JPWO2018116634A1 - 光モジュール - Google Patents

光モジュール Download PDF

Info

Publication number
JPWO2018116634A1
JPWO2018116634A1 JP2018503273A JP2018503273A JPWO2018116634A1 JP WO2018116634 A1 JPWO2018116634 A1 JP WO2018116634A1 JP 2018503273 A JP2018503273 A JP 2018503273A JP 2018503273 A JP2018503273 A JP 2018503273A JP WO2018116634 A1 JPWO2018116634 A1 JP WO2018116634A1
Authority
JP
Japan
Prior art keywords
laser diode
light
temperature
base member
optical module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018503273A
Other languages
English (en)
Other versions
JP7056551B2 (ja
Inventor
陽平 塩谷
裕美 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Publication of JPWO2018116634A1 publication Critical patent/JPWO2018116634A1/ja
Priority to JP2021177848A priority Critical patent/JP7201052B2/ja
Application granted granted Critical
Publication of JP7056551B2 publication Critical patent/JP7056551B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/38Cooling arrangements using the Peltier effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/467Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02415Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling by using a thermo-electric cooler [TEC], e.g. Peltier element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
    • H01S5/4093Red, green and blue [RGB] generated directly by laser action or by a combination of laser action with nonlinear frequency conversion
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02216Butterfly-type, i.e. with electrode pins extending horizontally from the housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Semiconductor Lasers (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

光モジュールは、第1ベース部材と、第1ベース部材と空間的に離隔して設けられている第2ベース部材と、第1ベース部材上に配置される赤色の光を出射するように構成された第1レーザと、第2ベース部材上に配置され、赤色とは異なる色を出射するように構成された第2レーザと、第1ベース部材に接触して配置され、第1レーザの温度を調整するように構成された第1電子冷却モジュールとを含む。

