JP2007158248A - レーザ装置、レーザ露光装置及び写真処理装置 - Google Patents

レーザ装置、レーザ露光装置及び写真処理装置 Download PDF

Info

Publication number
JP2007158248A
JP2007158248A JP2005355080A JP2005355080A JP2007158248A JP 2007158248 A JP2007158248 A JP 2007158248A JP 2005355080 A JP2005355080 A JP 2005355080A JP 2005355080 A JP2005355080 A JP 2005355080A JP 2007158248 A JP2007158248 A JP 2007158248A
Authority
JP
Japan
Prior art keywords
laser
light
optical waveguide
wavelength
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005355080A
Other languages
English (en)
Inventor
Kozo Mano
晃造 眞野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritsu Koki Co Ltd
Original Assignee
Noritsu Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritsu Koki Co Ltd filed Critical Noritsu Koki Co Ltd
Priority to JP2005355080A priority Critical patent/JP2007158248A/ja
Publication of JP2007158248A publication Critical patent/JP2007158248A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Laser Beam Printer (AREA)

Abstract

【課題】本発明は、アイソレータを用いること無く、アイソレータを用いない場合に較べてより安定した波長のレーザ光を射出し得るレーザ装置、このレーザ装置を用いたレーザ露光装置及び写真処理装置を提供する。
【解決手段】本発明に係る、レーザ光を発光するレーザ光源装置20と、コアの屈折率が周期的に変化するグレーティング部42bを備える光ファイバ42aから成り、レーザ光源装置20から射出されたレーザ光の一部をグレーティング部42bのブラッグ反射でレーザ光源装置20に反射する光ファイバグレーティング42とを備えるレーザ装置102において、光ファイバグレーティング42のグレーティング部42bにおける射出側に光ファイバグレーティング42から射出される光の進行方向とは逆方向に進行する光を分岐する光分岐部を備える。
【選択図】図3

