JPWO2018066206A1 - 機器温調装置 - Google Patents

機器温調装置 Download PDF

Info

Publication number
JPWO2018066206A1
JPWO2018066206A1 JP2018543746A JP2018543746A JPWO2018066206A1 JP WO2018066206 A1 JPWO2018066206 A1 JP WO2018066206A1 JP 2018543746 A JP2018543746 A JP 2018543746A JP 2018543746 A JP2018543746 A JP 2018543746A JP WO2018066206 A1 JPWO2018066206 A1 JP WO2018066206A1
Authority
JP
Japan
Prior art keywords
working fluid
heat
main condenser
condenser
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018543746A
Other languages
English (en)
Other versions
JP6575690B2 (ja
Inventor
康光 大見
康光 大見
義則 毅
毅 義則
竹内 雅之
雅之 竹内
功嗣 三浦
功嗣 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Publication of JPWO2018066206A1 publication Critical patent/JPWO2018066206A1/ja
Application granted granted Critical
Publication of JP6575690B2 publication Critical patent/JP6575690B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Secondary Cells (AREA)
  • Combustion & Propulsion (AREA)

Abstract

本開示は、部品点数を低減すると共に、車両搭載性の向上および車両搭載の自由度を向上することの可能な複数のサーモサイフォン回路を使用した機器温調装置を提供する。第1サーモサイフォン回路(10)は、第1の対象機器(BP1)から吸熱して蒸発する作動流体の蒸発潜熱により第1の対象機器(BP1)を冷却する第1蒸発器(11)、および、その第1蒸発器(11)に連通する第1通路(12)を有する。第2サーモサイフォン回路(20)は、第2の対象機器(BP2)から吸熱して蒸発する作動流体の蒸発潜熱により第2の対象機器(BP2)を冷却する第2蒸発器(21)、および、その第2蒸発器(21)に連通する第2通路(22)を有する。主凝縮器(40)は、第1通路(12)に設けられた第1熱交換部(120)と第2通路(22)に設けられた第2熱交換部(220)とを有し、第1熱交換部(120)を流れる作動流体と第2熱交換部(220)を流れる作動流体と所定の冷熱供給媒体とが熱交換するように構成されている。