Description

本開示は、光モジュールに関する。本出願は、2016年12月22日出願の日本出願2016-248768号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
パッケージ内に半導体発光素子を配置した光モジュールが知られている(たとえば、特許文献1〜4参照)。このような光モジュールは、表示装置、光ピックアップ装置、光通信装置など、種々の装置の光源として用いられる。
特開2009−93101号公報 特開2007−328895号公報 特開2007−17925号公報 特開2007−65600号公報
本開示にかかる光モジュールは、第1ベース部材と、第1ベース部材と空間的に離隔して設けられている第2ベース部材と、第1ベース部材上に配置される赤色の光を出射するように構成された第1レーザと、第2ベース部材上に配置され、赤色とは異なる色を出射するように構成された第2レーザと、第1ベース部材に接触して配置され、第1レーザの温度を調整するように構成された第1電子冷却モジュールとを含む。
図1は、実施の形態1における光モジュールの構造を示す概略斜視図である。 図2は、実施の形態1における光モジュールの内部構造を示す概略斜視図である。 図3は、実施の形態1における光モジュールの構造を示す概略平面図である。 図4は、光モジュールが取り付けられる放熱システムの構成を示す概略斜視図である。 図5は、赤色レーザダイオードに供給される電流と赤色レーザダイオードの光出力との関係を温度毎に示すグラフである。 図6は、緑色レーザダイオードに供給される電流と緑色レーザダイオードの光出力との関係を温度毎に示すグラフである。 図7は、青色レーザダイオードに供給される電流と青色レーザダイオードの光出力との関係を温度毎に示すグラフである。 図8は、環境温度と電子冷却モジュールの消費電力との関係を光形成部の温度毎に示すグラフである。 図9は、環境温度と電子冷却モジュールの消費電力との関係を光形成部の温度毎に示すグラフである。 図10は、赤色レーザダイオード、緑色レーザダイオードおよび青色レーザダイオードの温度と消費電力との関係を示すグラフである。 図11は、環境温度と光形成部との温度差の最大値と、温度を35℃とした場合のレーザダイオードの消費電力との関係を示すグラフである。 図12は、実施の形態2における光モジュールの構造を示す概略斜視図である。
上記のような光モジュールについては、低温から高温といった広い温度範囲の環境下で用いられる場合がある。広い温度範囲の環境下においても高精度な光の出力を実現するためには、光モジュールの温度の調整を図る必要がある。
光モジュールの作動時における消費電力はできるだけ少ないことが望ましい。さらに、光モジュールの温度を調整するシステム全体の小型化の要求もある。
そこで、システムサイズの小型化を図りながら、消費電力の低減が可能な光モジュールを提供することを目的の1つとする。
[本開示の実施形態の説明]
最初に本開示の実施態様を列記して説明する。本開示に係る光モジュールは、第1ベース部材と、第1ベース部材と空間的に離隔して設けられている第2ベース部材と、第1ベース部材上に配置される赤色の光を出射するように構成された第1レーザと、第2ベース部材上に配置され、赤色とは異なる色を出射するように構成された第2レーザと、第1ベース部材に接触して配置され、第1レーザの温度を調整するように構成された第1電子冷却モジュールとを含む。
このように構成することにより、赤色の光を照射する第1レーザに対して、第1電子冷却モジュールにより温度調整を行うことができる。赤色の光を出射する第1レーザは、投入電力に対する光出力の大きさ(発光効率)の温度依存性が大きい。温度依存性の大きい赤色の光を出射する第1レーザのみを第1電子冷却モジュールで効率的に冷却することができる。したがって、第1電子冷却モジュールの作動時における消費電力の低減を図ることができる。また、作動時に発熱する第1電子冷却モジュール自体の発熱量を低減することができる。そうすると、ヒートシンクおよび必要に応じて設けられるファンやヒートパイプを含み、第1電子冷却モジュールの冷却を行う放熱システムが備えられる場合に、ファンの作動時間の短縮等を実現して放熱システムの消費電力の低減を図ることもできる。
さらに、第1電子冷却モジュールの発熱量が少なくなるため、主にそのサイズによって放熱能力が決まるヒートシンク、引いてはヒートシンクを含めた放熱システムの小型化を図ることができる。その結果、システムサイズの小型化を図りながら、消費電力の低減を図ることができる。また、第2ベース部材は、第1ベース部材と空間的に離隔して設けられているために、第1ベース部材と第2ベース部材との間に熱伝導が生じることを抑制できる。
上記光モジュールにおいて、第2レーザは、緑色の光または青色の光を出射するよう構成してもよい。こうすることにより、上記光モジュールにおいて、赤色の光を照射する第1レーザおよび緑色の光または青色の光を照射する第2レーザを合波して出力する際に、システムサイズの小型化を図りながら、消費電力の低減を図ることができる。
上記光モジュールにおいて、第2ベース部材に接触して配置され、第2レーザの温度を調整するように構成された第2電子冷却モジュールをさらに含んでもよい。こうすることにより、第2電子冷却モジュールにより第2レーザを冷却することができる。第1ベース部材と第2ベース部材とは熱的に分離されている(熱伝導が抑制されている)ため、赤色の光を出射する第1レーザと赤色とは異なる色の光を出射する第2レーザとに対して、それぞれ別の温度調整をすることができる。したがって、大きな温度変化に対応することができる。
上記光モジュールにおいて、第1レーザと第2レーザとの基準面からの光軸高さは、一致するよう構成してもよい。こうすることにより、上記光モジュールにおいて第1レーザの光と第2レーザの光とを適切に合波して出力することができる。
上記光モジュールにおいて、第1ベース部材、第2ベース部材、第1レーザ、第2レーザ、第1電子冷却モジュールおよび第2電子冷却モジュールを取り囲む保護部材をさらに備えてもよい。こうすることにより、たとえば、第1ベース部材と第2ベース部材との間に、保護部材によって取り囲まれた領域にある乾燥空気等を第1ベース部材と第2ベース部材との間に位置させて、より容易に第1ベース部材と第2ベース部材とを、熱的に分離することができる。つまり、第1ベース部材と第2ベース部材との間に熱伝導が生じることを抑制できる。
[本開示の実施形態の詳細]
(実施の形態1)
次に、本開示に係る光モジュールの一実施の形態である実施の形態1を、図1〜図11を参照しつつ説明する。図2は、図1のキャップ40を取り外した状態に対応する図である。以下の図面において同一または相当する部分には同一の参照符号を付しその説明は繰り返さない場合がある。
図1および図2を参照して、本実施の形態1における光モジュール1は、平板状の形状を有する基部10と、基部10の一方の主面10A上に配置され、光を形成する発光ユニットとしての光形成部20と、光形成部20を覆うように基部10の一方の主面10A上に接触して配置されるキャップ40と、基部10の他方の主面10B側から一方の主面10A側まで貫通し、一方の主面10A側および他方の主面10B側の両側に突出する複数のリードピン51とを備えている。基部10とキャップ40とは、たとえば溶接されることにより気密状態とされている。すなわち、光形成部20は、基部10とキャップ40とによりハーメチックシールされている。基部10とキャップ40とにより取り囲まれる空間には、たとえば乾燥空気などの水分が低減(除去)された気体が封入されている。キャップ40には、光形成部20からの光を透過する出射窓41が形成されている。出射窓41は主面が互いに平行な平板状の形状を有していてもよいし、光形成部20からの光を集光または拡散させるレンズ形状を有していてもよい。基部10およびキャップ40は、保護部材を構成する。なお、平面的に見て(Z軸方向から見た場合に)、基部10は、四隅の角が丸められた長方形形状である。キャップ40についても、平面的に見て四隅の角が丸められた長方形形状である。そして、基部10の面積の方がキャップ40の面積よりも大きく構成されており、キャップ40を基部10上に接触して配置させた際に、出射窓41が設けられた側を除いて、基部10の外周がキャップ40の外周から鍔状に突出している。なお、基部10の短辺の長さ(Y軸方向の長さ)としては、たとえば10mm(ミリメートル)が選択される。
図2および図3を参照して、光形成部20は、板状の形状を有する第1ベース部材である第1ベース板60と、同じく板状の形状を有する第2ベース部材である第2ベース板65とを含む。第1ベース板60および第2ベース板65はそれぞれ、平面的に見て(Z軸方向から見た場合に)長方形形状を有する。第1ベース板60と第2ベース板65は、空間的に離隔して設けられている。第1ベース板60と第2ベース板65との間に位置する隙間21の間隔、すなわち、第1ベース板60のうちの第2ベース板65側に対向する側面60Cと第2ベース板65のうちの第1ベース板60側に対向する側面65Cとの間の図3中の長さWで示される寸法として、具体的には、たとえば、0.5mmが選択される。第1ベース板60と第2ベース板65との間には、上記した乾燥空気などの水分が低減(除去)された気体が位置することとなる。第1ベース板60と第2ベース板65とは、熱的に分離されて(熱伝導が抑制されて)配置される。
次に、第1ベース板60の構成について説明する。第1ベース板60は、平面的に見てY軸方向に長い長方形形状を有する一方の主面60Aを有している。第1ベース板60は、第1ベース領域61と、第1チップ搭載領域62とを含んでいる。第1チップ搭載領域62は、一方の主面60Aの一の短辺と、当該短辺に接続された一の長辺を含む領域に形成されている。第1チップ搭載領域62の厚みは、第1ベース領域61に比べて大きくなっている。その結果、第1ベース領域61に比べて、第1チップ搭載領域62の高さが高くなっている。第1チップ搭載領域62において上記一の短辺の上記一の長辺に接続される側とは反対側の領域に、隣接する領域に比べて厚みの大きい(高さが高い)領域である第1レーザ搭載領域63が形成されている。第1レーザ搭載領域63上には、平板状の第1サブマウント71が配置されている。そして、第1サブマウント71上に、第1レーザとしての赤色の光を出射する赤色レーザダイオード81が配置されている。
