含有量それぞれに換算した値で管理される。以下「Fe酸化物、Na酸化物、Si酸化物、Zr酸化物、Mg酸化物、Al酸化物、Mn酸化物、及びK酸化物からなる群から選択される1種または2種以上である酸化物の、FeO、NaO、SiO、ZrO、MgO、Al、MnO又はKOの各々の換算値での含有量の合計値」を、単に「酸化物の合計量」と略す。
酸化物は、溶接ビード形状を良好に維持する効果と、立向溶接性を向上させる効果とを有する。Na酸化物、K酸化物、Mg酸化物、及びFe酸化物等は、アークを安定させる効果も有する。その効果を得るためには、酸化物の含有量を0.05%以上にする必要がある。これらの効果をより発揮させるために、酸化物の含有量の下限を、0.10%、0.15%、0.20%、としてもよい。しかし、酸化物の含有量が2.00%を超えると、スラグの巻き込みが生じる恐れがある。酸化物の好ましい上限値は1.50%、1.00%、又は0.50%である。
酸化物の含有量を、酸化物の種類ごとに規定する必要はないが、例えば、Si酸化物:0.08%以上0.95%以下、Zr酸化物:0.80%以下、Al酸化物:0.50%以下である組成が好適である。
(Y値:好ましくは5.0〜27.0)
本実施形態に係るフラックスワイヤでは、以下の式5によって算出されるY値を5.0以上27.0以下とすることが好ましい。
Y=([TiO]+1.2×[SiO]+1.4×[Al]+1.5×[ZrO])/(F)1/2:式5
なお、含有されない酸化物についてはは、上式にゼロを代入する。
上の式5中の角括弧で囲まれた各化学式に対応する化合物は、各化合物の、フラックス入りワイヤの全質量に対する質量%での含有量を示し、先述のような各酸化物に対応する換算値での含有量を示す。式5中の「F」は、弗化物のF換算値での合計含有量であり、下記の式Aにより表される。
0.487×[CaF]+0.610×[MgF]+0.732×[LiF]+0.452×[NaF]+0.402×[KZrF]+0.517×[KSiF]+0.543×[NaAlF]:式A
なお、含有されない弗化物については、上式にゼロを代入する。
上の式A中の角括弧で囲まれた弗化物の化学式は、各化学式に対応する弗化物の、フラックス入りワイヤの全質量に対する質量%を示す。
本発明者らは、酸化物のうちTi酸化物(TiO換算値)、Si酸化物(SiO換算値)、Al酸化物(Al換算値)、及びZr酸化物(ZrO換算値)の量と弗化物量(F換算値)との関係を適正な範囲内にすることが好ましい旨を見いだした。弗化物量に対してTi酸化物、Si酸化物、Al酸化物、及びZr酸化物の量が多すぎる、すなわち、Y値が27.0超であるフラックス入りワイヤを用いて溶接を行った場合、高融点を有する酸化物系スラグの量が多くなるので、スラグ巻込みが生じやすくなることを本発明者らは知見した。一方、弗化物量に対してTi酸化物、Si酸化物、Al酸化物、及びZr酸化物の量が少なすぎる、すなわち、Y値が5.0未満であるフラックス入りワイヤを用いて溶接を行った場合、弗化物によってアーク力が高まり、溶融金属が圧迫され、ビード形状の劣化と立向溶接性の劣化とが生じやすくなることを本発明者らは知見した。従って、本実施形態に係るフラックス入りワイヤのY値は5.0〜27.0とされることが好ましい。Y値の下限値は、さらに好ましくは7.0、9.0、10.0、11.0、又は12.0である。Y値の上限値は、さらに好ましくは25.0、22.5、20.0、18.0、16.0又は15.0である。
(炭酸塩の含有量の合計:フラックス入りワイヤの全質量に対する質量%で0〜0.60%)
本実施形態に係るフラックス入りワイヤのフラックスは、炭酸塩を含む必要がない。従って、本実施形態に係るフラックス入りワイヤにおいて、炭酸塩の含有量の下限値は0%である。しかしながら炭酸塩は、アークによって電離し、COガスを発生させる。COガスは、溶接雰囲気中の水素分圧を下げ、溶接金属中の拡散性水素量を低減させる。この効果を得るために、本実施形態に係るフラックス入りワイヤのフラックスは炭酸塩を含んでも良い。
一方、0.60%を超える量の炭酸塩は、溶接ビードの垂れを生じさせて溶接作業性を悪化させるおそれがある。従って、本実施形態に係るフラックス入りワイヤのフラックスが含む炭酸塩の上限値を、0.60%とする必要がある。炭酸塩の含有量の好ましい上限値は0.40%である。必要に応じて、炭酸塩の含有量の上限値を、0.30%、0.20%、0.10%、0.06%、又は0.03%としてもよい。
(炭酸塩の種類:MgCO、NaCO、LiCO、CaCO、KCO、FeCO、及びMnCOからなる群から選択される1種または2種以上)
本実施形態に係るフラックス入りワイヤのフラックスに含まれる炭酸塩の種類は、MgCO、NaCO、LiCO、CaCO、KCO、FeCO、及びMnCOからなる群から選択される1種または2種以上である。炭酸塩の含有量が上述の範囲内である限り、炭酸塩の種類および組成は限定されない。
(Ca酸化物:フラックス入りワイヤの全質量に対する質量%で、CaO換算で0.20%未満)
本実施形態に係るフラックス入りワイヤのフラックスにCa酸化物が含まれる場合がある。しかしながら、本実施形態に係るフラックス入りワイヤでは、フラックス中のCa酸化物の含有量を0.20%未満(CaO換算)にする必要がある。Ca酸化物はスパッタを増大させて溶接性を悪化させる場合がある。Ca酸化物の含有量の好ましい上限値は0.15%、0.10%、0.05%、0.02%、又は、0.01%である。Ca酸化物は含まれないほうが好ましいので、Ca酸化物の含有量の下限値は0%である。Ca酸化物は、通常のフラックスの材料に不純物として0.20%以上含まれるおそれがあるので、本実施形態に係るフラックス入りワイヤの製造の際には、Ca酸化物が含まれない材料を選定する必要がある。
(鉄粉:好ましくはフラックス入りワイヤの全質量に対する質量%で0%以上15.0%未満)
上述の通り、本実施形態に係るフラックス入りワイヤのフラックスに鉄粉が含まれていても良い。鉄粉は、フラックス入りワイヤにおけるフラックスの充填率の調整のために、または溶着効率の向上のために必要に応じて含有させる場合がある。
鉄粉含有量は特に規定されない。しかし、鉄粉の表層に付着した酸素が、溶接金属の酸素量を増加させて靭性を低下させる場合がある。したがって、本実施形態に係るフラックス入りワイヤでは、鉄粉の含有量を15.0%未満、又は10.0%未満にすることが好ましい。必要に応じて、鉄粉の含有量の上限値を8.0%、6.0%、4.0%、2.0%、又は、1.0%に制限してもよい。本実施形態に係るフラックス入りワイヤの課題を解決するために鉄粉は不要であるので、本実施形態に係るフラックス入りワイヤでは、鉄粉の含有量の下限値は0%である。
本実施形態に係るフラックス入りワイヤのフラックスは、上述された成分以外の成分を含んでも良い。例えば、溶接金属の化学成分およびCeq等を制御するための合金成分を、フラックス中に弗化物、酸化物、または炭酸塩ではない状態(例えば金属粉または合金粉の状態)で含有させてもよい。なお、金属粉及び合金粉は、溶接の際に鋼製外皮と同様に溶融し、溶接金属に影響する。従って、後述する合金成分は、金属粉若しくは合金粉の形態でフラックス入りワイヤに含まれても、又は鋼製外皮の形態でフラックス入りワイヤに含まれても、同じ効果を奏する。また、本実施形態に係るフラックス入りワイヤは、上述された成分以外の弗化物、酸化物、炭酸塩等も、その特性を損なわない範囲で含有しても良い。この場合、上述された成分以外の弗化物、酸化物、及び炭酸塩の含有量は、上述された弗化物、酸化物、及び炭酸塩の含有量には含まれないものとする。また、上述された成分以外の弗化物、酸化物、及び炭酸塩を構成する元素の含有量は、後述する合金成分には含まれないものとする。