Description

関連出願への相互参照
本出願は、2016年10月6日に出願された日本特許出願番号2016−198094号に基づくもので、ここにその記載内容が参照により組み入れられる。
本開示は、対象機器の温度を調整する機器温調装置に関するものである。
近年、電気自動車またはハイブリッド自動車などの電動車両に搭載される蓄電装置などの電気機器の温度を調整するための機器温調装置としてサーモサイフォン回路を使用した技術が検討されている。
特許文献1に記載の機器温調装置は、温度調整を行う対象機器としての電池の側面に設けられた蒸発器と、その蒸発器の上方に設けられた凝縮器とが配管により接続され、その中に作動流体が封入されたサーモサイフォン回路である。このサーモサイフォン回路は、電池が発熱すると、蒸発器内の作動流体が沸騰し、そのときの蒸発潜熱により電池が冷却される。蒸発器で沸騰した気相の作動流体は配管内を上昇し、凝縮器に流入する。凝縮器は、その気相の作動流体を所定の冷熱供給媒体との熱交換により凝縮させる。凝縮器で凝縮した液相の作動流体は、その自重によって配管内を下降し、蒸発器に流入する。このような作動流体の自然循環により、対象機器である電池の冷却が行われる。
特許第5942943号公報
ところで、電気自動車またはハイブリッド自動車に搭載される電池は、体格および重量が大きいことから、床下、座席下または荷室下など、車体の複数個所に配置されることがある。その場合、複数個所に搭載された電池を冷却するため、車両に複数のサーモサイフォン回路を搭載することになる。この場合、車両の複数個所に搭載された電池には高低差があるので、仮に、複数のサーモサイフォン回路の蒸発器同士または凝縮器同士を直列に接続すれば、車体に沿った配管の取り回しに高低差が生じるため、作動流体の循環が悪くなるなどの問題が生じる。
一方、仮に、車体の複数個所に複数のサーモサイフォン回路をそれぞれ個別に配置すると、次の問題がある。まず、複数のサーモサイフォン回路が備える複数の凝縮器を搭載するためのスペースがエンジンルーム内に必要となり、また、その複数の凝縮器を流れる作動流体と熱交換を行うための冷熱供給媒体を供給する設備が複数個所に必要となる。さらに、サーモサイフォン回路の蒸発器と凝縮器とを接続するための配管が長くなり、その配管の取り回しも複雑になる。特に、サーモサイフォン回路は、凝縮器から蒸発器に向けて液相の作動流体が自重によって流れるため、上下位置関係を考慮した配管の取り回しが困難である。
さらに、車種に応じて車両に搭載される電池の数が増減すると、それに応じた複数のサーモサイフォン回路の部品点数及び設計工数が増大するおそれがある。したがって、複数のサーモサイフォン回路を使用した機器温調装置では、部品点数の低減とともに、構成の簡素化による車両搭載性の向上、および、車両搭載の自由度の向上が求められる。
本開示は、部品点数を低減すると共に、車両搭載性の向上および車両搭載の自由度を向上することの可能な機器温調装置を提供することを目的とする。
本開示の1つの観点によれば、複数の対象機器の温度を調整する機器温調装置であって、
第1の対象機器から吸熱して蒸発する作動流体の蒸発潜熱により第1の対象機器を冷却する第1蒸発器、および、その第1蒸発器に連通する第1通路を有する第1サーモサイフォン回路と、
第2の対象機器から吸熱して蒸発する作動流体の蒸発潜熱により第2の対象機器を冷却する第2蒸発器、および、その第2蒸発器に連通する第2通路を有する第2サーモサイフォン回路と、
第1通路に設けられた第1熱交換部と第2通路に設けられた第2熱交換部とを有し、第1熱交換部を流れる作動流体と第2熱交換部を流れる作動流体と所定の冷熱供給媒体とが熱交換するように構成された主凝縮器と、を備える。
これによれば、第1および第2サーモサイフォン回路それぞれの凝縮器機能が主凝縮器によって一体に集約して構成される。そのため、第1および第2通路を流れる作動流体と熱交換を行う冷熱供給媒体を供給するための設備を減らすことが可能である。したがって、この機器温調装置は、構成を簡素なものとすることができる。
また、第1および第2サーモサイフォン回路それぞれの凝縮器機能を主凝縮器によって一体に集約して構成することで、それぞれの凝縮器を異なる場所に設置することに比べて、空間の利用効率が良好になる。したがって、この機器温調装置は、車両搭載性および車両搭載の自由度を向上することができる。
さらに、第1および第2サーモサイフォン回路それぞれの凝縮器機能を主凝縮器によって一体に構成することで、第1通路を流れる作動流体の温度と、第2通路を流れる作動流体の温度とを近づけることが可能となる。したがって、この機器温調装置は、複数の対象機器の温度をほぼ均等に調整することができる。
別の観点によれば、複数の対象機器の温度を調整する機器温調装置であって、
第1の対象機器から吸熱して蒸発する作動流体の蒸発潜熱により第1の対象機器を冷却する第1蒸発器、および、その第1蒸発器に連通する第1通路を有する第1サーモサイフォン回路と、
第2の対象機器から吸熱して蒸発する作動流体の蒸発潜熱により第2の対象機器を冷却する第2蒸発器、および、その第2蒸発器に連通する第2通路を有する第2サーモサイフォン回路と、
第1通路に設けられた第1熱交換部を有し、第1熱交換部を流れる作動流体と所定の冷熱供給媒体とが熱交換するように構成された主凝縮器と、
主凝縮器より重力方向下側に配置され、第1通路のうち第1熱交換部より重力方向下側に設けられた下熱交換部と第2通路に設けられた第2熱交換部とを有し、下熱交換部を流れる作動流体と第2熱交換部を流れる作動流体とが熱交換するように構成された副凝縮器と、を備える。
これによれば、主凝縮器では、所定の冷熱供給媒体の冷熱により第1サーモサイフォン回路の作動流体が凝縮する。副凝縮器では、所定の冷熱供給媒体と熱交換した第1サーモサイフォン回路の作動流体の冷熱により、第2サーモサイフォン回路の作動流体が凝縮する。そのため、第2サーモサイフォン回路に対して冷熱供給媒体を供給するための設備を備えることなく、車両に複数のサーモサイフォン回路を容易に搭載することが可能となる。すなわち、車種に応じて車両に搭載される電池の数が増減し、それに応じてサーモサイフォン回路の数が増減した場合でも、その増減するサーモサイフォン回路が備える通路を副凝縮器に設置することで、車種に応じた設計工数および部品点数を低減することができる。したがって、機器温調装置は、車両搭載性および搭載の自由度を向上することができる。
また、主凝縮器の冷熱供給媒体から第1サーモサイフォン回路の作動流体に供給される冷熱を副凝縮器によって複数のサーモサイフォン回路の作動流体に分配し、複数の対象機器を冷却することが可能となる。したがって、機器温調装置の部品点数を減らし、構成を簡素なものとすることができる。
さらに、副凝縮器により、下熱交換部を流れる作動流体の温度と第2熱交換部を流れる作動流体の温度とを近づけることが可能となる。したがって、複数の対象機器の温度をほぼ均等に調整することができる。
なお、本明細書において、第1、第2および第3などは、説明の便宜上の記載に過ぎず、それらの構成は実質的に同一の機能を有するものである。また、本開示の記載が第1および第2の構成を備えるものである場合、第3またはそれ以上の構成を備えるものも、その本開示の技術的範囲に含まれるといえる。
第1実施形態にかかる機器温調装置を搭載した車両を上方から見た模式図である。 図1の車両を側方から見た模式図である。 第1実施形態にかかる機器温調装置が備える第1サーモサイフォン回路とその冷却対象である電池の模式図である。 第1実施形態にかかる機器温調装置の斜視図である。 第1実施形態にかかる機器温調装置の構成図である。 第2実施形態にかかる機器温調装置の斜視図である。 第2実施形態にかかる機器温調装置の構成図である。 第3実施形態にかかる機器温調装置の構成図である。 第4実施形態にかかる機器温調装置の斜視図である。 第4実施形態にかかる機器温調装置の構成図である。 第5実施形態にかかる機器温調装置の斜視図である。 第5実施形態にかかる機器温調装置の構成図である。 第6実施形態にかかる機器温調装置の構成図である。 第7実施形態にかかる機器温調装置を搭載した車両を上方から見た模式図である。 図14の車両を側方から見た模式図である。 第7実施形態にかかる機器温調装置の構成図である。 第8実施形態にかかる機器温調装置の斜視図である。 第8実施形態にかかる機器温調装置の構成図である。 第9実施形態にかかる機器温調装置の斜視図である。 第9実施形態にかかる機器温調装置の構成図である。 第10実施形態にかかる機器温調装置を搭載した車両を上方から見た模式図である。 図21の車両を側方から見た模式図である。 第10実施形態にかかる機器温調装置の斜視図である。 第10実施形態にかかる機器温調装置の構成図である。 第11実施形態にかかる機器温調装置の斜視図である。 第11実施形態にかかる機器温調装置の構成図である。 第12実施形態にかかる機器温調装置の斜視図である。 第13実施形態にかかる機器温調装置の構成図である。 第14実施形態にかかる機器温調装置の斜視図である。 第14実施形態にかかる機器温調装置の構成図である。 第15実施形態にかかる機器温調装置の斜視図である。 第15実施形態にかかる機器温調装置の構成図である。 第1比較例の機器温調装置を搭載した車両を上方から見た模式図である。 第1比較例の機器温調装置の構成図である。 第2比較例の機器温調装置の構成図である。 第3比較例の機器温調装置の構成図である。 第4比較例の機器温調装置を搭載した車両を上方から見た模式図である。 第4比較例の機器温調装置の構成図である。
以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。
(第1実施形態)
本実施形態の機器温調装置は、電気自動車やハイブリッド車などの電動車両(以下、単に「車両」という)に搭載されるものである。図1〜図4に示すように、機器温調装置1は、車両2に搭載される二次電池BP(以下、「電池BP」という)を冷却する冷却装置として機能する。なお、図では、車両2の各場所に配置された電池BPに対し、BP1、BP2、BP3の符号を付している。
まず、機器温調装置1が冷却する対象機器としての電池BPについて説明する。
機器温調装置1を搭載する車両2では、電池BPを主要構成部品として含む蓄電装置(言い換えれば、電池パック)に蓄えた電力がインバータなどを介して車両走行用モータに供給される。電池BPは車両走行中など車両使用時に自己発熱する。そして、電池BPは高温になると、十分な機能を発揮できないだけでなく、劣化や破損を招くので、電池BPを一定温度以下に維持するための冷却装置が必要となる。
また、夏季などの外気温が高い季節では、車両走行中だけでなく、駐車放置中などにも電池BPの温度は上昇する。また、電池BPは車両2の床下やトランクルーム下などに配置されることが多く、電池BPに与えられる単位時間当たりの熱量は小さいものの、長時間の放置により電池BPの温度は徐々に上昇する。電池BPを高温状態で放置すると電池BPの寿命が短くなるので、車両2の放置中も電池BPを冷却するなど電池BPの温度を低温に維持することが望まれている。
さらに、電池BPは、複数の電池セルBCを含む組電池BPとして構成されているが、各電池セルBCの温度にばらつきがあると電池セルBCの劣化に偏りが生じ、電池BPの蓄電性能が低下してしまう。これは、最も劣化した電池セルBCの特性に合わせて蓄電装置の入出力特性が決まることによる。そのため、長期間にわたって電池BPに所望の性能を発揮させるためには、複数の電池セルBC相互間の温度ばらつきを低減させる均温化が重要となる。
また、一般に、電池BPを冷却する他の冷却装置として、一般にブロワによる送風や、冷凍サイクルを用いた空冷、水冷、または冷媒直接冷却方式が採用されている。しかし、ブロワは車室内の空気を送風するだけなので、冷却能力は低い。また、ブロワによる送風では空気の顕熱で電池BPを冷却するので、空気流れの上流と下流との間で温度差が大きくなり、複数の電池セルBC同士の温度ばらつきを十分に抑制できない。また、空冷または水冷の何れも空気または水の顕熱で電池BPを冷却するので、電池セルBC間の温度ばらつきを十分に抑制できない。さらに、冷凍サイクル方式は冷却能力は高いものの、車両2の駐車中に冷凍サイクルのコンプレッサや冷却ファンを駆動することは、電力消費の増大や騒音などの原因となるので好ましくない。
これらの背景から、本実施形態の機器温調装置1は、作動流体をコンプレッサにより強制循環させるのではなく、作動流体の自然循環によって電池BPの温度を調整するサーモサイフォン方式を採用している。
次に、機器温調装置1の構成について説明する。
本実施形態の機器温調装置1は、複数の電池BPの温度を調整するものである。図1および図2に示すように、複数の電池BPは、車両2の床下、座席3の下または荷室の下などに配置されている。以下の説明において、車両2の各場所に配置された複数の電池BPをそれぞれ、第1の電池BP1、第2の電池BP2、第3の電池BP3と称する。
機器温調装置1は、第1の電池BP1を冷却するための第1サーモサイフォン回路10、第2の電池BP2を冷却するための第2サーモサイフォン回路20、第3の電池BP3を冷却するための第3サーモサイフォン回路30を備えている。第1サーモサイフォン回路10と第2サーモサイフォン回路20と第3サーモサイフォン回路30はいずれも基本的な構成は同一であるので、第1サーモサイフォン回路10を例にして、これらのサーモサイフォン回路の基本的構成について説明する。
図3に示すように、第1サーモサイフォン回路10は、第1蒸発器11、および、その第1蒸発器11に連通している第1通路12などを有している。第1蒸発器11は、第1の電池BP1から吸熱して蒸発する作動流体の蒸発潜熱により第1の電池BP1を冷却するものである。
第1通路12の途中に設けられた第1熱交換部120は、主凝縮器40の中を通り、その主凝縮器40の一部を構成している。主凝縮器40は、第1熱交換部120を流れる作動流体と、所定の冷熱供給媒体との熱交換を行わせるものである。なお、主凝縮器40の詳細については後述する。
第1通路12は、主凝縮器40内の第1熱交換部120で凝縮した液相の作動流体が第1蒸発器11に流れる第1往路13と、第1蒸発器11で蒸発した気相の作動流体が主凝縮器40内の第1熱交換部120に流れる第1復路14とを有している。したがって、第1通路12が有する第1往路13、第1熱交換部120および第1復路14と、第1蒸発器11とは、環状に連結されている。
第1サーモサイフォン回路10は、作動流体の蒸発および凝縮により熱移動を行うヒートパイプである。そして、第1サーモサイフォン回路10は、液相の作動流体が流れる第1往路13と気相の作動流体が流れる第1復路14とが分離されたループ型のサーモサイフォン回路となるように構成されている。なお、図2において矢印DR1は、車両上下方向DR1を示している。図3〜図5において矢印DR1は、第1〜第3サーモサイフォン回路10、20、30における重力方向上下を示しており、第1〜第3サーモサイフォン回路10、20、30を除く他の構成における重力方向上下を示すものではない。
第1サーモサイフォン回路10には作動流体が封入充填されている。そして、第1サーモサイフォン回路10はその作動流体で満たされている。第1サーモサイフォン回路10に充填されている作動流体は、例えば、HFO−1234yfまたはHFC−134aなどのフロン系の冷媒である。その作動流体は第1サーモサイフォン回路10を循環する。第1サーモサイフォン回路10は、その作動流体の液相と気相との相変化によって第1の電池BP1を冷却する。図3では、液相の作動流体が流れる向きを実線の矢印RLで示し、気相の作動流体が流れる向きを破線の矢印RGで示している。なお、図4以降の図では、図3で実線の矢印と破線の矢印にそれぞれ付した符号RL、RGは省略している。
第1サーモサイフォン回路10が有する第1蒸発器11は、第1の電池BP1から作動流体に吸熱させる電池冷却部である。第1蒸発器11は、第1の電池BP1から作動流体へ熱移動させることにより第1の電池BP1を冷却する。第1蒸発器11は、例えば熱伝導性の高い金属製である。第1蒸発器11の内部には、作動流体を貯める流体室15が形成されている。そして、第1蒸発器11は、第1の電池BP1から流体室15内の作動流体に吸熱させることにより、流体室15内の作動流体を蒸発させる。