第1ベース板60の第1チップ搭載領域62上には、第4サブマウント74が配置されている。そして、第4サブマウント74上には、第1受光素子としての第1フォトダイオード94が配置されている。第4サブマウント74により、第1フォトダイオード94の高さ(赤色レーザダイオード81の光軸までの距離;Z軸方向における距離)が調整される。第1フォトダイオード94は、赤色レーザダイオード81からの光を直接受光する位置に配置される。第1フォトダイオード94は、赤色の光を受光可能なフォトダイオードである。第1フォトダイオード94は、赤色レーザダイオード81の光の出射方向において、赤色レーザダイオード81と第1レンズ91との間に配置される。
第1ベース板60の第1ベース領域61上には、凸部である第1レンズ保持部77が形成されている。そして、第1レンズ保持部77上には、第1レンズ91が配置されている。第1レンズ91は、表面がレンズ面となっているレンズ部91Aを有している。第1レンズ91は、レンズ部91Aとレンズ部91A以外の領域とが一体成型されている。第1レンズ保持部77により、第1レンズ91のレンズ部91Aの中心軸、すなわちレンズ部91Aの光軸は、赤色レーザダイオード81の光軸に一致するように調整されている。第1レンズ91は、赤色レーザダイオード81から出射される光のスポットサイズを変換する。第1レンズ91により、赤色レーザダイオード81から出射される光のスポットサイズが、後述する緑色レーザダイオード82および青色レーザダイオード83から出射される光のスポットサイズと一致するようにスポットサイズが変換される。なお、光モジュール1は、サーミスタ43を含む。サーミスタ43は、第1ベース板60の第1ベース領域61上において、第1レンズ保持部77を避けた位置に設けられている。
次に、第2ベース板65の構成について説明する。第2ベース板65についても、平面的に見てY軸方向に長い長方形形状を有する一方の主面65Aを有している。第2ベース板65の一方の主面65Aの高さ(Z軸方向における基部10の一方の主面10Aとの距離)と第1ベース板60の一方の主面60Aとの高さとは、同じとなるよう構成されている。第2ベース板65は、第2ベース領域66と、第2チップ搭載領域67とを含んでいる。第2チップ搭載領域67は、一方の主面65Aの一の短辺を全て含む領域に形成されている。第2チップ搭載領域67の厚みは、第2ベース領域66に比べて大きくなっている。その結果、第2ベース領域66に比べて、第2チップ搭載領域67の高さが高くなっている。第2チップ搭載領域67の一部の領域に、隣接する領域に比べて厚みの大きい(高さが高い)領域である第2レーザ搭載領域68および第3レーザ搭載領域69が形成されている。第2レーザ搭載領域68と第3レーザ搭載領域69とは、X軸方向に間隔を開けて形成されている。
第2レーザ搭載領域68上には、平板状の第2サブマウント72が配置されている。そして、第2サブマウント72上には、第2レーザとしての緑色の光を出射する緑色レーザダイオード82が配置されている。また、第3レーザ搭載領域69上には、平板状の第3サブマウント73が配置されている。そして、第3サブマウント73上には、第3レーザとしての青色の光を出射する青色レーザダイオード83が配置されている。上記した赤色レーザダイオード81、そして緑色レーザダイオード82および青色レーザダイオード83の光軸の高さ(それぞれ同じ高さである第1ベース板60の一方の主面60Aおよび第2ベース板65の一方の主面65Aを基準面とした場合の基準面と光軸との距離;Z軸方向における基準面との距離)は、第1サブマウント71、第2サブマウント72および第3サブマウント73により調整されて一致している。なお、赤色の光としては、波長が620nm(ナノメートル)〜750nm程度の光であり、緑色の光としては、波長が495nm〜570nm程度の光であり、青色の光としては、波長が420nm〜495nm程度の光である。
第2ベース板65の第2チップ搭載領域67には、第5サブマウント75および第6サブマウント76が配置されている。そして、第5サブマウント75および第6サブマウント76上には、それぞれ第2受光素子としての第2フォトダイオード95および第3受光素子としての第3フォトダイオード96が配置されている。第5サブマウント75および第6サブマウント76により、それぞれ第2フォトダイオード95および第3フォトダイオード96の高さ(緑色レーザダイオード82および青色レーザダイオード83の光軸までの距離;Z軸方向における距離)が調整される。第2フォトダイオード95および第3フォトダイオード96は、それぞれ緑色レーザダイオード82および青色レーザダイオード83からの光を直接受光する位置に配置される。このように構成することにより、光の強度を精度よく把握し、光の強度を高い精度で調整することができる。本実施の形態においては、全てのレーザのそれぞれに対応して受光素子が配置される。第2フォトダイオード95および第3フォトダイオード96は、それぞれ緑色および青色の光を受光可能なフォトダイオードである。第2フォトダイオード95は、緑色レーザダイオード82の光の出射方向において、緑色レーザダイオード82と第2レンズ92との間に配置される。第3フォトダイオード96は、青色レーザダイオード83の光の出射方向において、青色レーザダイオード83と第3レンズ93との間に配置される。
第2ベース板65の第2ベース領域66上には、それぞれ凸部である第2レンズ保持部78および第3レンズ保持部79が形成されている。そして、第2レンズ保持部78および第3レンズ保持部79上には、それぞれ第2レンズ92および第3レンズ93が配置されている。第2レンズ92および第3レンズ93は、それぞれ表面がレンズ面となっているレンズ部92A、93Aを有している。第2レンズ92および第3レンズ93は、それぞれレンズ部92A、93Aとレンズ部92A、93A以外の領域とが一体成型されている。第2レンズ保持部78および第3レンズ保持部79により、第2レンズ92および第3レンズ93のそれぞれのレンズ部92A、93Aの中心軸、すなわち、レンズ部92A、93Aの光軸は、それぞれ緑色レーザダイオード82および青色レーザダイオード83の光軸に一致するように調整されている。第2レンズ92および第3レンズ93は、それぞれ緑色レーザダイオード82および青色レーザダイオード83から出射される光のスポットサイズを変換する。上記した第1レンズ91、第2レンズ92および第3レンズ93により、赤色レーザダイオード81、緑色レーザダイオード82および青色レーザダイオード83から出射される光のスポットサイズが一致するようにスポットサイズが変換される。
第2ベース板66の第2ベース領域66上には、第1フィルタ97と第2フィルタ98とが配置される。第1フィルタ97および第2フィルタ98は、それぞれ互いに平行な主面を有する平板状の形状を有している。第1フィルタ97および第2フィルタ98は、たとえば波長選択性フィルタである。第1フィルタ97および第2フィルタ98は、誘電体多層膜フィルタである。より具体的には、第1フィルタ97は、赤色の光を透過し、緑色の光を反射する。第2フィルタ98は、赤色の光および緑色の光を透過し、青色の光を反射する。このように、第1フィルタ97および第2フィルタ98は、特定の波長の光を選択的に透過および反射する。その結果、第1フィルタ97および第2フィルタ98は、赤色レーザダイオード81、緑色レーザダイオード82および青色レーザダイオード83から出射された光を合波する。第1フィルタ97および第2フィルタ98は、それぞれ第2ベース領域66に形成されたそれぞれ凸部である第1突出領域88および第2突出領域89上に配置される。
図3を参照して、赤色レーザダイオード81、第1フォトダイオード94の受光部94A、第1レンズ91のレンズ部91A、第1フィルタ97および第2フィルタ98は、赤色レーザダイオード81の光の出射方向に沿う一直線上に並んで(X軸方向に並んで)配置されている。緑色レーザダイオード82、第2フォトダイオード95の受光部95A、第2レンズ92のレンズ部92Aおよび第1フィルタ97は、緑色レーザダイオード82の光の出射方向に沿う一直線上に並んで(Y軸方向に並んで)配置されている。青色レーザダイオード83、第3フォトダイオード96の受光部96A、第3レンズ93のレンズ部93Aおよび第2フィルタ98は、青色レーザダイオード83の光の出射方向に沿う一直線上に並んで(Y軸方向に並んで)配置されている。すなわち、赤色レーザダイオード81の光の出射方向と、緑色レーザダイオード82および青色レーザダイオード83の光の出射方向とは交差する。より具体的には、赤色レーザダイオード81の光の出射方向と、緑色レーザダイオード82および青色レーザダイオード83の光の出射方向とは直交する。緑色レーザダイオード82の光の出射方向は、青色レーザダイオード83の光の出射方向に沿った方向である。より具体的には、緑色レーザダイオード82の光の出射方向と青色レーザダイオード83の光の出射方向とは平行である。第1フィルタ97および第2フィルタ98のそれぞれの主面は、赤色レーザダイオード81の光の出射方向に対して傾斜している。より具体的には、第1フィルタ97および第2フィルタ98のそれぞれの主面は、赤色レーザダイオード81の光の出射方向(X軸方向)に対して45°傾斜している。
次に、本実施の形態における光モジュール1の動作について説明する。図3を参照して、赤色レーザダイオード81から出射された赤色の光は、光路Lに沿って進行する。このとき、第1フォトダイオード94の受光部94Aに赤色の光の一部が直接入射する。これにより赤色レーザダイオード81から出射された赤色の光の強度が把握され、把握された光の強度と出射されるべき目標の光の強度との差に基づいて赤色の光の強度が調整される。第1フォトダイオード94上を通過した赤色の光は、第1レンズ91のレンズ部91Aに入射し、光のスポットサイズが変換される。具体的には、たとえば赤色レーザダイオード81から出射された赤色の光がコリメート光に変換される。第1レンズ91においてスポットサイズが変換された赤色の光は、光路Lに沿って進行し、第1フィルタ97に入射する。第1フィルタ97は赤色の光を透過するため、赤色レーザダイオード81から出射された光は光路Lに沿ってさらに進行し、第2フィルタ98に入射する。そして、第2フィルタ98は赤色の光を透過するため、赤色レーザダイオード81から出射された光は光路Lに沿ってさらに進行し、キャップ40の出射窓41を通って光モジュール1の外部へと出射する。