次に、本実施形態に係るフラックス入りワイヤの、弗化物、酸化物(Ti酸化物及びCa酸化物を除く)、Ti酸化物、Ca酸化物、および炭酸塩を除く化学成分について説明する。以下の説明において、特に説明がない限り、「%」は、「フラックス入りワイヤの全質量に対する質量%」を意味する。以下に説明する化学成分は、鋼製外皮に含まれても良いし、上述されたようにフラックスに含まれても良いし、鋼製外皮の外表面のめっきに含まれても良い。以下の説明において「弗化物、酸化物、Ti酸化物、Ca酸化物、および炭酸塩を除く化学成分」を単に「化学成分」又は「合金成分」と称する場合がある。
(C:0.003〜0.150%)
Cは、固溶強化によって溶接金属の耐力及び引張強さを確保するために重要な元素である。フラックス入りワイヤの化学成分のC含有量が0.003%未満では、溶接金属の耐力及び引張強さを確保できない。一方、フラックス入りワイヤの化学成分のC含有量が0.150%を超えると、溶接金属中のC含有量が過剰になり、溶接金属の耐力及び引張強さが過度に上昇して、溶接金属の靭性が低下する。溶接金属の靭性、耐力、及び引張強さの全てを安定的に確保するためには、フラックス入りワイヤの化学成分のC含有量の下限値を0.003%にすることが好ましく、フラックス入りワイヤの化学成分のC含有量の上限値を0.080%にすることが好ましい。必要に応じて、C含有量の下限を0.010%、0.020%、0.030%、0.040%、0.050%、又は0.060%としてもよい。同様に、C含有量の上限を0.120%、0.100%、0.090%、0.080%、又は0.070%としてもよい。
(Si:0.35〜1.00%)
Siは、脱酸元素であり、溶接金属の酸素量を低減して溶接金属の清浄度を高める働きを有する。さらに本発明者らは、フラックス入りワイヤに含まれるSiが溶接金属の粘性を高め、立向溶接時の溶接金属の垂れを防ぎ、立向溶接性を向上させることを知見した。シールドガスをAr−20%CO2とした場合、フラックス入りワイヤのSi含有量が0.35%以上にすることにより、垂れ落ち上限電流値が顕著に上昇した。以上の知見に基づき、本発明者らは、本実施形態に係るフラックス入りワイヤのSi含有量の下限値を0.35%と規定した。ただし、フラックス入りワイヤの化学成分のSi含有量が1.00%を超える場合、Siが溶接金属の靱性を劣化させる。溶接金属の靭性を安定して確保するために、フラックス入りワイヤの化学成分のSi含有量の上限は、0.90%、0.80%、0.70%又は0.60%としてもよい。必要に応じて、Si含有量の下限を0.40%、0.45%、0.50%、又は0.60%としてもよい。
(Mn:0.10〜2.00%)
Mnは、溶接金属の焼入性を確保して溶接金属の強度を高めるために必要な元素である。その効果を確実に得るためには、フラックス入りワイヤの化学成分のMn含有量を0.10%以上にする必要がある。溶接金属の強度をさらに高めるために、フラックス入りワイヤの化学成分のMn含有量の下限値を0.15%、0.20%、0.30%としてもよい。一方、フラックス入りワイヤの化学成分のMn含有量が3.50%を超える場合、溶接金属の粒界脆化感受性が増加して溶接金属の靱性が劣化する。従って、Mn含有量の上限値を1.80%とする。好ましくは、Mn含有量の上限値は1.70%、1.50%、1.30%、1.10%である。
(P:0.030%以下)
Pは不純物元素であり、溶接金属の靱性を低下させるので、フラックス入りワイヤ中のP含有量は極力低減させる必要がある。従って、フラックス入りワイヤの化学成分のP含有量の下限値は0%である。また、フラックス入りワイヤの化学成分のP含有量が0.030%以下であれば、Pの靱性への悪影響が許容できる範囲内となる。溶接金属の凝固割れを防止するために、フラックス入りワイヤの化学成分のP含有量は、より好適には、0.020%以下、0.015%以下、又は0.010%以下である。
(S:0.020%以下)
Sも不純物元素であり、溶接金属中に過大に存在すると、溶接金属の靱性と延性とをともに劣化させるので、フラックス入りワイヤ中のS含有量は極力低減させることが好ましい。従って、フラックス入りワイヤの化学成分のS含有量の下限値は0%である。また、フラックス入りワイヤの化学成分のS含有量が0.020%以下であれば、溶接金属の靱性及び延性にSが及ぼす悪影響が許容できる範囲内となる。フラックス入りワイヤの化学成分のS含有量は、より好適には、0.010%以下、0.008%以下、0.006%以下、又は0.005%以下である。
(Al:0.001〜0.500%)
Alは脱酸元素であり、Siと同様に、溶接金属中の酸素量を低減させ、溶接金属の清浄度向上効果を有する。フラックス入りワイヤの化学成分のAl含有量が0.001%未満では、溶接金属中の酸素量が高くなり、靭性を確保できない。フラックス入りワイヤの化学成分のAl含有量が0.500%を超える場合、Alが窒化物及び酸化物等を形成して、溶接金属の靱性を減少させ、さらにAlがスパッタも増加させる。従って、フラックス入りワイヤの化学成分のAl含有量の上限を0.500%とする。フラックス入りワイヤの化学成分のAl含有量の上限値は、好ましくは0.480%、0.450%、0.400%、又は0.300%である。フラックス入りワイヤの化学成分のAl含有量の下限値は、好ましくは0.005%、0.010%、0.050%、0.100%、0.150%又は0.200%である。
(Ni:0.60超16.00%以下)
(Cr:0〜16.00%)
(3.00≦[Ni]+[Cr]≦30.00)
Niは溶接金属のMs点を低下させ、溶接部の疲労強度を向上させる効果がある。また、Niの固溶靭化により、溶接金属の靭性が向上する。しかし、Niを16.00%超添加すると、溶接金属の耐高温割れ性および靭性が低下する。Niが0.60%以下となると、溶接金属の靭性が確保できないので、Niは0.60%超添加する必要がある。
Crも、溶接金属のMs点を低下させる効果があるので、フラックス入りワイヤに含有させることが好ましい。しかし、Ni及びCrの合計含有量が、ワイヤ全質量の5.1〜30.0%であれば、Crはフラックス入りワイヤに含有させなくてもよい。従って、Cr含有量の下限値は0%としてもよい。一方、16.00%超のCrをフラックス入りワイヤに含有させると、溶接金属が過度に硬化して、耐低温割れ性や靭性が低下する。
本実施形態に係るフラックス入りワイヤでは、Niの含有量及びCrの含有量それぞれが上述の通り規定されるが、さらにNi及びCrの合計含有量が3.00〜30.00%とされる。即ち、本実施形態に係るフラックス入りワイヤは、以下の式3を満たす。
3.00≦[Ni]+[Cr]≦30.00:式3
式3中の角括弧で囲まれた元素記号は、フラックス入りワイヤの弗化物、酸化物、Ti酸化物、Ca酸化物、および炭酸塩を除く、化学成分における各元素記号に対応する元素の、フラックス入りワイヤの全質量に対する質量%での含有量である。
Ni及びCrの合計含有量がワイヤ全質量の3.00%未満の場合、溶接部の疲労強度が確保できない。また、NiとCrの合計含有量が30.00%超では溶接部の耐割れ性及び靭性等が劣化する場合がある。そのため、Ni及びCrの合計含有量は30.00%以下とする必要がある。Ni及びCrの合計含有量の好ましい下限は、6.00%、8.00%、又は10.00%である。Ni及びCrの合計含有量の好ましい上限は、28.00%、26.00%、又は24.00%である。
(Mg:0.10〜0.90%)
Mgは脱酸剤であり、溶接金属の酸素量を低減し、これにより溶接金属の靭性を向上させる元素である。その効果を十分に得るために、フラックス入りワイヤの化学成分のMg含有量を0.10%以上とする必要がある。Mg含有量が0.10%未満である場合、溶接金属中の酸素量が多くなりすぎて、溶接金属の靭性を確保できない。一方、フラックス入りワイヤの化学成分のMg含有量が0.90%を超える場合、アーク中で激しくMgと酸素とが反応し、スパッタ及びヒュームの発生量が増大する。従って、Mg含有量を0.90%以下とする。なお、フラックス入りワイヤの化学成分のMg含有量の好ましい下限値は、0.15%、0.20%、0.25%、又は0.30%である。フラックス入りワイヤの化学成分のMg含有量の好ましい上限値は、0.70%、0.55%、0.45%、又は0.35%である。