また、第1蒸発器11が冷却する第1の電池BP1は、直列に電気接続された複数の電池セルBCを含んでいる。その複数の電池セルBCは電池積層方向DRbに積層されており、その電池積層方向DRbは、車両2が水平に配置された車両水平状態では、水平方向になる。
また本実施形態では、電池BPは、車両2の床下、座席3の下または荷室の下などに配置されている。そのため、第1蒸発器11も同じく、車両2の床下、座席3の下または荷室の下などに配置されている。なお、確認的に述べるが、各図面はいずれも模式図であり、各構成の形状を示すものでなく、第1蒸発器11と主凝縮器40のそれぞれに接続する第1往路13および第1復路14の具体的な接続箇所を示すものでもない。
第1蒸発器11は例えば直方体形状の箱状を成し、電池積層方向DRbへ延びるように形成されている。また、第1蒸発器11は、その第1蒸発器11の上面16aが形成された上面部16を有している。すなわち、その上面部16の上面16a側とは反対側には、流体室15の上側を形成する上側内壁面16bが形成されている。
第1サーモサイフォン回路10への作動流体の充填量は、流体室15に溜まった液相の作動流体が沸騰などによる気泡を含まない場合に、車両水平状態で流体室15が液相の作動流体で満たされる量とされている。そのため、液相の作動流体の液面は、第1往路13と第1復路14にそれぞれ形成され、第1蒸発器11の上側内壁面16bよりも上方に位置する。図3では、第1サーモサイフォン回路10が電池BPの冷却を行っていない状態において、第1往路13の液相の作動流体の液面位置を符号SF1で示し、第1復路14の液相の作動流体の液面位置を符号SF2で示している。
複数の電池セルBCはそれぞれ、第1蒸発器11の上面16aの上に並べて配置されている。そして、複数の電池セルBCはそれぞれ、第1蒸発器11の上面部16との間で熱伝導可能なようにその上面部16に熱的に接続されている。これにより、第1蒸発器11の上面16aは、電池BPを冷却する電池冷却面として機能し、第1蒸発器11の上面部16は、その電池冷却面を形成する冷却面形成部として機能する。
第1蒸発器11には、流入口17と排出口18とが形成されている。流入口17は、例えば、電池積層方向DRbにおける第1蒸発器11の一方側の端部に形成されている。流入口17は、第1往路13と流体室15とを連通させている。第1往路13は、主凝縮器40から第1蒸発器11へ作動流体を流す流路および配管である。第1サーモサイフォン回路10を作動流体が循環すると、第1往路13を自重により自重により流下する液相の作動流体は、流入口17から流体室15に流入する。
また、第1蒸発器11の排出口18は、第1復路14と流体室15とを連通させている。排出口18は、例えば、電池積層方向DRbにおける第1蒸発器11の他方側の端部に形成されている。第1復路14は、第1蒸発器11から主凝縮器40へ作動流体を流す流路および配管である。第1サーモサイフォン回路10を作動流体が循環すると、流体室15で蒸発した気相の作動流体は排出口18から第1復路14へ流出する。
主凝縮器40は第1蒸発器11よりも上方に配置されている。第1通路12に設けられた第1熱交換部120は、主凝縮器40の中を通っており、主凝縮器40の一部を構成している。主凝縮器40は、第1熱交換部120を流れる作動流体と、所定の冷熱供給媒体との熱交換を行わせるものである。第1実施形態では、その所定の冷熱供給媒体は、ファン50の回転により主凝縮器40を通過する空気である。図3等では、その空気の流れを矢印Aで示している。なお、後述する実施形態で説明するように、その所定の冷熱供給媒体は、空気に限るものでなく、例えば冷媒または冷却水等とすることが可能である。第1復路14から主凝縮器40の中の第1熱交換部120を流れる気相の作動流体は、その主凝縮器40の中の第1熱交換部120を流れる際に、所定の冷熱供給媒体としての空気に放熱し、凝縮して液相の作動流体となる。その液相の作動流体は、自重により、主凝縮器40の中の第1熱交換部120から第1往路13へ流れる。第1往路13を流れる作動流体は、第1蒸発器11の流入口17から流体室15に流入する。
以上のように構成された第1サーモサイフォン回路10では、例えば車両走行中などに電池BPが発熱すると、その熱は、電池セルBCの下面を通じて第1蒸発器11の上面部16へ伝わり、その熱によって流体室15の液相の作動流体が沸騰する。その作動流体の沸騰による蒸発潜熱で各電池セルBCは冷却される。また、流体室15で沸騰した作動流体は気体となって上方へ移動する。その気体となった作動流体は、第1復路14を通って主凝縮器40へ移動する。
主凝縮器40へ流入した気相の作動流体は、主凝縮器40で冷却されて液化し、第1往路13を通って再び第1蒸発器11に流入する。このように、第1サーモサイフォン回路10でサーモサイフォン回路現象が開始されると、作動流体が矢印RGおよび矢印RLのように循環する。第1サーモサイフォン回路10では、これらの作動がコンプレッサ等の駆動装置を必要とせずに、作動流体の自然循環により行われる。
図4および図5に示すように、第2サーモサイフォン回路20は、第2の電池BP2を冷却する第2蒸発器21、および、その第2蒸発器21に連通する第2通路22を有している。第2蒸発器21は、第2の電池BP2から吸熱して蒸発する作動流体の蒸発潜熱により第2の電池BP2を冷却するものである。第2通路22に設けられた第2熱交換部220も、第1熱交換部120と同じく、主凝縮器40の中を通り、その主凝縮器40の一部を構成している。第2通路22は、主凝縮器40内の第2熱交換部220で凝縮した液相の作動流体が第2蒸発器21に流れる第2往路23と、第2蒸発器21で蒸発した気相の作動流体が主凝縮器40内の第2熱交換部220に流れる第2復路24とを有している。すなわち、第2通路22が有する第2往路23、第2熱交換部220および第2復路24と、第2蒸発器21とは、環状に連結されている。
また、第3サーモサイフォン回路30は、第3の電池BP3を冷却する第3蒸発器31、および、その第3蒸発器31に連通する第3通路32を有している。第3蒸発器31は、第3の電池BP3から吸熱して蒸発する作動流体の蒸発潜熱により第3の電池BP3を冷却するものである。第3通路32に設けられた第3熱交換部320も、第1、第2熱交換部120、220と同じく、主凝縮器40の中を通り、その主凝縮器40の一部を構成している。第3通路32は、主凝縮器40内の第3熱交換部320で凝縮した液相の作動流体が第3蒸発器31に流れる第3往路33と、第3蒸発器31で蒸発した気相の作動流体が主凝縮器40内の第3熱交換部320に流れる第3復路34とを有している。すなわち、第3通路32が有する第3往路33、第3熱交換部320および第3復路34と、第3蒸発器31とは、環状に連結されている。
上述したように、第1実施形態の機器温調装置1は、第1〜第3熱交換部120、220、320を流れる作動流体と所定の冷熱供給媒体としての空気とが熱交換するように構成された主凝縮器40を備えている。主凝縮器40は、第1〜第3熱交換部120、220、320を有し、その第1〜第3熱交換部120、220、320と一体に構成されている。この主凝縮器40は、車両2の前方に設けられており、ファン50の回転により、第1〜第3熱交換部120、220、320に対し外気を流すことが可能である。主凝縮器40は、アルミまたは銅などの熱伝導率の高い金属などから構成されている。その主凝縮器40で、第1〜第3熱交換部120、220、320は熱伝導可能に配置されている。そのため、第1〜第3熱交換部120、220、320を流れる作動流体は、外気と熱交換可能であると共に、第1〜第3熱交換部120、220、320を流れる作動流体同士でも熱交換可能である。
以上説明した第1実施形態では、複数の電池BPの温度を調整する機器温調装置1は、第1〜第3熱交換部120、220、320を流れる作動流体と、所定の冷熱供給媒体である空気とが熱交換するように構成された主凝縮器40を備えている。
これにより、第1〜第3サーモサイフォン回路10、20、30それぞれの凝縮器機能が主凝縮器40によって一体に集約して構成されるので、第1〜第3通路12、22、32を流れる作動流体と熱交換を行うための冷熱供給媒体を供給する設備を減らすことが可能である。したがって、この機器温調装置1は、構成を簡素なものとすることができる。
また、第1〜第3サーモサイフォン回路10、20、30それぞれの凝縮器機能を主凝縮器40によって一体に集約して構成することで、それぞれの凝縮器を異なる場所に設置することに比べて、空間の利用効率が良好になる。したがって、この機器温調装置1は、車両搭載性および車両搭載の自由度を向上することができる。
さらに、第1〜第3サーモサイフォン回路10、20、30それぞれの凝縮器機能を主凝縮器40によって一体に構成することで、第1〜第3通路12、22、32を流れる作動流体の温度同士を近づけることが可能となる。したがって、この機器温調装置1は、複数の電池BP1、BP2、BP3の温度をほぼ均等に調整することができる。
(第2実施形態)
第2実施形態について説明する。第2実施形態は、第1実施形態に対して主凝縮器40の構成を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
図6および図7に示すように、第2実施形態の主凝縮器40は、第1〜第3サーモサイフォン回路10、20、30それぞれに設けられた第1〜第3熱交換部120、220、320と、冷凍サイクル60が備えるエバポレータ61とが一体に構成されたものである。この主凝縮器40は、第1〜第3熱交換部120、220、320を流れる作動流体と、冷凍サイクル60を循環する冷媒とが熱交換するように構成されている。すなわち、第2実施形態では、第1〜第3熱交換部120、220、320を流れる作動流体と熱交換する所定の冷熱供給媒体は、冷凍サイクル60を循環する冷媒である。主凝縮器40は、アルミまたは銅などの熱伝導率の高い金属などから構成されている。主凝縮器40で、第1〜第3熱交換部120、220、320を流れる作動流体は、冷凍サイクル60を循環する冷媒と熱交換可能であると共に、第1〜第3熱交換部120、220、320を流れる作動流体同士でも熱交換可能である。
冷凍サイクル60は、車両2が備える図示していない空調装置などに用いられるものである。冷凍サイクル60は、圧縮機62、コンデンサ63、第1膨張弁64、第1エバポレータ65および第2エバポレータ61などを備えている。これら構成部品は、配管66および分岐回路67によって接続されている。
圧縮機62は、第1エバポレータ65側から冷媒を吸引し圧縮する。圧縮機62は、図示していない車両走行用エンジンまたは電動機から動力が伝達されて駆動する。圧縮機62から吐出した高圧の気相冷媒はコンデンサ63に流入する。そのコンデンサ63に流入した高圧の気相冷媒は、コンデンサ63の冷媒流路を流れる際、ファン68によって送風される外気との熱交換により冷却されて凝縮する。コンデンサ63で凝縮された液相の冷媒は、第1膨張弁64を通過する際に減圧され、霧状の気液二相状態となる。第1膨張弁64はオリフィスまたはノズルのような固定絞り、或いは、適宜の可変絞り等により構成される。
減圧後の低圧冷媒は、第1エバポレータ65に流入する。第1エバポレータ65は、空調装置が備える図示していない空調ケース内に配置されている。第1エバポレータ65の内部を流れる低圧冷媒は、送風機69により送風される空気から吸熱して蒸発する。第1エバポレータ65は、低圧冷媒の蒸発潜熱により、空調ケース内を流れる空気を冷却する。その空気は、図示していない空気加熱器により温度調整されて車室内へ吹き出される。第1エバポレータ65を通過した冷媒は、図示していないアキュムレータを経由して圧縮機62に吸引される。
冷凍サイクル60は、上述した空調装置用の循環回路から分岐した分岐回路67を備えている。分岐回路67は、一端がコンデンサ63と第1膨張弁64とを接続する配管66の途中に接続され、他端が第1エバポレータ65と圧縮機62とを接続する配管66の途中に接続されている。この分岐回路67には、電磁弁70、第2膨張弁71および主凝縮器40内の第2エバポレータ61が設けられている。分岐回路67に設けられた電磁弁70が開弁すると、コンデンサ63で凝縮された液相の冷媒が分岐回路67を流れる。その冷媒は、第2膨張弁71を通過する際に減圧され、霧状の気液二相状態となる。その第2膨張弁71で減圧された低圧冷媒は、第2エバポレータ61に流入する。機器温調装置1の主凝縮器40と第2エバポレータ61とは一体に構成されている。そのため、主凝縮器40において、第2エバポレータ61の内部を流れる低圧冷媒は、第1〜第3熱交換部120、220、320を流れる作動流体から吸熱して蒸発する。第2エバポレータ61を通過した冷媒は、図示していないアキュムレータを経由して圧縮機62に吸引される。これにより、主凝縮器40内で第1〜第3熱交換部120、220、320を流れる作動流体は、冷凍サイクル60の第2エバポレータ61を流れる冷媒に放熱することで冷却されて凝縮する。
以上説明した第2実施形態では、機器温調装置1は、第1〜第3通路12、22、32に設けられた第1〜第3熱交換部120、220、320を流れる作動流体と、冷凍サイクル60を循環する冷媒とが熱交換するように構成された主凝縮器40を備えている。
第1〜第3熱交換部120、220、320と第2エバポレータ61とが主凝縮器40によって一体に集約して構成されるので、冷凍サイクル60の構成を簡素なものとすることができる。また、空間の利用効率が良好になり、機器温調装置1の車両搭載性および車両搭載の自由度を向上することができる。
さらに、主凝縮器40により第1〜第3熱交換部120、220、320と第2エバポレータ61とが一体に構成されるので、第1〜第3熱交換部120、220、320それぞれを流れる作動流体同士の温度を近づけることが可能となる。したがって、機器温調装置1は、第1〜第3サーモサイフォン回路10、20、30により、第1〜第3の電池BP1、BP2、BP3をほぼ均等に冷却することができる。
(第3実施形態)
第3実施形態について説明する。第3実施形態も、第1、第2実施形態に対して主凝縮器40の構成を変更したものであり、その他については第1、第2実施形態と同様であるため、第1、第2実施形態と異なる部分についてのみ説明する。
図8に示すように、第3実施形態の主凝縮器40は、第1〜第3サーモサイフォン回路10、20、30それぞれに設けられた第1〜第3熱交換部120、220、320と、冷却水回路80の一部を構成する水路86とが一体に構成されたものである。この主凝縮器40は、第1〜第3熱交換部120、220、320を流れる作動流体と、冷却水回路80の水路86を流れる冷却水とが熱交換するように構成されている。すなわち、第3実施形態では、第1〜第3通路12、22、32に設けられた第1〜第3熱交換部120、220、320を流れる作動流体と熱交換する所定の冷熱供給媒体は、冷却水回路80を循環する冷却水である。主凝縮器40は、アルミまたは銅などの熱伝導率の高い金属などから構成されている。主凝縮器40で、第1〜第3熱交換部120、220、320を流れる作動流体は、冷却水回路80を循環する冷却水と熱交換可能であると共に、第1〜第3熱交換部120、220、320を流れる作動流体同士でも熱交換可能である。
冷却水回路80は、リザーブタンク81、ポンプ82、三方切替弁83、放熱器84、冷却水−冷媒熱交換器85、および主凝縮器40内の水路86などを備えている。これら構成部品は、配管88によって環状に接続され、冷却水回路80を構成している。
ポンプ82は、リザーブタンク81から冷却水を汲み上げ、冷却水回路80に冷却水を循環させる。ポンプ82を通過した冷却水は、三方切替弁83を経由して放熱器84に流入する。放熱器84に流入した冷却水は、放熱器84の流路を流れる際、ファン87によって送風される外気との熱交換により冷却される。その際、ファン87は、放熱器84を通過する気流を形成する。
放熱器84で冷やされた冷却水は、冷却水−冷媒熱交換器85に流入する。冷却水は、その冷却水−冷媒熱交換器85を流れる際、冷凍サイクル60の第2エバポレータ61を流れる冷媒に放熱することでさらに冷却される。なお、第3実施形態では、冷凍サイクル60が備える第2エバポレータ61は、冷却水の循環回路を構成する冷却水−冷媒熱交換器85と一体に構成されており、機器温調装置1の主凝縮器40とは一体に構成されていない。また、三方切替弁83は、冷却水回路80を流れる冷却水が放熱器84を経由することなく、冷却水−冷媒熱交換器85に流れるように、流路89を切り替えることが可能である。