緑色レーザダイオード82から出射された緑色の光は、光路Lに沿って進行する。このとき、第2フォトダイオード95の受光部95Aに緑色の光の一部が直接入射する。これにより緑色レーザダイオード82から出射された緑色の光の強度が把握され、把握された光の強度と出射されるべき目標の光の強度との差に基づいて緑色の光の強度が調整される。第2フォトダイオード95上を通過した緑色の光は、第2レンズ92のレンズ部92Aに入射し、光のスポットサイズが変換される。具体的には、たとえば緑色レーザダイオード82から出射された緑色の光がコリメート光に変換される。第2レンズ92においてスポットサイズが変換された緑色の光は、光路Lに沿って進行し、第1フィルタ97に入射する。第1フィルタ97は緑色の光を反射するため、緑色レーザダイオード82から出射された光は光路Lに合流する。その結果、緑色の光は赤色の光と合波され、光路Lに沿って進行し、第2フィルタ98に入射する。そして、第2フィルタ98は緑色の光を透過するため、緑色レーザダイオード82から出射された光は光路Lに沿ってさらに進行し、キャップ40の出射窓41を通って光モジュール1の外部へと出射する。
青色レーザダイオード83から出射された青色の光は、光路Lに沿って進行する。このとき、第3フォトダイオード96の受光部96Aに青色の光の一部が直接入射する。これにより青色レーザダイオード83から出射された青色の光の強度が把握され、把握された光の強度と出射されるべき目標の光の強度との差に基づいて青色の光の強度が調整される。第3フォトダイオード96上を通過した青色の光は、第3レンズ93のレンズ部93Aに入射し、光のスポットサイズが変換される。具体的には、たとえば青色レーザダイオード83から出射された青色の光がコリメート光に変換される。第3レンズ93においてスポットサイズが変換された青色の光は、光路Lに沿って進行し、第2フィルタ98に入射する。第2フィルタ98は青色の光を反射するため、青色レーザダイオード83から出射された光は光路Lに合流する。その結果、青色の光は赤色の光および緑色の光と合波され、光路Lに沿って進行し、キャップ40の出射窓41を通って光モジュール1の外部へと出射する。
光モジュール1は、第1電子冷却モジュール(以下、第1TEC(Thermo−Electric Cooler)と称する場合もある。)30を含む。具体的には、光モジュール1は、光形成部20に含まれる第1ベース板60と基部10との間に配置される第1TECを含む。第1TECは、いわゆる熱電クーラーであり、吸熱板(図示せず)と、放熱板31と、電極を挟んで吸熱板と放熱板31との間にそれぞれ間隔を開けて並べて配置される複数の柱状の半導体柱(図示せず)とを含む。吸熱板および放熱板31は、たとえばアルミナからなっている。吸熱板は、第1ベース板60の他方の主面60Bに接触して配置される。放熱板31は、基部10の一方の主面10Aに接触して配置される。
第1TEC30はペルチェモジュール(ペルチェ素子)である。そして、第1TEC30に電流を供給して電流を流すことにより、吸熱板に接触する第1ベース板60の熱が基部10へと移動し、第1ベース板60が冷却される。その結果、赤色レーザダイオード81の温度上昇を抑えることができる。なお、第1TEC30については、たとえば、光モジュール1がたとえば−(マイナス)40℃(摂氏)といった極低温の環境に配置された場合等、光モジュール1を加熱した方が赤色レーザダイオード81の出力効率の観点から良い場合には、第1TEC30に逆方向の電流を流すことにより、温度の移動を逆転させて第1ベース板60を加熱することもできる。また、第1TEC30の作動時において第1TEC30自体も発熱する。第1TEC30の安定した作動を確保するために、第1TEC30の作動時に発生した第1TEC30の熱を取り除く必要がある。
次に、光モジュール1が取り付けられる放熱システム101の構成について説明する。
図4を参照して、放熱システム101は、第1TECの作動時に発生した第1TEC30の熱を放熱により取り除くために設けられる。放熱システム101は、ヒートシンク102と、押さえ板103と、ファン104と、コネクタ105とを含む。ヒートシンク102の材質としては、たとえばアルミニウム、鉄、銅などの伝熱特性の良い金属材料が選択される。なお、図4中において、破線の矢印で光モジュール1の光の出射方向を示している。
ヒートシンク102は、ベース部材106と、複数のフィン107とから構成されている。ベース部材106は、板状であって板厚方向(Z軸方向)から見た場合に矩形状である。より具体的には、ベース部材106は、平面的に見て正方形形状である。本実施の形態においては、ベース部材106の一辺は、約50mmである。
ベース部材106の一方の主面106A側には、光モジュール1が配置される。ベース部材106の中央領域において、光モジュール1がベース部材106の一方の主面106A上に配置された際に複数のリードピン51に対応する位置には、板厚方向に貫通する貫通孔(図示せず)が複数のリードピン51の数だけ設けられている。したがって、ベース部材106の一方の主面106A上に光モジュール1を配置した際に、複数のリードピン51は、複数の貫通孔内に挿通するようにして配置されることとなる。なお、関数孔の開孔の大きさについては、リードピン51を貫通孔に挿通させた際に、リードピン51とベース部材106とが接触しない大きさである。ベース部材106の一方の主面106Aの中央領域において、リードピン51を挿通させる複数の貫通孔のさらに外方側の領域には、押さえ板103を取り付けるために用いられる4つのねじ穴(図示せず)が設けられている。また、ベース部材106の四隅の角の領域には、板厚方向に貫通し、ファン104を取り付けるための4つのねじ穴108A、108B、108C、108Dが設けられている。
ベース部材106の他方の主面106B側には、複数のフィン107が配置されている。各々のフィン107は薄板状であって、各々間隔を開けてベース部材106の他方の主面106B側に設けられている。各々のフィン107は、ベース部材106の他方の主面106B側から矢印Dと逆の向きで示すZ軸方向の下側に向って延出するように設けられている。各々のフィン107の高さ、すなわち、ベース部材106の他方の主面106BからのZ軸方向の長さは、各々同じとなるように構成されている。ベース部材106および複数のフィン107を含めたヒートシンク102の厚みは、約10mmである。これら複数のフィン107を設けることにより、ヒートシンク102全体の表面積を大きくして、ヒートシンク102の放熱の性能を高めることとしている。なお、上記した第1TEC30は、ペルチェ素子によって構成されており、電流を流すことにより第1ベース板60を冷却する機構であるのに対し、放熱システム101は、伝熱特性の良好な材料から構成されるヒートシンク102により、ヒートシンク102に当接する第1TEC30に発生した熱をヒートシンク102に伝熱させた後に放熱するものである。したがって、熱を取り除くシステムとして、第1TEC30と放熱システム101とは相違する。なお、放熱システム101については、ヒートシンク102におけるベース部材106および複数のフィン107の表面積が大きいほど、放熱の効率は高い。
光モジュール1は、ヒートシンク102に含まれるベース部材106の一方の主面106Aの中央領域に位置するように、ベース部材106に取り付けられている。光モジュール1をベース部材106上に配置させた際に、一方の主面106A側に突出する複数のリードピン51に対応するベース部材106の位置には、上記した複数の貫通孔が設けられている。光モジュール1をベース部材106上に取り付けた際、複数のリードピン51のそれぞれとベース部材106とが接触しないように取り付けられる。
光モジュール1は、押さえ板103によってベース部材106に取り付けられる。押さえ板103の構成について説明すると、押さえ板103は、第1ガイド部103Aと、第2ガイド部103Bと、第3ガイド部103Cとを含む。第1ガイド部103A、第2ガイド部103Bおよび第3ガイド部103Cはそれぞれ、細く延びる薄板状である。押さえ板103は、それぞれに対して直交する方向に延びるように設けられた第1ガイド部103Aと第2ガイド部103Bとのそれぞれの端部同士、およびそれぞれに対して直交する方向に延びるように設けられた第2ガイド部103Bと第3ガイド部103Cとのそれぞれの端部同士が連なった形状である。押さえ板103のうち、第1ガイド部103A、第2ガイド部103Bおよび第3ガイド部103Cのそれぞれの端部の相当する位置に、板厚方向に貫通する4つの貫通孔(図示せず)が設けられている。押さえ板103は、この4つの貫通孔に合計4つのねじ109A、109B、109C、109Dを挿通させて、ベース部材106の一方の主面106A側に設けられた上記の4つのねじ穴に取り付けることによって、ヒートシンク102に取り付けられている。
光モジュール1は、基部10のうち、鍔状に突出した領域を押さえ板103とベース部材106とによって挟み込むようにして、ヒートシンク102に取り付けられている。
第1ガイド部103Aは、キャップ40のうち、光の出射方向に直交する方向に位置する一方の側面(Y軸方向における一方の側面)側に配置される。第2ガイド部103Bは、キャップ40のうち、出射窓41が位置する側と反対側に位置する側面側に配置される。
第3ガイド部103Cは、キャップ40のうち、光の出射方向に直交する方向に位置する他方の側面(Y軸方向における他方の側面)側に配置される。すなわち、光モジュール1は、ベース部材106の一方の主面106A上において、押さえ板103によって、その位置決めがなされている。なお、光モジュール1の板厚方向の厚みは、押さえ板103の板厚方向の厚みよりも大きいため、光モジュール1は、押さえ板103よりもZ軸方向に突出した構成となる。また、光モジュール1は、基部10の他方の主面10B側とベース部材106の一方の主面106Aとの間に放熱グリス(図示せず)を塗布して取り付けられる。こうすることにより、基部10の他方の主面10Bとベース部材106の一方の主面106Aとの接触状態を良好にして、第1TEC30により発生した熱を効率的にヒートシンク102側に伝熱させることができる。