Description

本発明は、安定した波長のレーザ光を射出することができるレーザ装置に関する。そして、本発明は、該レーザ装置を用いたレーザ露光装置及び写真処理装置に関する。
近年、レーザ露光装置を露光エンジンとして採用する写真処理装置が知られている。この写真処理装置では、カラー画像を生成するために、光の色の三原色である赤色(R)、緑色(G)及び青色(B)の各レーザ光をそれぞれ生成して射出する3個のレーザ装置が必要である。赤色や近赤外のレーザ光を発光する半導体レーザは、比較的安価であり、入手容易である等の理由から、赤色のレーザ光を射出するレーザ装置には、赤色のレーザ光を発光する半導体レーザがそのまま光源として採用され、緑色や青色のレーザ光を射出するレーザ装置には、近赤外のレーザ光を発光する半導体レーザ、及び、近赤外のレーザ光から第2高調波の緑色や青色のレーザ光を生成するSHG(second harmonic generation)素子が採用されている。例えば、波長530nmの緑色のレーザ光は、半導体レーザで波長1060nmのレーザ光を発光させ、SHG素子でこのレーザ光から波長530nmの第2高調波のレーザ光を生成することで得ている。
そして、近年では、SHG素子は、バルク型に較べて変換効率が高いことから、擬似位相整合(quasi-phase matching、以下、「QPM」と略記する。)の技術を生かしたQPM−SHG素子が採用されている。このQPM−SHG素子としては、例えば、周期分極反転ニオブ酸リチウム(periodically poled LiNbO3、以下、「PPLN」と略記する。)素子がある。このPPLN素子は、ニオブ酸リチウム(LiNbO)から成る基板の主面に一方向へ形成される光導波路を備えると共に、この光導波路に、基板の厚み方向への複数の分極領域が光導波路方向に周期的にかつ交互に逆極性で形成されることで構成される。
このQPM−SHG素子は、周期構造を基本としているため、波長依存性が高く基本光の波長変動に対する出力変動が大きい。例えば、この基本光の波長変動の許容範囲は、約0.1nm〜0.2nmである。なお、基本光は、第2高調波に変換される元の光である。このため、所望の第2高調波の波長、即ち、基本光の波長に適合するように、QPM−SHG素子の位相整合波長が設計される。従って、この設計された位相整合波長のレーザ光が入射される場合には、設計値の位相整合波長と実際に入射されたレーザ光(基本光)の波長とが一致して波長の整合性が取れるため、レーザ光から第2高調波のレーザ光へ変換する変換効率は、所望の結果となるが、この設計された位相整合波長から外れた波長のレーザ光が入射される場合には、波長の整合性が取れていないため、変換効率が所望の結果とならず減少することとなる。
また、半導体レーザは、通常、複数のモードを含むレーザ光を発光するため、主縦モードの波長が位相整合波長となるように設計されたとしても、位相整合波長の以外の波長でも発光し得る。このため、半導体レーザとQPM−SHGとの波長整合を取るために、半導体レーザの射出側には、通常、光ファイバグレーティング(fiber bragg grating、以下、「FBG」と略記する。)が配置され、レーザ光の波長を安定化している(例えば、特許文献1参照)。このFBGは、コアの屈折率が周期的に変化するグレーティング部を備える光ファイバであり、グレーティング長(グレーティング部の長さ、周期的に屈折率が変化しているコアの長さ)、周期、屈折率の変化量を変化させることにより、ブラッグ波長の光を所定の反射率で反射する。このFBGのブラッグ波長を主縦モードの波長(位相整合波長)に合わせることにより、半導体レーザには、その射出したレーザ光における主縦モードのレーザ光がFBGで反射されて戻ってくるため、半導体レーザでは、主縦モードのレーザ光が増幅される結果、主縦モードが他の縦モードの光強度に較べて著しく大きくなる。このため、半導体レーザは、他の縦モードに較べて著しく大きな光強度の主縦モードを射出するようになり、半導体レーザから射出されるレーザ光の波長が安定化する。このようにFBGは、半導体レーザの外部共振器として機能している。
一方、光学部品より成る光学装置では、通常、光学部品の光を射出する端面や光学部品同士が接合される接合面等において反射が生じ、戻り光が生じる。このため、半導体レーザがFBGによって主縦モードで発光するように設計されたとしても、半導体レーザは、半導体レーザの射出側における何れかの場所で生じた戻り光によっても上記と同様に動作するため、この戻り光によってレーザ光における波長の安定性が阻害されてしまう。このため、戻り光を阻止するために、一方向にのみ光を透過するアイソレータがFBGの射出側に配設される(例えば、特許文献2参照)。
特開2005−050843号公報 特開平11−289130号公報
ところで、アイソレータを用いたレーザ装置は、アイソレータが一般に高価であるため、高価になってしまうという不都合がある。また、アイソレータの設置スペースが必要となるため、小型化を阻害するという不都合もある。
一方、アイソレータを用いないためにレーザ光の波長の安定性が阻害されると、波長変換素子は、所望の変換効率でレーザ光から第2高調波を安定的に変換することができないという不都合を生じる。そして、このため、レーザ装置は、一定の光強度で安定したレーザ光を射出することができないため、このレーザ装置を用いたレーザ露光装置及び写真処理装置は、安定した画質の写真が得られなくなるという不都合も生じる。
本発明は、上述の事情に鑑みて為された発明であり、アイソレータを用いること無く、アイソレータを用いない場合に較べてより安定した波長のレーザ光を射出することができるレーザ装置を提供することを目的とする。そして、本発明は、このレーザ装置を用いたレーザ露光装置及び写真処理装置を提供することを目的とする。
本発明者は、種々検討した結果、上記目的は、以下の本発明により達成されることを見出した。即ち、本発明の一態様では、レーザ光を発光するレーザ光源と、コアの屈折率が周期的に変化するグレーティング部を備える光ファイバから成り、該レーザ光源から射出されたレーザ光の一部を該グレーティング部のブラッグ反射で該レーザ光源に反射する光ファイバグレーティングとを備えるレーザ装置において、前記光ファイバグレーティングのグレーティング部における射出側に前記光ファイバグレーティングから射出される光の進行方向とは逆方向に進行する光を分岐する光分岐部を備えることを特徴とする。
この構成によれば、光ファイバグレーティングのグレーティング部における射出側に光ファイバグレーティングから射出される光の進行方向とは逆方向に進行する光を分岐する光分岐部を備えるので、戻り光等の逆方向に進行する光は、この光分岐部で分岐される。このため、光ファイバグレーティングを介して半導体レーザにはその一部しか入射されず、半導体レーザに入射される逆方向に進行する光が軽減されるから、逆方向に進行する光が半導体レーザのレーザ光における波長の安定性を阻害することが軽減される。例えば光分岐部が等分の光強度で分岐する場合には、半導体レーザに入射される逆方向に進行する光は、半分に軽減される。従って、高価なアイソレータを用いることなく安価な光分岐部を備えることで、アイソレータを用いない場合に較べて半導体レーザのレーザ光における波長の安定性をより向上させることができる。