冷却水−冷媒熱交換器85で冷却された冷却水は、主凝縮器40内の水路86に流入し、第1〜第3熱交換部120、220、320を流れる作動流体から吸熱する。主凝縮器40内の水路86を通過した冷却水は、リザーブタンク81に戻される。これにより、主凝縮器40において第1〜第3熱交換部120、220、320を流れる作動流体は、冷却水回路80を流れる冷却水に放熱することで冷却されて凝縮する。
以上説明した第3実施形態では、機器温調装置1は、第1〜第3通路12、22、32に設けられた第1〜第3熱交換部120、220、320を流れる作動流体と、冷却水回路80を流れる冷却水とが熱交換するように構成された主凝縮器40を備えている。
第1〜第3熱交換部120、220、320と冷却水回路80の水路86とが主凝縮器40によって一体に集約して構成されるので、冷凍サイクル60の構成、および、冷却水回路80の構成を簡素なものとすることができる。また、空間の利用効率が良好になり、機器温調装置1の車両搭載性および車両搭載の自由度を向上することができる。
さらに、主凝縮器40により第1〜第3熱交換部120、220、320と冷却水回路80の水路86とが一体に構成されるので、第1〜第3熱交換部120、220、320それぞれを流れる作動流体同士の温度を近づけることが可能となる。したがって、機器温調装置1は、第1〜第3サーモサイフォン回路10、20、30により、第1〜第3の電池BP1、BP2、BP3をほぼ均等に冷却することができる。
(第4実施形態)
第4実施形態について説明する。第4実施形態は、第1実施形態に対して主凝縮器40の構成を変更するとともに、副凝縮器44を備えたものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
図9および図10に示すように、第4実施形態の機器温調装置1が備える主凝縮器40は、第1サーモサイフォン回路10が備える第1通路12に設けられた第1熱交換部120を含んで構成されている。主凝縮器40において、第1熱交換部120を流れる作動流体と、所定の冷熱供給媒体としての空気とが熱交換する。主凝縮器40は、車両2の前方に設けられており、ファン50の回転により、第1熱交換部120に外気を流すことが可能である。そのため、第1熱交換部120を流れる作動流体は、外気と熱交換可能である。
さらに、第4実施形態の機器温調装置1は、主凝縮器40より重力方向下側に配置された副凝縮器44を備えている。副凝縮器44は、アルミまたは銅などの熱伝導率の高い金属などから構成されている。副凝縮器44は、第1サーモサイフォン回路10が有する第1通路12のうち第1熱交換部120より重力方向下側に設けられた下熱交換部としての第1下熱交換部121を有する。さらに、副凝縮器44は、第2および第3サーモサイフォン回路20、30が有する第2および第3通路22、32に設けられた第2および第3熱交換部220、320も有するものである。なお、第1下熱交換部121は、第1通路12のうち第1往路13に設けられたものである。副凝縮器44で、第1サーモサイフォン回路10が有する第1下熱交換部121を流れる作動流体と、第2および第3サーモサイフォン回路20、30が有する第2および第3熱交換部220、320を流れる作動流体とが熱交換する。
副凝縮器44内で、第1下熱交換部121を流れる液相の作動流体のうちの一部は、第2および第3熱交換部220、320を流れる気相の作動流体から吸熱し、蒸発して気体となる。その第1下熱交換部121内で気体となった作動流体は、副凝縮器44から主凝縮器40側へ向けて第1往路13を逆流する。一方、副凝縮器44内で、第1下熱交換部121を流れる液相の作動流体のうちの他の一部は、液相の状態を保ち、副凝縮器44から第1蒸発器11側へ向けて第1往路13を自重により流下する。また、第2熱交換部220を流れる気相の作動流体は、第1下熱交換部121を流れる液相の作動流体に放熱することで凝縮し、液相の作動流体となり、副凝縮器44から第2蒸発器21側へ向けて第2往路23を自重により流下する。第3熱交換部320を流れる気相の作動流体も、第1下熱交換部121を流れる液相の作動流体に放熱することで凝縮し、液相の作動流体となり、副凝縮器44から第3蒸発器31側へ向けて第3往路33を自重により流下する。このとき、副凝縮器44により、第1下熱交換部121を流れる作動流体と、第2熱交換部220を流れる作動流体と、第3熱交換部320を流れる作動流体とが互いに熱交換するので、それらの作動流体の温度は近似したものとなる。
以上説明した第4実施形態では、機器温調装置1は、第1往路13に設けられた第1下熱交換部121を流れる作動流体と、第2および第3通路22、32に設けられた第2および第3熱交換部220、320を流れる作動流体とが熱交換するように構成された副凝縮器44を備えている。
これにより、第2および第3熱交換部220、320を流れる作動流体の凝縮が副凝縮器44によって行われる。そのため、第2、第3サーモサイフォン回路30に対して冷熱供給媒体を供給するための設備を設置することなく、車両2に複数のサーモサイフォン回路を容易に搭載することが可能となる。すなわち、車種に応じて車両2に搭載される電池BPの数が増減し、それに応じてサーモサイフォン回路の数が増減した場合でも、その増減するサーモサイフォン回路の通路の一部に設けられる熱交換部を副凝縮器44に設置することで、車種に応じた設計工数および部品点数を低減することができる。したがって、機器温調装置1は、車両搭載性および車両搭載の自由度を向上することができる。
また、主凝縮器40の冷熱供給媒体である空気から供給される冷熱を副凝縮器44によって第1〜第3サーモサイフォン回路10、20、30に分配し、第1〜第3の電池BP1、BP2、BP3を冷却することが可能となる。したがって、機器温調装置1の部品点数を減らし、構成を簡素なものとすることができる。
さらに、副凝縮器44により、第1下熱交換部121を流れる作動流体の温度と第2および第3熱交換部220、320を流れる作動流体の温度とを近づけることが可能となる。したがって、機器温調装置1は、第1〜第3の電池BP1、BP2、BP3の温度をほぼ均等に調整することができる。
(第5実施形態)
第5実施形態について説明する。第5実施形態は、第2実施形態に対して主凝縮器40の構成を変更するとともに、副凝縮器44を備えたものであり、その他については第2実施形態と同様であるため、第2実施形態と異なる部分についてのみ説明する。
図11および図12に示すように、第5実施形態の機器温調装置1が備える主凝縮器40は、第1サーモサイフォン回路10が備える第1通路12に設けられた第1熱交換部120と、冷凍サイクル60が備えるエバポレータ61とが一体に構成されたものである。この主凝縮器40は、第1熱交換部120を流れる作動流体と、冷凍サイクル60を循環する冷媒とが熱交換するように構成されている。すなわち、第5実施形態では、第1通路12を流れる作動流体と熱交換する所定の冷熱供給媒体は、冷凍サイクル60を循環する冷媒である。
さらに、第5実施形態の機器温調装置1は、主凝縮器40より重力方向下側に配置された副凝縮器44を備えている。副凝縮器44の構成は、第4実施形態で説明したものと実質的に同一である。以上説明した第5実施形態では、第4実施形態と同様の作用効果を奏することが可能である。
(第6実施形態)
第6実施形態について説明する。第6実施形態は、第3実施形態に対して主凝縮器40の構成を変更するとともに、副凝縮器44を備えたものであり、その他については第3実施形態と同様であるため、第3実施形態と異なる部分についてのみ説明する。
図13に示すように、第6実施形態の機器温調装置1が備える主凝縮器40は、第1サーモサイフォン回路10が備える第1通路12に設けられた第1熱交換部120と、冷却水回路80の水路86とが一体に構成されたものである。この主凝縮器40は、第1熱交換部120を流れる作動流体と、冷却水回路80を流れる冷却水とが熱交換するように構成されている。すなわち、第6実施形態では、第1熱交換部120を流れる作動流体と熱交換する所定の冷熱供給媒体は、冷却水回路80を循環する冷却水である。
さらに、第6実施形態の機器温調装置1は、主凝縮器40より重力方向下側に、副凝縮器44を備えている。副凝縮器44の構成は、第4及び第5実施形態で説明したものと実質的に同一である。以上説明した第6実施形態では、第4及び第5実施形態と同様の作用効果を奏することが可能である。
(第7実施形態)
第7実施形態について説明する。第7実施形態は、第4および第5実施形態に対して主凝縮器40の構成を変更したものであり、その他については第4および第5実施形態と同様であるため、第4および第5実施形態と異なる部分についてのみ説明する。
図14から図16に示すように、第7実施形態の機器温調装置1は、2つの主凝縮器40を備えている。2つの主凝縮器40のうち、一方の主凝縮器を第1の主凝縮器41と称し、他方の主凝縮器を第2の主凝縮器42と称する。
第1の主凝縮器41は、第1サーモサイフォン回路10が備える第1通路12に設けられた第1熱交換部120を含んで構成されている。第1の主凝縮器41において、第1サーモサイフォン回路10が備える第1通路12に設けられた第1熱交換部120を流れる作動流体と、所定の冷熱供給媒体としての空気とが熱交換する。第1の主凝縮器41は、車両2の前方に設けられており、ファン50の回転により、第1熱交換部120に外気を流すことが可能である。そのため、第1の主凝縮器41を流れる作動流体は、外気と熱交換可能である。
第2の主凝縮器42は、第1サーモサイフォン回路10が備える第1通路12のうち第1熱交換部120と並列に設けられた別の第1熱交換部120と、冷凍サイクル60が備えるエバポレータ61とが一体に構成されたものである。この第2の主凝縮器42は、別の第1熱交換部120を流れる作動流体と、冷凍サイクル60を循環する冷媒とが熱交換するように構成されている。第2の主凝縮器42は、エンジンルームに設けられており、圧縮機62の駆動により、第2の主凝縮器42に冷凍サイクル60の冷媒を循環させることが可能である。
第7実施形態では、上述した第1の主凝縮器41と、第2の主凝縮器42とは、並列に接続されている。
また、第7実施形態の機器温調装置1は、第1の主凝縮器41および第2の主凝縮器42より重力方向下側に配置された副凝縮器44を備えている。副凝縮器44の構成は、第4〜第6実施形態で説明したものと実質的に同一である。
以上説明した第7実施形態では、第1の主凝縮器41と第2の主凝縮器42とを備えている。これによれば、例えば空気と冷媒など、複数の種類の冷熱供給媒体を用いて第1通路12を流れる作動流体を冷却することが可能となる。そのため、仮に一方の冷熱供給媒体の温度が高いためにその一方の冷熱供給媒体により電池BPの冷却を行うことができない場合でも、他方の冷熱供給媒体の冷熱により作動流体を凝縮させ、電池BPを確実に冷却することが可能である。
また、第1の主凝縮器41と第2の主凝縮器42を用いて第1通路12を流れる作動流体を十分に冷却することにより、その下流の副凝縮器44で第2および第3通路22、32を流れる作動流体も冷却される。したがって、機器温調装置1は、第1〜第3の電池BP1、BP2、BP3に対する冷却能力を高めることができる。
(第8実施形態)
第8実施形態について説明する。第8実施形態は、第7実施形態に対して第1の主凝縮器41と第2の主凝縮器42の配置を変更し、さらに連絡通路45を追加したものであり、その他については第7実施形態と同様であるため、第7実施形態と異なる部分についてのみ説明する。
図17および図18に示すように、第8実施形態の機器温調装置1が備える第1の主凝縮器41は、第1サーモサイフォン回路10が備える第1通路12に設けられた第1熱交換部120を含んで構成されたものである。第1の主凝縮器41は、第1熱交換部120を流れる作動流体と、所定の冷熱供給媒体としての空気とが熱交換するように構成されたものである。
第2の主凝縮器42は、第1サーモサイフォン回路10が備える第1通路12のうち第1熱交換部120より重力方向下側に設けられた中熱交換部としての第1中熱交換部122と、冷凍サイクル60が備えるエバポレータ61とが一体に構成されたものである。なお、第1サーモサイフォン回路10が有する第1中熱交換部122は、第1通路12のうち第1往路13に設けられたものである。
第1の主凝縮器41と第2の主凝縮器42とは直列に接続されており、第1の主凝縮器41の重力方向下側に第2の主凝縮器42が配置されている。第1の主凝縮器41内の第1熱交換部120で凝縮され、液相となった作動流体は、第1往路13を自重により流下し、第2の主凝縮器42に流入する。そして、第2の主凝縮器42内の第1中熱交換部122でさらに冷却される。
なお、第8実施形態では、第1サーモサイフォン回路10が有する第1往路13は、第1の主凝縮器41から第2の主凝縮器42を介して第1蒸発器11までを連通している。第1往路13により、第1の主凝縮器41で凝縮した作動流体は、第2の主凝縮器42を経由して第1蒸発器11に流れる。一方、第1サーモサイフォン回路10が有する第1復路14は、第1蒸発器11から第2の主凝縮器42を介することなく第1の主凝縮器41までを連通している。第1蒸発器11で蒸発した作動流体は、第1復路14に流れる。
また、第8実施形態の機器温調装置1は、第1サーモサイフォン回路10に連絡通路45を備えている。連絡通路45は、一端が第1往路13のうち第1の主凝縮器41と第2の主凝縮器42との間の部位に連通し、他端が第1復路14に連通している。また、連絡通路45は、第1往路13に連通する側の端部が、第1復路14に連通する側の端部よりも重力方向に低い位置にある。
これにより、第1の主凝縮器41で作動流体と熱交換を行う外気の温度が高い場合、第1復路14を流れる気相の作動流体は、第1の主凝縮器41を通ることなく、連絡通路45を通り、第2の主凝縮器42に流れることが可能となる。その場合、第1の主凝縮器41で外気によって作動流体が加熱されることが防がれる。したがって、この機器温調装置1は、外気の温度が高い場合でも、第2の主凝縮器42を使用して、電池BP1、BP2、BP3の冷却を行うことが可能である。
また、連絡通路45は、第1往路13に連通する側の端部が、第1復路14に連通する側の端部よりも重力方向に低い位置にあることにより、第1の主凝縮器41で凝縮した作動流体が第1往路13を自重により流下する場合、その液相の作動流体が連絡通路45に流入することが防がれる。したがって、この構成により、第1の主凝縮器41から第1往路13を通じて第2の主凝縮器42に作動流体を流すことが可能である。
なお、第8実施形態の機器温調装置1も、第1の主凝縮器41および第2の主凝縮器42より重力方向下側に、副凝縮器44を備えている。その副凝縮器44で、第1サーモサイフォン回路10に設けられた第1下熱交換部121を流れる作動流体と、第2および第3サーモサイフォン回路20、30に設けられた第2および第3熱交換部220、320を流れる作動流体とが熱交換する。第1下熱交換部121は、第1中熱交換部122より重力方向下側に設けられている。なお、副凝縮器44の構成は、第4〜第7実施形態で説明したものと実質的に同一である。
以上説明した第8実施形態は、第7実施形態と同様の作用効果を奏することができる。
(第9実施形態)
第9実施形態について説明する。第9実施形態は、第8実施形態に対して第2の主凝縮器42の構成を変更したものであり、その他については第8実施形態と同様であるため、第8実施形態と異なる部分についてのみ説明する。
図19および図20に示すように、第9実施形態の機器温調装置1が備える第2の主凝縮器42は、第1サーモサイフォン回路10が備える第1通路12のうち第1熱交換部120より重力方向下側に設けられた第1中熱交換部122を流れる作動流体と、冷凍サイクル60が備えるエバポレータ61を介して送風機72により送風される冷風とが熱交換するように構成されたものである。図19および図20では、その冷風の流れを矢印CAで示している。このように構成しても、第9実施形態は、第8実施形態と同様の作用効果を奏することができる。
(第10実施形態)