ファン104は、ベース部材106の他方の主面106B側に配置されている。より具体的には、ファン104は、複数のフィン107のうちのベース部材106の他方の主面106B側の端部と反対の端部側に取り付けられている。ファン104に電流を供給して回転させることにより、フィン107側、具体的には、矢印Dで示すZ軸方向の上側に向かって風を送ることができる。ファン104を作動させることにより、風をヒートシンク102側に送ってヒートシンク102を冷却させることができる。このファン104への電流の供給については、制御に基づいて行われる。もちろんファン104の作動時においても、電力を消費する。
また、ヒートシンク102には、光モジュール1と外部との電気的な接続を確保するためのコネクタ105が設けられている。コネクタ105は、ヒートシンク102のうち、光モジュール1の光の出射方向と反対側に設けられている。図示はしないが、コネクタ105と光モジュール1に設けられている複数のリードピン51とは、電気的に接続されている。このコネクタ105を利用して、光モジュール1と外部との電気的な接続を確保し、光モジュール1側に外部から電流を供給したり、検出された光形成部20の温度情報等を取得することができる。
次に、半導体発光素子である赤色レーザダイオード81、緑色レーザダイオード82および青色レーザダイオード83に供給される電流とそれぞれの光出力との関係について説明する。図5は、赤色レーザダイオード81に供給される電流と赤色レーザダイオード81の光出力との関係を赤色レーザダイオード81が配置される雰囲気の温度毎に示すグラフである。図5中、縦軸は、赤色レーザダイオード81の光出力(mW(ミリワット))を示し、横軸は、赤色レーザダイオード81に供給される電流(mA(ミリアンペア))を示す。図5において、線11Aは、雰囲気の温度が−40℃の場合を示し、線11Bは、雰囲気の温度が−20℃の場合を示し、線11Cは、雰囲気の温度が0℃の場合を示し、線11Dは、雰囲気の温度が10℃の場合を示し、線11Eは、雰囲気の温度が20℃の場合を示し、線11Fは、雰囲気の温度が30℃の場合を示し、線11Gは、雰囲気の温度が40℃の場合を示し、線11Hは、雰囲気の温度が50℃の場合を示し、線11Jは、雰囲気の温度が60℃の場合を示し、線11Kは、雰囲気の温度が70℃の場合を示す。
図6は、緑色レーザダイオード82に供給される電流と緑色レーザダイオード82の光出力との関係を緑色レーザダイオード82が配置される雰囲気の温度毎に示すグラフである。図6中、縦軸は、緑色レーザダイオード82の光出力(mW)を示し、横軸は、緑色レーザダイオード82に供給される電流(mA)を示す。図6において、線12Aは、雰囲気の温度が−40℃の場合を示し、線12Bは、雰囲気の温度が−20℃の場合を示し、線12Cは、雰囲気の温度が0℃の場合を示し、線12Dは、雰囲気の温度が10℃の場合を示し、線12Eは、雰囲気の温度が20℃の場合を示し、線12Fは、雰囲気の温度が30℃の場合を示し、線12Gは、雰囲気の温度が40℃の場合を示し、線12Hは、雰囲気の温度が50℃の場合を示し、線12Jは、雰囲気の温度が60℃の場合を示し、線12Kは、雰囲気の温度が70℃の場合を示す。
図7は、青色レーザダイオード83に供給される電流と青色レーザダイオード83の光出力との関係を青色レーザダイオード83が配置される雰囲気の温度毎に示すグラフである。図7中、縦軸は、青色レーザダイオード83の光出力(mW)を示し、横軸は、青色レーザダイオード83に供給される電流(mA)を示す。図7において、線13Aは、雰囲気の温度が−40℃の場合を示し、線13Bは、雰囲気の温度が70℃の場合を示す。
図7中のグラフにおいても、図5および図6と同様に雰囲気の温度が−20℃の場合、雰囲気の温度が0℃の場合、雰囲気の温度が10℃の場合、雰囲気の温度が20℃の場合、雰囲気の温度が30℃の場合、雰囲気の温度が40℃の場合、雰囲気の温度が50℃の場合、雰囲気の温度が60℃の場合のそれぞれを線で表している。しかし、各線が重なっているため、理解の容易の観点からそれらに付する符号を省略する。なお、重なっている線については、温度が−20℃の場合が最も線13Aに近く、温度が0℃の場合、温度が10℃の場合、温度が20℃の場合、温度が30℃の場合、温度が40℃の場合、温度が50℃の場合、温度が60℃の場合の順に線13Bに近づいている。
図5〜図7を参照して、同じ光出力を得るために必要な電流は、各色とも温度が高くなるにつれて大きくなる傾向がある。青色レーザダイオード83の場合、その影響は小さい。すなわち、雰囲気の温度が変わっても、同じ光出力を得るために供給される電流はほとんど変わらない。また、緑色レーザダイオード82の場合も、青色レーザダイオード83と比較して温度の影響はあるが、その影響はさほど大きくない。しかし、赤色レーザダイオード81の場合、その影響は大きい。すなわち、雰囲気の温度が上昇すれば、同じ光出力を得ようとすると、供給される電流を大きくする必要がある。たとえば図5において、90mWの光出力を得たい場合、雰囲気の温度が10℃の場合は、供給される電流は140mAであるのに対し、雰囲気の温度が40℃の場合は、供給される電流は180mAとなる。そうすると、赤色レーザダイオード81の発熱量についても、温度が高くなるにつれて大きくなる。ここで、たとえば上記した光モジュール1が自動車に搭載される場合には、−40℃から105℃程度の広範な動作温度範囲において、安定して高精度な色彩の再現を図る必要がある。したがって、特に赤色レーザダイオード81に対して、上記した第1TEC30による温度の制御が必要となる。
次に、光形成部が配置された環境の温度である環境温度とTECの消費電力との関係について説明する。図8は、環境温度とTECの消費電力との関係を光形成部の温度毎に示すグラフである。ここで、図8に示す場合における光モジュールは、図1〜図3に示す光モジュール1と異なり、上記した第1ベース板60と第2ベース板65とは設けられておらず、代わりに一枚のベース部材としてのベース板を用い、その一枚のベース板とステムとの間にTECを設けたものである。この場合、一枚のベース板のほぼ全域に亘ってTECが設けられた構成であり、赤色レーザダイオード、緑色レーザダイオードおよび青色レーザダイオードの全てについて冷却を行って光形成部の温度調整を行うものである。図8に示すグラフのデータを取得した光モジュールの駆動条件については、以下の通りである。すなわち、電流としては、CW(Continuous Wave)(無変調連続波)の電流を供給しており、赤色レーザダイオードについては光出力を90mW、緑色レーザダイオードについては光出力を60mW、青色レーザダイオードについては光出力を50mWとしている。
光形成部の温度は、サーミスタによって検出される。なお、サーミスタによって検出される光形成部の温度は、赤色レーザダイオード、緑色レーザダイオードおよび青色レーザダイオードの温度がその温度となるように設定された温度である。すなわち、赤色レーザダイオード、緑色レーザダイオードおよび青色レーザダイオードの温度がサーミスタによって検出される温度となるようにTECを作動させ、その時にTECによって消費される電力を図8においてプロットしている。図8中、縦軸はTECの消費電力(W)を示し、横軸は環境温度(℃)を示す。環境温度については、光形成部が配置された環境の温度であり、環境温度の温度情報として出力されたものである。線14Aは、光形成部の温度が10℃の場合を示し、線14Bは、光形成部の温度が35℃の場合を示し、線14Cは、光形成部の温度が50℃の場合を示し、線14Dは、光形成部の温度が60℃の場合を示す。
図8を参照して、光形成部の温度と環境温度との温度差が大きくなれば、この温度差を小さくするようにTECが作動するため、TECの消費電力が大きくなる。そうすると、TECからの発熱量も大きくなる。TECからの発熱量が大きくなると、上記したファン104を頻繁に作動させる必要が生じる場合もあり、さらなる消費電力の増大となってしまう。また、ヒートシンク102のサイズを大型にしなければならない状況も生じかねず、小型化を図ることが困難となる。したがって、要求される光出力を確保しながら、TECの消費電力を小さくしてTECからの発熱量を小さくする必要がある。
図9も図8と同じく、環境温度とTECの消費電力との関係を光形成部の温度毎に示すグラフである。図9中、縦軸はTECの消費電力(W)を示し、横軸は環境温度(℃)を示す。線15Aは、TECが一枚のベース板のほぼ全域に亘って設けられた光モジュールにおいて光形成部の温度が35℃の場合を示し、線15Bは、TECが一枚のベース板のほぼ全域に亘って設けられた光モジュールにおいて光形成部の温度が50℃の場合を示し、線15Cは、TECが一枚のベース板のほぼ全域に亘って設けられた光モジュールにおいて光形成部の温度が60℃の場合を示す。線15Dは、上記の図1〜図3に示す光モジュール1において光形成部20の温度が50℃の場合を示し、線15Eは、上記の図1〜図3に示す光モジュール1において光形成部20の温度が60℃の場合を示す。なお、線15Aについては、図8における線14Bの一部に相当し、線15Bについては、図8における線14Cに相当し、線15Cについては、図8における線14Dに相当する。また、光モジュール1の駆動条件は、従来の光モジュールの場合と同じとしてある。
図9を参照して、たとえば、線15Bと線15Dとを比較してみると、環境温度が80℃の場合において、TECが一枚のベース板のほぼ全域に亘って設けられた光モジュールについては、TECの消費電力は、4Wを若干超える。これに対し、本開示に係る光モジュール1については、第1TEC30の消費電力は、1Wに満たないものとなる。また、線15Cと線15Eとを比較した場合も、TECが一枚のベース板のほぼ全域に亘って設けられた光モジュールの方が、本開示に係る光モジュール1と比較してTECの消費電力が大きいものとなっている。また、TECが一枚のベース板のほぼ全域に亘って設けられた光モジュールは、環境温度が約95℃でTECの消費電力が7Wに達しており、これ以上TECの消費電力が大きくなると、ヒートシンクの能力を超えてしまうことになりかねない。すなわち、TECが一枚のベース板のほぼ全域に亘って設けられた光モジュールについては、動作温度範囲の上限は、約95℃となり、105℃まで到達しない。一方、本開示に係る光モジュール1においては、環境温度が約105℃となっても、第1TEC30の消費電力は2Wを超える程度である。また、線15Dで示す設定温度が50℃の場合でも、第1TEC30の消費電力は、4Wを超える程度であり、5Wまで達しない。すなわち、本開示に係る光モジュール1においては、TECが一枚のベース板のほぼ全域に亘って設けられた光モジュールと比較して、第1TEC30の消費電力の低減を図ることができる。