本実施形態に係るフラックス入りワイヤの化学成分は、以上の基本的な成分のほかに、必要に応じて下記の任意成分を含むことができる。しかし、本実施形態に係るフラックス入りワイヤは任意成分を含むことなくその課題を解決できるので、任意成分それぞれの含有量の下限値は0%である。
(Ti:0〜0.10%)
Tiは必須成分ではないので、フラックス入りワイヤの化学成分のTi含有量の下限値は0%である。一方、Tiは脱酸元素であり、溶接金属中の酸素量を低減させる効果がある。また、フラックス入りワイヤの化学成分に含まれるTiは、溶接金属中に僅かに残留して固溶Nを固定するので、固溶Nが溶接金属の靱性に及ぼす悪影響を緩和する効果を有する。従って、フラックス入りワイヤの化学成分が0.01%以上のTiを含有してもよい。しかしながら、フラックス入りワイヤの化学成分のTi含有量が0.10%を越えると、溶接金属において過度な析出物の生成による靱性劣化が生じるおそれがある。なお、フラックス入りワイヤの化学成分にTiを含有させる場合、一般的には、フェロチタン(鉄とチタンとの合金)をフラックス中に含有させる。フラックス入りワイヤの化学成分のTi含有量の上限値は、好ましくは0.08%、0.06%、0.04%、又は0.02%である。
(B:0〜0.0200%)
Bは必須成分ではないので、フラックス入りワイヤの化学成分のB含有量の下限値は0%である。一方、Bは、溶接金属において固溶Nと結びついてBNを形成するので、固溶Nが溶接金属の靭性に及ぼす悪影響を減じる効果を有する。また、Bは溶接金属の焼入性を高めるので溶接金属の強度を向上させる効果も有する。従って、フラックス入りワイヤの化学成分が0.0005%以上のBを含有してもよい。しかしながら、フラックス入りワイヤの化学成分のB含有量が0.0200%超になると、溶接金属中のBが過剰となり、粗大なBN及びFe23(C、B)等のB化合物を形成して溶接金属の靭性を劣化させるので、好ましくない。フラックス入りワイヤの化学成分のB含有量の上限値は、好ましくは0.0150%、0.0100%、0.0050%、0.0030%、又は0.0010%である。
(Mo:0〜1.00%)
Moは必須成分ではないので、フラックス入りワイヤの化学成分のMo含有量の下限値は0%である。一方、Moは、溶接金属の焼入性を向上させる効果を有するので、溶接金属の高強度化に有効な元素である。その効果を得るためには、フラックス入りワイヤの化学成分のMo含有量を0.01%以上とすることが好ましい。しかしながら、フラックス入りワイヤの化学成分のMo含有量が1.00%を超える場合、溶接金属の靭性が劣化するので、フラックス入りワイヤの化学成分のMo含有量は、1.00%以下とする。フラックス入りワイヤの化学成分のMo含有量の上限値は、好ましくは0.75%、0.50%、0.30%、0.10%、又は0.06%である。
(Cu:0〜0.50%)
Cuは必須成分ではないので、フラックス入りワイヤの化学成分のCu含有量の下限値は0%である。一方、Cuは、溶接金属の強度と靭性を向上させる効果を有する。その効果を十分に得るためには、フラックス入りワイヤの化学成分のCu含有量を0.01%以上とすることが好ましい。Cuは、フラックス入りワイヤの鋼製外皮の表面のめっきに含まれてもよく、および、フラックスに単体または合金として含まれても良い。Cuメッキは、防錆性、通電性、及び、耐チップ磨耗性を向上させる効果も有する。従って、フラックス入りワイヤの化学成分のCu含有量は、鋼製外皮及びフラックスに含有されているCuと、ワイヤ表面のめっきに含まれるCuとの合計量である。一方、フラックス入りワイヤの化学成分のCu含有量が0.50%を超えると、溶接金属の靭性が低下する。フラックス入りワイヤの化学成分のCu含有量の上限値は、好ましくは0.40%、0.30%、又は0.20%である。
(Nb:0〜0.20%)
Nbは必須成分ではないので、フラックス入りワイヤの化学成分のNb含有量の下限値は0%である。一方、Nbは、溶接金属において微細炭化物を形成し、この微細炭化物が溶接金属中で析出強化を生じさせるので、Nbは溶接金属の引張強さを向上させる。その効果を十分に得るためには、フラックス入りワイヤの化学成分のNb含有量を0.005%以上とすることが好ましい。しかしながら、フラックス入りワイヤの化学成分のNb含有量が0.20%を超えることは、Nbが溶接金属中で粗大な析出物を形成して溶接金属の靭性を劣化させるので、好ましくない。フラックス入りワイヤの化学成分のNb含有量の上限値は、好ましくは0.08%、0.06%、0.04%、又は0.02%である。
(V:0〜0.20%)
Vは必須成分ではないので、フラックス入りワイヤの化学成分のV含有量の下限値は0%である。一方、Vは溶接金属の焼入性を向上させるので、溶接金属の高強度化に有効な元素である。その効果を十分に得るためには、フラックス入りワイヤの化学成分のV含有量を0.01%以上とすることが好ましい。フラックス入りワイヤの化学成分のV含有量が0.20%を超える場合、溶接金属中のV炭化物の析出量が過剰となり、溶接金属が過剰に硬化し、溶接金属の靭性を劣化させる。フラックス入りワイヤの化学成分のV含有量の上限値は、好ましくは0.16%、0.12%、0.08%、0.04%、又は0.02%である。
(Bi:0〜0.030%)
Biは必須成分ではないので、フラックス入りワイヤの化学成分のBi含有量の下限値は0%である。一方、Biは、スラグの剥離性を改善する元素である。その効果を十分に得るために、フラックス入りワイヤの化学成分のBi含有量を0.005%以上、0.010%以上又は0.012%以上とすることが好ましい。一方、フラックス入りワイヤの化学成分のBi含有量が0.030%を超える場合、溶接金属に凝固割れが発生しやすくなるので、フラックス入りワイヤの化学成分のBi含有量の上限値は0.030%である。フラックス入りワイヤの化学成分のBi含有量の上限値は、好ましくは0.025%、0.020%、0.017%、または0.015%である。
(Ca:0〜0.50%)
(REM:0〜0.010%)
Ca及びREMは必須成分ではないので、フラックス入りワイヤの化学成分のCa含有量及びREM含有量の下限値は0%である。一方、Ca及びREMは、いずれも溶接金属中での硫化物の構造を変化させ、また、硫化物及び酸化物のサイズを微細化させ、これにより溶接金属の延性及び靭性を向上させる働きを有する。従って、フラックス入りワイヤの化学成分のCa含有量を0.002%以上としてもよく、フラックス入りワイヤの化学成分のREM含有量を0.0002%以上としてもよい。一方、フラックス入りワイヤの化学成分のCa含有量及びREM含有量が過剰である場合、スパッタ量が増大し、溶接性が損なわれる。従って、フラックス入りワイヤの化学成分のCa含有量の上限値は0.50%であり、フラックス入りワイヤの化学成分のREM含有量の上限値は0.010%である。
(残部:Feおよび不純物)
以上が本実施形態のフラックス入りワイヤの、弗化物、酸化物、Ti酸化物、Ca酸化物、および炭酸塩を除く化学成分の限定理由であるが、その他の残部成分はFeと不純物を含む。残部のFeは、例えば鋼製外皮に含まれるFe、およびフラックス中に添加された合金粉中のFe等である。不純物とは、フラックス入りワイヤを工業的に製造する際に、原料に由来して、又は製造工程の種々の要因によって混入する成分であって、本実施形態に係るフラックス入りワイヤに悪影響を与えない範囲で許容されるものを意味する。