第10実施形態について説明する。第10実施形態は、第8実施形態に対して第2の主凝縮器42が副凝縮器44の機能を兼ね備えたものであり、その他については第8実施形態と同様であるため、第8実施形態と異なる部分についてのみ説明する。
図21から図24に示すように、第10実施形態の機器温調装置1が備える第1の主凝縮器41は、第1サーモサイフォン回路10に設けられた第1熱交換部120を流れる作動流体と、所定の冷熱供給媒体としての空気とが熱交換するように構成されたものである。
一方、第10実施形態の機器温調装置1が備える第2の主凝縮器42は、副凝縮器44の機能を兼ね備えたものである。この第2の主凝縮器42は、第1サーモサイフォン回路10に設けられた第1中熱交換部122と、第2および第3サーモサイフォン回路20、30に設けられた第2および第3熱交換部220、320と、冷凍サイクル60が備えるエバポレータ61とが一体に構成されたものである。なお、第1サーモサイフォン回路10が有する第1中熱交換部122は、第1通路12が有する第1往路13のうちで、第1熱交換部120より重力方向下側に設けられたものである。第2の主凝縮器42は、第1中熱交換部122を流れる作動流体と、第2および第3熱交換部220、320を流れる作動流体と、他の冷熱供給媒体としての冷凍サイクル60の冷媒とが熱交換するように構成されている。
第1の主凝縮器41と第2の主凝縮器42とは直列に接続されており、第1の主凝縮器41より重力方向下側に第2の主凝縮器42は配置されている。
第1の主凝縮器41で凝縮され、液相となった作動流体は、第1往路13を自重により流下し、第2の主凝縮器42に流入する。そして、その第2の主凝縮器42では、第1中熱交換部122を流れる作動流体と、冷凍サイクル60の冷媒と、第2および第3熱交換部220、320を流れる作動流体とが熱交換する。したがって、第1中熱交換部122を流れる作動流体は、第2の主凝縮器42で冷凍サイクル60の冷媒と熱交換することでさらに冷却される。また、第2および第3熱交換部220、320を流れる作動流体も、第1中熱交換部122を流れる作動流体と熱交換し、また、冷凍サイクル60の冷媒と熱交換することで冷却されて凝縮する。
なお、第10実施形態の機器温調装置1は、第1サーモサイフォン回路10に連絡通路45を備えている。連絡通路45は、一端が第1往路13のうち第1の主凝縮器41と第2の主凝縮器42との間の部位に連通し、他端が第1復路14に連通している。また、連絡通路45は、第1往路13に連通する側の端部が、第1復路14に連通する側の端部よりも重力方向に低い位置にある。
これにより、第1の主凝縮器41で作動流体と熱交換を行う外気の温度が高い場合、第1復路14を流れる気相の作動流体は、第1の主凝縮器41を通ることなく、連絡通路45を通り、第2の主凝縮器42に流れることが可能となる。その場合、第1の主凝縮器41で外気によって作動流体が加熱されることが防がれる。したがって、この機器温調装置1は、外気の温度が高い場合でも、第2の主凝縮器42を使用して、電池BP1、BP2、BP3の冷却を行うことができる。
また、連絡通路45は、第1往路13に連通する側の端部が、第1復路14に連通する側の端部よりも重力方向に低い位置にあることにより、第1の主凝縮器41で凝縮した作動流体が第1往路13を自重により流下する場合、その液相の作動流体が連絡通路45に流入することが防がれる。したがって、この構成により、第1の主凝縮器41から第2の主凝縮器42に作動流体を流すことが可能である。
以上説明した第10実施形態は、第8実施形態と同様の作用効果を奏することができる。さらに、第8実施形態に対して、構成を簡素にすることで、空間の利用効率が良好になり、機器温調装置1の車両搭載性および搭載の自由度を向上することができる。
(第11実施形態)
第11実施形態について説明する。第11実施形態は、第10実施形態に対して第2の主凝縮器42の構成を変更したものであり、その他については第10実施形態と同様であるため、第10実施形態と異なる部分についてのみ説明する。
図25および図26に示すように、第11実施形態の機器温調装置1が備える第2の主凝縮器42は、第1サーモサイフォン回路10に設けられた第1中熱交換部122と、第2および第3サーモサイフォン回路20、30に設けられた第2および第3熱交換部220、320とが一体に構成されたものである。第2の主凝縮器42は、冷凍サイクル60が備えるエバポレータ61を介して送風機72により送風される冷風と、第1中熱交換部122を流れる作動流体と、第2および第3熱交換部220、320を流れる作動流体とが熱交換するように構成されたものである。このように構成しても、第11実施形態は、第10実施形態と同様の作用効果を奏することができる。
(第12実施形態)
第12実施形態について説明する。第12実施形態は、第4実施形態に対して配管66の構成を変更したものであり、その他については第4実施形態と同様であるため、第4実施形態と異なる部分についてのみ説明する。
図27に示すように、第12実施形態の機器温調装置1では、第1サーモサイフォン回路10が備える第1往路13のうち主凝縮器40と副凝縮器44との間の部位の内径が、第1往路13のうち副凝縮器44と第1蒸発器11との間の部位の内径より大きい。或いは、第1往路13のうち主凝縮器40と副凝縮器44との間の部位の内径は、第1復路14の内径、第2または第3通路22、32の内径より大きい。図27では、第1往路13のうち内径が太い部位を、太線で表している。図28では、第1往路13のうち内径が太い部位を、通路を示す2本線の間隔を広くすることで表している。
これにより、副凝縮器44で第1下熱交換部121を流れる作動流体が第2または第3熱交換部220、320を流れる作動流体から吸熱し、蒸発して気体になると、その気相の作動流体は、第1往路13のうち内径の大きい部位を通り、主凝縮器40に流れる。そのため、主凝縮器40で凝縮して第1往路13を自重により流下する液相の作動流体の流れが、副凝縮器44から逆流する気相の作動流体によって阻害されることが抑制され、その液相の作動流体が副凝縮器44に円滑に流入する。したがって、機器温調装置1は、電池BP1、BP2、BP3の冷却能力を高めることができる。
さらに、第12実施形態の機器温調装置1は、第1サーモサイフォン回路10にバイパス通路46を備えている。バイパス通路46は、一端が第1往路13のうち主凝縮器40と副凝縮器44との間の部位に連通し、他端が第1復路14に連通している。また、バイパス通路46は、第1往路13に連通する側の端部が、第1復路14に連通する側の端部よりも重力方向に低い位置で、且つ、副凝縮器44に近い位置にある。
これにより、副凝縮器44で第1下熱交換部121を流れる作動流体が第2または第3熱交換部220、320を流れる作動流体から吸熱し、蒸発して気体になると、その気相の作動流体は、バイパス通路46を通り第1復路14に流れる。そのため、主凝縮器40で凝縮して第1往路13を自重により流下する液相の作動流体の流れが、副凝縮器44から逆流する気相の作動流体によって阻害されることが抑制され、その液相の作動流体が副凝縮器44に円滑に流入する。また、副凝縮器44から逆流する気相の作動流体が第1往路13からバイパス通路46に流れることで、その気相の作動流体が第1往路13内で破裂することが抑制されるので、異音の発生を抑制することができる。
(第13実施形態)
第13実施形態について説明する。第13実施形態は、第12実施形態で説明した副凝縮器44を、第10実施形態で説明した第2の主凝縮器42に代えたものであり、その他については第12実施形態と同様であるため、第12実施形態と異なる部分についてのみ説明する。
図28に示すように、第13実施形態の機器温調装置1が備える第2の主凝縮器42は、副凝縮器44の機能を兼ね備えたものである。この第2の主凝縮器42は、第1サーモサイフォン回路10に設けられた第1中熱交換部122と、第2および第3サーモサイフォン回路20、30に設けられた第2および第3熱交換部220、320と、冷凍サイクル60が備えるエバポレータ61とが一体に構成されたものである。第2の主凝縮器42は、第1中熱交換部122を流れる作動流体と、第2および第3熱交換部220、320を流れる作動流体と、他の冷熱供給媒体としての冷凍サイクル60の冷媒とが熱交換するように構成されている。
また、第13実施形態の機器温調装置1は、第1サーモサイフォン回路10が備える第1往路13のうち第1の主凝縮器41と第2の主凝縮器42との間の部位の内径が、第1往路13のうち第2の主凝縮器42と第1蒸発器11との間の部位の内径より大きい。或いは、第1往路13のうち第1の主凝縮器41と第2の主凝縮器42との間の部位の内径は、第1復路14の内径、第2または第3通路22、32の内径より大きい。
これにより、第2の主凝縮器42で第1中熱交換部122を流れる作動流体が第2および第3熱交換部220、320を流れる作動流体から吸熱し、蒸発して気体になると、その気相の作動流体は、第1往路13のうち内径の大きい部位を通り、第1の主凝縮器41に流れる。そのため、第1の主凝縮器41で凝縮して第1往路13を自重により流下する液相の作動流体の流れが、第2の主凝縮器42から逆流する気相の作動流体によって阻害されることが抑制され、その液相の作動流体が第2の主凝縮器42に円滑に流入する。したがって、機器温調装置1は、電池BP1、BP2、BP3の冷却能力を高めることができる。
なお、第13実施形態の機器温調装置1は、第1サーモサイフォン回路10にバイパス通路46を備えている。バイパス通路46は、一端が第1往路13のうち第1の主凝縮器41と第2の主凝縮器42との間の部位に連通し、他端が第1復路14に連通している。また、バイパス通路46は、第1往路13に連通する側の端部が、第1復路14に連通する側の端部よりも重力方向に低い位置で、且つ、第2の主凝縮器42に近い位置にある。
これにより、第2の主凝縮器42で第1中熱交換部122を流れる作動流体が第2および第3熱交換部220、320を流れる作動流体から吸熱し、蒸発して気体になると、その気相の作動流体は、バイパス通路46を通り第1復路14に流れる。そのため、第1の主凝縮器41で凝縮して第1往路13を自重により流下する液相の作動流体の流れが、第2の主凝縮器42から逆流する気相の作動流体によって阻害されることが抑制され、その液相の作動流体が第2の主凝縮器42に円滑に流入する。また、第2の主凝縮器42から逆流する気相の作動流体が第1往路13からバイパス通路46に流れることで、その気相の作動流体が第1往路13内で破裂することが抑制されるので、異音の発生を抑制することができる。
(第14実施形態)
第14実施形態について説明する。第14実施形態は、第13実施形態に対して第2の主凝縮器42から副凝縮器44の機能を分離し、さらに連絡通路45を設けたものである。その他については第13実施形態と同様であるため、第13実施形態と異なる部分についてのみ説明する。
図29および図30に示すように、第14実施形態の機器温調装置1では、第1サーモサイフォン回路10が備える第1往路13のうち第1の主凝縮器41と副凝縮器44との間の部位の内径が、副凝縮器44と第1蒸発器11との間の部位の内径より大きい。或いは、第1往路13のうち第1の主凝縮器41と副凝縮器44との間の部位の内径は、第1復路14の内径、第2または第3通路22、32の内径より大きい。
これにより、副凝縮器44で第1下熱交換部121を流れる作動流体が第2または第3熱交換部220、320を流れる作動流体から吸熱し、蒸発して気体になると、その気相の作動流体の一部は、第1往路13のうち内径の大きい部位を通り、第2の主凝縮器42を経由して第1の主凝縮器41に流れる。そのため、第1の主凝縮器41および第2の主凝縮器42で凝縮して第1往路13を自重により流下する液相の作動流体の流れが、副凝縮器44から逆流する気相の作動流体によって阻害されることが抑制され、その液相の作動流体が副凝縮器44に円滑に流入する。したがって、機器温調装置1は、電池BP1、BP2、BP3の冷却能力を高めることができる。
また、第14実施形態の機器温調装置1は、第1サーモサイフォン回路10に連絡通路45を備えている。連絡通路45は、一端が第1往路13のうち第1の主凝縮器41と第2の主凝縮器42との間の部位に連通し、他端が第1復路14に連通している。また、連絡通路45は、第1往路13に連通する側の端部が、第1復路14に連通する側の端部よりも重力方向に低い位置にある。
これにより、第1の主凝縮器41で作動流体と熱交換を行う外気の温度が高い場合、第1復路14を流れる気相の作動流体は、第1の主凝縮器41を通ることなく、連絡通路45を通り、第2の主凝縮器42に流れることが可能となる。その場合、第1の主凝縮器41で外気によって作動流体が加熱されることが防がれる。したがって、この機器温調装置1は、外気の温度が高い場合でも、第2の主凝縮器42を使用して、電池BP1、BP2、BP3の冷却を行うことができる。
また、連絡通路45は、第1往路13に連通する側の端部が、第1復路14に連通する側の端部よりも重力方向に低い位置にあることにより、第1の主凝縮器41で凝縮した作動流体が第1往路13を自重により流下する場合、その液相の作動流体が連絡通路45に流入することが防がれる。したがって、この構成により、第1の主凝縮器41から第2の主凝縮器42に作動流体を流すことが可能である。
さらに、第14実施形態の機器温調装置1は、第1サーモサイフォン回路10にバイパス通路46を備えている。バイパス通路46は、一端が第1往路13のうち第2の主凝縮器42と副凝縮器44との間の部位に連通し、他端が連絡通路45に連通している。また、バイパス通路46は、第1往路13に連通する側の端部が、連絡通路45に連通する側の端部よりも重力方向に低い位置で、且つ、副凝縮器44に近い位置にある。
これにより、副凝縮器44で第1下熱交換部121を流れる作動流体が第2または第3熱交換部220、320を流れる作動流体から吸熱することにより、蒸発して気体になると、その気相の作動流体の一部は、バイパス通路46を通り連絡通路45から第1復路14に流れる。そのため、第1の主凝縮器41と第2の主凝縮器42で凝縮して第1往路13を自重により流下する液相の作動流体の流れが、副凝縮器44から逆流する気相の作動流体によって阻害されることが抑制され、その液相の作動流体が副凝縮器44に円滑に流入する。また、副凝縮器44から逆流する気相の作動流体が第1往路13からバイパス通路46に流れることで、その気相の作動流体が第1往路13内で破裂することが抑制されるので、異音の発生を抑制することができる。
(第15実施形態)
第15実施形態について説明する。第15実施形態は、第1実施形態と第4実施形態との組み合わせである。
図31および図32に示すように、第15実施形態の機器温調装置1は、第1および第2通路12、22を流れる作動流体と、所定の冷熱供給媒体としての空気とが熱交換するように構成された主凝縮器40を備えている。主凝縮器40は、第1通路12に設けられた第1熱交換部120と第2通路22に設けられた第2熱交換部220とが一体に構成されている。主凝縮器40は、ファン50の回転により、第1および第2熱交換部120、220に外気を流すことが可能である。主凝縮器40は、アルミまたは銅などの熱伝導率の高い金属などから構成されている。その主凝縮器40で、第1および第2熱交換部120、220は熱伝導可能に配置されている。そのため、第1および第2熱交換部120、220を流れる作動流体は、外気と熱交換可能であると共に、第1および第2熱交換部120、220を流れる作動流体同士でも熱交換可能である。
さらに、第15実施形態の機器温調装置1は、主凝縮器40より重力方向下側に配置された副凝縮器44を備えている。副凝縮器44は、アルミまたは銅などの熱伝導率の高い金属などから構成されている。副凝縮器44は、第1サーモサイフォン回路10に設けられた第1下熱交換部121と、第3サーモサイフォン回路30に設けられた第3熱交換部320とを有するものである。なお、第1下熱交換部121は、第1往路13のうち第1熱交換部120より重力方向下側に設けられている。副凝縮器44で、第1下熱交換部121を流れる作動流体と、第3熱交換部320を流れる作動流体とが熱交換する。