ここで、赤色レーザダイオード81、緑色レーザダイオード82および青色レーザダイオード83を作動させる設定温度と消費電力との関係について着目する。図10は、赤色レーザダイオード81、緑色レーザダイオード82および青色レーザダイオード83の作動させる設定温度と消費電力との関係を示すグラフである。縦軸は各レーザダイオードの消費電力(W)を示し、横軸はサーミスタ43により検出される温度(℃)を示す。サーミスタ43により検出される温度は、光形成部20の設定温度であり、赤色レーザダイオード81、緑色レーザダイオード82および青色レーザダイオード83を作動させる設定温度である。また、図10においては、図8に示す10℃、35℃、50℃および60℃の設定温度における各色のレーザダイオードの消費電力を測定して示している。
図10を参照して、線16Aで示す赤色レーザダイオード81の場合、光形成部20の温度が高くなると、赤色レーザダイオード81の消費電力は上昇する。また、線16Bで示す緑色レーザダイオード82の場合については、光形成部20の設定温度が高くなると、緑色レーザダイオード82の消費電力も若干上昇するが、赤色レーザダイオード81の場合よりも、その上昇の度合いは小さいものとなる。線16Cで示す青色レーザダイオード83の場合については、光形成部20の設定温度が高くなっても、ほとんど青色レーザダイオード83の消費電力は変わらない。すなわち、光形成部20の温度が高くなれば、全体としてレーザダイオードの消費電力は高くなる傾向にある。また、緑色レーザダイオード82の消費電力が最も大きく、赤色レーザダイオード81および青色レーザダイオード83の消費電力は、それぞれ同等である。
図11は、環境温度と光形成部との温度差の最大値と、温度を35℃とした場合のレーザダイオードの消費電力との関係を示すグラフである。縦軸は環境温度と光形成部との温度差(℃)の最大値を示し、横軸は温度を35℃とした場合の消費電力(W)を示す。図11中のグラフの線のうち、左端は本実施の形態に係る光モジュール1の場合を示し、右端は上記したTECが一枚のベース板のほぼ全域に亘って設けられた光モジュールの場合を示す。図11を参照して、TECが一枚のベース板のほぼ全域に亘って設けられた光モジュールの場合、最大の温度差は約48℃となる。これに対し、本実施の形態に係る光モジュール1の場合、最大の温度差は約65℃となり、大幅に上昇している。すなわち、広い温度範囲においても光モジュール1を使用することができる。ここで、温度差が約65℃の時の赤色レーザダイオード81の消費電力は、0.4W程度である。そして、緑色レーザダイオード82および青色レーザダイオード83の消費電力を足し合わせると、約1.3Wとなる。そうすると、全てのレーザダイオードの消費電力は、1.7W程度であり、レーザダイオードの消費電力の観点のみから見ると、消費電力は上がっている。しかし、第1TEC30における消費電力が小さくなっており、赤色レーザダイオード81、緑色レーザダイオード82および青色レーザダイオード83の総消費電力については、TECが一枚のベース板のほぼ全域に亘って設けられた光モジュールの場合と比較して、本実施の形態に係る光モジュール1の場合の方が大きくなる。しかし、その上昇分は、第1TEC30を採用した本実施の形態に係る光モジュール1において低減できる第1TEC30の消費電力の低減分よりも小さいものである。
以上より、本実施の形態に係る光モジュール1は、第1ベース板60側にのみTECを設ける構成として、システムサイズの小型化を図りながら、消費電力の低減を図ることができる。
(実施の形態2)
次に、本開示にかかる光モジュールの他の実施の形態である実施の形態2を説明する。
図12および図2を参照して、本実施の形態における光モジュール1は、基本的には実施の形態1の場合と同様の構造を有し、同様の効果を奏する。しかし、実施の形態2における光モジュール1は、第2電子冷却モジュール(第2TEC)32およびサーミスタ44をさらに含んでいる点において、実施の形態1の場合とは異なっている。
具体的には、図12を参照して、実施の形態2における光モジュール1は、基部10と第2ベース板65との間に、さらに第2TEC32を含む。また、光モジュール1は、さらにサーミスタ44を含む。この場合、第2ベース板65の厚みは、実施の形態1の場合と比較して第2TEC32の厚み分だけ薄くなっている。第2ベース板65の温度を調整するために用いられるサーミスタ44は、第2ベース領域66に配置されている。第2TEC32は、第1TEC30と同様の構成であり、吸熱板(図示せず)と、放熱板33と、電極を挟んで吸熱板と放熱板33との間に並べて配置される半導体柱(図示せず)とを含む。吸熱板および放熱板33は、たとえばアルミナからなっている。吸熱板が第2ベース板65の他方の主面65Bに接触して配置される。放熱板33は、基部10の一方の主面10Aに接触して配置される。本実施の形態において、第2TEC32はペルチェモジュール(ペルチェ素子)である。そして、第2TEC32に電流を流すことにより、吸熱板に接触する第2ベース板65の熱が基部10へと移動し、第2ベース板65が冷却される。この第2TEC32を設けることにより、第2ベース板65上に配置される緑色レーザダイオード82および青色レーザダイオード83の温度を調整して、環境温度まで緑色レーザダイオード82および青色レーザダイオード83の温度が上昇することを抑制することができる。こうすることにより、緑色レーザダイオード82および青色レーザダイオード83の温度調整を行うことができる。そうすると、赤色レーザダイオード81と、緑色レーザダイオード82および青色レーザダイオード83とをそれぞれ別の温度調整をすることができる。したがって、大きな温度変化に対応することができる。
なお、上記の実施の形態においては、第2レーザを緑色とすることとしたが、これに限らず、第2レーザを青色としてもよい。すなわち、第2レーザは、緑色の光を照射するレーザまたは青色の光を照射するレーザであるよう構成してもよい。さらに、上記の実施の形態において、光モジュール1は、第1レーザとしての赤色レーザダイオード81、第2レーザとしての緑色レーザダイオード82および第3レーザとしての青色レーザダイオード83を備えることとしたが、これに限らず、光モジュール1は、第1レーザとしての赤色レーザダイオード81と、第2レーザとして緑色レーザダイオード82または青色レーザダイオード83のいずれかのみを備えた2色の光を合波して出力する光モジュールとしてもよい。
また、上記の実施の形態において、第1レーザと第2レーザとの基準面からの光軸高さは、一致するよう構成することとしたが、これに限らず、第1レーザと第2レーザとの基準面からの光軸高さは、光モジュール1から出射された後に一致するよう構成してもよい。
なお、上記の実施の形態においては、第1ベース板60と第2ベース板65とは、空間的に離隔して設けられていることとしたが、これに限らず、第1ベース板60と第2ベース板65との間に、第1ベース板60と第2ベース板65とを熱的に分離する部材(熱伝導を抑制する部材)を介在させて第1ベース板60と第2ベース板65とを熱的に分離させる構成(熱伝導が抑制される構成)としてもよい。なお、上記の実施の形態においては、第1ベース板60と第2ベース板65との間に乾燥空気などの水分が低減(除去)された気体が位置することとしたが、熱伝導率の低さを考慮すると、乾燥空気が好適である。
今回開示された実施の形態はすべての点で例示であって、どのような面からも制限的なものではないと理解されるべきである。本発明の範囲は上記した説明ではなく、請求の範囲によって規定され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 光モジュール
10 基部
10A 一方の主面
10B 他方の主面
11A,11B,11C,11D,11E,11F,11G,11H,11J,11K,12A,12B,12C,12D,12E,12F,12G,12H,12J,12K,13A,13B,14A,14B,14C,14D,15A,15B,15C,15D,15E,16A,16B,16C 線
20 光形成部
21 隙間
30 第1電子冷却モジュール(第1TEC)
31,33 放熱板
32 第2電子冷却モジュール(第2TEC)
40 キャップ
41 出射窓
43,44 サーミスタ
51 リードピン
60 第1ベース板
60A 一方の主面
60B 他方の主面
60C 側面
61 第1ベース領域
62 第1チップ搭載領域
63 第1レーザ搭載領域
65 第2ベース板
65A 一方の主面
65B 他方の主面
65C 側面
66 第2ベース領域
67 第2チップ搭載領域
68 第2レーザ搭載領域
69 第3レーザ搭載領域
71 第1サブマウント
72 第2サブマウント
73 第3サブマウント
74 第4サブマウント
75 第5サブマウント
76 第6サブマウント
77 第1レンズ保持部
78 第2レンズ保持部
79 第3レンズ保持部
81 赤色レーザダイオード
82 緑色レーザダイオード
83 青色レーザダイオード
88 第1突出領域
89 第2突出領域
91 第1レンズ
92 第2レンズ
93 第3レンズ
91A,92A,93A レンズ部
94 第1フォトダイオード
95 第2フォトダイオード
96 第3フォトダイオード
94A,95A,96A 受光部
97 第1フィルタ
98 第2フィルタ
101 放熱システム
102 ヒートシンク
103 押さえ板
103A 第1ガイド部材
103B 第2ガイド部材
103C 第3ガイド部材
104 ファン
105 コネクタ
106 ベース部材
106A 一方の主面
106B 他方の主面
107 フィン
108A,108B,108C,108D ねじ穴
109A,109B,109C,109D ねじ