(Ceq:0.35〜4.50%)
本実施形態に係るフラックス入りワイヤのCeqとは、以下の式1によって算出される、焼入性を示す指標(炭素当量)である。
Ceq=[C]+[Si]/24+[Mn]/6+[Ni]/40+[Cr]/5+[Mo]/4+[V]/14:式1
なお、含有されない元素については、上式にゼロを代入する。
式1中の角括弧で囲まれた元素記号は、フラックス入りワイヤの、弗化物、酸化物、Ti酸化物、Ca酸化物、および炭酸塩を除く、化学成分における各元素記号に対応する元素の、フラックス入りワイヤの全質量に対する質量%での含有量である。すなわち、本実施形態のフラックス入りワイヤの化学成分から算出されるCeq(フラックス入りワイヤのCeq)は、弗化物、酸化物、Ti酸化物、Ca酸化物、または炭酸塩の状態でフラックス入りワイヤに含まれている元素の含有量を考慮せずに算出される。弗化物、酸化物、Ti酸化物、Ca酸化物、または炭酸塩の状態でフラックス入りワイヤに含まれている元素は、溶接の際にスラグとして溶接金属の外部に排出されるので、溶接金属の焼入性に影響しない。
フラックス入りワイヤのCeqは、溶接金属の焼入性に影響する。フラックス入りワイヤのCeqが高い場合、溶接金属が硬化するので溶接金属の引張強さが向上するが、一方で溶接金属の靭性が低下する。本実施形態に係るフラックス入りワイヤでは、そのCeqが0.35%以上となるように、弗化物、酸化物、Ti酸化物、Ca酸化物、および炭酸塩を除く化学成分を制御する必要がある。フラックス入りワイヤのCeqが0.35%未満である場合、溶接金属のCeqも不足するので、溶接金属の引張強さが不足する。溶接金属の引張強さを高めるために、フラックス入りワイヤのCeqの下限を、0.38%、0.41%、0.44%又は0.46%としてもよい。一方、フラックス入りワイヤのCeqが4.50%を超える場合、溶接金属のCeqが過剰となることにより、溶接金属の靭性が不足する。溶接金属の靱性を高めるために、フラックス入りワイヤのCeqの上限値を、4.00%、3.50%、3.00%、2.50%としてもよい。
(Ms点が450℃以下)
本発明者らは、溶接金属の冷却過程における変態膨張を活用することで、その近傍に圧縮残留応力を導入することが、溶接部の疲労強度を高めるために効果的である旨を知見した。これを達成するためには、溶接金属のマルテンサイト変態開始温度(Ms点)をなるべく低くすることが必要である。そこで本発明者らがさらなる検討を重ねた結果、下記の式2によって得られるフラックス入りワイヤのMs点を450℃以下とすることで、必要な疲労強度が確保できることを知見した。
Ms=613−406×[C]−64×[Mn]−32×[V]−18×[Cr]−15×[Ni]−9×[Cu]−5×[Mo]:式2
なお、含有されない元素については、上式にゼロを代入する。
式2中の角括弧で囲まれた元素記号は、フラックス入りワイヤの、弗化物、酸化物、Ti酸化物、Ca酸化物、および炭酸塩を除く化学成分における各元素記号に対応する元素の、フラックス入りワイヤの全質量に対する質量%での含有量である。すなわち、本実施形態のフラックス入りワイヤの化学成分から算出されるMs点(フラックス入りワイヤのMs点)も、フラックス入りワイヤのCeqと同じく、弗化物、酸化物、Ti酸化物、Ca酸化物、または炭酸塩の状態でフラックス入りワイヤに含まれている元素の含有量を考慮せずに算出される。弗化物、酸化物、Ti酸化物、Ca酸化物、または炭酸塩の状態でフラックス入りワイヤに含まれている元素は、溶接の際にスラグとして溶接金属の外部に排出されるので、溶接金属のMs点に影響しない。
フラックス入りワイヤのMs点が450℃超になると、溶接金属のMs点を十分に低下させることができないので、熱影響部を含む母材に圧縮残留応力が導入されず、溶接継手の疲労強度が改善されない場合がある。一方、フラックス入りワイヤのMs点を450℃以下とすれば、溶接継手の疲労強度を確実に改善することができる。
フラックス入りワイヤのMs点の好ましい上限は、400℃、350℃、300℃、又は250℃である。なお、フラックス入りワイヤのMs点の下限値を規定する必要は無い。フラックス入りワイヤのMs点を低温化するためには、合金元素の含有量が多いほうが望ましい。ただし、合金元素の含有量を増すと、フラックス入りワイヤの製造コストが高くなるので、フラックス入りワイヤのMs点の下限を0℃、50℃、100℃、又は150℃としてもよい。
上述された事項が満たされる限り、本実施形態に係るフラックス入りワイヤの鋼製外皮は特に限定されないが、これを、例えば軟鋼外皮であって、その化学成分がC:0〜0.1%、Si:0〜0.10%、Mn:0〜3.00%、P:0.030%以下、S:0.020%以下、Al:0〜0.1%、及びN:0〜0.030%を含み、残部が鉄及び不純物を含むものとしてもよい。
次に、本実施形態に係るフラックス入りワイヤの形状について説明する。
通常、フラックス入りワイヤは、鋼製外皮の継目が溶接されているのでスリット状の隙間がない形状(シームレス形状)を有するワイヤ(シームレスワイヤと呼ぶことがある)と、鋼製外皮の継目が溶接されていないのでスリット状の隙間を含む形状を有するワイヤとのいずれかに区別される。
本実施形態に係るフラックス入りワイヤでは、いずれの形状も採用することができる。しかしながら、溶接金属の低温割れの発生を抑制するためには、鋼製外皮にスリット状の隙間がないことが好ましい。溶接時に溶接部に侵入するH(水素)は、溶接金属及び被溶接材中に拡散し、応力集中部に集積して低温割れの発生原因となる。Hの供給源は様々であるが、溶接部の清浄度、およびガスシールドの条件が厳密に管理された状態で溶接が行われる場合、ワイヤ中に含まれる水分(HO)が、主なHの供給源となり、この水分の量が、溶接継手の拡散性水素量に強く影響する。鋼製外皮がシームを有する場合、大気中の水分がシームを通じてフラックス中に侵入しやすい。このため、鋼製外皮のシームを除去することにより、ワイヤ製造後からワイヤ使用までの間に、大気中の水分が鋼製外皮を通じてフラックス中に侵入することを抑制することが望ましい。鋼製外皮がシームを有し、且つワイヤ製造からワイヤ使用までの期間が長い場合は、水分等のHの供給源が侵入することを防止するために、フラックス入りワイヤ全体を真空包装するか、乾燥した状態に保持できる容器内でフラックス入りワイヤを保存することが望ましい。
本実施形態に係るフラックス入りワイヤに含まれる水素量は特に規定されないが、溶接金属の拡散性水素量を低減するためには、フラックス入りワイヤの全質量に対して12ppm以下であることが好ましい。フラックス入りワイヤ中の水素量は、フラックス入りワイヤの保管の間に、フラックス入りワイヤ内に水分が侵入することにより増大するおそれがある。従って、ワイヤ製造からワイヤ使用までの期間が長い場合は、上述の手段によって水分の浸入を防止することが望ましい。
本実施形態に係るフラックス入りワイヤの直径は、特に規定されないが、例えばφ1.0〜φ2.0mmである。一般的なフラックス入りワイヤの直径はφ1.2〜φ1.6mmである。本実施形態に係るフラックス入りワイヤの充填率は、上述された条件が満たされる限り、特に限定されない。一般的なフラックス入りワイヤの充填率に鑑みて、本実施形態に係るフラックス入りワイヤの充填率の下限値を、例えば10%、又は12%としてもよい。また、本実施形態に係るフラックス入りワイヤの充填率の上限値を、例えば20%、又は17%としてもよい。
本実施形態に係るフラックス入りワイヤは、ワイヤ表面に塗布された潤滑剤をさらに備えても良い。ワイヤ表面に塗布された潤滑剤は、溶接時のワイヤの送給性を向上させる効果を有する。溶接ワイヤ用の潤滑剤としては、様々な種類のもの(例えばパーム油等の植物油)を使用できるが、溶接金属の低温割れを抑制するためには、Hを含有しないパーフルオロポリエーテル油(PFPE油)を使用することが好ましい。また、上述したように、本実施形態に係るフラックス入りワイヤは、ワイヤ表面に形成されためっきをさらに備えても良い。この場合、潤滑剤はめっきの表面に塗布される。