そして、上述のレーザ装置において、前記光ファイバグレーティングから射出されるレーザ光が入射され、該入射されたレーザ光を第2高調波に変換して射出する波長変換素子をさらに備えることを特徴とする。
この構成によれば、上記光分岐部を備えることによって、より安定化した波長のレーザ光が半導体レーザから光ファイバグレーティングを介して波長変換素子に入射されるので、レーザ装置は、高い変換効率でレーザ光を第2高調波に変換することができ、より安定化した光強度の第2高調波のレーザ光を射出することができる。
また、この上述のレーザ装置において、前記波長変換素子は、一方面に一方向へ形成される光導波路と、該光導波路方向に周期的にかつ交互に逆極性で該光導波路に形成される厚み方向への複数の分極領域とを備える非線形光学結晶から成る基板であり、前記光分岐部は、前記複数の分極領域における入射側の光導波路及び射出側の光導波路のうちの少なくとも一方に形成されることを特徴とする。
この構成によれば、光分岐部が複数の分極領域における入射側の光導波路及び射出側の光導波部のうちの少なくとも一方に形成されるので、光分岐部を波長変換素子の製造プロセスに併せて製造することができ、光分岐部が波長変換素子の基板に併せて形成することができる。このため、レーザ装置を安価に製造することができ、小型化することができる。
そして、本発明の他の一態様では、赤色、緑色及び青色の各レーザ光をそれぞれ生成して射出する3個のレーザ装置と、前記3個のレーザ装置のそれぞれから射出される赤色、緑色及び青色の各レーザ光における光強度を露光すべき画像データに応じて変調する変調部と、第1方向に搬送される被露光媒体に対して前記第1方向に直交する第2方向に前記変調部で変調された赤色、緑色及び青色の各レーザ光を走査させて前記被露光媒体を露光する露光部とを備えるレーザ露光装置において、前記3個のレーザ装置のうちの少なくとも1つは、これら上述の何れかのレーザ装置であることを特徴とする。
また、本発明の他の一態様では、第1方向に被露光媒体を搬送する搬送部と、前記第1方向に直交する第2方向に赤色、緑色及び青色の各レーザ光を走査させて前記被露光媒体を露光するレーザ露光装置とを備える写真処理装置において、前記レーザ露光装置は、上述のレーザ露光装置であることを特徴とする。
この構成によれば、安価なレーザ装置を用いることができるので、安価なレーザ露光装置及び写真処理装置が提供され得る。そして、レーザ露光装置及び写真処理装置は、レーザ装置にアイソレータを用いない場合に較べてより安定した光強度のレーザ光によって例えば印画紙等の被露光媒体を露光することができるので、より高画質な写真を得ることができる。
本発明に係るレーザ装置は、アイソレータを用いること無く、アイソレータを用いない場合に較べてより安定した波長のレーザ光を射出することができる。そして、このため、本発明に係るレーザ露光装置及び写真処理装置は、より高画質な写真を得ることができる。
以下、本発明に係る実施形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、その説明を省略する。
図1は、実施形態に係る写真処理装置の構成を示す外観斜視図である。図1において、この写真処理装置Aは、被露光媒体の一例である印画紙に画像データで露光するための露光ユニット1、露光された印画紙に対して現像、定着、漂白及び安定化処理を施す現像ユニット2、現像された印画紙を乾燥する乾燥ユニット3、及び、これら各ユニット1、2、3間に亘る図略の印画紙搬送機構等を備えて構成される。画像データは、フィルム(ネガ、ポジ)をイメージスキャナで読み取ることによって生成されたり、ディジタルスチルカメラで被写体を撮影することによって生成されたり、あるいは、パーソナルコンピュータによって生成される。
露光ユニット1は、暗箱であり、その内部には、第1方向に搬送される印画紙に対して、第1方向に直交する第2方向に、画像データによって光強度が変調された赤色、緑色及び青色の各レーザ光を走査させて印画紙を露光するレーザ露光装置11、ロール状に巻回された印画紙をレーザ露光装置11に向けて送り出し可能に収納する収納部12、印画紙を所定サイズに切断する図略のカッタ、及び、収納部12からカッタまで印画紙を搬送すると共にカッタで切断された印画紙をレーザ露光装置11に搬送する図略の搬送機構等を備えて構成される。
図2は、実施形態に係るレーザ露光装置の構造を説明する斜視図である。なお、図2では、内部構造の説明の便宜上、筐体101の上部を省略して図示しているが、筐体101は、暗室構造にされると共に、塵の入り込みを防止すべく密閉構造とされている。
筐体101内の所定位置には、光の色の三原色である赤色、緑色及び青色にそれぞれ対応する3つの光源、即ち、ビーム状の赤色、緑色及び青色の各レーザ光をそれぞれ生成して射出するレーザ装置102R、102G、102Bが配設されている。なお、本明細書において、総称する場合には、アルファベットや−付きの数字から成る添え字を省略した参照符号で示し、個別の構成を指す場合には、このような添え字を付した参照符号で示す。
レーザ装置102Rは、赤色の波長範囲、例えば波長685nmの赤色のレーザ光を発光する半導体レーザを備えて構成される。レーザ装置102Gは、緑色の波長範囲、例えば波長530nmの緑色の光を発光し、本実施形態では、例えば波長1060nmの近赤外光のレーザ光を発光する半導体レーザと、その半導体レーザから射出されたレーザ光を波長530nmの緑色のレーザ光(SHG光)に変換する波長変換素子とを備えて構成されたSHGレーザ装置である。レーザ装置102Bは、青色の波長範囲、例えば波長473nmの青色の光を発光し、本実施形態では、例えば波長946nmの近赤外光のレーザ光を発光する半導体レーザと、その半導体レーザから射出されたレーザ光を波長473nmの青色のレーザ光に変換する波長変換素子とを備えて構成されたSHGレーザ装置である。レーザ装置102G及びレーザ装置102Bの詳細については、後述する。
レーザ装置102Rの射出側には、コリメータレンズ103Rが配設されている。そして、レーザ装置102G、102Bの射出側には、それぞれコリメータレンズ103G、103Bを介して音響光学変調素子(acousto-optic modulator;以下、「AOM」と略記する。)104G、104Bが配設されている。
即ち、赤色のレーザ光には、レーザ装置102Rにおける半導体レーザの駆動電流(注入電流)を画像データに応じて変調することにより半導体レーザの発振強度を直接変調する直接変調方式が採用されており、緑色及び青色の各レーザ光には、レーザ装置102G、102Bから射出された緑色及び青色の各レーザ光をAOM104G、104Bによって変調する外部変調方式が採用されている。ここで、直接変調方式が採用されている場合には、直接変調を行うために画像データに応じた駆動電流を生成する図略の駆動回路が請求項の変調部の一例に相当し、外部変調方式が採用されている場合には、AOM104G、104Bが請求項の変調部の一例に相当している。
AOM104G、104Bは、音響光学変調素子を備えて構成され、超音波による音響光学効果の作用により、レーザ装置102G、102Bから射出された緑色及び青色の各レーザ光を画像データの画素の階調に応じた光強度にそれぞれ変調する。