Claims (5)

  1. 第1ベース部材と、
    前記第1ベース部材と空間的に離隔して設けられている第2ベース部材と、
    前記第1ベース部材上に配置される赤色の光を出射するように構成された第1レーザと、
    前記第2ベース部材上に配置され、赤色とは異なる色を出射するように構成された第2レーザと、
    前記第1ベース部材に接触して配置され、前記第1レーザの温度を調整するように構成された第1電子冷却モジュールとを含む、光モジュール。
  2. 前記第2レーザは、緑色の光または青色の光を出射するように構成された、請求項1に記載の光モジュール。
  3. 前記第2ベース部材に接触して配置され、前記第2レーザの温度を調整するように構成された第2電子冷却モジュールをさらに含む、請求項1または請求項2に記載の光モジュール。
  4. 前記第1レーザと前記第2レーザとの基準面からの光軸高さは、一致するように構成された、請求項1〜請求項3のいずれか1項に記載の光モジュール。
  5. 前記第1ベース部材、前記第2ベース部材、前記第1レーザ、前記第2レーザ、前記第1電子冷却モジュールおよび前記第2電子冷却モジュールを取り囲む保護部材をさらに備える、請求項1〜請求項4のいずれか1項に記載の光モジュール。
JP2018503273A 2016-12-22 2017-10-27 光モジュール Active JP7056551B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021177848A JP7201052B2 (ja) 2016-12-22 2021-10-29 光モジュール

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016248768 2016-12-22
JP2016248768 2016-12-22
PCT/JP2017/038841 WO2018116634A1 (ja) 2016-12-22 2017-10-27 光モジュール

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021177848A Division JP7201052B2 (ja) 2016-12-22 2021-10-29 光モジュール

Publications (2)

Publication Number Publication Date
JPWO2018116634A1 true JPWO2018116634A1 (ja) 2019-10-24
JP7056551B2 JP7056551B2 (ja) 2022-04-19

Family

ID=62626062

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018503273A Active JP7056551B2 (ja) 2016-12-22 2017-10-27 光モジュール
JP2021177848A Active JP7201052B2 (ja) 2016-12-22 2021-10-29 光モジュール

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021177848A Active JP7201052B2 (ja) 2016-12-22 2021-10-29 光モジュール

Country Status (4)

Country Link
US (1) US10892596B2 (ja)
JP (2) JP7056551B2 (ja)
DE (1) DE112017006511T5 (ja)
WO (1) WO2018116634A1 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3092829C (en) 2019-09-13 2023-08-15 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
US10895202B1 (en) 2019-09-13 2021-01-19 Bj Energy Solutions, Llc Direct drive unit removal system and associated methods
US12065968B2 (en) 2019-09-13 2024-08-20 BJ Energy Solutions, Inc. Systems and methods for hydraulic fracturing
US11002189B2 (en) 2019-09-13 2021-05-11 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
CA3092859A1 (en) 2019-09-13 2021-03-13 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
US11015594B2 (en) 2019-09-13 2021-05-25 Bj Energy Solutions, Llc Systems and method for use of single mass flywheel alongside torsional vibration damper assembly for single acting reciprocating pump
CA3092865C (en) 2019-09-13 2023-07-04 Bj Energy Solutions, Llc Power sources and transmission networks for auxiliary equipment onboard hydraulic fracturing units and associated methods
US10815764B1 (en) 2019-09-13 2020-10-27 Bj Energy Solutions, Llc Methods and systems for operating a fleet of pumps
US11428165B2 (en) 2020-05-15 2022-08-30 Bj Energy Solutions, Llc Onboard heater of auxiliary systems using exhaust gases and associated methods
US11208880B2 (en) 2020-05-28 2021-12-28 Bj Energy Solutions, Llc Bi-fuel reciprocating engine to power direct drive turbine fracturing pumps onboard auxiliary systems and related methods
US11109508B1 (en) 2020-06-05 2021-08-31 Bj Energy Solutions, Llc Enclosure assembly for enhanced cooling of direct drive unit and related methods
US11208953B1 (en) 2020-06-05 2021-12-28 Bj Energy Solutions, Llc Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit
US10954770B1 (en) 2020-06-09 2021-03-23 Bj Energy Solutions, Llc Systems and methods for exchanging fracturing components of a hydraulic fracturing unit
US11066915B1 (en) 2020-06-09 2021-07-20 Bj Energy Solutions, Llc Methods for detection and mitigation of well screen out
US11125066B1 (en) 2020-06-22 2021-09-21 Bj Energy Solutions, Llc Systems and methods to operate a dual-shaft gas turbine engine for hydraulic fracturing
US11028677B1 (en) 2020-06-22 2021-06-08 Bj Energy Solutions, Llc Stage profiles for operations of hydraulic systems and associated methods
US11466680B2 (en) 2020-06-23 2022-10-11 Bj Energy Solutions, Llc Systems and methods of utilization of a hydraulic fracturing unit profile to operate hydraulic fracturing units
US11473413B2 (en) 2020-06-23 2022-10-18 Bj Energy Solutions, Llc Systems and methods to autonomously operate hydraulic fracturing units
US11220895B1 (en) 2020-06-24 2022-01-11 Bj Energy Solutions, Llc Automated diagnostics of electronic instrumentation in a system for fracturing a well and associated methods
US11149533B1 (en) 2020-06-24 2021-10-19 Bj Energy Solutions, Llc Systems to monitor, detect, and/or intervene relative to cavitation and pulsation events during a hydraulic fracturing operation
US11193361B1 (en) 2020-07-17 2021-12-07 Bj Energy Solutions, Llc Methods, systems, and devices to enhance fracturing fluid delivery to subsurface formations during high-pressure fracturing operations
WO2022244440A1 (ja) * 2021-05-18 2022-11-24 住友電気工業株式会社 光モジュールおよび光モジュールシステム
US11639654B2 (en) 2021-05-24 2023-05-02 Bj Energy Solutions, Llc Hydraulic fracturing pumps to enhance flow of fracturing fluid into wellheads and related methods

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264670A (ja) * 2000-03-21 2001-09-26 Noritsu Koki Co Ltd レーザビーム走査ユニット及びレーザビーム走査ユニットを備えた写真処理装置
JP2002280659A (ja) * 2001-03-16 2002-09-27 Furukawa Electric Co Ltd:The レーザダイオードモジュールからなる光源
US20040114852A1 (en) * 2002-12-16 2004-06-17 Alcatel Integrated wavelength combiner/locker
JP2006049788A (ja) * 2004-08-08 2006-02-16 Nichia Chem Ind Ltd レーザ光源装置
JP2007201285A (ja) * 2006-01-27 2007-08-09 Sony Corp 光源装置
JP2011133778A (ja) * 2009-12-25 2011-07-07 Casio Computer Co Ltd 半導体光源装置及びプロジェクタ
JP2012042767A (ja) * 2010-08-20 2012-03-01 Toshiba Corp プロジェクタ
JP2016096219A (ja) * 2014-11-13 2016-05-26 住友電気工業株式会社 光モジュール

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6914921B2 (en) * 2001-09-28 2005-07-05 The Furukawa Electric Company, Ltd. Optical filter, laser module, and wavelength locker module
JP2004363242A (ja) * 2003-06-03 2004-12-24 Sumitomo Electric Ind Ltd 光モジュール
JP2007017925A (ja) 2005-06-07 2007-01-25 Fujifilm Holdings Corp 合波レーザ光源
JP2007328895A (ja) 2005-06-16 2007-12-20 Sanyo Electric Co Ltd 光ピックアップ装置
JP2007065600A (ja) 2005-09-02 2007-03-15 Fujifilm Corp 合波レーザ装置
JP2007158248A (ja) 2005-12-08 2007-06-21 Noritsu Koki Co Ltd レーザ装置、レーザ露光装置及び写真処理装置
JP2009093101A (ja) 2007-10-12 2009-04-30 Hitachi Communication Technologies Ltd 光モジュール
DE102007062047A1 (de) 2007-12-21 2009-07-16 Osram Opto Semiconductors Gmbh Kompaktgehäuse
JP2010103487A (ja) 2008-09-26 2010-05-06 Sanyo Electric Co Ltd 半導体レーザ装置および表示装置
JP5534306B2 (ja) 2009-09-29 2014-06-25 カシオ計算機株式会社 半導体光源装置及びプロジェクタ
JP5335873B2 (ja) * 2011-09-20 2013-11-06 株式会社日立メディアエレクトロニクス レーザ光源モジュールおよびそれを備えた走査型画像表示装置
US9243761B2 (en) * 2013-02-28 2016-01-26 Sumitomo Electric Industries, Ltd. Optical assembly and method for assembling the same, and optical module implemented with optical assembly
US20140293239A1 (en) * 2013-03-29 2014-10-02 Funai Electric Co., Ltd. Projector and head-up display device
JP2014194505A (ja) 2013-03-29 2014-10-09 Funai Electric Co Ltd プロジェクタ、及び、ヘッドアップディスプレイ装置
JP6160373B2 (ja) 2013-09-03 2017-07-12 ソニー株式会社 光源装置および映像表示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264670A (ja) * 2000-03-21 2001-09-26 Noritsu Koki Co Ltd レーザビーム走査ユニット及びレーザビーム走査ユニットを備えた写真処理装置
JP2002280659A (ja) * 2001-03-16 2002-09-27 Furukawa Electric Co Ltd:The レーザダイオードモジュールからなる光源
US20040114852A1 (en) * 2002-12-16 2004-06-17 Alcatel Integrated wavelength combiner/locker
JP2006049788A (ja) * 2004-08-08 2006-02-16 Nichia Chem Ind Ltd レーザ光源装置
JP2007201285A (ja) * 2006-01-27 2007-08-09 Sony Corp 光源装置
JP2011133778A (ja) * 2009-12-25 2011-07-07 Casio Computer Co Ltd 半導体光源装置及びプロジェクタ
JP2012042767A (ja) * 2010-08-20 2012-03-01 Toshiba Corp プロジェクタ
JP2016096219A (ja) * 2014-11-13 2016-05-26 住友電気工業株式会社 光モジュール

Also Published As

Publication number Publication date
WO2018116634A1 (ja) 2018-06-28
JP7201052B2 (ja) 2023-01-10
JP2022028691A (ja) 2022-02-16
JP7056551B2 (ja) 2022-04-19
US20190326726A1 (en) 2019-10-24
DE112017006511T5 (de) 2019-10-24
US10892596B2 (en) 2021-01-12

Similar Documents

Publication Publication Date Title
WO2018116634A1 (ja) 光モジュール
US7505495B2 (en) Optical assembly comprising multiple semiconductor optical devices and an active cooling device
US8422523B2 (en) Laser light-source apparatus and projector apparatus
JP6413675B2 (ja) 光モジュール
US7352010B2 (en) Photoelectric conversion module with cooling function
WO2011111328A1 (ja) 半導体レーザ装置
JP6939771B2 (ja) 光モジュール
US20210013694A1 (en) Optical module
JP6927235B2 (ja) 光モジュールの制御方法、光モジュールユニットおよび光モジュール
JP2008153529A (ja) 光送信器
JP2007036046A (ja) 光送信デバイス
JP2005086094A (ja) レーザダイオードモジュール
JP6049489B2 (ja) 光源モジュール
JP2021106247A (ja) パッケージ、発光装置、およびレーザ装置
JP2003188456A (ja) 光電子装置
JP6417885B2 (ja) 光モジュール
CN220985121U (zh) 激光器及车辆
JP2009044026A (ja) 半導体レーザ装置
JP2003078198A (ja) 発光素子モジュール
WO2023203774A1 (ja) 半導体レーザ装置
JP2008153468A (ja) 発光モジュール
JP2017022042A (ja) 光源モジュール
JPH11354890A (ja) 半導体レーザモジュール
JP2016134416A (ja) 光モジュール
JP2022068667A (ja) 光モジュール

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220321

R150 Certificate of patent or registration of utility model

Ref document number: 7056551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150