そのため、第1下熱交換部121を流れる液相の作動流体のうちの一部は、第3熱交換部320を流れる気相の作動流体から吸熱し、蒸発して気体となり、第1往路13を主凝縮器40側へ向けて逆流する。第1下熱交換部121を流れる液相の作動流体のうちの他の一部は、液相の状態を保ち、第1往路13を第1蒸発器11側へ向けて自重により流下する。第3熱交換部320を流れる気相の作動流体は、第1下熱交換部121を流れる液相の作動流体に放熱することで凝縮し、液相の作動流体となり、第3往路33を第3蒸発器31側へ向けて自重により流下する。このとき、副凝縮器44により、第1下熱交換部121を流れる作動流体と、第3熱交換部320を流れる作動流体とが互いに熱交換するので、それらの作動流体の温度は近似したものとなる。
以下、上述した複数の実施形態に対する比較例について説明する。
(第1比較例)
図33および図34に示すように、第1比較例の機器温調装置100は、車体の複数個所に、第1〜第3サーモサイフォン回路10、20、30を個別に配置している。第1〜第3サーモサイフォン回路10、20、30は、いずれも個別の凝縮器19、29、39を備えている。詳細には、第1〜第3サーモサイフォン回路10、20、30がそれぞれ備える第1〜第3凝縮器19、29、39は、所定の間隔をあけて設置されている。また、第1〜第3凝縮器19、29、39には、それぞれに対応するファン51、52、53が設けられている。これにより、第1比較例の機器温調装置100は、第1〜第3サーモサイフォン回路10、20、30がそれぞれ備える凝縮器19、29、39を搭載するためのスペースがエンジンルーム内に必要となる。また、第1〜第3凝縮器19、29、39のそれぞれに対応するファン51、52、53が必要となる。
さらに、第1比較例の構成では、第1〜第3サーモサイフォン回路10、20、30それぞれの蒸発器11、21、31と凝縮器19、29、39とを接続するための通路12、22、32を形成する配管がいずれも長くなっている。そのため、液相の作動流体が流れるように上下位置関係を考慮した配管の取り回しが複雑なものとなる。
また、第1比較例の構成では、車種に応じて車両2に搭載される電池BPの数が増減すると、それに応じた複数のサーモサイフォン回路の部品点数及び設計工数が増大する。したがって、第1比較例の機器温調装置100は、部品点数が増加すると共に、構成の複雑化による車両搭載性が悪く、車両搭載の自由度が制限されるといった問題がある。
(第2比較例)
図35に示すように、第2比較例も、第1〜第3サーモサイフォン回路10、20、30は個別に配置されている。第1〜第3サーモサイフォン回路10、20、30は、いずれも個別の凝縮器19、29、39を備えている。第1〜第3凝縮器19、29、39はいずれも、冷凍サイクル60が備えるエバポレータ75、76、77と一体に構成されたものである。これにより、第2比較例の機器温調装置100は、第1〜第3サーモサイフォン回路10、20、30がそれぞれ備える凝縮器19、29、39を搭載するためのスペースがエンジンルーム内に必要となる。また、第1〜第3凝縮器19、29、39のそれぞれに対応するエバポレータ75、76、77が必要となる。したがって、第2比較例の機器温調装置100も、第1比較例の機器温調装置100と同様の問題がある。
(第3比較例)
図36に示すように、第3比較例も、第1〜第3サーモサイフォン回路10、20、30は個別に配置されている。第1〜第3サーモサイフォン回路10、20、30は、いずれも個別の凝縮器19、29、39を備えている。第1〜第3凝縮器19、29、39はいずれも、冷却水回路80の水路91、92、93と一体に構成されたものである。これにより、第3比較例の機器温調装置100は、第1〜第3サーモサイフォン回路10、20、30がそれぞれ備える凝縮器19、29、39を搭載するためのスペースがエンジンルーム内に必要となる。また、第1〜第3凝縮器19、29、39のそれぞれに対応する冷却水回路80の水路91、92、93が必要となる。したがって、第3比較例の機器温調装置100も、第1および第2比較例の機器温調装置100と同様の問題がある。
(第4比較例)
図37および図38に示すように、第4比較例も、第1〜第3サーモサイフォン回路10、20、30は個別に配置されている。第1〜第3サーモサイフォン回路10、20、30は、いずれも個別の第1凝縮器191、291、391と第2凝縮器192、292、392とを備えている。各サーモサイフォン回路10、20、30において、第1凝縮器191、291、391と第2凝縮器192、292、392とはいずれも並列に配置されている。詳細には、第1〜第3サーモサイフォン回路10、20、30がそれぞれ備える第1凝縮器191、291、391には、それぞれに対応するファン51、52、53が設けられている。また、第1〜第3サーモサイフォン回路10、20、30がそれぞれ備える第2凝縮器192、292、392はいずれも冷凍サイクル60が備えるエバポレータ75、76、77と一体に構成されている。したがって、第4比較例の機器温調装置100も、第1〜第3比較例の機器温調装置100と同様の問題がある。
(他の実施形態)
(1)上述の各実施形態では、機器温調装置1が冷却する対象機器を二次電池BPとして説明したが、その対象機器に限定はない。例えば、その対象機器は、モータ、インバータ、充電器など二次電池BP以外の電気機器であってもよいし、単なる発熱体であってもよい。また、その対象機器は車載機器に限らず、基地局など定置で冷却が必要な機器であってもよい。
(2)上述の各実施形態では、サーモサイフォン回路に充填されている作動流体を例えばフロン系冷媒として説明したが、その作動流体はフロン系冷媒に限らない。例えば、その作動流体として、プロパンまたはCOなど、相変化する他の媒体を用いてもよい。
(3)上述の各実施形態では、サーモサイフォン回路が備える蒸発器を扁平状に形成されたケースとして説明したが、他の実施形態では、蒸発器は熱交換チューブを含む構成としてもよい。また、蒸発器は、電池BPの下面に設置するものに限らず、電池BPの側面または上面に配置してもよい。
(4)上述の各実施形態では、機器温調装置1は第1〜第3サーモサイフォン回路10、20、30を備えるものとして説明したが、機器温調装置1が備えるサーモサイフォン回路は複数であればよい。すなわち、機器温調装置1は、例えば第4またはそれ以上のサーモサイフォン回路を備えるものであってもよい。また、各サーモサイフォン回路は、第3またはそれ以上の主凝縮器40を備えてもよく、或いは、第2またはそれ以上の副凝縮器44を備えてもよい。
(5)上述の各実施形態では、機器温調装置1が備える複数のサーモサイフォン回路はいずれもループ型のものとして説明したが、機器温調装置1が備えるサーモサイフォン回路はループ型に限らず、単一の通路を有するものとしてもよい。その場合、サーモサイフォン回路は、往路または復路の一方を廃止することが可能である。
本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。
(まとめ)
上記各実施形態の一部または全部で示された第1の観点によれば、機器温調装置は、複数の対象機器の温度を調整するものであり、第1サーモサイフォン回路、第2サーモサイフォン回路、および主凝縮器を備える。第1サーモサイフォン回路は、第1の対象機器から吸熱して蒸発する作動流体の蒸発潜熱により第1の対象機器を冷却する第1蒸発器、および、その第1蒸発器に連通する第1通路を有する。第2サーモサイフォン回路は、第2の対象機器から吸熱して蒸発する作動流体の蒸発潜熱により第2の対象機器を冷却する第2蒸発器、および、その第2蒸発器に連通する第2通路を有する。主凝縮器は、第1通路に設けられた第1熱交換部と第2通路に設けられた第2熱交換部とを有し、第1熱交換部を流れる作動流体と第2熱交換部を流れる作動流体と所定の冷熱供給媒体とが熱交換するように構成されたものである。
第2の観点によれば、機器温調装置は、第3サーモサイフォン回路および副凝縮器をさらに備える。第3サーモサイフォン回路は、第3の対象機器から吸熱して蒸発する作動流体の蒸発潜熱により第3の対象機器を冷却する第3蒸発器、および、その第3蒸発器に連通する第3通路を有する。副凝縮器は、主凝縮器より重力方向下側に配置され、第1通路のうち第1熱交換部より重力方向下側に設けられた下熱交換部と第3通路に設けられた第3熱交換部とを有し、下熱交換部を流れる作動流体と第3熱交換部を流れる作動流体とが熱交換するように構成されたものである。
これによれば、第3サーモサイフォン回路の作動流体の凝縮が副凝縮器によって行われる。そのため、第3サーモサイフォン回路に対して冷熱供給媒体を供給するための設備を備えることなく、車両に複数のサーモサイフォン回路を容易に搭載することが可能となる。したがって、機器温調装置は、車両搭載性および搭載の自由度を向上することができる。
また、主凝縮器の冷熱供給媒体から供給される冷熱を副凝縮器によって第3サーモサイフォン回路に分配し、第3の対象機器を冷却することが可能となる。したがって、機器温調装置の部品点数を減らし、構成を簡素なものとすることができる。
さらに、副凝縮器により、下熱交換部を流れる作動流体の温度と第3熱交換部を流れる作動流体の温度とを近づけることが可能となる。したがって、第1〜第3の対象機器の温度をほぼ均等に調整することができる。
第3の観点によれば、機器温調装置は、複数の対象機器の温度を調整するものであり、第1サーモサイフォン回路、第2サーモサイフォン回路、主凝縮器および副凝縮器を備える。第1サーモサイフォン回路は、第1の対象機器から吸熱して蒸発する作動流体の蒸発潜熱により第1の対象機器を冷却する第1蒸発器、および、その第1蒸発器に連通する第1通路を有する。第2サーモサイフォン回路は、第2の対象機器から吸熱して蒸発する作動流体の蒸発潜熱により第2の対象機器を冷却する第2蒸発器、および、その第2蒸発器に連通する第2通路を有する。主凝縮器は、第1通路に設けられた第1熱交換部を有し、第1熱交換部を流れる作動流体と所定の冷熱供給媒体とが熱交換するように構成されたものである。副凝縮器は、主凝縮器より重力方向下側に配置され、第1通路のうち第1熱交換部より重力方向下側に設けられた下熱交換部と第2通路に設けられた第2熱交換部とを有し、下熱交換部を流れる作動流体と第2熱交換部を流れる作動流体とが熱交換するように構成されたものである。
これによれば、第1サーモサイフォン回路を除くサーモサイフォン回路の作動流体の凝縮が副凝縮器によって行われる。そのため、第1サーモサイフォン回路を除くサーモサイフォン回路に対して冷熱供給媒体を供給するための設備を備えることなく、車両に複数のサーモサイフォン回路を容易に搭載することが可能となる。すなわち、車種に応じて車両に搭載される電池の数が増減し、それに応じてサーモサイフォン回路の数が増減した場合でも、その増減するサーモサイフォン回路が備える通路を副凝縮器に設置することで、車種に応じた設計工数を低減することができる。したがって、機器温調装置は、車両搭載性および搭載の自由度を向上することができる。
また、主凝縮器の冷熱供給媒体から供給される冷熱を副凝縮器によって複数のサーモサイフォン回路に分配し、複数の対象機器を冷却することが可能となる。したがって、機器温調装置の部品点数を減らし、構成を簡素なものとすることができる。
さらに、副凝縮器により、第1通路を流れる作動流体の温度と第2通路を流れる作動流体の温度とを近づけることが可能となる。したがって、複数の対象機器の温度をほぼ均等に調整することができる。
第4の観点によれば、第1サーモサイフォン回路が有する第1通路は、第1往路、第1復路およびバイパス通路を有する。第1往路は、主凝縮器で凝縮した作動流体が副凝縮器を経由して第1蒸発器に流れる。第1復路は、第1蒸発器で蒸発した作動流体が副凝縮器を経由することなく主凝縮器に流れる。バイパス通路は、一端が第1往路のうち主凝縮器と副凝縮器との間の部位に連通し、他端が第1復路または主凝縮器に連通する。
これによれば、第1往路を流れる作動流体が副凝縮器で蒸発すると、その気相の作動流体はバイパス通路から第1復路または主凝縮器に流れる。そのため、主凝縮器で凝縮して第1往路を流下する液相の作動流体の流れが、副凝縮器から逆流する気相の作動流体によって阻害されることなく、その液相の作動流体が副凝縮器に円滑に流入する。
また、副凝縮器から逆流する気相の作動流体が第1往路からバイパス通路に流れることで、その気相の作動流体が第1往路内で破裂することが抑制されるので、異音の発生を抑制することができる。
第5の観点によれば、機器温調装置は、第1の主凝縮器より重力方向下側に配置され、第1通路のうち第1熱交換部より重力方向下側に設けられた第1中熱交換部を有し、第1中熱交換部を流れる作動流体と他の冷熱供給媒体とが熱交換するように構成された第2の主凝縮器をさらに備える。
これによれば、複数の種類の冷熱供給媒体を用いて第1通路を流れる作動流体を冷却することが可能となる。そのため、仮に一方の冷熱供給媒体の温度が高いためにその一方の冷熱供給媒体により対象機器の冷却を行うことができない場合でも、他方の冷熱供給媒体の冷熱により作動流体を凝縮させ、対象機器を確実に冷却することが可能である。また、第1の主凝縮器と第2の主凝縮器を用いて第1通路を流れる作動流体を十分に冷却することにより、その下流の副凝縮器で第2通路を流れる作動流体も冷却される。したがって、機器温調装置は、複数の対象機器に対する冷却能力を高めることができる。
第6の観点によれば、第2の主凝縮器は、第1通路に設けられた第1中熱交換部と第2通路に設けられた第2熱交換部とを有し、第1中熱交換部を流れる作動流体と第2熱交換部を流れる作動流体と他の冷熱供給媒体とが熱交換するように構成されている。
これによれば、第2の主凝縮器が副凝縮器の機能を有するものとなるので、第2の主凝縮器と副凝縮器を個別に備えることに比べて、部品点数を減らし、構成を簡素なものとすることができる。また、機器温調装置の体格を小型化し、搭載性および搭載の自由度を向上することができる。
第7の観点によれば、第1サーモサイフォン回路が有する第1通路は、第1往路、第1復路および連絡通路を有する。第1往路は、第1の主凝縮器で凝縮した作動流体が第2の主凝縮器を経由して第1蒸発器に流れる。第1復路は、第1蒸発器で蒸発した作動流体が第2の主凝縮器を経由することなく第1の主凝縮器に流れる。連絡通路は、一端が第1往路のうち第1の主凝縮器と第2の主凝縮器との間の部位に連通し、他端が第1復路に連通する。
これによれば、第1の主凝縮器で作動流体と熱交換を行う所定の冷熱供給媒体の温度が高い場合、第1復路を流れる気相の作動流体は、第1の主凝縮器を通ることなく、連絡通路を通り、第2の主凝縮器に流れることが可能となる。その場合、第1の主凝縮器で所定の冷熱供給媒体によって作動流体が加熱されることが防がれる。したがって、機器温調装置は、所定の冷熱供給媒体の温度が高い場合でも、第2の主凝縮器を使用して、対象機器の冷却を行うことができる。
第8の観点によれば、連絡通路の一端は、連絡通路の他端よりも重力方向に低い位置にある。
これによれば、第1の主凝縮器により第1蒸発器で作動流体が凝縮して第1往路を流下する場合、その液相の作動流体が連絡通路に流入することが防がれる。したがって、この構成により、第1の主凝縮器から第2の主凝縮器に作動流体を確実に流すことが可能である。
第9の観点によれば、バイパス通路は、一端が第1往路のうち主凝縮器と副凝縮器との間の部位に連通し、他端が第1復路、主凝縮器または連絡通路に連通する。
これによれば、第1往路を流れる作動流体が副凝縮器で蒸発すると、その気相の作動流体はバイパス通路から第1復路、主凝縮器または連絡通路に流れる。そのため、主凝縮器で凝縮して第1往路を流下する液相の作動流体の流れが、副凝縮器から逆流する気相の作動流体によって阻害されることなく、その液相の作動流体が副凝縮器に円滑に流入する。また、副凝縮器から逆流する気相の作動流体が第1往路からバイパス通路に流れることで、その気相の作動流体が第1往路内で破裂することが抑制されるので、異音の発生を抑制することができる。
第10の観点によれば、第1通路のうち主凝縮器と副凝縮器との間の部位の内径は、第1通路のうち副凝縮器と第1蒸発器との間の部位の内径または第2通路の内径より大きい。
これによれば、第1通路を流れる作動流体が副凝縮器で蒸発して気体になると、その気相の作動流体は、第1通路のうち内径の大きい部位を通り、主凝縮器に流れる。そのため、主凝縮器で凝縮して第1往路を流下する液相の作動流体の流れが、副凝縮器から逆流する気相の作動流体によって阻害されることが抑制され、その液相の作動流体が副凝縮器に円滑に流入する。したがって、機器温調装置は、対象機器の冷却能力を高めることができる。