次に、本実施形態に係るフラックス入りワイヤの製造方法について説明する。本実施形態のフラックス入りワイヤは、通常のフラックス入りワイヤの製造工程によって製造することができる。以下に、製造方法の一例を説明する。
シームレス形状を有するフラックス入りワイヤの製造方法は、フラックスを調製する工程と、鋼帯を長手方向に送りながら、成形ロールを用いて成形してU字型のオープン管を得る工程と、オープン管の開口部を通じてオープン管内にフラックスを供給する工程と、オープン管の開口部の相対するエッジ部を突合せ溶接してシームレス管を得る工程と、シームレス管を伸線して所定の線径を有するフラックス入りワイヤを得る工程と、伸線する工程の途中または完了後にフラックス入りワイヤを焼鈍する工程とを備える。フラックスは、フラックス入りワイヤの弗化物量、酸化物量、炭酸塩量、及び化学成分などが上述された所定の範囲内になるように調製される。なお、鋼製外皮の材料である鋼帯の幅及び厚さ、並びにフラックスの充填量等によって決定されるフラックスの充填率も、フラックス入りワイヤの弗化物量、酸化物量、炭酸塩量、及び化学成分などに影響することに留意する必要がある。突合せ溶接は、電縫溶接、レーザ溶接、またはTIG溶接等により行われる。また、伸線工程の途中または伸線工程の完了後に、フラックス入りワイヤ中の水分を除去するために、フラックス入りワイヤは焼鈍される。フラックス入りワイヤのH含有量を12ppm以下とするために、焼鈍温度は、650℃以上とし、焼鈍時間は、4時間以上とすることが必要とされる。なお、フラックスの変質を防ぐために、焼鈍温度は900℃以下とされる必要がある。
スリット状の隙間を有するフラックス入りワイヤの製造方法は、オープン管の端部を突き合わせ溶接してシームレス管を得る工程の代わりに、オープン管を成形してオープン管の端部を突き合わせてスリット状の隙間有りの管を得る工程を有する点以外は、シームレス形状を有するフラックス入りワイヤの製造方法と同じである。スリット状の隙間を有するフラックス入りワイヤの製造方法は、突き合わせられたオープン管の端部をかしめる工程をさらに備えても良い。スリット状の隙間を有するフラックス入りワイヤの製造方法では、スリット状の隙間有りの管を伸線する。
突合せシーム溶接された、スリット状の隙間がないフラックス入りワイヤの断面は、研磨して、エッチングすれば、溶接跡が観察されるが、エッチングしないと溶接跡は観察されない。そのため、上記のようにシームレスと呼ぶことがある。例えば、溶接学会編「新版 溶接・接合技術入門」(2008年)産報出版、p.111には、突合せシーム溶接された、スリット状の隙間がないフラックス入りワイヤは、シームレスタイプのワイヤと記載されている。フラックス入りワイヤの鋼製外皮の隙間をろう付けしても、スリット状の隙間がないフラックス入りワイヤが得られる。
以上説明した本実施形態のフラックス入りワイヤは、あらゆる種類の鋼材の溶接に対して適用可能であり、本実施形態に係るフラックス入りワイヤは、予熱なしで、あるいは予熱温度50℃以下で、低温割れを防止できる。
次に、本実施形態に係る溶接継手の製造方法(溶接方法)について以下に説明する。本実施形態に係る溶接継手の製造方法では、1パスから最終パスのいずれか1つ以上において、本実施形態に係るガスシールドアーク溶接用フラックス入りワイヤを用いて母材鋼板をガスシールドアーク溶接する工程を備える。溶接が1パスのみである場合、その1パスにおいて本実施形態に係るガスシールドアーク溶接用フラックス入りワイヤが用いられる。母材鋼板(母材)の種類は特に限定されない。フラックス入りワイヤの極性は、溶接金属の拡散性水素量およびスパッタ発生量に及ぼす影響が無視できる程度に小さいので、プラス及びマイナスのいずれであってもよいが、プラスであることが好ましい。
本実施形態に係る溶接継手の製造方法において用いられるシールドガスの種類は特に限定されない。本実施形態に係る溶接継手の製造方法は、シールドガスの種類に関わらず、優れた溶接作業性を発揮し、高強度、高靱性、及び高疲労強度を有する溶接継手を得ることができる。しかしながら、一般的に多用されている100vol%の炭酸ガス、及びArと3〜30vol%COとの混合ガス等が、本実施形態に係る溶接継手の製造方法のシールドガスであることが好ましい。また、本実施形態に係るフラックス入りワイヤを用いた溶接の際のシールドガスは5Vol%以下のOガスを含んでいても良い。これらガスは廉価であるので、これらガスを用いた溶接は産業利用上有利である。通常、これらガスは、ルチル系FCWと組み合わせて用いられた際に、多量のスパッタを生じさせて溶接作業性を悪化させる。しかしながら本実施形態に係る溶接継手の製造方法は、スパッタ量を十分に抑制することができる本実施形態に係るフラックス入りワイヤを用いるので、これらガスがシールドガスである場合でも、良好な溶接作業性を発揮することができる。
本実施形態に係る溶接継手の製造方法における溶接姿勢は特に限定されない。本実施形態に係る溶接継手の製造方法は、スパッタ量を十分に抑制し、且つ溶融金属の粘性を十分に高めることができる本実施形態に係るフラックス入りワイヤを用いるので、溶接姿勢が下向姿勢、横向姿勢、立向姿勢、及び上向姿勢のいずれであっても、良好な溶接作業性を発揮することができる。
別の実施形態に係る溶接継手の製造方法においては、本実施形態に係るガスシールドアーク溶接用フラックス入りワイヤを用いて溶接止端部に付加溶接をする。溶接止端部に付加溶接をすることにより、継手の疲労強度を一層向上させることができる。溶接止端部の付加溶接のみに本実施形態に係るガスシールドアーク溶接用フラックス入りワイヤを適用したとしても、十分な作用効果が得られる。一方、1パスから最終パスのいずれか1つ以上、及び溶接止端部の付加溶接の両方において本実施形態に係るガスシールドアーク溶接用フラックス入りワイヤを使用することは当然妨げられない。
本実施形態に係る溶接継手の製造方法によって得られる溶接継手は、母材鋼板(母材)と、溶接金属及び溶接熱影響部から構成される溶接部とを備える。Ceq、Ms点、弗化物の量、及びスラグ形成剤の量等が好ましく制御された本実施形態に係るフラックス入りワイヤを用いて製造されるので、この溶接継手は、高強度、高靱性、及び高疲労強度を有し、溶接金属の拡散性水素量が1.0ml/100g以下であり、且つ良好なビード形状を有する溶接金属を備える。溶接継手の母材は特に限定されない。
本実施形態に係るフラックス入りワイヤは、上述の特徴を有するので、疲労強度、耐低温割れ性、強度、及び靱性に優れる溶接部を得ることができ、且つ溶接中のスパッタ発生量を大幅に低減することができ、さらに全姿勢溶接に適用可能である。
次に、実施例により、本発明の実施可能性及び効果についてさらに詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に徹して設計変更することはいずれも本発明の技術的範囲に含まれるものである。
発明例および比較例のフラックス入りワイヤは、以下に説明する方法により製造した。まず、鋼帯を長手方向に送りながら、成形ロールを用いて成形してU型のオープン管を得た。このオープン管の開口部を通じてオープン管内にフラックスを供給し、オープン管の開口部の相対するエッジ部を突合わせ溶接してシームレス管を得た。このシームレス管を伸線して、スリット状の隙間がないフラックス入りワイヤを得た。ただし、一部の試料は、シーム溶接をしないスリット状の隙間有りの管とし、それを伸線した。このようにして、最終のワイヤ径がφ1.2mmのフラックス入りワイヤを試作した。なお、これらフラックス入りワイヤの伸線作業の途中で、フラックス入りワイヤを650〜950℃の温度範囲内で4時間以上焼鈍した。試作後、ワイヤ表面には潤滑剤を塗布した。これらフラックス入りワイヤの構成を表に示す。