コリメータレンズ103Rの射出側、及び、AOM104G、104Bの射出側には、レーザ整形開口105及びミラー106が各色のレーザ光の進行方向に沿って順にそれぞれ配置されている。そして、ミラー106の反射側には、球面レンズ107、シリンドリカルレンズ108及びポリゴンミラー109が各色のレーザ光の進行方向に沿って順にそれぞれ配置されている。
ポリゴンミラー109は、各色のレーザ光を所定方向に反射するために、例えば矢印Zで示す方向に所定の一定速度で回転されている。ポリゴンミラー109の反射側には、fθレンズ110、シリンドリカルレンズ111、1組のミラー112及び113が各色のレーザ光の進行方向に沿って順にそれぞれ配置されている。各色のレーザ光は、ポリゴンミラー109、fθレンズ110及びシリンドリカルレンズ111により矢印Xで示す主走査方向(上記第2方向)に偏向され、ミラー112、113により矢印Yで示す副走査方向(上記第1方向)に搬送される印画紙4に向けて反射される。矢印Xで示す主走査方向と矢印Yで示す副走査方向は、互いに直交している。そして、ミラー112の手前側には、画像1ライン分の露光を開始するタイミングを決定するための同期センサ114が配設されている。
このような構成の写真処理装置A及びレーザ露光装置11では、レーザ装置102Rは、露光すべき画像データに応じた光強度の赤色のレーザ光を射出する。この射出された赤色のレーザ光は、コリメータレンズ103R及びレーザ整形開口105を介してミラー106に入射する。レーザ装置102G、102Bから射出された緑色及び青色の各レーザ光は、コリメータレンズ103G、103Bを介してAOM104G、104Bにそれぞれ入射され、AOM104G、104Bで画像データの画素の階調に応じた光強度にそれぞれ変調される。この変調された緑色及び青色の各レーザ光は、レーザ整形開口105を介してミラー106に入射する。
このミラー106に入射した赤色、緑色及び青色の各レーザ光は、ミラー106で反射され、球面レンズ107及びシリンドリカルレンズ108を介してポリゴンミラー109にそれぞれ入射する。この入射した赤色、緑色及び青色の各レーザ光は、矢印Xの主走査方向に走査されるように、ポリゴンミラー109で反射され、fθレンズ110、シリンドリカルレンズ111及び1組のミラー112、113を介して印画紙4に照射され、印画紙4を露光する。印画紙4が図略の搬送機構により矢印Yの副走査方向に搬送されることによって、印画紙4上に2次元のカラー画像の潜像が形成される。
次に、本実施形態におけるレーザ装置102G、102Bについて説明する。
図3は、実施形態に係るレーザ装置の構成を示す図である。図3(A)は、斜視図であり、図3(B)は、簡略側面図である。図4は、実施形態に係る波長変換素子の構成を示す図である。図4(A)は、平面図であり、図4(B)は、斜視図である。
レーザ装置102G、102Bは、基本光の波長及び第2高調波の出力光の波長が異なるために、これに合わせて後述の半導体レーザ21のレーザ光の波長、FBG42のグレーティング間隔及び光導波路部31aにおける各分極領域313の間隔(ピッチ)が異なるだけで、それらの構造は、同様であるので、レーザ装置102G、102Bを特に区別することなく説明し、その相違部分のみを適宜説明する。
図3において、レーザ装置102(102G、102B)は、レーザ光を射出するレーザ光源装置20と、レーザ光を第2高調波のレーザ光に変換する波長変換部30と、レーザ光源装置20から射出されたレーザ光を波長変換部30に入射するための入射光学系40と、波長変換部30から射出された第2高調波の光をレーザ装置102の出力光として射出するための出力光学系50とを備えて構成される。これらレーザ光源装置20、波長変換部30、入射光学系40及び出力光学系50は、図略の略直方体形状の筐体内に収納されている。
レーザ光源装置20は、底面が前記筐体に取り付けられた略直方体形状のベース23と、ベース23の上面に取り付けられた支持部材22と、支持部材22に支持された半導体レーザ21とを備えて構成される。
ベース23は、半導体レーザ21の温度を制御する部材、例えば電熱変換素子であるペルチェ素子を備えて構成され、半導体レーザ21の温度を検出する図略の温度センサからの検出温度に基づいて半導体レーザ21の温度が目標値となるように半導体レーザ21の温度を制御する図略の温度制御回路からの制御信号に応じて吸熱又は発熱する。半導体レーザ21は、温度依存性を有するが、これによって半導体レーザ21は、温度が管理され、略一定の温度で動作することができるので、レーザ光の光強度と波長とが安定化される。
半導体レーザ21は、例えば分布帰還型(DFB、distributed feedback)や分布ブラッグ反射型(DBR、distributed bragg reflector)の半導体レーザであり、例えば二重へテロ構造を有する、AlGaAsやInGaAsP等で構成される。レーザ装置102Gの半導体レーザ21Gは、波長変換部30で変換される第2高調波の波長が緑色の波長範囲になる波長、例えば1060nmの縦モードを主縦モードとする1又は複数の縦モードを含むレーザ光を発光する。レーザ装置102Bの半導体レーザ21Bは、波長変換部30で変換される第2高調波の波長が青色の波長範囲になる波長、例えば946nmの縦モードを主縦モードとする1又は複数の縦モードを含むレーザ光を発光する。なお、縦モードが1つの場合には、その1つの縦モードが主縦モードである。分布帰還型半導体レーザ及び分布ブラッグ反射型半導体レーザは、安定的に単一モードで発振することができ、特に、直接変調される場合でも安定的に単一モードで発振することができる。そのため、上記レーザ装置102Rの半導体レーザにも好適である。
波長変換部30は、底面が前記筐体に取り付けられた略直方体形状のベース33と、ベース33の上面に取り付けられた支持部材32と、支持部材32に支持された波長変換素子31とを備えて構成される。
ベース33は、ベース23と同様に、波長変換素子31の温度を制御する部材、例えばペルチェ素子を備えて構成され、波長変換素子31の温度を検出する図略の温度センサからの検出温度に基づいて波長変換素子31の温度が目標値となるように波長変換素子31の温度を制御する図略の温度制御回路からの制御信号に応じて吸熱又は発熱する。波長変換素子31は、温度依存性を有するが、これによって波長変換素子31は、温度が管理され、略一定の温度で動作するので、第2高調波の光の光強度が安定化される。
波長変換素子31は、レーザ光源装置20から射出されたレーザ光が基本光として入射され、この入射されたレーザ光に対する第2高調波のレーザ光を生成して射出すると共に、FBG42から射出される光の進行方向とは逆方向に進行する例えば戻り光等の光を分岐する光学部品であり、図4に示すように、光導波路部31a及び光分岐部31bを備える基板311から成る。
基板311は、LiNbO、MgOドープLiNbO、LiTaO、KTiOPoO、RbTiOAsO、RbTiOPO等の非線形光学結晶から成る。特にLiNbO(ニオブ酸リチウム)は、非線形光学結晶の中でも高い非線形性を有し、高い変換効率で波長変換が可能であるため、本発明の波長変換素子31に好適であり、本実施形態では、このLiNbOが基板311に用いられる。