Claims (10)

  1. 複数の対象機器の温度を調整する機器温調装置であって、
    第1の対象機器(BP1)から吸熱して蒸発する作動流体の蒸発潜熱により前記第1の対象機器を冷却する第1蒸発器(11)、および、前記第1蒸発器に連通する第1通路(12)を有する第1サーモサイフォン回路(10)と、
    第2の対象機器(BP2)から吸熱して蒸発する作動流体の蒸発潜熱により前記第2の対象機器を冷却する第2蒸発器(21)、および、前記第2蒸発器に連通する第2通路(22)を有する第2サーモサイフォン回路(20)と、
    前記第1通路に設けられた第1熱交換部(120)と前記第2通路に設けられた第2熱交換部(220)とを有し、前記第1熱交換部を流れる作動流体と前記第2熱交換部を流れる作動流体と所定の冷熱供給媒体とが熱交換するように構成された主凝縮器(40)と、を備える機器温調装置。
  2. 第3の対象機器(BP3)から吸熱して蒸発する作動流体の蒸発潜熱により前記第3の対象機器を冷却する第3蒸発器(31)、および、前記第3蒸発器に連通する第3通路(32)を有する第3サーモサイフォン回路(30)と、
    前記主凝縮器より重力方向下側に配置され、前記第1通路のうち前記第1熱交換部より重力方向下側に設けられた下熱交換部(121)と前記第3通路に設けられた第3熱交換部(320)とを有し、前記下熱交換部を流れる作動流体と前記第3熱交換部を流れる作動流体とが熱交換するように構成された副凝縮器(44)と、を備える請求項1に記載の機器温調装置。
  3. 複数の対象機器の温度を調整する機器温調装置であって、
    第1の対象機器(BP1)から吸熱して蒸発する作動流体の蒸発潜熱により前記第1の対象機器を冷却する第1蒸発器(11)、および、前記第1蒸発器に連通する第1通路(12)を有する第1サーモサイフォン回路(10)と、
    第2の対象機器(BP2)から吸熱して蒸発する作動流体の蒸発潜熱により前記第2の対象機器を冷却する第2蒸発器(21)、および、前記第2蒸発器に連通する第2通路(22)を有する第2サーモサイフォン回路(20)と、
    前記第1通路に設けられた第1熱交換部(120)を有し、前記第1熱交換部を流れる作動流体と所定の冷熱供給媒体とが熱交換するように構成された主凝縮器(40)と、
    前記主凝縮器より重力方向下側に配置された副凝縮器(44)と、を備え、
    前記副凝縮器は、前記第1通路のうち前記第1熱交換部より重力方向下側に設けられた下熱交換部(121)と前記第2通路に設けられた第2熱交換部(220)とを有し、前記下熱交換部を流れる作動流体と前記第2熱交換部を流れる作動流体とが熱交換するように構成されたものである機器温調装置。
  4. 前記第1サーモサイフォン回路が有する前記第1通路は、
    前記主凝縮器で凝縮した作動流体が前記副凝縮器を経由して前記第1蒸発器に流れる第1往路(13)と、
    前記第1蒸発器で蒸発した作動流体が前記副凝縮器を経由することなく前記主凝縮器に流れる第1復路(14)と、
    一端が前記第1往路のうち前記主凝縮器と前記副凝縮器との間の部位に連通し、他端が前記第1復路または前記主凝縮器に連通するバイパス通路(46)と、を有する請求項3に記載の機器温調装置。
  5. 前記主凝縮器を第1の主凝縮器(41)とすると、
    前記第1の主凝縮器より重力方向下側に配置され、前記第1通路のうち前記第1熱交換部より重力方向下側に設けられた中熱交換部(122)を有し、前記中熱交換部を流れる作動流体と他の冷熱供給媒体とが熱交換するように構成された第2の主凝縮器(42)をさらに備える請求項3または4に記載の機器温調装置。
  6. 前記第2の主凝縮器は、前記第1通路に設けられた前記中熱交換部と前記第2通路に設けられた前記第2熱交換部とを有し、前記中熱交換部を流れる作動流体と前記第2熱交換部を流れる作動流体と他の冷熱供給媒体とが熱交換するように構成されている請求項5に記載の機器温調装置。
  7. 前記第1サーモサイフォン回路が有する前記第1通路は、
    前記第1の主凝縮器で凝縮した作動流体が前記第2の主凝縮器を経由して前記第1蒸発器に流れる第1往路と、
    前記第1蒸発器で蒸発した作動流体が前記第2の主凝縮器を経由することなく前記第1の主凝縮器に流れる第1復路と、
    一端が前記第1往路のうち前記第1の主凝縮器と前記第2の主凝縮器との間の部位に連通し、他端が前記第1復路に連通する連絡通路(45)と、を有する請求項5または6に記載の機器温調装置。
  8. 前記連絡通路の一端は、前記連絡通路の他端よりも重力方向に低い位置にある請求項7に記載の機器温調装置。
  9. 前記第1サーモサイフォン回路が有する前記第1通路は、
    一端が前記第1往路のうち前記主凝縮器と前記副凝縮器との間の部位に連通し、他端が前記第1復路、前記主凝縮器または前記連絡通路に連通するバイパス通路を有する請求項7または8に記載の機器温調装置。
  10. 前記第1通路のうち前記主凝縮器と前記副凝縮器との間の部位の内径は、前記第1通路のうち前記副凝縮器と前記第1蒸発器との間の部位の内径または前記第2通路の内径より大きい請求項3ないし9のいずれか1つに記載の機器温調装置。
JP2018543746A 2016-10-06 2017-07-20 機器温調装置 Expired - Fee Related JP6575690B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016198094 2016-10-06
JP2016198094 2016-10-06
PCT/JP2017/026349 WO2018066206A1 (ja) 2016-10-06 2017-07-20 機器温調装置