表に開示された各弗化物の含有量、各酸化物の含有量及び酸化物(Ti酸化物、及びCa酸化物除く)の合計量、各炭酸塩の含有量及び炭酸塩の合計量、鉄粉の含有量、並びに弗化物、酸化物、Ti酸化物、Ca酸化物、および炭酸塩を除く化学成分(合金成分として含まれる各元素の含有量)の単位は、フラックス入りワイヤ全質量に対する質量%である。表中において「フラックス入りワイヤ全質量に対する質量%」は、「質量%」と略し、「弗化物、酸化物、Ti酸化物、Ca酸化物、および炭酸塩を除く化学成分」は、「合金成分」と略した。表に開示されたフラックス入りワイヤのF換算値は、フラックス入りワイヤ中の弗化物に含まれる弗素(F)の量を、フラックス入りワイヤの全質量に対する質量%で示すものであり、上述の式Aによって求められた値である。表に開示された酸化物合計量とは、Fe酸化物、Na酸化物、Si酸化物、Zr酸化物、Mg酸化物、Al酸化物、Mn酸化物、及びK酸化物の、FeO、NaO、SiO、ZrO、MgO、Al、MnO及びKOの各々の換算値での含有量の合計値であり、Ti酸化物及びCa酸化物の含有量は含まない。表に開示されたフラックス入りワイヤのX値(スパッタ発生指数X)及びY値は、それぞれ上述の式4及び式5によって求められた値である。表に開示されたCeq及びMs点は、それぞれ上述の式1及び2によって得られた値である。
表に開示されたフラックス入りワイヤの残部(すなわち、表に開示された各成分以外の成分)は、鉄及び不純物であった。表に開示されたフラックス入りワイヤは、「ワイヤ構造」欄で特に断りが無い限り、シームレス形状を有し、「備考」欄で特に断りが無い限り、潤滑剤としてパーム油が塗布された。「ワイヤ構造」欄で「隙間有」と記載されたフラックス入りワイヤは、シーム状の隙間を有するワイヤであり、「備考」欄で「PTFE」と記載されたワイヤは、PTFE油が塗布されたワイヤであった。表に開示されたフラックス入りワイヤに合金成分として含まれる各元素は、鋼製外皮または金属粉の形態であった。なお、表においては、本発明で規定される範囲から外れる数値に下線を付してある。また、化学成分や化合物などの含有量に係る表中の空欄は、その化学成分や化合物などが意図的に添加されていないことを意味する。これらの化学成分や化合物などが不可避的に混入されるか生成することもある。
発明例および比較例のフラックス入りワイヤは、以下に説明する方法により評価された。ただし、溶接金属に高温割れが生じた試料については、評価が実施できなかったので、その評価結果欄には「高温割れ発生のため、未評価」と記載した。なお、評価の際の溶接ガスの種類は、Ar−20%COガスとした。また、評価の際に、溶接電流は全て直流とし、ワイヤの極性は全てプラスとした。
(溶接金属の引張強さ及び靱性の評価)
フラックス入りワイヤを用いて得られる溶接金属の機械特性(引張強さと靭性)及び拡散性水素量を評価するために、このフラックス入りワイヤを用い、板厚が20mmの母材を、ルートギャップ16mm及び開先角度20度で突き合わせ、裏当金を用いて、表7に示す溶接条件1で下向溶接して、図2に示される評価用の継手を得た。母材1及び裏当金2はSM490Aであった。母材1の開先面及び裏当金2の表面には、試験されるフラックス入りワイヤを用いて2層以上かつ余盛高さ3mm以上のバタリングを実施した。このようにして得られた溶接金属3の強度は引張試験によって評価し、靭性は0℃でのシャルピー衝撃試験によって評価した。下向溶接試験で得られた溶接金属3から、図2に示すように、JIS Z3111(2005年)に準拠したA1号引張試験片(丸棒)5と4号シャルピー試験片(2mmVノッチ)4とを採取し、引張試験及びシャルピー衝撃試験に供した。溶接金属の引張強さが780MPa以上となるフラックス入りワイヤを、引張強さに関し合格とした。溶接金属の0℃でのシャルピー吸収エネルギーが47J以上となるフラックス入りワイヤを、低温靱性に関し合格とした。
(溶接金属の拡散性水素量の評価)
発明例及び比較例を用いて得られる溶接金属の拡散性水素量を評価する際の溶接条件は、表7に記載の条件4とした。溶接金属の拡散性水素量の測定は、JIS Z 3118(鋼溶接部の水素量測定方法)に準拠したガスクロマトグラフ法によって実施した。溶接金属の拡散性水素量が1.0ml/100g以下となるフラックス入りワイヤを、拡散性水素量に関し合格とした。
(溶接作業性(スパッタ発生量、立向溶接性、ビード形状、及びスラグ巻込み)の評価)
また、フラックス入りワイヤを用いた立向溶接の溶接作業性などを評価するために、立向上進隅肉溶接と立向上進ビードオンプレート溶接とを、上述の母材に行った。溶接条件は、スパッタ量を評価する場合は表7に示される溶接条件2とし、立向溶接性、ビード形状、及びスラグ巻込みを評価する場合は表7に示される溶接条件3とした。メタル垂れの有無、スパッタ発生量、スラグ剥離性及びビード形状の目視調査結果に基づいて、立向溶接の作業性を評価した。その後、上述の方法で得られた溶接部の5箇所の断面において、スラグ巻込み欠陥の有無を目視で調査した。なお、メタル垂れの有無の判定、スラグ剥離性の評価、及びビード形状の評価は、立向上進隅肉溶接と立向上進ビードオンプレート溶接との両方で行われた。スラグ巻込み欠陥の有無の判定は、立向上進隅肉溶接のみで行われた。
立向溶接性は、溶接電流180Aで溶接し、溶融金属の垂れが発生した場合を不合格とし、溶融金属の垂れが発生しない場合を合格とした。スラグの剥離性は、スチールブラシによるブラッシングで剥離しないものを不合格、剥離するものを合格とした。ビード形状の外観評価は、アンダーカット、凸ビードが発生した場合を不合格とし、これらの欠陥が発生しない場合を合格とした。スラグ巻込み欠陥の有無の判定は、5断面中に1断面でもスラグ巻き込みがあった場合には不合格とし、5断面全てでスラグ巻き込みがないものを合格とした。スパッタ発生量は、溶接中に発生したスパッタの重量を、溶接時間で割って得られる、アークタイム1分間当たりのスパッタ発生量で評価した。スパッタ発生量が3.5g/min以下となるフラックス入りワイヤを、スパッタ発生量に関し合格とした。
(耐低温割れ性の評価)
耐低温割れ性の評価は、温度5℃かつ湿度60%の一定雰囲気管理下において、板厚が20mmである引張強さ780MPa級鋼に、表7の溶接条件5で溶接を行い、これにより得られた溶接継手にJIS Z 3157(U形溶接割れ試験方法)及びJIS Z 3158(y形溶接割れ試験方法)に準拠した試験を行うことにより実施した。U形溶接割れ試験及びy形溶接割れ試験の両方で割れが生じなかった溶接継手にかかるフラックス入りワイヤを、耐低温割れ性に関し合格とした。
(溶接金属の耐疲労特性の評価)
図3に示す角回し継手を作製した。角回し継手は、疲労荷重を受ける構造部材13と、面外ガゼット11と、構造部材13と面外ガゼット11とを接合する回し溶接部14と、回し溶接部14の端部に設けられた付加ビード15とを備える。母材(構造部材13及び面外ガゼット11)には、U形溶接割れ試験で用いた鋼と同じものを使用した。疲労試験は、応力比0.1、応力範囲80MPa、周波数:10Hzの条件にて実施し、繰返し寿命回数Nを測定して評価し、Nが5×10以上で破断しない場合を合格とした。なお、疲労試験時には、図3中の荷重負荷方向12に沿って疲労荷重を負荷した。溶接は1パスのみ(即ち、図3の回し溶接4の作製のみ)、又は1パスと付加ビード(即ち、図3の回し溶接4及び付加ビード5の両方を作製)の2パターンで行った。発明例及び比較例の評価では、1パスと付加ビードのいずれか一方、もしくは両方に本発明の溶接材料を用いた。表において「1パス目のみ」と記載された試料は、回し溶接部14を評価対象ワイヤで作製し、付加ビード15を作製しなかったものである。「1パス+付加ビード」と記載された試料は、回し溶接部14と付加ビード15との両方を評価対象ワイヤで作製したものである。「付加ビード」と記載された試料は、回し溶接部14と付加ビード15との両方を作製したが、評価対象ワイヤは付加ビード15の作製時のみ用いられたものである。本発明の溶接材料によらず作製された回し溶接部14又は付加ビード15は、日鐵住金溶接工業製 YM−80Cによって作製された。なお、溶接金属の拡散性水素量が過剰であった試料には疲労試験を行わず、その疲労試験結果の欄には「未実施(DH)」と記載した。溶接金属にスラグ巻込みが生じた試料には疲労試験を行わず、その疲労試験結果の欄には「未実施(スラグ巻込)」と記載した。
上述の方法により得られた試験結果を表に示す。発明例のフラックス入りワイヤを用いて溶接を行った場合、たとえ溶接環境の温度が、技術常識に鑑みて非常に低温条件であるとみなされる5℃であり、且つ鋼材の予熱が行われなくても、U形溶接割れ試験のすべての断面において、断面割れ無し(断面割れが発生していないこと)であった。従って、発明例のフラックス入りワイヤが極めて高い耐低温割れ性を有していることが証明された。さらに、表の試験結果に示されるように、発明例のフラックス入りワイヤは、立向上進溶接に供された場合であってもスパッタ発生量評価、立向溶接性評価、ビード形状評価、及びスラグ巻込み評価の全てが合格であり、良好な溶接作業性を示した。加えて、発明例のフラックス入りワイヤは、溶接金属の引張強さ、溶接金属の靭性、及び溶接金属中の拡散性水素量の評価項目においても合格であり、優れた機械特性を有する溶接金属を製造することができた。一方、比較例は、本発明で規定する要件のいずれかを満たしていなかったので、1つ以上の評価項目において不合格となった。
Figure 0006953870
Figure 0006953870
Figure 0006953870
Figure 0006953870
Figure 0006953870
Figure 0006953870
Figure 0006953870
Figure 0006953870
Figure 0006953870
Figure 0006953870
Figure 0006953870
Figure 0006953870
Figure 0006953870
1 母材
2 裏当金
3 溶接金属
4 4号シャルピー試験片(2mmVノッチ)
5 A1号引張試験片(丸棒)
11 面外ガゼット
12 荷重負荷方向
13 疲労荷重を受ける構造部材
14 回し溶接部
15 付加ビード

Claims (9)

  1. 鋼製外皮と、
    前記鋼製外皮の内部に充填されたフラックスと、
    を備えるフラックス入りワイヤであって、
    前記フラックスが、
    前記フラックス入りワイヤの全質量に対する質量%で合計0.10〜3.00%の、CaF、MgF、LiF、NaF、KZrF、KSiF、及びNaAlFからなる群から選択される1種または2種以上である弗化物と、
    前記フラックス入りワイヤの前記全質量に対するTiO換算値が4.00〜7.50%のTi酸化物と、
    前記フラックス入りワイヤの前記全質量に対する、FeO、NaO、SiO、ZrO、MgO、Al、MnO及びKOの各々の換算値で合計0.05〜2.00%の、Fe酸化物、Na酸化物、Si酸化物、Zr酸化物、Mg酸化物、Al酸化物、Mn酸化物、及びK酸化物からなる群から選択される1種または2種以上である酸化物と、
    前記フラックス入りワイヤの前記全質量に対する質量%で合計0〜0.60%の、MgCO、NaCO、LiCO、CaCO、KCO、FeCO、及びMnCOからなる群から選択される1種または2種以上である炭酸塩と、
    を含み、
    前記CaFの含有量が、前記フラックス入りワイヤの前記全質量に対する質量%で0〜2.00%であり、
    CaO換算でのCa酸化物の含有量が、前記フラックス入りワイヤの前記全質量に対する質量%で0%以上0.20%未満であり、
    前記フラックス入りワイヤの、前記弗化物、前記酸化物、前記Ti酸化物、前記Ca酸化物、および前記炭酸塩を除く化学成分が、前記フラックス入りワイヤの前記全質量に対する質量%で、
    C:0.003〜0.150%、
    Si:0.35〜1.00%、
    Mn:0.01〜2.00%、
    P:0.030%以下、
    S:0.020%以下、
    Al:0.001〜0.500%、
    Ni:0.60超16.00%以下、
    Cr:0〜16.00%、
    Mg:0.10〜0.90%、
    Ti:0〜0.10%、
    B:0〜0.0200%、
    Mo:0〜1.00%、
    Cu:0〜0.50%、
    Nb:0〜0.20%、
    V:0〜0.20%、
    Bi:0〜0.030%、
    Ca:0〜0.50%、及び
    REM:0〜0.010%を含み、
    残部がFe及び不純物からなり、
    式1によって算出されるCeqが0.35〜4.50%であり、
    式2によって算出されるMs点が450℃以下であり、
    さらに式3が満たされる
    ことを特徴とするガスシールドアーク溶接用フラックス入りワイヤ。
    Ceq=[C]+[Si]/24+[Mn]/6+[Ni]/40+[Cr]/5+[Mo]/4+[V]/14:式1
    Ms=613−406×[C]−64×[Mn]−32×[V]−18×[Cr]−15×[Ni]−9×[Cu]−5×[Mo]:式2
    6.00≦[Ni]+[Cr]≦30.00:式3
    式1、式2、及び式3中の角括弧で囲まれた元素記号は、前記フラックス入りワイヤの、前記弗化物、前記酸化物、前記Ti酸化物、前記Ca酸化物、および前記炭酸塩を除く、前記化学成分における各前記元素記号に対応する元素の、前記フラックス入りワイヤの前記全質量に対する質量%での含有量である。
  2. 式4によって算出されるX値が2.00%以下であることを特徴とする請求項1に記載のガスシールドアーク溶接用フラックス入りワイヤ。
    X=0.3×([NaAlF]+[NaF]+[MgF])+0.4×([KSiF]+[KZrF])+0.5×([LiF])+1.8×([CaF]):式4
    式4中の角括弧で囲まれた化学式は、各前記化学式に対応する化合物の、前記フラックス入りワイヤの前記全質量に対する質量%での含有量である。
  3. 式5によって算出されるY値が5.0以上27.0以下であることを特徴とする請求項1又は2に記載のガスシールドアーク溶接用フラックス入りワイヤ。
    Y=([TiO]+1.2×[SiO]+1.4×[Al]+1.5×[ZrO])/(F)1/2:式5
    式5中の角括弧で囲まれた化学式について、[TiO ]はTi酸化物のTiO 換算値、[SiO ]はSi酸化物のSiO 換算値、[Al ]はAl酸化物のAl 換算値、[ZrO ]はZr酸化物のZrO 換算値での、前記フラックス入りワイヤの前記全質量に対する含有量であり、式5中のFは、前記弗化物のF換算値での合計含有量である。
  4. 前記フラックスが、前記フラックス入りワイヤの全質量に対する質量%で0%以上15.0%未満の鉄粉をさらに含むことを特徴とする請求項1〜3のいずれか一項に記載のガスシールドアーク溶接用フラックス入りワイヤ。
  5. 前記鋼製外皮がシームレス形状を有することを特徴とする請求項1〜4のいずれか一項に記載のガスシールドアーク溶接用フラックス入りワイヤ。
  6. 前記鋼製外皮がスリット状の隙間を有することを特徴とする請求項1〜5のいずれか一項に記載のガスシールドアーク溶接用フラックス入りワイヤ。
  7. 前記フラックス入りワイヤが、さらに、前記フラックス入りワイヤの表面にパーフルオロポリエーテル油を備えることを特徴とする請求項1〜6のいずれか一項に記載のガスシールドアーク溶接用フラックス入りワイヤ。
  8. 1パスから最終パスのいずれか1つ以上において、請求項1〜7のいずれか一項に記載のガスシールドアーク溶接用フラックス入りワイヤを用いて、ガスシールドアーク溶接する工程を備える溶接継手の製造方法。
  9. 請求項1〜7のいずれか一項に記載のガスシールドアーク溶接用フラックス入りワイヤを用いて、ガスシールドアーク溶接することで、溶接止端部に付加溶接する工程を備える溶接継手の製造方法。
JP2017148208A 2017-07-31 2017-07-31 ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法 Active JP6953870B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017148208A JP6953870B2 (ja) 2017-07-31 2017-07-31 ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017148208A JP6953870B2 (ja) 2017-07-31 2017-07-31 ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法

Publications (2)

Publication Number Publication Date
JP2019025525A JP2019025525A (ja) 2019-02-21
JP6953870B2 true JP6953870B2 (ja) 2021-10-27

Family

ID=65475266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017148208A Active JP6953870B2 (ja) 2017-07-31 2017-07-31 ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法

Country Status (1)

Country Link
JP (1) JP6953870B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110026706B (zh) * 2019-03-20 2021-05-28 江苏孚尔姆焊业股份有限公司 石油钻杆机头耐磨药芯焊丝及其制造方法
CN112091478B (zh) * 2020-09-18 2022-09-13 一重集团大连核电石化有限公司 海洋工程用900MPa级高强高低温韧性低氢焊条
CN113618202A (zh) * 2021-08-09 2021-11-09 山西北方机械制造有限责任公司 一种980钢焊接方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3148042B2 (ja) * 1993-03-30 2001-03-19 株式会社神戸製鋼所 パーフルオロポリエーテルを塗布したワイヤ
JP4002389B2 (ja) * 2000-11-09 2007-10-31 新日本製鐵株式会社 疲労強度に優れた軟鋼または490MPa級鋼の回し溶接継手およびその作製方法
JP5768547B2 (ja) * 2011-07-08 2015-08-26 新日鐵住金株式会社 高張力鋼ガスシールドアーク溶接用フラックス入りワイヤ
JP6033755B2 (ja) * 2013-10-24 2016-11-30 日鐵住金溶接工業株式会社 Ar−CO2混合ガスシールドアーク溶接用フラックス入りワイヤ
JP6309485B2 (ja) * 2015-05-07 2018-04-11 日鐵住金溶接工業株式会社 Ar−CO2混合ガスシールドアーク溶接用フラックス入りワイヤ

Also Published As

Publication number Publication date
JP2019025525A (ja) 2019-02-21

Similar Documents

Publication Publication Date Title
JP6809533B2 (ja) フラックス入りワイヤ、溶接継手の製造方法、及び溶接継手
JP6953869B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法
JP6766866B2 (ja) フラックス入りワイヤ、溶接継手の製造方法、及び溶接継手
KR101674743B1 (ko) 가스 실드 아크 용접용 플럭스 내장 와이어 및 극저온용 강의 용접 방법 및 용접 조인트의 제조 방법
JP4986562B2 (ja) チタニヤ系ガスシールドアーク溶接用フラックス入りワイヤ
JP5005309B2 (ja) 高張力鋼用ガスシールドアーク溶接フラックス入りワイヤ
KR20170140798A (ko) 가스 실드 아크 용접용 플럭스 내장 와이어
JP6953931B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法
JP6953870B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法
JP6891630B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法
JP6801494B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ、および溶接継手の製造方法
JP6958139B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法
WO2020208735A1 (ja) ソリッドワイヤ及び溶接継手の製造方法
JP6953930B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法
WO2020012925A1 (ja) 2相ステンレス鋼溶接用フラックス入りワイヤ、溶接方法および溶接金属
JP7469597B2 (ja) フラックス入りワイヤ及び溶接継手の製造方法
JP2022157587A (ja) フラックス入りワイヤ及び溶接継手の製造方法
JP2021109208A (ja) フラックス入りワイヤ及び溶接継手の製造方法
JP2020015092A (ja) 2相ステンレス鋼溶接用フラックス入りワイヤ、溶接方法および溶接金属
JP2022157454A (ja) フラックス入りカットワイヤ及び溶接継手の製造方法
JP2022061826A (ja) 溶接継手の製造方法及び開先充填用のフラックス入りカットワイヤ
JP2022061814A (ja) 溶接継手の製造方法及び開先充填用のフラックス入りカットワイヤ
JP2022061819A (ja) 溶接継手の製造方法及び開先充填用のフラックス入りカットワイヤ
KR20230162714A (ko) 플럭스 코어드 와이어 및 용접 조인트의 제조 방법
JP2022061805A (ja) 溶接継手の製造方法及び開先充填用のフラックス入りカットワイヤ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210913

R151 Written notification of patent or utility model registration

Ref document number: 6953870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151