光導波路部31aは、基板311の主面に一方向へ形成された光導波路312を備え、光導波路312には、基板311の厚み方向へ複数の分極領域313が光導波路312の長尺方向に周期的にかつ交互に逆極性に形成されている。この周期的に分極反転したニオブ酸リチウムの光導波路312の部分が光導波路312に入射されたレーザ光から第2高調波を生成する第2高調波生成部31cを構成している。このように光導波路部31aは、PPLN素子を構成している。なお、分極領域313は、図4に示す例では、光導波路312に対し5つの分極領域を持つように記載しているが、分極領域の個数は、波長変換素子31の仕様に基づいて適宜設計される。
この第2高調波生成部31cは、所定の位相整合波長で非線形光学結晶の非線形分極を利用して第2高調波を生成するように形成される。この周期分極反転光導波路型の第2高調波生成部31cにおける位相整合波長(光導波路312の位相整合波長)は、基本的に、分極領域313の周期及び光導波路312における実効屈折率に基づく。このため、各光導波路312の位相整合波長は、光導波路312の幅及び/又は屈折率を変え光導波路312の実効屈折率を変えることによって変えることができる。あるいは、この各光導波路312の位相整合波長は、分極領域313の周期を変えることによっても変えることができる。位相整合波長の変化量は、実効屈折率の変更よりも分極領域313の周期の変更の方が大きい。
光分岐部31bは、FBG42から射出される光の進行方向とは逆方向に進行する光を分岐するものである。光分岐部31bには、光導波路部31aの光導波路312が基板311の主面に第2高調波生成部31cの一方端、例えば入射側に延在され、この延在された光導波路312と光学的に結合される分岐光導波路314が基板311の主面に形成されている。分岐光導波路314は、光導波路312と平行するように曲げられ、光導波路312と光学的に結合している一方端部とは反対の他方端部が、延在された光導波路312の入射端が形成されている基板311の端面に形成されている。なお、図4(A)に破線で示すように、分岐光導波路314は、光導波路312と平行するように必ずしも曲げられる必要はなく、上記他方端部が基板311の何れかの端面に形成されていればよい。あるいは、図示しないが、分岐光導波路314は、上記他方端部が基板311の主面又は主面に対向する背面に形成されてもよい。
このような光波長変換素子31は、公知の半導体製造プロセスを用いて製作可能であり、光導波路312及び分岐光導波路314は、例えば、プロトン交換法を用いて形成することができ、また、分極領域313は、例えば、電界印加法を用いて形成することができる。
図3に戻って、入射光学系40は、レンズ41とFBG42とを備えて構成される。
レンズ41は、レーザ光源装置20から射出されるレーザ光と波長変換素子31に入射されるレーザ光との結合効率を調節するための部材であり、前記筐体に取り付けられた図略の支持部材によって支持され、レーザ光源装置20の出力側(レーザ光が射出される側)に配設される。このレンズ41を支持する支持部材は、レーザ光の進行方向に対して前後にその位置が調節可能に取り付けられている。これによってレーザ光源装置20に対するレンズ41の位置が調節され、上記結合効率が調節される。
FBG42は、レンズ41を介したレーザ光源装置20から射出されたレーザ光を波長変換部30の波長変換素子31に入射させ、レンズ41を介してレーザ光源装置20と波長変換部30の波長変換素子31とを光学的に結合すると共に、レーザ光源装置20から射出されたレーザ光の一部をブラッグ反射でレーザ光源装置20の半導体レーザ21に反射するための光学部品である。FBG42は、光ファイバ42aにおけるコアの屈折率が周期的に変化するグレーティング部42bが形成されている。FBG42は、グレーティング長(グレーティング部42bの長さ、周期的に屈折率が変化しているコアの長さ)、周期、屈折率の変化量を変化させることにより、ブラッグ波長の光をグレーティング部42bにより所定の反射率で反射する。レーザ装置102GのFBG42Gは、上述の例では半導体レーザ21Gが発光する主縦モード1060nmの光をブラッグ反射で反射するように形成される。レーザ装置102BのFBG42Bは、半導体レーザ21Bが発光する主縦モード946nmの光をブラッグ反射で反射するように形成される。
このFBG42により、レーザ光源装置20の半導体レーザ21には、射出したレーザ光の主縦モードがグレーティング部42bで反射されて戻ってくるため、半導体レーザ21では、主縦モードのレーザ光が増幅される結果、主縦モードが他の縦モードの光強度に較べて著しく大きくなる。このため、半導体レーザ21は、他の縦モードに較べて著しく大きな光強度の主縦モードを射出するようになり、半導体レーザ21から射出されるレーザ光の波長が安定化する。
なお、詳細は、背景技術で示した特許文献1に開示されているので省略するが、FBG42は、波長が安定し光強度が大きな主縦モードのレーザ光を得る観点から、半値幅が縦モード間隔の0.75〜1.0倍、反射率が3%以上50%以下の特性を有するものが好ましい。さらに、同様の観点から、半導体レーザ21とFBG42との結合効率は、50%〜90%が好ましく、FBG42と波長変換素子31との結合効率は、70%以上が好ましく、FBG42と波長変換素子31との光学的な結合は、接着剤等の結合媒体を用いることが好ましい。
また、入射光学系40は、レンズ41を備えることなく、FBG42によって直接、レーザ光源装置20から射出されたレーザ光を波長変換部30の波長変換素子31に入射させるように構成されてもよい。
出力光学系50は、波長変換部30の出力側(光が射出される側)に配設され、1組のコリメータレンズ51及び集光レンズ52を備えて構成される。出力光学系50は、これら1組のコリメータレンズ51及び集光レンズ52によって波長変換部30の波長変換素子31から射出されたレーザ光のビーム径を所定の径に調整し、レーザ装置102の出力光として射出する。コリメータレンズ51及び集光レンズ52は、図略の支持部材によって支持され前記筐体の底面に配設される。
このような構成のレーザ装置102(102G、102B)では、半導体レーザ21から射出されたレーザ光は、レンズ41を介してFBG42に入射される。FBG42で反射したレーザ光は、半導体レーザ21に戻りその発振波長を安定化させる。一方、FBG42を進行したレーザ光は、波長変換素子31に入射される。
波長変換素子31に入射されたレーザ光は、光導波路312を進行する間に第2高調波生成部31cで第2高調波のレーザ光に変換される。この第2高調波のレーザ光は、波長変換素子31の出力として射出される。そして、波長変換素子31から射出された第2高調波のレーザ光は、コリメータレンズ51で平行光とされ、集光レンズ52で所定の径とされ、レーザ装置102の出力として射出される。
ここで、波長変換素子31の射出面や、コリメータレンズ51の入射面及び射出面や、集光レンズ52の入射面及び射出面や、レーザ装置102からミラー113までの光路における光学部品等において生じたレーザ装置102から射出されたレーザ光の進行方向とは逆方向に進行する例えば戻り光等の光は、波長変換部30の波長変換素子31における光導波路312と分岐光導波路314とが光学的に結合している分岐路Pまで進行すると、分岐路Pで光導波路312と分岐光導波路314とに分岐され、光導波路312と分岐光導波路314を進行する。このため、入射光学系40を介してレーザ光源装置20の半導体レーザ21には、波長変換素子31に入射した逆方向に進行する光の一部しか入射されず、半導体レーザ21に入射される逆方向に進行する光が軽減されるから、逆方向に進行する光が半導体レーザ21のレーザ光における波長の安定性を阻害することが軽減される。例えば分岐路Pが等分の光強度で光を分岐する場合には、半導体レーザ21に入射される逆方向に進行する光は、半分に軽減される。従って、高価なアイソレータを用いることなく安価な光分岐部31bを備えることで、アイソレータを用いない場合に較べて半導体レーザ21のレーザ光における波長の安定性をより向上させることができる。
そして、光分岐部31bを備えることによって、より安定化した波長のレーザ光がレーザ光源装置20の半導体レーザ21から入射光学系40を介して波長変換部30の波長変換素子31に入射されるので、レーザ装置102は、高い変換効率でレーザ光を第2高調波に変換することができ、より安定化した光強度の第2高調波のレーザ光を射出することができる。
また、光分岐部31bが第2高調波生成部31cにおける入射側の光導波路312に形成されるので、光分岐部31bを波長変換素子31の製造プロセスに併せて製造することができ、光分岐部31bが波長変換素子31の基板311に併せて形成される。このため、レーザ装置102を安価に製造することができ、小型化することができる。
そして、このようなレーザ装置102を用いるので、レーザ露光装置11及び写真処理装置Aは、安価に製造することができ、レーザ装置102にアイソレータを用いない場合に較べてより安定した光強度のレーザ光によって印画紙を露光することができるので、より高画質な写真を得ることができる。
なお、上述の実施形態において、光分岐部31bは、第2高調波生成部31cにおける射出側の光導波路312に形成されてもよい。図5は、実施形態に係る波長変換素子の他の構成を示す図である。図5(A)は、光分岐部の第1の構成を示し、図5(B)は、光分岐部の第2の構成を示す。
光分岐部31b’が第2高調波生成部31cにおける射出側の光導波路312に形成される波長変換素子31’は、図5(A)に示すように、上述の波長変換素子31と同様な構成の光導波路部31aと光分岐部31b’を備えて構成される。光分岐部31b’には、光導波路部31aの光導波路312が基板311の主面に第2高調波生成部31cの射出側に延在され、この延在された光導波路312と光学的に結合される分岐光導波路314が基板311の主面に形成されている。分岐光導波路314は、光導波路312と光学的に結合している一方端部とは反対の他方端部が、基板311の端面に形成されている。なお、分岐光導波路314は、図5(B)に示すように、光導波路312と平行するように曲げられ、上記他方端部が、光導波路312の入射端が形成されている基板311の端面に形成されてもよい。あるいは、図示しないが、分岐光導波路314は、上記他方端部が基板311の主面又は主面に対向する背面に形成されてもよい。
このような構成によっても光分岐部31bが第2高調波生成部31cにおける入射側の光導波路312に形成される場合と同様な作用効果を奏する。
また、上述の実施形態において、波長変換素子31に光分岐部31bを備えることに代え、あるいは、波長変換素子31に光分岐部31bを備えると共に、FBG42のグレーティング部42bにおける射出側に、FBG42から射出される光の進行方向とは逆方向に進行する光を分岐する光分岐部を備えてもよい。
図6は、実施形態に係るFBGの他の構成を示す図である。光分岐部を備えるFBG42’は、図6に示すように、FBG42’のグレーティング部42bにおける射出側の光ファイバ42a−2に光分岐用の光ファイバ43を融着することによって光分岐部42cが形成される。
このような構成のFBG42’では、FBG42’の射出面や、波長変換素子31の入射面及び射出面や、コリメータレンズ51の入射面及び射出面や、集光レンズ52の入射面及び射出面や、レーザ装置102からミラー113までの光路における光学部品等において生じたレーザ装置102から射出されたレーザ光の進行方向とは逆方向に進行する例えば戻り光等の光は、入射光学系40のFBG42’における光ファイバ42a−2と光ファイバ43とが融着している分岐路Qまで進行すると、分岐路Qで光ファイバ42a−2と光ファイバ43とに分岐され、光ファイバ42a−2と光ファイバ43とを進行する。このため、入射光学系40を介してレーザ光源装置20の半導体レーザ21には、FBG42’に入射した逆方向に進行する光の一部しか入射されず、半導体レーザ21に入射される逆方向に進行する光が軽減されるから、逆方向に進行する光が半導体レーザ21のレーザ光における波長の安定性を阻害することが軽減される。従って、高価なアイソレータを用いることなく光ファイバ43をFBG42’の光ファイバ42a−2に融着することで、アイソレータを用いない場合に較べて半導体レーザ21のレーザ光における波長の安定性をより向上させることができる。
そして、FBG42’が光分岐用の光ファイバ43を備えることによって、より安定化した波長のレーザ光がレーザ光源装置20の半導体レーザ21から入射光学系40を介して波長変換部30の波長変換素子31に入射されるので、レーザ装置102は、高い変換効率でレーザ光を第2高調波に変換することができ、より安定化した光強度の第2高調波のレーザ光を射出することができる。このようなレーザ装置102を用いるので、レーザ露光装置11及び写真処理装置Aは、安価に製造することができ、レーザ装置102にアイソレータを用いない場合に較べてより安定した光強度のレーザ光によって印画紙を露光することができるので、より高画質な写真を得ることができる。
さらに、レーザ装置102は、第2高調波生成部31cにおける入射側の光導波路312に形成される光分岐部31b、第2高調波生成部31cにおける射出側の光導波路312に形成される光分岐部31b’、31b”、及び、光ファイバ42a−2に形成される光ファイバ43のうちの2以上を適宜組み合わせて構成されてもよい。このように構成することによって、逆方向に進行する光は、分岐路P、Qで順次に分岐され、半導体レーザ21に入射される逆方向に進行する光がより軽減されるから、半導体レーザ21のレーザ光における波長の安定性をより向上させることができる。そして、レーザ露光装置11及び写真処理装置Aは、より高画質な写真を得ることができる。
実施形態に係る写真処理装置の構成を示す外観斜視図である。 実施形態に係るレーザ露光装置の構造を説明する斜視図である。 実施形態に係るレーザ装置の構成を示す図である。 実施形態に係る波長変換素子の構成を示す図である。 実施形態に係る波長変換素子の他の構成を示す図である。 実施形態に係るFBGの他の構成を示す図である。
符号の説明
A 写真処理装置
11 レーザ露光装置
21 半導体レーザ
31 波長変換素子
31a 光導波路部
31b、31b’、31b”、42c 光分岐部
31c 第2高調波生成部
42、42’ 光ファイバグレーティング
42a(42a−1、42a−2)、43 光ファイバ
42b グレーティング部
102 レーザ装置
311 基板
312 光導波路
313 分極領域
314 分岐光導波路

Claims (5)

  1. レーザ光を発光するレーザ光源と、コアの屈折率が周期的に変化するグレーティング部を備える光ファイバから成り、該レーザ光源から射出されたレーザ光の一部を該グレーティング部のブラッグ反射で該レーザ光源に反射する光ファイバグレーティングとを備えるレーザ装置において、
    前記光ファイバグレーティングのグレーティング部における射出側に前記光ファイバグレーティングから射出される光の進行方向とは逆方向に進行する光を分岐する光分岐部を備えること
    を特徴とするレーザ装置。
  2. 前記光ファイバグレーティングから射出されるレーザ光が入射され、該入射されたレーザ光を第2高調波に変換して射出する波長変換素子をさらに備えること
    を特徴とするレーザ装置。
  3. 前記波長変換素子は、一方面に一方向へ形成される光導波路と、該光導波路方向に周期的にかつ交互に逆極性で該光導波路に形成される厚み方向への複数の分極領域とを備える非線形光学結晶から成る基板であり、
    前記光分岐部は、前記複数の分極領域における入射側の光導波路及び射出側の光導波路のうちの少なくとも一方に形成されること
    を特徴とする請求項2に記載のレーザ装置。
  4. 赤色、緑色及び青色の各レーザ光をそれぞれ生成して射出する3個のレーザ装置と、前記3個のレーザ装置のそれぞれから射出される赤色、緑色及び青色の各レーザ光における光強度を露光すべき画像データに応じて変調する変調部と、第1方向に搬送される被露光媒体に対して前記第1方向に直交する第2方向に前記変調部で変調された赤色、緑色及び青色の各レーザ光を走査させて前記被露光媒体を露光する露光部とを備えるレーザ露光装置において、
    前記3個のレーザ装置のうちの少なくとも1つは、請求項1乃至請求項3の何れか1項に記載のレーザ装置であること
    を特徴とするレーザ露光装置。
  5. 第1方向に被露光媒体を搬送する搬送部と、前記第1方向に直交する第2方向に赤色、緑色及び青色の各レーザ光を走査させて前記被露光媒体を露光するレーザ露光装置とを備える写真処理装置において、
    前記レーザ露光装置は、請求項4に記載のレーザ露光装置であること
    を特徴とする写真処理装置。
JP2005355080A 2005-12-08 2005-12-08 レーザ装置、レーザ露光装置及び写真処理装置 Withdrawn JP2007158248A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005355080A JP2007158248A (ja) 2005-12-08 2005-12-08 レーザ装置、レーザ露光装置及び写真処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005355080A JP2007158248A (ja) 2005-12-08 2005-12-08 レーザ装置、レーザ露光装置及び写真処理装置

Publications (1)

Publication Number Publication Date
JP2007158248A true JP2007158248A (ja) 2007-06-21

Family

ID=38242153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005355080A Withdrawn JP2007158248A (ja) 2005-12-08 2005-12-08 レーザ装置、レーザ露光装置及び写真処理装置

Country Status (1)

Country Link
JP (1) JP2007158248A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022028691A (ja) * 2016-12-22 2022-02-16 住友電気工業株式会社 光モジュール

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022028691A (ja) * 2016-12-22 2022-02-16 住友電気工業株式会社 光モジュール
JP7201052B2 (ja) 2016-12-22 2023-01-10 住友電気工業株式会社 光モジュール

Similar Documents

Publication Publication Date Title
KR101217557B1 (ko) 직접 광변조가 가능한 레이저 모듈 및 이를 채용한 레이저디스플레이 장치
US20060013593A1 (en) Light intensity modulation element, intensity-modulated-light generating device, laser exposure unit and photograph processing apparatus
JP2010204197A (ja) レーザ装置、レーザディスプレイ装置、レーザ照射装置及び非線形光学素子
JP2004070338A (ja) 光波長変換装置、及び光波長変換方法
JP2006030542A5 (ja)
JP4449976B2 (ja) 外部共振型レーザ光源装置
JP2007147688A (ja) 波長変換素子、レーザ装置及び写真処理装置
JP2007158248A (ja) レーザ装置、レーザ露光装置及び写真処理装置
JP2006332447A (ja) レーザー光源装置
JP2007142091A (ja) レーザ装置、レーザ露光装置及び写真処理装置
KR20030094120A (ko) 플라스틱 파이버를 이용한 전송장치
JP2006332500A (ja) レーザー光源装置
JP3925194B2 (ja) 可視光光源、光走査装置及びディジタル写真処理装置
US20070230533A1 (en) Laser module
JP2009200284A (ja) レーザ光源装置、画像表示装置及びモニタ装置
JP2007171533A (ja) 光源装置、光源装置の製造方法、およびプロジェクタ
JP5088684B2 (ja) 光源装置、照明装置、画像表示装置及びモニタ装置
JP2005049416A (ja) レーザ装置及び波長変換素子
JP2008083482A (ja) レーザ光源装置、照明装置、モニタ装置およびプロジェクタ
JP2004177633A (ja) レーザ発生装置及び写真処理装置
JP2005064109A (ja) レーザ光源及びレーザ露光装置
JP3504807B2 (ja) 画像記録装置およびその調整方法
JP2004235590A (ja) 画像形成装置
JP2004138825A (ja) レーザ発光装置及び写真処理装置
JP2005057208A (ja) レーザ発光装置及びレーザ露光装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090303