Publications (2)

Publication Number Publication Date
JPWO2018066206A1 true JPWO2018066206A1 (ja) 2019-03-07
JP6575690B2 JP6575690B2 (ja) 2019-09-18

Family

ID=61831692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018543746A Expired - Fee Related JP6575690B2 (ja) 2016-10-06 2017-07-20 機器温調装置

Country Status (5)

Country Link
US (1) US10910684B2 (ja)
JP (1) JP6575690B2 (ja)
CN (1) CN109716051B (ja)
DE (1) DE112017005113B4 (ja)
WO (1) WO2018066206A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102076016B1 (ko) * 2018-11-28 2020-02-11 창원대학교 산학협력단 상온에서 시동 가능한 극저온 루프 히트파이프
JP2020098041A (ja) * 2018-12-17 2020-06-25 株式会社デンソー 機器温調装置
US11490546B2 (en) 2019-05-21 2022-11-01 Iceotope Group Limited Cooling system for electronic modules
DE102019216051A1 (de) * 2019-10-17 2021-04-22 Kautex Textron Gmbh & Co. Kg Kondensierungsvorrichtung, Kühlvorrichtung für eine Traktionsbatterie, elektrisch antreibbares Fahrzeug mit einer Traktionsbatterie sowie einer Kühlvorrichtung und Verfahren zur Kühlung einer Traktionsbatterie
JP7256142B2 (ja) * 2020-03-31 2023-04-11 トヨタ自動車株式会社 熱要求調停装置、方法、プログラム、及び車両
US11943904B2 (en) 2022-05-31 2024-03-26 GE Grid GmbH Hybrid thermosyphon with immersion cooled evaporator
CN115258189B (zh) * 2022-08-29 2024-06-04 中国人民解放军海军航空大学 用于集中式飞机空调设备的温度补偿调节方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004363308A (ja) * 2003-06-04 2004-12-24 Hitachi Ltd ラックマウントサーバシステム
JP2006012874A (ja) * 2004-06-22 2006-01-12 Matsushita Electric Ind Co Ltd 半導体素子の冷却装置
US20070234741A1 (en) * 2006-04-11 2007-10-11 Tsung-Chu Lee Heat radiator having a thermo-electric cooler and multiple heat radiation modules and the method of the same
JP2012118781A (ja) * 2010-12-01 2012-06-21 Hitachi Ltd 電子機器用ラックおよびデータセンタ
JP2014047962A (ja) * 2012-08-30 2014-03-17 Taisei Corp 空調システム

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5405015B2 (ja) * 2007-12-19 2014-02-05 ホシザキ電機株式会社 冷却装置
JP5275929B2 (ja) * 2008-08-26 2013-08-28 ホシザキ電機株式会社 冷却装置
ITBO20090427A1 (it) * 2009-07-02 2011-01-03 Ferrari Spa Veicolo a trazione elettrica con raffreddamento mediante ciclo frigorifero
JPWO2011087001A1 (ja) * 2010-01-12 2013-05-20 本田技研工業株式会社 車両用空調システム
JP2012009646A (ja) 2010-06-25 2012-01-12 Panasonic Corp 冷却装置およびこれを用いた電子機器
US8415041B2 (en) * 2010-06-30 2013-04-09 Nissan North America, Inc. Vehicle battery temperature control system fluidly coupled to an air-conditioning refrigeration system
US20120003510A1 (en) * 2010-06-30 2012-01-05 Nissan Technical Center North America, Inc. Vehicle battery temperature control system and method
CN103998874B (zh) * 2011-12-19 2016-07-06 丰田自动车株式会社 冷却装置
JP6186998B2 (ja) * 2013-07-31 2017-08-30 株式会社デンソー 車両用空調装置
JP5942943B2 (ja) * 2013-08-20 2016-06-29 トヨタ自動車株式会社 電池温度調節装置
JP6129979B2 (ja) * 2013-09-20 2017-05-17 株式会社東芝 電池放熱システム、電池放熱ユニット
JP6028756B2 (ja) * 2014-03-19 2016-11-16 トヨタ自動車株式会社 電池温度調節装置
JP2016198094A (ja) 2015-04-09 2016-12-01 学校法人福岡大学 卵巣がんの予後検査・診断方法
CN107850346B (zh) * 2015-07-08 2020-07-31 株式会社电装 制冷系统和车载制冷系统
US20170179551A1 (en) * 2015-12-18 2017-06-22 Hamilton Sundstrand Corporation Thermal management for electrical storage devices
US9947975B2 (en) * 2016-07-01 2018-04-17 Ford Global Technologies, Llc Battery coolant circuit control
US10644367B2 (en) * 2016-10-04 2020-05-05 Ford Global Technologies, Llc Electric vehicle battery cooling using excess cabin air conditioning capacity
JP7183973B2 (ja) 2019-06-24 2022-12-06 トヨタ自動車株式会社 エンジントルク検出装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004363308A (ja) * 2003-06-04 2004-12-24 Hitachi Ltd ラックマウントサーバシステム
JP2006012874A (ja) * 2004-06-22 2006-01-12 Matsushita Electric Ind Co Ltd 半導体素子の冷却装置
US20070234741A1 (en) * 2006-04-11 2007-10-11 Tsung-Chu Lee Heat radiator having a thermo-electric cooler and multiple heat radiation modules and the method of the same
JP2012118781A (ja) * 2010-12-01 2012-06-21 Hitachi Ltd 電子機器用ラックおよびデータセンタ
JP2014047962A (ja) * 2012-08-30 2014-03-17 Taisei Corp 空調システム

Also Published As

Publication number Publication date
US10910684B2 (en) 2021-02-02
CN109716051A (zh) 2019-05-03
US20190226767A1 (en) 2019-07-25
DE112017005113B4 (de) 2021-07-08
DE112017005113T5 (de) 2019-06-27
CN109716051B (zh) 2020-06-12
WO2018066206A1 (ja) 2018-04-12
JP6575690B2 (ja) 2019-09-18

Similar Documents

Publication Publication Date Title
JP6575690B2 (ja) 機器温調装置
JP6604442B2 (ja) 機器温調装置
US9440512B2 (en) Air conditioning system for vehicle
US20150292775A1 (en) Refrigeration system with phase change material
WO2018047534A1 (ja) 機器温調装置
JP6593544B2 (ja) 機器温調装置
WO2018047533A1 (ja) 機器温調装置
JP2012240670A (ja) 車両用コンデンサ及びこれを利用した車両用エアコンシステム
US20140338389A1 (en) Vapor compression system with thermal energy storage
JP2014029232A (ja) 冷却装置
CN111114243B (zh) 用于车辆的冷却模块
WO2020004219A1 (ja) 機器温調装置
JP2019196842A (ja) 機器温調装置
EP3666565B1 (en) Automotive air conditioning system
WO2013084472A1 (ja) 熱利用システム
JP2019196841A (ja) 機器温調システム
JP2019113301A (ja) 機器温調装置
JP7077763B2 (ja) 機器温調装置
JP6089670B2 (ja) 給湯システム
US9834061B2 (en) Assembly including a heat exchanger and a mounting on which said exchanger is mounted
KR20110100002A (ko) 상변화 물질을 포함하는 이중 증발기
WO2018070182A1 (ja) 機器温調装置
JP5730237B2 (ja) 統合冷却システム
JP2017172948A (ja) 熱交換ユニットおよび車両用空調装置
JP2020167131A (ja) 車両および電池温度調整装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181031

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190805

R151 Written notification of patent or utility model registration

Ref document number: 6575690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees