JPWO2018043627A1 - 光学フィルムおよび画像表示装置 - Google Patents

光学フィルムおよび画像表示装置 Download PDF

Info

Publication number
JPWO2018043627A1
JPWO2018043627A1 JP2018537383A JP2018537383A JPWO2018043627A1 JP WO2018043627 A1 JPWO2018043627 A1 JP WO2018043627A1 JP 2018537383 A JP2018537383 A JP 2018537383A JP 2018537383 A JP2018537383 A JP 2018537383A JP WO2018043627 A1 JPWO2018043627 A1 JP WO2018043627A1
Authority
JP
Japan
Prior art keywords
optical film
resin
resin layer
less
hard coat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018537383A
Other languages
English (en)
Other versions
JP6773118B2 (ja
Inventor
征一 磯嶋
征一 磯嶋
橋本 裕介
裕介 橋本
佐藤 純
純 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Publication of JPWO2018043627A1 publication Critical patent/JPWO2018043627A1/ja
Application granted granted Critical
Publication of JP6773118B2 publication Critical patent/JP6773118B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1637Details related to the display arrangement, including those related to the mounting of the display in the housing
    • G06F1/1652Details related to the display arrangement, including those related to the mounting of the display in the housing the display being flexible, e.g. mimicking a sheet of paper, or rollable
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/206Organic displays, e.g. OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Optics & Photonics (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本発明の一の態様によれば、画像表示装置に用いられる折り畳み可能な光透過性の光学フィルム10であって、樹脂基材11と、樹脂基材11の一方の面11A側に設けられた樹脂層12と、を備え、光学フィルム10における25℃、500Hz以上1000Hz以下の周波数域での剪断貯蔵弾性率G´が、1MPa以上200MPa以下であり、光学フィルム10における25℃、500Hz以上1000Hz以下の周波数域での剪断損失弾性率G´´が、0.1MPa以上100MPa以下であることを特徴とする、光学フィルム10が提供される。

Description

関連出願の参照
本願は、先行する日本国出願である特願2016−171336(出願日:2016年9月1日)および特願2016−171337(出願日:2016年9月1日)の優先権の利益を享受するものであり、その開示内容全体は引用することにより本明細書の一部とされる。
本発明は、光学フィルムおよび画像表示装置に関する。
従来から、スマートフォンやタブレット端末等の画像表示装置が知られているが、現在、折り畳み可能な画像表示装置の開発が行われている。通常、スマートフォンやタブレット端末等はカバーガラスで覆われているが、画像表示装置にカバーガラスを用いた場合、硬度は優れるものの、折り畳もうとすると割れてしまうおそれが高い。このため、折り畳み可能な画像表示装置には、カバーガラスの代わりに樹脂からなる光学フィルムを用いることが検討されている(例えば、特開2016−125063号公報)。
このような折り畳み可能な画像表示装置に用いられる光学フィルムには、光学フィルムの表面に衝撃が加わることがあるので、耐衝撃性が求められている。ここで、光学フィルムの表面に衝撃が加わったときには、光学フィルムの表面が凹むことがあり、また画像表示装置において光学フィルムよりも内部に存在する部材(例えば、有機発光ダイオードパネル等の表示パネル)が損傷を受けることがある。このため、現在、光学フィルムの表面に衝撃が加わったときに、フィルムの表面の凹みが抑制され、かつ光学フィルムよりも画像表示装置の内部に存在する部材が損傷を受けない耐衝撃性が求められている。
しかしながら、光学フィルムにおいては、光学フィルムの表面に衝撃が加わったときに、フィルムの表面の凹みが抑制され、かつ光学フィルムよりも画像表示装置の内部に存在する部材が損傷を受けないような優れた耐衝撃性が得られていないのが現状である。
本発明は、上記問題を解決するためになされたものである。すなわち、優れた耐衝撃性を有する折り畳み可能な光学フィルム、これを備えた画像表示装置を提供することを目的とする。
本発明者らは、上記課題に対して鋭意研究を重ねたところ、樹脂基材上に樹脂層が形成されている構成の光学フィルムにおいて、光学フィルムにおける25℃、500Hz以上1000Hz以下の周波数域での剪断貯蔵弾性率G´および剪断損失弾性率G´´をそれぞれ所定の範囲にすれば、優れた耐衝撃性が得られることを見出した。また、本発明者らは、上記課題に対して鋭意研究を重ねたところ、樹脂基材の一方の面側にハードコート層および他方の面側に樹脂層を備える構造の光学フィルムにおいては、樹脂層の膜厚を30μm以上200μm未満とし、光学フィルムにおける25℃、500Hz以上1000Hz以下の周波数域での剪断貯蔵弾性率G´および剪断損失弾性率G´´をそれぞれ所定の範囲にすれば、優れた耐衝撃性および優れた硬度が得られることを見出した。本発明は、このような知見に基づき完成されたものである。
本発明の一の態様によれば、画像表示装置に用いられる折り畳み可能な光透過性の光学フィルムであって、樹脂基材と、前記樹脂基材の一方の面側に設けられた樹脂層と、を備え、前記光学フィルムにおける25℃、500Hz以上1000Hz以下の周波数域での剪断貯蔵弾性率G´が、1MPa以上200MPa以下であり、前記光学フィルムにおける25℃、500Hz以上1000Hz以下の周波数域での剪断損失弾性率G´´が、0.1MPa以上100MPa以下であることを特徴とする、光学フィルムが提供される。
本発明の他の態様によれば、画像表示装置に用いられる折り畳み可能な光透過性の光学フィルムであって、樹脂基材と、前記樹脂基材の一方の面側に設けられたハードコート層と、前記樹脂基材における前記一方の面とは反対側の他方の面側に設けられた膜厚が30μm以上200μm未満の樹脂層と、を備え、前記光学フィルムにおける25℃、500Hz以上1000Hz以下の周波数域での剪断貯蔵弾性率G´が、1MPa以上200MPa以下であり、前記光学フィルムにおける25℃、500Hz以上1000Hz以下の周波数域での剪断損失弾性率G´´が、0.1MPa以上100MPa以下であることを特徴とする、光学フィルムが提供される。
上記光学フィルムにおいて、前記光学フィルムの対向する辺部の間隔が3mmとなるように180°折り畳む試験を10万回繰り返し行った場合に割れまたは破断が生じないことが好ましい。
上記光学フィルムにおいて、前記樹脂基材が、ポリイミド系樹脂、ポリアミド系樹脂、またはこれらの混合物からなる基材であってもよい。
本発明の他の態様によれば、折り畳み可能な画像表示装置であって、表示パネルと、前記表示パネルよりも観察者側に配置された上記光学フィルムと、を備え、前記光学フィルムの前記樹脂層が、前記樹脂基材よりも観察者側に位置していることを特徴とする、画像表示装置が提供される。
本発明の他の態様によれば、折り畳み可能な画像表示装置であって、表示パネルと、前記表示パネルよりも観察者側に配置された上記光学フィルムと、を備え、前記光学フィルムの前記ハードコート層が、前記樹脂基材よりも観察者側に位置していることを特徴とする、画像表示装置が提供される。
上記画像表示装置において、前記表示パネルが、有機発光ダイオードパネルであってもよい。
本発明の一の態様および他の態様によれば、優れた耐衝撃性を有する折り畳み可能な光学フィルムを提供できる。また、本発明の他の態様によれば、このような光学フィルムを備える画像表示装置を提供できる。
第1の実施形態に係る光学フィルムの概略構成図である。 折り畳み試験の様子を模式的に示した図である。 第1の実施形態に係る画像表示装置の概略構成図である。 第2の実施形態に係る光学フィルムの概略構成図である。 第2の実施形態に係る画像表示装置の概略構成図である。
[第1の実施形態]
以下、本発明の第1の実施形態に係る光学フィルムおよび画像表示装置について、図面を参照しながら説明する。本明細書において、「フィルム」、「シート」等の用語は、呼称の違いのみに基づいて、互いから区別されるものではない。したがって、例えば、「フィルム」はシートとも呼ばれるような部材も含む意味で用いられる。図1は本実施形態に係る光学フィルムの概略構成図であり、図2は折り畳み試験の様子を模式的に示した図である。
<<<光学フィルム>>>
図1に示される光学フィルム10は、画像表示装置に用いられるものであり、折り畳み可能であり、かつ光透過性を有するものである。本明細書における「光透過性」とは、光を透過させる性質を意味し、例えば、全光線透過率が50%以上、好ましくは70%以上、より好ましくは80%以上、特に好ましくは90%以上であることを含む。光透過性とは、必ずしも透明である必要はなく、半透明であってもよい。
光学フィルム10は、樹脂基材11と、樹脂基材11の一方の面11A側に設けられた樹脂層12とを備えるものである。図1においては、光学フィルム10の表面10Aは、樹脂層12の表面12Aとなっている。なお、本明細書においては、光学フィルムの表面は光学フィルムの片側の表面を意味するものとして用いるので、光学フィルムの表面とは反対側の面は、光学フィルムの表面と区別するために裏面と称するものとする。光学フィルム10の裏面10Bは、樹脂基材11における一方の面11Aとは反対側の面となっている。
光学フィルム10においては、25℃、500Hz以上1000Hz以下の周波数域での剪断貯蔵弾性率G´が、1MPa以上200MPa以下となっている。光学フィルムの剪断貯蔵弾性率G´が1MPa未満であると、光学フィルムの表面に衝撃が加わった際に、光学フィルムの表面が大きく変形してしまい、また光学フィルムの硬度が低下してしまうおそれがある。また、光学フィルムの剪断貯蔵弾性率G´が200MPaを超えると、折り畳みの際に光学フィルムが割れるおそれがある。光学フィルム10の剪断貯蔵弾性率G´の下限は、10MPa以上となっていることが好ましく、また光学フィルム10の剪断貯蔵弾性率G´の上限は、100MPa以下となっていることが好ましい。
光学フィルム10においては、25℃、500Hz以上1000Hz以下の周波数域での剪断損失弾性率G´´が、0.1MPa以上100MPa以下となっている。光学フィルムの剪断損失弾性率G´´が0.1MPa未満であると、衝撃吸収性能が低下するおそれがある。また、光学フィルムの剪断損失弾性率G´´が100MPaを超えると、光学フィルムの表面にタック感が生じるおそれがある。光学フィルム10の剪断損失弾性率G´´の下限は、0.5MPa以上となっていることが好ましく、また光学フィルム10の剪断損失弾性率G´´の上限は、50MPa以下となっていることが好ましい。
剪断貯蔵弾性率G´および剪断損失弾性率G´´は、動的粘弾性測定装置(DMA)によって測定することができる。動的粘弾性測定装置(DMA)によって、光学フィルム10の剪断貯蔵弾性率G´および剪断損失弾性率G´´を測定する際には、まず、光学フィルム10を10mm×5mmの長方形状に打ち抜いて、サンプルを得る。そして、このサンプルを2枚準備し、動的粘弾性測定装置(製品名「Rheogel-E4000」、ユービーエム社製)の測定治具に取り付ける。具体的には、測定治具は、水平方向に3枚の板(厚みが1mmの1枚の金属製の中板と、この中板の両側に配置された2枚の金属製の外板)を備えており、中板と一方の外板との間で一方のサンプルを挟み、かつ中板と他方の外板で他方のサンプルを挟む。この場合、樹脂層が中板側となり、基材が外板側となるようにサンプルを挟む。そして、動的粘弾性測定装置(製品名「Rheogel-E4000」、ユービーエム社製)に、測定治具をチャック間距離20mmで設置し、2℃/minで昇温し設定温度を25℃とする。この状態で、中板を固定しながら2枚の外板に歪み量1%かつ周波数500Hz以上1000Hz以下の範囲の縦振動を与えながら、25℃での固体の動的粘弾性測定を行い、光学フィルム10の剪断貯蔵弾性率G´および剪断損失弾性率G´´を測定する。ここで、光学フィルムにおける500Hz以上1000Hz以下の周波数域での剪断貯蔵弾性率G´および剪断損失弾性率G´´は、外板に周波数500Hz、750Hz、950Hzの縦振動をそれぞれ与えて、それぞれの周波数において光学フィルムの剪断貯蔵弾性率G´および剪断損失弾性率G´´を測定し、これらの剪断貯蔵弾性率G´および剪断損失弾性率G´´の算術平均値を求め、さらに、この測定を3回繰り返し、それぞれ得られた3つの算術平均値をさらに算術平均した値とする。なお、上記において、500Hz以上1000Hz以下の周波数域としたのは、この周波数域の周波数が、数cmの高さから物体を自由落下させたときに、光学フィルムの表面が数ミクロンから数十ミクロン変形する周波数であり、かつ光学フィルムより画像表示装置の内部に存在する表示パネル等の部材に損傷を与える周波数であるからである。
光学フィルム10は、折り畳み可能となっているが、具体的には、光学フィルム10に対し次に説明する折り畳み試験を10万回繰り返し行った場合であっても、光学フィルムに割れまたは破断が生じないことが好ましく、折り畳み試験を20万回繰り返し行った場合であっても、光学フィルム10に割れまたは破断が生じないことがより好ましく、100万回繰り返し行った場合であっても、光学フィルムに割れまたは破断が生じないことがさらに好ましい。光学フィルム10に対し折り畳み試験を10万回繰り返し行った場合に、光学フィルム10に割れ等が生じると、光学フィルム10の折り畳み性が不充分となる。折り畳み試験は、樹脂層12が内側となるように光学フィルム10を折り畳むように行われてもよく、また樹脂層12が外側となるように光学フィルム10を折り畳むように行われてもよいが、いずれの場合であっても、光学フィルムに割れまたは破断が生じないことが好ましい。
折り畳み試験は、以下のようにして行われる。図2(A)に示すように折り畳み試験においては、まず、光学フィルム10の辺部10Cと、辺部10Cと対向する辺部10Dとを、平行に配置された固定部20でそれぞれ固定する。なお、光学フィルム10は、任意の形状であってよいが、折り畳み試験における光学フィルム10は、矩形(例えば、30mm×100mmの矩形)であることが好ましい。また、図2(A)に示すように、固定部20は水平方向にスライド移動可能なっている。
次に、図2(B)に示すように、固定部20を互いに近接するように移動させることで、光学フィルム10の折り畳むように変形させ、更に、図2(C)に示すように、光学フィルム10の固定部20で固定された対向する2つの辺部の間隔が3mmとなる位置まで固定部20を移動させた後、固定部20を逆方向に移動させて光学フィルム10が変形を解消させる。
図2(A)〜(C)に示すように固定部20を移動させることで、光学フィルム10を180°折り畳むことができる。また、光学フィルム10の屈曲部10Eが固定部20の下端からはみ出さないように折り畳み試験を行い、かつ固定部20が最接近したときの間隔を3mmに制御することで、光学フィルム10の対向する2つの辺部の間隔を3mmにできる。この場合、屈曲部10Eの外径を3mmとみなす。なお、光学フィルム10の厚みは、固定部20の間隔(3mm)と比較して充分に小さな値であるため、光学フィルム10の折り畳み試験の結果は、光学フィルム10の厚みの違いによる影響は受けないとみなすことができる。
光学フィルム10の表面10A(樹脂層12の表面12A)は、JIS K5600−5−4:1999で規定される鉛筆硬度試験で測定されたときの硬度(鉛筆硬度)が、3H以上であることが好ましく、5Hであることがより好ましく、6H以上であることがさらに好ましい。鉛筆硬度試験は、鉛筆に1kgの荷重を加えるとともに、鉛筆の移動速度を1mm/秒とした状態で行うものとする。鉛筆硬度は、鉛筆硬度試験において光学フィルムの表面に傷が付かなかった最も高い硬度とする。なお、鉛筆硬度の測定の際には、硬度が異なる鉛筆を複数本用いて行うが、鉛筆1本につき5回鉛筆硬度試験を行い、5回のうち4回以上光学フィルムの表面に傷が付かなかった場合には、この硬度の鉛筆においては光学フィルムの表面に傷が付かなかったと判断する。上記傷は、鉛筆硬度試験を行った光学フィルムの表面を蛍光灯下で透過観察して視認されるものを指す。
光学フィルム10は、イエローインデックス(YI)が15以下であることが好ましい。光学フィルム10のYIが15を超えると、光学フィルムの黄色味が目立ち、透明性が求められる用途に適用できないおそれがある。イエローインデックス(YI)は、分光光度計(製品名「UV−3100PC」、島津製作所製、光源:タングステンランプおよび重水素ランプ)を用いて、5cm×10cmの大きさに切り出した光学フィルムについて測定された値からJIS Z8722:2009に記載された演算式に従って色度三刺激値X、Y、Zを計算し、三刺激値X、Y、ZからASTM D1925:1962に記載された演算式に従って算出された値である。光学フィルム10のイエローインデックス(YI)の上限は、10以下であることがより好ましい。
光学フィルム10のイエローインデックス(YI)を調整するために、例えば、樹脂基材11や樹脂層12に、黄色の補色となる青色の色素を含有させてもよい。樹脂基材として、ポリイミド基材を用いたことで、黄色味が問題となるような場合であったとしても、樹脂基材11や樹脂層12に青色の色素を含ませることで、光学フィルム10のイエローインデックス(YI)を低下させることができる。
上記青色の色素としては、顔料または染料のいずれであってもよいが、例えば、光学フィルム10が有機発光ダイオード表示装置に用いる場合、耐光性や耐熱性を兼ね備えたものが好ましい。上記青色の色素として、多環系有機顔料や金属錯体有機顔料等は、染料の分子分散に比べて紫外線による分子裂断の度合いが少なく耐光性が格段に優れるため、耐光性等が求められる用途に好ましく、より具体的には、フタロシアニン系の有機顔料等が好適に挙げられる。ただし、顔料は溶剤に対して粒子分散するため、粒子散乱による透明性阻害は存在するため、顔料分散体の粒度をレイリー散乱域に入れることが好ましい。一方、光学フィルムの透明性が重要視される場合には、上記青色の色素としては、溶剤に対して分子分散する染料を用いることが好ましい。
光学フィルム10の波長380nmの光の透過率は8%以下であることが好ましい。光学フィルムの上記透過率が8%を超えると、光学フィルムをモバイル端末に用いた場合、偏光子が紫外線に晒されて、劣化しやすくなるおそれがある。上記透過率は、分光光度計(製品名「UV−3100PC」、島津製作所社製、光源:タングステンランプおよび重水素ランプを用いて測定することができる。上記透過率は、3回測定して得られた値の算術平均値とする。光学フィルム10の上記透過率の上限は5%であることがより好ましい。なお、光学フィルム10の上記透過率は、樹脂層12中の後述する紫外線吸収剤の添加量を調整すること等によって達成することができる。
光学フィルム10のヘイズ値(全ヘイズ値)は2.5%以下であることが好ましい。光学フィルムの上記ヘイズ値が2.5%を越えると、光学フィルムをモバイル端末に用いた場合、画像表示面が白化するおそれがある。上記ヘイズ値は、ヘイズメーター(製品名「HM−150」、村上色彩技術研究所製)を用いてJIS K7136:2000に準拠した方法により測定することができる。上記ヘイズ値は、5cm×10cmの大きさに切り出した光学フィルムに対して3回測定して得られた値の算術平均値とする。上記ヘイズ値は、1.5%以下であることがより好ましく、1.0%以下であることがより好ましい。なお、光学フィルム10の上記ヘイズ値は、樹脂層12中の後述する紫外線吸収剤の添加量を調整すること等によって達成することができる。
近年、パーソナルコンピュータやタブレット端末等の画像表示装置のバックライトの光源として発光ダイオード(Light Emitting Diode)が積極的に採用されているが、この発光ダイオードは、ブルーライトと呼ばれる光を強く発している。このブルーライトは、波長380〜495nmの光で紫外線に近い性質を持っており、強いエネルギーを有しているため、角膜や水晶体で吸収されずに網膜に到達することで、網膜の損傷、眼精疲労、睡眠への悪影響等の原因になると言われている。このため、光学フィルムを、画像表示装置に適用した場合に、表示画面の色味に影響を与えることなく、ブルーライト遮蔽性に優れたものとなることが好ましい。このため、ブルーライトを遮光する観点から、光学フィルム10は、波長380nmにおける分光透過率が1%未満であり、波長410nmにおける分光透過率が10%未満であり、波長440nmにおける分光透過率が70%以上であることが好ましい。上記波長380nmにおける分光透過率が1%以上であったり、波長410nmにおける分光透過率が10%以上であったりすると、ブルーライトによる問題を解消できないことがあり、波長440nmにおける分光透過率が70%未満であると、光学フィルムを用いた画像表示装置の表示画面の色味に影響を及ぼしてしまうことがあるからである。光学フィルム10は、ブルーライトの波長のうち、波長410nm以下の波長領域の光を充分に吸収させる一方で、波長440nm以上の光を充分に透過させ、表示画面の色味に影響を与えることなくブルーライトの遮蔽性を優れたものとすることができる。また、このようなブルーライトの遮蔽性に優れる光学フィルム10を画像表示装置として有機発光ダイオード(OLED)表示装置に適用した場合、有機発光ダイオード素子の劣化抑制にも効果的である。
光学フィルム10の光の透過率は、波長380nmまでは殆ど0%であり、波長410nmから徐々に光の透過が大きくなり、波長440nm付近で急激に光の透過が大きくなっていることが好ましい。具体的には、例えば、波長410nmから440nmの間で分光透過率がシグモイド型の曲線を描くように変化することが好ましい。上記波長380nmにおける分光透過率は、より好ましくは0.5%未満、更に好ましくは0.2%未満であり、波長410nmにおける分光透過率がより好ましくは7%未満、より好ましくは5%未満であり、波長440nmにおける分光透過率がより好ましくは75%以上、更に好ましくは80%以上である。なお、光学フィルム10は、波長420nmにおける分光透過率が50%未満であることが好ましい。このような分光透過率の関係を満たすことで、光学フィルム10は、波長440nm付近で急激に透過率が向上するものとなり、表示画面の色味に影響を及ぼすことなく極めて優れたブルーライト遮蔽性を得ることができる。
光学フィルム10における波長380nmにおける分光透過率は0.1%未満であることがより好ましく、波長410nmにおける分光透過率は7%未満であることがより好ましく、波長440nmにおける分光透過率は80%以上であることがより好ましい。
光学フィルム10は、最小二乗法を用いて得られた波長415〜435nmの範囲の透過スペクトルの傾きが2.0より大きいことが好ましい。上記傾きが2.0以下であると、ブルーライトの光波長領域、例えば、波長415〜435nmの波長領域において充分に光がカットできずブルーライトカット効果が弱くなることがある。また、ブルーライトの光波長領域(波長415〜435nm)をカットしすぎている可能性も考えられ、その場合、画像表示装置のバックライトや発光波長領域(例えば、OLEDの波長430nmからの発光)に干渉してしまい、色味が悪くなるといった不具合が発生する可能性が大きくなることがある。上記傾きは、例えば、0.5%刻みにて測定可能の分光光度計(製品名「UV−3100PC」、島津製作所社製)を用い、前後1nmの間で最低5ポイント分の透過率のデータを415〜435nm間で測定することで算出することができる。
光学フィルム10は、ブルーライトの遮蔽率が40%以上であることが好ましい。ブルーライトの遮蔽率が40%未満であると、上述したブルーライトに起因した問題が充分に解消できないことがある。上記ブルーライトの遮蔽率は、例えば、JIS T7333:2005により算出される値である。なお、このようなブルーライト遮蔽率は、例えば、樹脂層12が後述するセサモール型ベンゾトリアゾール系単量体を含むことで、達成することができる。
光学フィルム10は、所望の大きさにカットされていてもよいが、ロール状であってもよい。光学フィルム10が所望の大きさにカットされている場合、光学フィルムの大きさは、特に制限されず、例えば、スマートフォン、タブレット端末、パーソナルコンピュータ(PC)、ウェアラブル端末、デジタルサイネージ、テレビジョン等の画像表示装置の表示面の大きさに応じて適宜決定される。具体的には、光学フィルム10の大きさは、例えば、1インチ以上500インチ以下となっていてもよい。
画像表示装置における光学フィルム10の配置箇所は、画像表示装置内であってもよいが、画像表示装置の表面であることが好ましい。画像表示装置の表面に用いられる場合、光学フィルム10は、カバーガラスの代わりに用いられるカバーフィルムとして機能する。
<<樹脂基材>>
樹脂基材11は、光透過性を有する樹脂からなる基材である。樹脂基材11の厚みは、10μm以上100μm以下となっていることが好ましい。樹脂基材の厚みが10μm未満であると、光学フィルムのカールが大きくなり、また硬度も不充分となって鉛筆硬度が3H以上にできないおそれがあり、更に、光学フィルムをRoll to Rollで製造する場合、シワが発生しやすくなるため外観の悪化を招くおそれがある。一方、樹脂基材の厚みが100μmを超えると、光学フィルムの折り畳み性能が不充分となり、後述する折り畳み試験の要件を満たせないことがあり、また、光学フィルムが重くなり、軽量化の面で好ましくない。樹脂基材11の厚みは、走査型電子顕微鏡(SEM)を用いて、樹脂基材11の断面を撮影し、その断面の画像において樹脂基材11の膜厚を10箇所測定し、その10箇所の膜厚の算術平均値とする。樹脂基材11の下限は25μm以上であることがより好ましく、樹脂基材11の上限は80μm以下であることがより好ましい。
樹脂基材11を構成する樹脂としては、例えば、ポリイミド系樹脂、ポリアミドイミド系樹脂、ポリアミド系樹脂、ポリエステル系樹脂(例えば、ポリエチレンテレフタレートやポリエチレンナフタレート)等が挙げられる。これらの中でも、折り畳み試験において割れ又は破断が発生しにくいだけでなく、優れた硬度及び透明性をも有し、また、耐熱性にも優れ、焼成することにより、更に優れた硬度及び透明性を付与することもできる観点から、ポリイミド系樹脂、ポリアミド系樹脂、またはこれらの混合物が好ましい。
ポリイミド系樹脂は、テトラカルボン酸成分とジアミン成分とを反応させて得られるものである。テトラカルボン酸成分とジアミン成分の重合によってポリアミド酸を得てイミド化することが好ましい。イミド化は、熱イミド化で行っても、化学イミド化で行ってもよい。また、熱イミド化と化学イミド化とを併用した方法で製造することもできる。ポリイミド系樹脂は、脂肪族のポリイミド系樹脂であってもよいが、芳香族環を含むポリイミド系樹脂であることが好ましい。芳香族環を含むポリイミド系樹脂は、テトラカルボン酸成分およびジアミン成分の少なくとも一方に芳香族環を含むものである。
テトラカルボン酸成分の具体例としては、テトラカルボン酸二無水物が好適に用いられ、シクロヘキサンテトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物、ジシクロヘキサン−3,4,3’,4’−テトラカルボン酸二無水物、ピロメリット酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、2,2−ビス(2,3−ジカルボキシフェニル)プロパン二無水物、ビス(3,4−ジカルボキシフェニル)エーテル二無水物、ビス(3,4−ジカルボキシフェニル)スルホン二無水物、1,1−ビス(2,3−ジカルボキシフェニル)エタン二無水物、ビス(2,3−ジカルボキシフェニル)メタン二無水物、ビス(3,4−ジカルボキシフェニル)メタン二無水物、2,2−ビス(3,4−ジカルボキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン二無水物、2,2−ビス(2,3−ジカルボキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン二無水物、1,3−ビス〔(3,4−ジカルボキシ)ベンゾイル〕ベンゼン二無水物、1,4−ビス〔(3,4−ジカルボキシ)ベンゾイル〕ベンゼン二無水物、2,2−ビス{4−〔4−(1,2−ジカルボキシ)フェノキシ〕フェニル}プロパン二無水物、2,2−ビス{4−〔3−(1,2−ジカルボキシ)フェノキシ〕フェニル}プロパン二無水物、ビス{4−〔4−(1,2−ジカルボキシ)フェノキシ〕フェニル}ケトン二無水物、ビス{4−〔3−(1,2−ジカルボキシ)フェノキシ〕フェニル}ケトン二無水物、4,4’−ビス〔4−(1,2−ジカルボキシ)フェノキシ〕ビフェニル二無水物、4,4’−ビス〔3−(1,2−ジカルボキシ)フェノキシ〕ビフェニル二無水物、ビス{4−〔4−(1,2−ジカルボキシ)フェノキシ〕フェニル}ケトン二無水物、ビス{4−〔3−(1,2−ジカルボキシ)フェノキシ〕フェニル}ケトン二無水物、ビス{4−〔4−(1,2−ジカルボキシ)フェノキシ〕フェニル}スルホン二無水物、ビス{4−〔3−(1,2−ジカルボキシ)フェノキシ〕フェニル}スルホン二無水物、ビス{4−〔4−(1,2−ジカルボキシ)フェノキシ〕フェニル}スルフィド二無水物、ビス{4−〔3−(1,2−ジカルボキシ)フェノキシ〕フェニル}スルフィド二無水物、4,4’−(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、3,4’−(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、3,3’−(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、1,2,3,4−ベンゼンテトラカルボン酸二無水物、3,4,9,10−ペリレンテトラカルボン酸二無水物、2,3,6,7−アントラセンテトラカルボン酸二無水物、1,2,7,8−フェナントレンテトラカルボン酸二無水物等が挙げられる。これらは単独でも、2種以上を混合して用いることもできる。
ジアミン成分の具体例としては、p−フェニレンジアミン、m−フェニレンジアミン、o−フェニレンジアミン、3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルスルフィド、3,4’−ジアミノジフェニルスルフィド、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、3,3’−ジアミノベンゾフェノン、4,4’−ジアミノベンゾフェノン、3,4’−ジアミノベンゾフェノン、4,4’−ジアミノベンズアニリド、3,3’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルメタン、2,2−ジ(3−アミノフェニル)プロパン、2,2−ジ(4−アミノフェニル)プロパン、2−(3−アミノフェニル)−2−(4−アミノフェニル)プロパン、2,2−ジ(3−アミノフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ジ(4−アミノフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、2−(3−アミノフェニル)−2−(4−アミノフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、1,1−ジ(3−アミノフェニル)−1−フェニルエタン、1,1−ジ(4−アミノフェニル)−1−フェニルエタン、1−(3−アミノフェニル)−1−(4−アミノフェニル)−1−フェニルエタン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノベンゾイル)ベンゼン、1,3−ビス(4−アミノベンゾイル)ベンゼン、1,4−ビス(3−アミノベンゾイル)ベンゼン、1,4−ビス(4−アミノベンゾイル)ベンゼン、1,3−ビス(3−アミノ−α,α−ジメチルベンジル)ベンゼン、1,3−ビス(4−アミノ−α,α−ジメチルベンジル)ベンゼン、1,4−ビス(3−アミノ−α,α−ジメチルベンジル)ベンゼン、1,4−ビス(4−アミノ−α,α−ジメチルベンジル)ベンゼン、1,3−ビス(3−アミノ−α,α−ジトリフルオロメチルベンジル)ベンゼン、1,3−ビス(4−アミノ−α,α−ジトリフルオロメチルベンジル)ベンゼン、1,4−ビス(3−アミノ−α,α−ジトリフルオロメチルベンジル)ベンゼン、1,4−ビス(4−アミノ−α,α−ジトリフルオロメチルベンジル)ベンゼン、2,6−ビス(3−アミノフェノキシ)ベンゾニトリル、2,6−ビス(3−アミノフェノキシ)ピリジン、N,N’−ビス(4−アミノフェニル)テレフタルアミド、9,9−ビス(4−アミノフェニル)フルオレン、2,2’−ジメチル−4,4’−ジアミノビフェニル、2,2’−ジトリフルオロメチル−4,4’−ジアミノビフェニル、3,3’−ジクロロ−4,4’−ジアミノビフェニル、3,3’−ジメトキシ−4,4’−ジアミノビフェニル、3,3’−ジメチル−4,4’−ジアミノビフェニル、4,4’−ビス(3−アミノフェノキシ)ビフェニル、4,4’−ビス(4−アミノフェノキシ)ビフェニル、ビス[4−(3−アミノフェノキシ)フェニル]ケトン、ビス[4−(4−アミノフェノキシ)フェニル]ケトン、ビス[4−(3−アミノフェノキシ)フェニル]スルフィド、ビス[4−(4−アミノフェノキシ)フェニル]スルフィド、ビス[4−(3−アミノフェノキシ)フェニル]スルホン、ビス[4−(4−アミノフェノキシ)フェニル]スルホン、ビス[4−(3−アミノフェノキシ)フェニル]エーテル、ビス[4−(4−アミノフェノキシ)フェニル]エーテル、2,2−ビス[4−(3−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス[3−(3−アミノフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、1,3−ビス[4−(3−アミノフェノキシ)ベンゾイル]ベンゼン、1,3−ビス[4−(4−アミノフェノキシ)ベンゾイル]ベンゼン、1,4−ビス[4−(3−アミノフェノキシ)ベンゾイル]ベンゼン、1,4−ビス[4−(4−アミノフェノキシ)ベンゾイル]ベンゼン、1,3−ビス[4−(3−アミノフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−アミノフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,4−ビス[4−(3−アミノフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,4−ビス[4−(4−アミノフェノキシ)−α,α−ジメチルベンジル]ベンゼン、4,4’−ビス[4−(4−アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’−ビス[4−(4−アミノ−α,α−ジメチルベンジル)フェノキシ]ベンゾフェノン、4,4’−ビス[4−(4−アミノ−α,α−ジメチルベンジル)フェノキシ]ジフェニルスルホン、4,4’−ビス[4−(4−アミノフェノキシ)フェノキシ]ジフェニルスルホン、3,3’−ジアミノ−4,4’−ジフェノキシベンゾフェノン、3,3’−ジアミノ−4,4’−ジビフェノキシベンゾフェノン、3,3’−ジアミノ−4−フェノキシベンゾフェノン、3,3’−ジアミノ−4−ビフェノキシベンゾフェノン、6,6’−ビス(3−アミノフェノキシ)−3,3,3’,3’−テトラメチル−1,1’−スピロビインダン、6,6’−ビス(4−アミノフェノキシ)−3,3,3’,3’−テトラメチル−1,1’−スピロビインダン、1,3−ビス(3−アミノプロピル)テトラメチルジシロキサン、1,3−ビス(4−アミノブチル)テトラメチルジシロキサン、α,ω−ビス(3−アミノプロピル)ポリジメチルシロキサン、α,ω−ビス(3−アミノブチル)ポリジメチルシロキサン、ビス(アミノメチル)エーテル、ビス(2−アミノエチル)エーテル、ビス(3−アミノプロピル)エーテル、ビス(2−アミノメトキシ)エチル]エーテル、ビス[2−(2−アミノエトキシ)エチル]エーテル、ビス[2−(3−アミノプロトキシ)エチル]エーテル、trans−シクロヘキサンジアミン、trans−1,4−ビスメチレンシクロヘキサンジアミン、2,6−ビス(アミノメチル)ビシクロ[2,2,1]ヘプタン、2,5−ビス(アミノメチル)ビシクロ[2,2,1]ヘプタン、また、上記ジアミンの芳香族環上水素原子の一部もしくは全てをフルオロ基、メチル基、メトキシ基、トリフルオロメチル基、またはトリフルオロメトキシ基から選ばれた置換基で置換したジアミンも使用することができる。これらは単独でも、2種以上を混合して用いることもできる。
光透過性を向上し、且つ、剛性を向上する点から、ポリイミド系樹脂としては、芳香族環を含み、かつ、(i)フッ素原子、(ii)脂肪族環、及び(iii)芳香族環同士の電子共役を切断する連結基からなる群から選択される少なくとも1つを含むポリイミド系樹脂であることが好ましい。ポリイミド系樹脂に芳香族環を含むと配向性が高まり、剛性が向上するが、芳香族環の吸収波長によって透過率が低下する傾向がある。ポリイミド系樹脂が(i)フッ素原子を含む場合には、ポリイミド骨格内の電子状態を電荷移動し難くすることができる点から光透過性が向上する。また、ポリイミド系樹脂が(ii)脂肪族環を含む場合には、ポリイミド骨格内のπ電子の共役を断ち切ることで骨格内の電荷の移動を阻害することができる点から光透過性が向上する。さらに、ポリイミド系樹脂が(iii)芳香族環同士の電子共役を切断する連結基を含む場合には、ポリイミド骨格内のπ電子の共役を断ち切ることで骨格内の電荷の移動を阻害することができる点からの点から光透過性が向上する。このような芳香族環同士の電子共役を切断する連結基としては、例えば、エーテル結合、チオエーテル結合、カルボニル結合、チオカルボニル結合、アミド結合、スルホニル結合、及び、スルフィニル結合、並びに、フッ素で置換されていても良いアルキレン基等の2価の連結基が挙げられる。
こられの中でも、芳香族環を含み、かつフッ素原子を含むポリイミド系樹脂であることが、光透過性を向上し、かつ剛性を向上する点から好ましく用いられる。フッ素原子を含むポリイミド系樹脂におけるフッ素原子の含有割合は、ポリイミド系樹脂の表面をX線光電子分光法により測定したフッ素原子数(F)と炭素原子数(C)の比率(F/C)が、0.01以上であることが好ましく、更に0.05以上であることが好ましい。一方でフッ素原子の含有割合が高すぎるとポリイミド系樹脂の本来の耐熱性などが低下する恐れがあることから、前記フッ素原子数(F)と炭素原子数(C)の比率(F/C)が1以下であることが好ましく、更に0.8以下であることが好ましい。ここで、X線光電子分光法(XPS)の測定による上記比率は、X線光電子分光装置(例えば、Thermo Scientific社 Theta Probe)を用いて測定される各原子の原子%の値から求めることができる。
また、ポリイミド系樹脂に含まれる炭素原子に結合する水素原子の70%以上が、芳香族環に直接結合する水素原子であるポリイミド系樹脂であることが、光透過性を向上し、かつ、剛性を向上する点から好ましく用いられる。ポリイミド系樹脂に含まれる炭素原子に結合する全水素原子(個数)中の、芳香族環に直接結合する水素原子(個数)の割合は、更に、80%以上であることが好ましく、85%以上であることがより好ましい。ポリイミドに含まれる炭素原子に結合する水素原子の70%以上が、芳香族環に直接結合する水素原子であるポリイミドである場合には、大気中における加熱工程を経ても、例えば200℃以上で延伸を行っても、光学特性、特に全光線透過率やイエローインデックス(YI)の変化が少ない点から好ましい。ポリイミド系樹脂に含まれる炭素原子に結合する水素原子の70%以上が、芳香族環に直接結合する水素原子であるポリイミドである場合には、酸素との反応性が低いため、ポリイミド系樹脂の化学構造が変化し難いことが推定される。ポリイミド系樹脂からなる基材はその高い耐熱性を利用し、加熱を伴う加工工程が必要なデバイスなどに用いられる場合が多いが、ポリイミド系樹脂に含まれる炭素原子に結合する水素原子の70%以上が、芳香族環に直接結合する水素原子であるポリイミド系樹脂である場合には、これら後工程を透明性維持のために不活性雰囲気下で実施する必要が生じないので、設備コストや雰囲気制御にかかる費用を抑制できるというメリットがある。ここで、ポリイミド系樹脂に含まれる炭素原子に結合する全水素原子(個数)中の、芳香族環に直接結合する水素原子(個数)の割合は、ポリイミドの分解物を高速液体クロマトグラフィー、ガスクロマトグラフ質量分析計及びNMRを用いて求めることができる。例えば、サンプルを、アルカリ水溶液、または、超臨界メタノールにより分解し、得られた分解物を、高速液体クロマトグラフィーで分離し、当該分離した各ピークの定性分析をガスクロマトグラフ質量分析計およびNMR等を用いて行い、高速液体クロマトグラフィーを用いて定量することでポリイミドに含まれる全水素原子(個数)中の、芳香族環に直接結合する水素原子(個数)の割合を求めることができる。
また、光透過性を向上し、かつ、剛性を向上する点から、ポリイミド系樹脂としては、中でも、下記一般式(1)および下記一般式(3)で表される構造からなる群から選ばれる少なくとも1種の構造を有することが好ましい。
Figure 2018043627
上記一般式(1)において、Rはテトラカルボン酸残基である4価の基、Rは、trans−シクロヘキサンジアミン残基、trans−1,4−ビスメチレンシクロヘキサンジアミン残基、4,4’−ジアミノジフェニルスルホン残基、3,4’−ジアミノジフェニルスルホン残基、および下記一般式(2)で表される2価の基からなる群から選ばれる少なくとも1種の2価の基を表す。nは繰り返し単位数を表し、1以上である。本明細書において、「テトラカルボン酸残基」とは、テトラカルボン酸から、4つのカルボキシル基を除いた残基をいい、テトラカルボン酸二無水物から酸二無水物構造を除いた残基と同じ構造を表す。また、「ジアミン残基」とは、ジアミンから2つのアミノ基を除いた残基をいう。
Figure 2018043627
上記一般式(2)において、RおよびRはそれぞれ独立して、水素原子、アルキル基、またはパーフルオロアルキル基を表す。
Figure 2018043627
上記一般式(3)において、Rはシクロヘキサンテトラカルボン酸残基、シクロペンタンテトラカルボン酸残基、ジシクロヘキサン−3,4,3’,4’−テトラカルボン酸残基、および4,4'−(ヘキサフルオロイソプロピリデン)ジフタル酸残基からなる群から選ばれる少なくとも1種の4価の基、Rは、ジアミン残基である2価の基を表す。n’は繰り返し単位数を表し、1以上である。
上記一般式(1)における、Rはテトラカルボン酸残基であり、前記例示されたようなテトラカルボン酸二無水物から酸二無水物構造を除いた残基とすることができる。上記一般式(1)におけるRとしては、中でも、光透過性を向上し、かつ剛性を向上する点から、4,4’−(ヘキサフルオロイソプロピリデン)ジフタル酸残基、3,3’,4,4’−ビフェニルテトラカルボン酸残基、ピロメリット酸残基、2,3’,3,4’−ビフェニルテトラカルボン酸残基、3,3’,4,4’−ベンゾフェノンテトラカルボン酸残基、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸残基、4,4'-オキシジフタル酸残基、シクロヘキサンテトラカルボン酸残基、およびシクロペンタンテトラカルボン酸残基からなる群から選択される少なくとも1種を含むことが好ましく、さらに、4,4’−(ヘキサフルオロイソプロピリデン)ジフタル酸残基、4,4’−オキシジフタル酸残基、および3,3’,4,4’−ジフェニルスルホンテトラカルボン酸残基からなる群から選択される少なくとも1種を含むことが好ましい。
において、これらの好適な残基を合計で、50モル%以上含むことが好ましく、更に70モル%以上含むことが好ましく、より更に90モル%以上含むことが好ましい。
また、Rとして、3,3’,4,4’−ビフェニルテトラカルボン酸残基、3,3’,4,4’−ベンゾフェノンテトラカルボン酸残基、およびピロメリット酸残基からなる群から選択される少なくとも1種のような剛直性を向上するのに適したテトラカルボン酸残基群(グループA)と、4,4’−(ヘキサフルオロイソプロピリデン)ジフタル酸残基、2,3’,3,4’−ビフェニルテトラカルボン酸残基、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸残基、4,4'−オキシジフタル酸残基、シクロヘキサンテトラカルボン酸残基、およびシクロペンタンテトラカルボン酸残基からなる群から選択される少なくとも1種のような透明性を向上するのに適したテトラカルボン酸残基群(グループB)とを混合して用いることも好ましい。
この場合、前記剛直性を向上するのに適したテトラカルボン酸残基群(グループA)と、透明性を向上するのに適したテトラカルボン酸残基群(グループB)との含有比率は、透明性を向上するのに適したテトラカルボン酸残基群(グループB)1モルに対して、前記剛直性を向上するのに適したテトラカルボン酸残基群(グループA)が0.05モル以上9モル以下であることが好ましく、更に0.1モル以上5モル以下であることが好ましく、より更に0.3モル以上4モル以下であることが好ましい。
上記一般式(1)におけるRとしては、中でも、光透過性を向上し、かつ剛性を向上する点から、4,4’−ジアミノジフェニルスルホン残基、3,4’−ジアミノジフェニルスルホン残基、および上記一般式(2)で表される2価の基からなる群から選ばれる少なくとも1種の2価の基であることが好ましく、更に、4,4’−ジアミノジフェニルスルホン残基、3,4’−ジアミノジフェニルスルホン残基、ならびに、RおよびRがパーフルオロアルキル基である上記一般式(2)で表される2価の基からなる群から選ばれる少なくとも1種の2価の基であることが好ましい。
上記一般式(3)におけるRとしては、中でも、光透過性を向上し、かつ剛性を向上する点から、4,4'−(ヘキサフルオロイソプロピリデン)ジフタル酸残基、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸残基、及びオキシジフタル酸残基を含むことが好ましい。
において、これらの好適な残基を、50モル%以上含むことが好ましく、更に70モル%以上含むことが好ましく、より更に90モル%以上含むことが好ましい。
上記一般式(3)におけるRはジアミン残基であり、前記例示されたようなジアミンから2つのアミノ基を除いた残基とすることができる。上記一般式(3)におけるRとしては、中でも、光透過性を向上し、かつ剛性を向上する点から、2,2’−ビス(トリフルオロメチル)ベンジジン残基、ビス[4−(4−アミノフェノキシ)フェニル]スルホン残基、4,4’−ジアミノジフェニルスルホン残基、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン残基、ビス[4−(3−アミノフェノキシ)フェニル]スルホン残基、4,4’−ジアミノ−2,2’−ビス(トリフルオロメチル)ジフェニルエーテル残基、1,4−ビス[4−アミノ−2−(トリフルオロメチル)フェノキシ]ベンゼン残基、2,2−ビス[4−(4−アミノ−2−トリフルオロメチルフェノキシ)フェニル]ヘキサフルオロプロパン残基、4,4’−ジアミノ−2−(トリフルオロメチル)ジフェニルエーテル残基、4,4’−ジアミノベンズアニリド残基、N,N’−ビス(4−アミノフェニル)テレフタルアミド残基、及び9,9−ビス(4−アミノフェニル)フルオレン残基からなる群から選ばれる少なくとも1種の2価の基を含むことが好ましく、更に、2,2’−ビス(トリフルオロメチル)ベンジジン残基、ビス[4−(4−アミノフェノキシ)フェニル]スルホン残基、及び4,4’−ジアミノジフェニルスルホン残基からなる群から選ばれる少なくとも1種の2価の基を含むことが好ましい。
において、これらの好適な残基を合計で、50モル%以上含むことが好ましく、更に70モル%以上含むことが好ましく、より更に90モル%以上含むことが好ましい。
また、Rとして、ビス[4−(4−アミノフェノキシ)フェニル]スルホン残基、4,4’−ジアミノベンズアニリド残基、N,N’−ビス(4−アミノフェニル)テレフタルアミド残基、パラフェニレンジアミン残基、メタフェニレンジアミン残基、および4,4’−ジアミノジフェニルメタン残基からなる群から選択される少なくとも1種のような剛直性を向上するのに適したジアミン残基群(グループC)と、2,2’−ビス(トリフルオロメチル)ベンジジン残基、4,4’−ジアミノジフェニルスルホン残基、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン残基、ビス[4−(3−アミノフェノキシ)フェニル]スルホン残基、4,4’−ジアミノ−2,2’−ビス(トリフルオロメチル)ジフェニルエーテル残基、1,4−ビス[4−アミノ−2−(トリフルオロメチル)フェノキシ]ベンゼン残基、2,2−ビス[4−(4−アミノ−2−トリフルオロメチルフェノキシ)フェニル]ヘキサフルオロプロパン残基、4,4’−ジアミノ−2−(トリフルオロメチル)ジフェニルエーテル残基、及び9,9−ビス(4−アミノフェニル)フルオレン残基からなる群から選択される少なくとも1種のような透明性を向上するのに適したジアミン残基群(グループD)とを混合して用いることも好ましい。
この場合、前記剛直性を向上するのに適したジアミン残基群(グループC)と、透明性を向上するのに適したジアミン残基群(グループD)との含有比率は、透明性を向上するのに適したジアミン残基群(グループD)1モルに対して、前記剛直性を向上するのに適したジアミン残基群(グループC)が0.05モル以上9モル以下であることが好ましく、更に0.1モル以上5モル以下であることが好ましく、0.3モル以上4モル以下であることがより好ましい。
上記一般式(1)および上記一般式(3)で表される構造において、nおよびn’はそれぞれ独立に、繰り返し単位数を表し、1以上である。ポリイミドにおける繰り返し単位数nは、後述する好ましいガラス転移温度を示すように、構造に応じて適宜選択されれば良く、特に限定されない。平均繰り返し単位数は、通常10〜2000であり、更に15〜1000であることが好ましい。
また、ポリイミド系樹脂は、その一部にポリアミド構造を含んでいても良い。含んでいても良いポリアミド構造としては、例えば、トリメリット酸無水物のようなトリカルボン酸残基を含むポリアミドイミド構造や、テレフタル酸のようなジカルボン酸残基を含むポリアミド構造が挙げられる。
ポリイミド系樹脂は、耐熱性の点から、ガラス転移温度が250℃以上であることが好ましく、更に、270℃以上であることが好ましい。一方、延伸の容易さやベーク温度低減の点から、ガラス転移温度が400℃以下であることが好ましく、更に、380℃以下であることが好ましい。
具体的には、ポリイミド系樹脂としては、例えば、下記式で表される構造を有する化合物が挙げられる。下記式中、nは、繰り返し単位であり、2以上の整数を表す。
Figure 2018043627
Figure 2018043627
Figure 2018043627
Figure 2018043627
Figure 2018043627
Figure 2018043627
Figure 2018043627
Figure 2018043627
Figure 2018043627
Figure 2018043627
Figure 2018043627
Figure 2018043627
Figure 2018043627
Figure 2018043627
Figure 2018043627
Figure 2018043627
Figure 2018043627
ポリアミド系樹脂は、脂肪族ポリアミドのみならず、芳香族ポリアミド(アラミド)を含む概念である。ポリアミド系樹脂としては、一般的に、下記式(21)および(22)で表される骨格を有するものであり、上記ポリアミド系樹脂としては、例えば、下記式(23)で表される化合物が挙げられる。なお、下記式中、nは、繰り返し単位であり、2以上の整数を表す。
Figure 2018043627
Figure 2018043627
Figure 2018043627
上記式(4)〜(20)および(23)で表されるポリイミド系樹脂またはポリアミド系樹脂からなる基材は、市販のものを用いても良い。上記ポリイミド系樹脂からなる基材の市販品としては、例えば、三菱ガス化学社製のネオプリム等が挙げられ、上記ポリアミド系樹脂からなる基材の市販品としては、例えば、東レ社製のミクトロン等が挙げられる。
また、上記式(4)〜(20)および(23)で表されるポリイミド系樹脂またはポリアミド系樹脂からなる基材は、公知の方法により合成したものを用いても良い。例えば、上記式(4)で表されるポリイミド系樹脂の合成方法は、特開2009−132091に記載されており、具体的には、下記式(24)で表される4,4’−ヘキサフルオロプロピリデンビスフタル酸二無水物(FPA)と2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル(TFDB)とを反応させることにより得ることができる。
Figure 2018043627
上記ポリイミド系樹脂またはポリアミド系樹脂の重量平均分子量は、3000以上50万以下の範囲であることが好ましく、5000〜30万の範囲であることがより好ましく、1万以上20万以下の範囲であることが更に好ましい。重量平均分子量が3000未満であると、充分な強度が得られないことがあり、50万を超えると粘度が上昇し、溶解性が低下するため、表面が平滑で膜厚が均一な基材が得られないことがある。なお、本明細書において、「重量平均分子量」とは、ゲル浸透クロマトグラフィー(GPC)により測定したポリスチレン換算値である。
上記ポリイミド系樹脂およびポリアミド系樹脂のなかでも、優れた透明性を有することから、分子内又は分子間の電荷移動が起こりにくい構造を有するポリイミド系樹脂またはポリアミド系樹脂が好ましく、具体的には、上記式(4)〜(11)等のフッ素化ポリイミド系樹脂、上記式(13)〜(16)等の脂環構造を有するポリイミド系樹脂、上記式(23)等のハロゲン基を有するポリアミド系樹脂が挙げられる。
また、上記式(4)〜(11)等のフッ素化ポリイミド系樹脂では、フッ素化された構造を有するため、高い耐熱性を有しており、ポリイミド系樹脂からなる基材の製造時の熱によって着色されることもないので、優れた透明性を有する。
樹脂基材11は、樹脂層12の表面12AにおけるJIS K5600−5−4:1999に規定される鉛筆硬度試験(荷重:1kg、速度:1mm/秒)の条件で測定された硬度を、3H以上にできることが可能な観点から、上記式(4)〜(11)等で表されるフッ素化ポリイミド系樹脂または上記式(23)等のハロゲン基を有するポリアミド系樹脂からなる基材を用いることが好ましい。なかでも、上記鉛筆硬度を3H以上の極めて優れた硬度を付与できることから、上記式(4)で表されるポリイミド系樹脂からなる基材を用いることがより好ましい。
ポリエステル系樹脂としては、例えば、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートの少なくとも1種を構成成分とする樹脂が挙げられる。
<<樹脂層>>
樹脂層12は、光透過性を有する樹脂からなる層である。樹脂層12は、ハードコート性および衝撃吸収性を有する層である。樹脂層は、2以上の樹脂層からなる多層構造となっていてもよい。樹脂層が多層構造である場合、樹脂層は、第1の樹脂層と、第1の樹脂層よりも鉛筆硬度が高い第2の樹脂層と、第1の樹脂層および第2の樹脂層よりも鉛筆硬度が高く、耐擦傷性を向上させる第3の樹脂層とをこの順に積層されたものであってもよい。この場合、第3の樹脂層の表面が光学フィルムの表面となる。第1の樹脂層の表面に直接第3の樹脂層を形成すると、耐擦傷性は向上するものの、折り畳み性能が低下し、光学フィルムに割れが生じるおそれがあるが、第1の樹脂層と第3の樹脂層との間の鉛筆硬度を有する第2の樹脂層を第1の樹脂層と第3の樹脂層との間に配置することによって、耐擦傷性をより向上させることができるとともに、折り畳み性能の低下を抑制することができる。
樹脂層12の膜厚は、50μm以上300μm以下となっていることが好ましい。樹脂層12の膜厚が、50μm未満であると、樹脂層の硬度が低下するおそれがあり、また300μmを超えると、膜厚が厚すぎるので、薄型化に適さないとともに、加工性が悪化するおそれがある。樹脂層12の膜厚は、走査型電子顕微鏡(SEM)を用いて、樹脂層12の断面を撮影し、その断面の画像において樹脂層12の膜厚を20箇所測定し、その20箇所の膜厚の算術平均値とする。樹脂層12の下限は80μm以上であることがより好ましく、樹脂層12の上限は250μm以下であることがより好ましい。
樹脂層12を構成する樹脂は、光学フィルム10における25℃、500HzHz以上1000Hz以下の周波数域の剪断貯蔵弾性率G´および剪断損失弾性率G´´が上記範囲内となるような樹脂であれば、特に限定されない。このような樹脂としては、ウレタン系樹脂、ウレタン系ゲル、アクリル系ゲル、シリコーン系ゲル、エポキシ系樹脂等が挙げられる。これらの中でも、ウレタン系樹脂は、靱性に優れているので、優れた折り畳み性能を得る観点および鉛筆硬度が3H以上となる優れた硬度を得る観点から、ウレタン系樹脂が好ましい。「ゲル」とは、一般に、高粘度で流動性を失った分散系をいう。なお、樹脂層12は、ウレタン系樹脂やエポキシ系樹脂等の他、ゴムや熱可塑性エラストマーを含有していてもよい。
ウレタン系樹脂は、ウレタン結合を有する樹脂である。ウレタン系樹脂としては、電離放射線硬化性ウレタン系樹脂組成物の硬化物や熱硬化性ウレタン系樹脂組成物の硬化物等が挙げられる。これらの中でも、耐擦傷性および高硬度が得られ、また硬化速度も早く量産性に優れる観点から、電離放射線硬化性ウレタン系樹脂組成物の硬化物であることが好ましい。
電離放射線硬化性ウレタン系樹脂組成物は、ウレタン(メタ)アクリレートを含んでおり、熱硬化性ウレタン系樹脂組成物は、ポリオール化合物と、イソシアネート化合物とを含んでいる。ウレタン(メタ)アクリレート、ポリオール化合物、およびイソシアネート化合物は、モノマー、オリゴマー、およびプレポリマーのいずれであってもよい。なお、「ウレタン(メタ)アクリレート」とは、「ウレタンアクリレート」および「ウレタンメタクリレート」の両方を含む意味である。
ウレタン(メタ)アクリレート中の(メタ)アクリロイル基の数(官能基数)は、2以上4以下であることが好ましい。ウレタン(メタ)アクリレート中の(メタ)アクリロイル基の数が、2未満であると、鉛筆硬度が低くなるおそれがあり、また4を超えると、硬化収縮が大きくなり、光学フィルムがカールしてしまい、また折り曲げ時に樹脂層にクラックが入るおそれがある。ウレタン(メタ)アクリレート中の(メタ)アクリロイル基の数の上限は、3以下であることがより好ましい。なお、「(メタ)アクリロイル基」とは、「アクリロイル基」および「メタクリロイル基」の両方を含む意味である。
ウレタン(メタ)アクリレートの重量平均分子量は、特に限定されないが、1500以上20000以下であることが好ましい。ウレタン(メタ)アクリレートの重量平均分子量が、1500未満であると、耐衝撃性が低下するおそれがあり、また20000を超えると、電離放射線硬化性ウレタン系樹脂組成物の粘度が上昇し、塗工性が悪化するおそれがある。ウレタン(メタ)アクリレートの重量平均分子量の下限は2000以上であることがより好ましく、上限は15000以下であることがより好ましい。
また、ウレタン(メタ)アクリレート由来の構造を有する繰り返し単位としては、例えば、下記一般式(25)、(26)、(27)または(28)で表される構造等が挙げられる。
Figure 2018043627
上記一般式(25)中、Rは分岐鎖状アルキル基を示し、Rは分岐鎖状アルキル基又は飽和環状脂肪族基を示し、Rは水素原子又はメチル基を示し、R10は、水素原子、メチル基又はエチル基を示し、mは0以上の整数を示し、xは0〜3の整数を示す。
Figure 2018043627
上記一般式(26)中、Rは分岐鎖状アルキル基を示し、Rは分岐鎖状アルキル基又は飽和環状脂肪族基を示し、Rは水素原子又はメチル基を示し、R10は、水素原子、メチル基又はエチル基を示し、nは1以上の整数を示し、xは0〜3の整数を示す。
Figure 2018043627
上記一般式(27)中、Rは分岐鎖状アルキル基を示し、Rは分岐鎖状アルキル基又は飽和環状脂肪族基を示し、Rは水素原子又はメチル基を示し、R10は、水素原子、メチル基又はエチル基を示し、mは0以上の整数を示し、xは0〜3の整数を示す。
Figure 2018043627
上記一般式(28)中、Rは分岐鎖状アルキル基を示し、Rは分岐鎖状アルキル基又は飽和環状脂肪族基を示し、Rは水素原子又はメチル基を示し、R10は、水素原子、メチル基又はエチル基を示し、nは1以上の整数を示し、xは0〜3の整数を示す。
(アクリル系ゲル)
アクリル系ゲルとしては、粘着剤などに用いられている、アクリル酸エステルを含むモノマーを重合してなるポリマーであれば種々のものを使用することができる。具体的には、アクリル系ゲルとしては、例えば、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、i−プロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、i−ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、n−ヘキシル(メタ)アクリレート、n−アミル(メタ)アクリレート、i−アミル(メタ)アクリレート、オクチル(メタ)アクリレート、i−オクチル(メタ)アクリレート、i−ミリスチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ノニル(メタ)アクリレート、i−ノニル(メタ)アクリレート、i−デシル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、i−ステアリル(メタ)アクリレート等のアクリル系モノマーを重合または共重合したものを用いることができる。本明細書において、「(メタ)アクリレート」とは、「アクリレート」および「メタクリレート」の両方を含む意味である。なお、上記(共)重合する際に使用するアクリル酸エステルは、単独で用いる他、2種類以上併用してもよい。
なお、樹脂層12を構成する樹脂が、どのような構造の高分子鎖(繰り返し単位)によって形成されているかは、例えば、熱分解GC−MS及びFT−IRによって樹脂層12を分析することによって判断可能である。特に、熱分解GC−MSは、樹脂層12に含まれる単量体単位をモノマー成分として検知できるため有用である。
樹脂層12は、光学フィルム10における25℃、500HzHz以上1000Hz以下の周波数域の剪断貯蔵弾性率G´および剪断損失弾性率G´´が上記範囲内となっていれば、紫外線吸収剤、分光透過率調整剤、防汚剤、無機粒子および/または有機粒子等を含んでいてもよい。
<紫外線吸収剤>
光学フィルムは、折り畳み可能なスマートフォンやタブレット端末のようなモバイル端末に特に好適に用いられるが、このようなモバイル端末は屋外で使用されることが多く、そのため、光学フィルムより表示素子側に配置された偏光子が紫外線に晒されて劣化しやすいという問題がある。しかしながら、樹脂層は、偏光子の表示画面側に配置されるため、樹脂層に紫外線吸収剤が含有されていると、偏光子が紫外線に晒されることによる劣化を好適に防止することができる。なお、上記紫外線吸収剤(UVA)は、樹脂基材11に含有されていてもよい。この場合、紫外線吸収剤(UVA)は、樹脂層12に含有されていなくてもよい。
紫外線吸収剤としては、例えば、トリアジン系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、及び、ベンゾトリアゾール系紫外線吸収剤等が挙げられる。
上記トリアジン系紫外線吸収剤としては、例えば、2−(2−ヒドロキシ−4−[1−オクチルオキシカルボニルエトキシ]フェニル)−4,6−ビス(4−フェニルフェニル)−1,3,5−トリアジン、2−[4−[(2−ヒドロキシ−3−ドデシルオキシプロピル)オキシ]−2−ヒドロキシフェニル]−4,6−ビス(2,4−ジメチルフェニル)−1,3,5−トリアジン、2,4−ビス[2−ヒドロキシ−4−ブトキシフェニル]−6−(2,4−ジブトキシフェニル)−1,3,5−トリアジン、2−[4−[(2−ヒドロキシ−3−トリデシルオキシプロピル)オキシ]−2−ヒドロキシフェニル]−4,6−ビス(2,4−ジメチルフェニル)−1,3,5−トリアジン、および2−[4−[(2−ヒドロキシ−3−(2’−エチル)ヘキシル)オキシ]−2−ヒドロキシフェニル]−4,6−ビス(2,4−ジメチルフェニル)−1,3,5−トリアジン等が挙げられる。市販されているトリアジン系紫外線吸収剤としては、例えば、TINUVIN460、TINUVIN477(いずれも、BASF社製)、LA−46(ADEKA社製)等が挙げられる。
上記ベンゾフェノン系紫外線吸収剤としては、例えば、2−ヒドロキシベンゾフェノン、2,4−ジヒドロキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、ヒドロキシメトキシベンゾフェノンスルホン酸及びその三水塩、ヒドロキシメトキシベンゾフェノンスルホン酸ナトリウム等が挙げられる。市販されているベンゾフェノン系紫外線吸収剤としては、例えば、CHMASSORB81/FL(BASF社製)等が挙げられる。
上記ベンゾトリアゾール系紫外線吸収剤としては、例えば、2−エチルヘキシル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(5−クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネート、2−(2H−ベンゾトリアゾール−2−イル)−6−(直鎖及び側鎖ドデシル)−4−メチルフェノール、2−〔5−クロロ(2H)−ベンゾトリアゾール−2−イル〕−4−メチル−6−(tert−ブチル)フェノール、2−(2H−ベンゾトリアゾール−2−イル)−4,6−ジ−tert−ペンチルフェノール、2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−tert−ブチル−5’−メチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール、2−(2’−ヒドロキシ−3’−(3’’,4’’,5’’,6’’−テトラヒドロフタルイミドメチル)−5’−メチルフェニル)ベンゾトリアゾール、2,2−メチレンビス(4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール)、及び、2−(2’−ヒドロキシ−3′−tert−ブチル−5′−メチルフェニル)−5−クロロベンゾトリアゾール等が挙げられる。市販されているベンゾトリアゾール系紫外線吸収剤としては、例えば、KEMISORB71D、KEMISORB79(いずれも、ケミプロ化成社製)、JF−80、JAST−500(いずれも、城北化学社製)、ULS−1933D(一方社製)、RUVA−93(大塚化学社製)等が挙げられる。
紫外線吸収剤は、なかでも、トリアジン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤が好適に用いられる。紫外線吸収剤は、樹脂層を構成する樹脂成分との溶解性が高いほうが好ましく、また、上述した耐久折り畳み試験後のブリードアウトが少ないほうが好ましい。紫外線吸収剤は、ポリマー化又はオリゴマー化されていることが好ましい。紫外線吸収剤としては、ベンゾトリアゾール、トリアジン、ベンゾフェノン骨格を有するポリマー又はオリゴマーが好ましく、具体的には、ベンゾトリアゾールやベンゾフェノン骨格を有する(メタ)アクリレートと、メチルメタクリレート(MMA)とを任意の比率で熱共重合したものであることが好ましい。なお、有機発光ダイオード(OLED)表示装置に光学フィルムを適用する場合、紫外線吸収剤は、OLEDを紫外線から保護する役割も果たすことができる。
紫外線吸収剤の含有量としては特に限定されないが、樹脂層用組成物の固形分100質量部に対して1質量部以上6質量部以下であることが好ましい。1質量部未満であると、上述した紫外線吸収剤を樹脂層に含有させる効果を充分に得ることができないことがあり、6質量部を超えると、樹脂層に著しい着色や強度低下が生じることがある。上記紫外線吸収剤の含有量のより好ましい下限は2質量部以上、より好ましい上限は5質量部以下である。
<分光透過率調整剤>
分光透過率調整剤は、光学フィルムの分光透過率を調整するものである。樹脂層に、例えば、下記一般式(29)で表されるセサモール型ベンゾトリアゾール系単量体を含ませた場合には、上述した分光透過率を好適に満たすことができる。
Figure 2018043627
式中、R11は水素原子又はメチル基を表す。R12は炭素数1〜6の直鎖状又は枝分かれ鎖状のアルキレン基又は炭素数1〜6の直鎖状または分岐鎖状のオキシアルキレン基を表す。
上記のセサモール型ベンゾトリアゾール系単量体としては特に制限されないが、具体的な物質名としては、2−[2−(6−ヒドロキシベンゾ[1,3]ジオキソール−5−イル)−2H−ベンゾトリアゾール−5−イル]エチルメタクリレート、2−[2−(6−ヒドロキシベンゾ[1,3]ジオキソール−5−イル)−2H−ベンゾトリアゾール−5−イル]エチルアクリレート、3−[2−(6−ヒドロキシベンゾ[1,3]ジオキソール−5−イル)−2H−ベンゾトリアゾール−5−イル]プロピルメタクリレート、3−[2−(6−ヒドロキシベンゾ[1,3]ジオキソール−5−イル)−2H−ベンゾトリアゾール−5−イル]プロピルアクリレート、4−[2−(6−ヒドロキシベンゾ[1,3]ジオキソール−5−イル)−2H−ベンゾトリアゾール−5−イル]ブチルメタクリレート、4−[2−(6−ヒドロキシベンゾ[1,3]ジオキソール−5−イル)−2H−ベンゾトリアゾール−5−イル]ブチルアクリレート、2−[2−(6−ヒドロキシベンゾ[1,3]ジオキソール−5−イル)−2H−ベンゾトリアゾール−5−イルオキシ]エチルメタクリレート、2−[2−(6−ヒドロキシベンゾ[1,3]ジオキソール−5−イル)−2H−ベンゾトリアゾール−5−イルオキシ]エチルアクリレート、2−[3−{2−(6−ヒドロキシベンゾ[1,3]ジオキソール−5−イル)−2H−ベンゾトリアゾール−5−イル}プロパノイルオキシ]エチルメタクリレート、2−[3−{2−(6−ヒドロキシベンゾ[1,3]ジオキソール−5−イル)−2H−ベンゾトリアゾール−5−イル}プロパノイルオキシ]エチルアクリレート、4−[3−{2−(6−ヒドロキシベンゾ[1,3]ジオキソール−5−イル)−2H−ベンゾトリアゾール−5−イル}プロパノイルオキシ]ブチルメタクリレート、4−[3−{ 2 −(6−ヒドロキシベンゾ[1,3]ジオキソール−5−イル)−2H−ベンゾトリアゾール−5−イル}プロパノイルオキシ]ブチルアクリレート、2−[3−{2−(6−ヒドロキシベンゾ[1,3]ジオキソール−5−イル)−2H−ベンゾトリアゾール−5−イル}プロパノイルオキシ]エチルメタクリレート、2−[3−{2−(6−ヒドロキシベンゾ[1,3]ジオキソール−5−イル)−2H−ベンゾトリアゾール−5−イル}プロパノイルオキシ]エチルアクリレート、2−(メタクリロイルオキシ)エチル2−(6−ヒドロキシベンゾ[1,3]ジオキソール−5−イル)−2H−ベンゾトリアゾール−5カルボキシレート、2−(アクリロイルオキシ)エチル2−(6−ヒドロキシベンゾ[1,3]ジオキソール−5−イル)−2H−ベンゾトリアゾール−5−カルボキシレート、4−(メタクリロイルオキシ)ブチル2−(6−ヒドロキシベンゾ[1,3]ジオキソール−5−イル)−2H−ベンゾトリアゾール−5−カルボキシレート、4−(アクリロイルオキシ)ブチル2−(6−ヒドロキシベンゾ[1,3]ジオキソール−5−イル)−2H−ベンゾトリアゾール−5−カルボキシレート等を挙げることができる。また、これらセサモール型ベンゾトリアゾール系単量体は1種類で用いてもよいし、また2種類以上用いてもよい。
上記セサモール型ベンゾトリアゾール系単量体は、樹脂層12に含有されていてもよいが、樹脂層が2以上の多層構造である場合には、1層以上の樹脂層に含有されて、上記分光透過率の要件を満たしてもよい。例えば、樹脂層の一つに波長380nmにおける分光透過率のみを達成できるように上記セサモール型ベンゾトリアゾール系単量体を含有し、他の樹脂層に波長410nm及び波長440nmにおける分光透過率の条件を達成できるように上記セサモール型ベンゾトリアゾール系単量体を含有している構成等が挙げられる。更に、樹脂層が3層以上からなり、各樹脂層にて上述した分光透過率の要件を満たすよう上記セサモール型ベンゾトリアゾール系単量体を含有していてもよい。
上記セサモール型ベンゾトリアゾール系単量体が樹脂層12に含有されている場合、例えば、上記セサモール型ベンゾトリアゾール系単量体は、樹脂層12層中15〜30質量%で含有されていることが好ましい。このような範囲でセサモール型ベンゾトリアゾール系単量体が含有されていることで、上述した分光透過率を満たすことができる。なお、上記セサモール型ベンゾトリアゾール系単量体は、樹脂層12において、樹脂層12を構成する樹脂成分と反応して一体的に含有されていてもよく、樹脂層12を構成する樹脂成分と反応することなく単独で含有されていてもよい。
<防汚剤>
防汚剤は、樹脂層に均一に防汚剤が分散されていてもよいが、少ない添加量で充分な防汚性を得るとともに樹脂層の強度低下を抑制する観点から、樹脂層の表面側に偏在して含まれていることが好ましい。防汚剤を樹脂層の表面側に偏在させる方法としては、例えば、樹脂層を形成時において、後述する樹脂層用組成物を用いて形成した塗膜を乾燥させ、硬化させる前に、塗膜を加熱して、塗膜に含まれる樹脂成分の粘度を下げることにより流動性を上げて、防汚剤を樹脂層の表面側に偏在させる方法や、表面張力の低い防汚剤を選定して用い、塗膜の乾燥時に熱をかけずに塗膜の表面に防汚剤を浮かせ、その後塗膜を硬化させることで、上記防汚剤を樹脂層の最表面側に偏在させる方法等が挙げられる。
防汚剤としては特に限定されず、例えば、シリコーン系防汚剤、フッ素系防汚剤、シリコーン系かつフッ素系防汚剤が挙げられ、それぞれ単独で使用してもよく、混合して使用してもよい。また、防汚剤としては、アクリル系防汚剤であってもよい。
防汚剤の含有量としては、上述した樹脂成分100質量部に対して、0.01〜3.0重量部であることが好ましい。0.01重量部未満であると、樹脂層に充分な防汚性能を付与できないことがあり、また、3.0重量部を超えると、樹脂層の硬度が低下するおそれがある。
防汚剤は、重量平均分子量が5000以下であることが好ましく、防汚性能の耐久性を改善するために、反応性官能基を好ましくは1以上、より好ましくは2以上有する化合物である。なかでも、2以上の反応性官能基を有する防汚剤を用いることにより、優れた耐擦傷性を付与することができる。
防汚剤が反応性官能基を有さない場合、光学フィルムがロール状の場合でも、シート状の場合でも、重ねたときに光学フィルムの裏面に防汚剤が転移してしまい、光学フィルムの裏面に他の層を貼り付けまたは塗布しようとすると、他の層の剥がれ発生することがあり、更に、複数回の折り畳み試験を行うことで容易に剥がれる場合がある。
更に、上記反応性官能基を有する防汚剤は、防汚性能の性能持続性(耐久性)が良好となり、なかでも、上述したフッ素系防汚剤を含む樹脂層は、指紋が付きにくく(目立ちにくく)、拭き取り性も良好である。更に、樹脂層用組成物の塗工時の表面張力を下げることができるので、レベリング性がよく、形成する樹脂層の外観が良好なものとなる。
シリコーン系防汚剤を含む樹脂層は、滑り性がよく、耐スチールウール性が良好である。樹脂層にこのようなシリコーン系防汚剤を含む光学フィルムを搭載したタッチセンサは、指やペンなどで接触したときの滑りがよくなるため、触感がよくなる。また、樹脂層に指紋も付きにくく(目立ちにくく)、拭き取り性も良好となる。更に、樹脂層用組成物の塗工時の表面張力を下げることができるので、レベリング性がよく、形成する樹脂層の外観が良好なものとなる。
シリコーン系防汚剤の市販品としては、例えば、SUA1900L10(新中村化学社製)、SUA1900L6(新中村化学社製)、Ebecryl1360(ダイセルサイテック社製)、UT3971(日本合成社製)、BYKUV3500(ビックケミー社製)、BYKUV3510(ビックケミー社製)、BYKUV3570(ビックケミー社製)、X22−164E、X22−174BX、X22−2426、KBM503.KBM5103(信越化学社製)、TEGO−RAD2250、TEGO−RAD2300.TEGO−RAD2200N、TEGO−RAD2010、TEGO−RAD2500、TEGO−RAD2600、TEGO−RAD2700(エボニックジャパン社製)、メガファックRS854(DIC社製)等が挙げられる。
フッ素系防汚剤の市販品としては、例えば、オプツールDAC、オプツールDSX(ダイキン工業社製)、メガファックRS71、メガファックRS74(DIC社製)、LINC152EPA、LINC151EPA、LINC182UA(共栄社化学社製)、フタージェント650A、フタージェント601AD、フタージェント602等が挙げられる。
フッ素系かつシリコーン系で反応性官能基を有する防汚剤の市販品としては、例えば、メガファックRS851、メガファックRS852、メガファックRS853、メガファックRS854(DIC社製)、オプスターTU2225、オプスターTU2224(JSR社製)、X71−1203M(信越化学社製)等が挙げられる。
<<光学フィルムの製造方法>>
光学フィルム10は、樹脂層12を構成する樹脂の種類によって様々な方法によって作製することができる。例えば、樹脂層12がウレタン系樹脂からなる層である場合には、例えば、以下のようにして作製することができる。まず、樹脂基材11の一方の面11A上に、バーコーター等の塗布装置によって、樹脂層用組成物を塗布して、樹脂用組成物の塗膜を形成する。
<樹脂層用組成物>
樹脂層用組成物は、ウレタン(メタ)アクリレートまたはポリオール化合物とイソシアネート化合物とを含んでいる。樹脂層用組成物は、その他、必要に応じて、紫外線吸収剤、分光透過率調整剤、防汚剤、無機粒子、レベリング剤、溶剤、重合開始剤を含んでいてもよい。
樹脂層用組成物は、総固形分が25〜95%であることが好ましい。25%より低いと残留溶媒が残ったり、白化が生じたりするおそれがある。55%を超えると、樹脂層用組成物の粘度が高くなり、塗工性が低下して表面にムラやスジが出たりすることがある。上記固形分は、30〜50%であることがより好ましい。
(溶媒)
上記溶媒としては、アルコール(例、メタノール、エタノール、プロパノール、イソプロパノール、n−ブタノール、s−ブタノール、t−ブタノール、ベンジルアルコール、PGME、エチレングリコール、ジアセトンアルコール)、ケトン(例、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、ヘプタノン、ジイソブチルケトン、ジエチルケトン、ジアセトンアルコール)、エステル(酢酸メチル、酢酸エチル、酢酸ブチル、酢酸n−プロピル、酢酸イソプロピル、蟻酸メチル、PGMEA)、脂肪族炭化水素(例、ヘキサン、シクロヘキサン)、ハロゲン化炭化水素(例、メチレンクロライド、クロロホルム、四塩化炭素)、芳香族炭化水素(例、ベンゼン、トルエン、キシレン)、アミド(例、ジメチルホルムアミド、ジメチルアセトアミド、n−メチルピロリドン)、エーテル(例、ジエチルエーテル、ジオキサン、テトラヒドロフラン)、エーテルアルコール(例、1−メトキシ−2−プロパノール)、カーボネート(炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル)、等が挙げられる。これらの溶媒、単独で用いられてもよく、2種類以上が併用されてもよい。なかでも、上記溶媒としては、ウレタン(メタ)アクリレート等の成分、並びに、他の添加剤を溶解或いは分散させ、上記樹脂層用組成物を好適に塗工できる点で、メチルイソブチルケトン、メチルエチルケトンが好ましい。
(重合開始剤)
重合開始剤は、電離放射線照射または熱により分解されて、ラジカルを発生して重合性化合物の重合(架橋)を開始または進行させる成分である。
重合開始剤は、電離放射線照射または熱によりラジカル重合を開始させる物質を放出することが可能であれば特に限定されない。重合開始剤としては、特に限定されず、公知のものを用いることができ、具体例には、例えば、アセトフェノン類、ベンゾフェノン類、ミヒラーベンゾイルベンゾエート、α−アミロキシムエステル、チオキサントン類、プロピオフェノン類、ベンジル類、ベンゾイン類、アシルホスフィンオキシド類が挙げられる。また、光増感剤を混合して用いることが好ましく、その具体例としては、例えば、n−ブチルアミン、トリエチルアミン、ポリ−n−ブチルホスフィン等が挙げられる。
樹脂層用組成物の塗膜を形成した後、乾燥し、その後電離放射線を照射して、または加熱して、樹脂層用組成物の塗膜を硬化させて、樹脂層12を形成する。これにより、図1に示される光学フィルム10が得られる。
<<<画像表示装置>>>
光学フィルム10は、折り畳み可能な画像表示装置に組み込んで使用することが可能である。図3は、本実施形態に係る画像表示装置の概略構成図である。図3に示されるように、画像表示装置30は、観察者側に向けて、主に、電池等が収納された筐体31、保護フィルム32、表示パネル33、タッチセンサ34、円偏光板35、および光学フィルム10がこの順で積層されている。表示パネル33とタッチセンサ34との間、タッチセンサ34と円偏光板35との間、円偏光板35と光学フィルム10との間には、例えば、OCA(Optical Clear Adhesive)等の光透過性接着層36が配置されており、これら部材は光透過性接着層36によって互いに固定されている。また、光学フィルム10の裏面10Bの一部には、黒色層37が設けられている。
光学フィルム10は、樹脂層12が樹脂基材11よりも観察者側となるように配置されている。画像表示装置30においては、光学フィルム10の樹脂層12の表面12Aが、画像表示装置30の表面30Aを構成している。
画像表示装置30においては、表示パネル33は、有機発光ダイオード等を含む有機発光ダイオードパネルとなっている。タッチセンサ34は、円偏光板35よりも表示パネル33側に配置されているが、円偏光板35と光学フィルム10との間に配置されていてもよい。また、タッチセンサ34は、オンセル方式やインセル方式であってもよい。
衝撃吸収性能を表す指標としては、従来から剪断損失正接tanδが知られている。したがって、樹脂基材上に樹脂層を有する光学フィルムにおける耐衝撃性を剪断損失正接tanδで表すことも考えられるが、剪断損失正接tanδでは、光学フィルムの表面(樹脂層の表面)に衝撃を加えたときに、光学フィルムの表面における凹みおよび光学フィルムよりも画像表示装置の内部に位置する部材の損傷の両方を抑制することはできなかった。これは、剪断損失正接tanδが、剪断損失弾性率G´´と剪断貯蔵弾性率G´との比(G´´/G´)であるためであると考えられる。本発明者らが鋭意研究をさらに重ねたところ、光学フィルムの表面に衝撃を加えたときの光学フィルムの表面における凹みおよび光学フィルムよりも画像表示装置の内部に位置する部材の損傷の両方を抑制するためには、剪断貯蔵弾性率G´および剪断損失弾性率G´´のバランスが重要であることを見出した。本実施形態によれば、樹脂基材11上に樹脂層12を有する光学フィルム10において、光学フィルム10における上記剪断貯蔵弾性率G´が、1MPa以上200MPa以下となっており、かつ光学フィルム10の上記剪断損失弾性率G´´が0.1MPa以上100MPa以下となっているので、折り畳み可能でありながら、光学フィルム10の表面10Aに衝撃を加えた場合に、光学フィルム10の表面10Aの凹みを抑制することができるとともに、画像表示装置30の内部に位置する表示パネル33等の部材が損傷することを抑制できる。これにより、優れた耐衝撃性を得ることができる。
[第2の実施形態]
以下、本発明の第2の実施形態に係る光学フィルムおよび画像表示装置について、図面を参照しながら説明する。図4は本実施形態に係る光学フィルムの概略構成図である。
<<<光学フィルム>>>
図4に示される光学フィルム50は、画像表示装置に用いられるものであり、折り畳み可能であり、かつ光透過性を有するものである。
光学フィルム50は、樹脂基材51と、樹脂基材51の一方の面51A側に設けられたハードコート層52と、樹脂基材51の一方の面51Aとは反対側の他方の面51B側に設けられた樹脂層53とを備えるものである。なお、樹脂層53における樹脂基材51側の面とは反対側の面には、離型フィルムが設けられていてもよい。ただし、本明細書で記載されている光学フィルム50の物性等は、離型フィルムが設けられていない状態での値であり、また離型フィルムは使用時に剥離されるものであるので、離型フィルムは、光学フィルムの一部を構成しないものとする。
図4においては、光学フィルム50の表面50Aは、ハードコート層52の表面52Aとなっている。光学フィルム50の裏面50Bは、樹脂層53における樹脂基材51側の面とは反対側の面53Aとなっている。
光学フィルム50においては、25℃、500Hz以上1000Hz以下の周波数域での剪断貯蔵弾性率G´が、1MPa以上200MPa以下となっている。光学フィルムの剪断貯蔵弾性率G´が1MPa未満であると、光学フィルムの表面に衝撃が加わった際に、光学フィルムの表面が大きく変形してしまい、また樹脂層の硬度が低下してしまうおそれがある。また、光学フィルムの剪断貯蔵弾性率G´が200MPaを超えると、折り畳みの際に光学フィルムが割れるおそれがある。光学フィルム50の剪断貯蔵弾性率G´の上限は、100MPa以下となっていることが好ましく、50MPa以下となっていることがより好ましい。
光学フィルム50においては、25℃、500Hz以上1000Hz以下の周波数域での剪断損失弾性率G´´が、0.1MPa以上100MPa以下となっている。光学フィルムの剪断損失弾性率G´´が0.1MPa未満であると、衝撃吸収性能が低下するおそれがある。また、光学フィルムの剪断損失弾性率G´´が100MPaを超えると、樹脂層の硬度が低下してしまうそれがある。光学フィルム50の剪断損失弾性率G´´の下限は、0.5MPa以上となっていることが好ましく、また光学フィルム50の剪断損失弾性率G´´の上限は、50MPa以下となっていることが好ましい。
光学フィルム50における剪断貯蔵弾性率G´および剪断損失弾性率G´´は、光学フィルム10における剪断貯蔵弾性率G´および剪断損失弾性率G´´と同様にして、測定することができる。
光学フィルム50は、折り畳み可能となっているが、具体的には、光学フィルム50に対し折り畳み試験を10万回繰り返し行った場合であっても、光学フィルム50に割れまたは破断が生じないことが好ましく、折り畳み試験を20万回繰り返し行った場合であっても、光学フィルム50に割れまたは破断が生じないことがより好ましく、100万回繰り返し行った場合であっても、光学フィルム50に割れまたは破断が生じないことがさらに好ましい。光学フィルム50に対し折り畳み試験を10万回繰り返し行った場合に、光学フィルム50に割れ等が生じると、光学フィルム50の折り畳み性が不充分となる。折り畳み試験は、ハードコート層52が内側となるように光学フィルム50を折り畳むように行われてもよく、またハードコート層52が外側となるように光学フィルム50を折り畳むように行われてもよいが、いずれの場合であっても、光学フィルム50に割れまたは破断が生じないことが好ましい。折り畳み試験は、第1の実施形態で説明した折り畳み試験と同様であるので、ここでは説明を省略するものとする。
光学フィルム50の表面50A(ハードコート層52の表面52A)は、JIS K5600−5−4:1999で規定される鉛筆硬度試験で測定されたときの硬度(鉛筆硬度)が、B以上であることが好ましく、H以上であることがより好ましい。光学フィルム50の鉛筆硬度は、光学フィルム10の鉛筆硬度と同様の方法によって測定することができる。
光学フィルム50は、光学フィルム10の欄で説明した理由と同様の理由から、イエローインデックス(YI)が15以下であることが好ましい。光学フィルム50のイエローインデックスは、光学フィルム10のイエローインデックスと同様の方法によって測定することができる。光学フィルム50のイエローインデックス(YI)の上限は、10以下であることがより好ましい。なお、光学フィルム50のイエローインデックス(YI)を調整するために、光学フィルム10と同様に、例えば、樹脂基材51や樹脂層53に青色の色素を含有させてもよい。青色の色素としては、光学フィルム10の欄で説明した青色の色素と同様のものを用いることができる。
光学フィルム10の欄で説明した理由と同様の理由から、光学フィルム50の波長380nmの光の透過率は8%以下であることが好ましい。光学フィルム50における波長380nmの光の透過率は、光学フィルム10における波長380nmの光の透過率と同様の方法によって測定することができる。光学フィルム50の上記透過率の上限は5%であることがより好ましい。なお、光学フィルム50の上記透過率は、樹脂層53中の後述する紫外線吸収剤の添加量を調整すること等によって達成することができる。
光学フィルム50のヘイズ値(全ヘイズ値)は、光学フィルム10の欄で説明した理由と同様の理由から、2.5%以下であることが好ましい。光学フィルム50のヘイズ値は、光学フィルム10のヘイズ値と同様の方法によって測定することができる。上記ヘイズ値は、1.5%以下であることがより好ましく、1.0%以下であることがより好ましい。なお、光学フィルム50の上記ヘイズ値は、樹脂層53中の後述する紫外線吸収剤の添加量を調整すること等によって達成することができる。
光学フィルム50においても、光学フィルム10の欄で説明した理由と同様の理由から、波長380nmにおける分光透過率が1%未満であり、波長410nmにおける分光透過率が10%未満であり、波長440nmにおける分光透過率が70%以上であることが好ましい。
光学フィルム50の光の透過率は、波長380nmまでは殆ど0%であり、波長410nmから徐々に光の透過が大きくなり、波長440nm付近で急激に光の透過が大きくなっていることが好ましい。具体的には、例えば、波長410nmから440nmの間で分光透過率がシグモイド型の曲線を描くように変化することが好ましい。上記波長380nmにおける分光透過率は、より好ましくは0.5%未満、更に好ましくは0.2%未満であり、波長410nmにおける分光透過率がより好ましくは7%未満、より好ましくは5%未満であり、波長440nmにおける分光透過率がより好ましくは75%以上、更に好ましくは80%以上である。なお、光学フィルム50は、波長420nmにおける分光透過率が50%未満であることが好ましい。
光学フィルム50における波長380nmにおける分光透過率は0.1%未満であることがより好ましく、波長410nmにおける分光透過率は7%未満であることがより好ましく、波長440nmにおける分光透過率は80%以上であることがより好ましい。
光学フィルム50は、光学フィルム10の欄で説明した理由と同様の理由から、最小二乗法を用いて得られた波長415〜435nmの範囲の透過スペクトルの傾きが2.0より大きいことが好ましく、またブルーライトの遮蔽率が40%以上であることが好ましい。上記傾きやブルーライト遮蔽率は、光学フィルム10の欄で説明した傾きやブルーライト遮蔽率と同様の方法によって測定することができる。
光学フィルム50は、所望の大きさにカットされていてもよいが、ロール状であってもよい。光学フィルム50が所望の大きさにカットされている場合、光学フィルムの大きさは、特に制限されず、例えば、スマートフォン、タブレット端末、パーソナルコンピュータ(PC)、ウェアラブル端末、デジタルサイネージ、テレビジョン等の画像表示装置の表示面の大きさに応じて適宜決定される。具体的には、光学フィルム50の大きさは、例えば、1インチ以上500インチ以下となっていてもよい。
画像表示装置における光学フィルム50の配置箇所は、画像表示装置内であってもよいが、画像表示装置の表面であることが好ましい。画像表示装置の表面に用いられる場合、光学フィルム50は、カバーガラスの代わりに用いられるカバーフィルムとして機能する。
<<樹脂基材>>
樹脂基材51は、光透過性を有する樹脂からなる基材である。樹脂基材51は、樹脂基材11と同様であるので、ここでは説明を省略するものとする。
<<ハードコート層>>
ハードコート層52は、ハードコート層52の断面中央におけるマルテンス硬度が375MPa以上の層を意味するものとする。本明細書において、「マルテンス硬度」とは、ナノインデンテーション法による硬度測定により、圧子を500nm押込んだときの硬度である。上記ナノインデンテーション法によるマルテンス硬度の測定は、測定サンプルについてHYSITRON(ハイジトロン)社製の「TI950 TriboIndenter」を用いて行うものとする。具体的には、まず、1mm×10mmに切り出した光学フィルムを包埋樹脂によって包埋したブロックを作製し、このブロックから一般的な切片作製方法によって穴等がない均一な、厚さ70nm以上100nm以下の切片を切り出す。切片の作製には、「ウルトラミクロトーム EM UC7」(ライカ マイクロシステムズ株式会社)等を用いることができる。そして、この穴等がない均一な切片が切り出された残りのブロックを測定サンプルとする。次いで、このような測定サンプルにおける上記切片が切り出されることによって得られた断面において、以下の測定条件で、上記圧子としてBerkovich圧子(三角錐)をハードコート層の断面中央に500nm押し込み、一定保持して残留応力の緩和を行った後、除荷させて、緩和後の最大荷重を計測し、該最大荷重Pmax(μN)と深さ500nmのくぼみ面積A(nm)とを用い、Pmax/Aにより、マルテンス硬度を算出する。マルテンス硬度は、10箇所測定して得られた値の算術平均値とする。
(測定条件)
・荷重速度:10nm/秒
・保持時間:5秒
・荷重除荷速度:10nm/秒
・測定温度:25℃
ハードコート層52の膜厚は、1μm以上20μm以下となっていることが好ましい。ハードコート層52の膜厚が、1μm未満であると、ハードコート層の硬度が低下するおそれがあり、また20μmを超えると、厚みが厚すぎることに起因して加工性が悪化するおそれがある。本明細書における「ハードコート層の膜厚」とは、ハードコート層が多層構造となっている場合には、各ハードコート層の膜厚を合計した膜厚(総厚)を意味するものとする。ハードコート層52の膜厚は、走査型電子顕微鏡(SEM)を用いて、ハードコート層52の断面を撮影し、その断面の画像においてハードコート層52の膜厚を20箇所測定し、その20箇所の膜厚の算術平均値とする。ハードコート層52の上限は15μm以下であることがより好ましく、10μm以下であることがさらに好ましい。
ハードコート層は単層構造であってもよいが、折り畳み性能を向上させる観点から2層以上の多層構造であることが好ましい。図4には、ハードコート層52が、第1のハードコート層52Bと、第1のハードコート層52B上に積層された第2のハードコート層52Cとから構成されている例が示されている。
<第1のハードコート層>
第1のハードコート層52Bは、主に光学フィルムに硬度を付与するための層である。第1のハードコート層52Bは、第1のハードコート層52Bの断面中央におけるマルテンス硬度が500MPa以上1000MPa以下であることが好ましい。500MPa未満であると、ハードコート層の硬度が不充分となることがあり、1000MPaを超えると、光学フィルムの折り畳み性能が不充分となることがある。第1のハードコート層52Bの断面中央におけるマルテンス硬度の下限は600MPa以上であることが好ましく、上限は950MPa以下であることが好ましい。
第1のハードコート層52Bのマルテンス硬度は、第2のハードコート層52Cのマルテンス硬度よりも大きいことが好ましい。このようなマルテンス硬度の関係を有することで、光学フィルム50は、鉛筆硬度が特に良好となる。これは、光学フィルム50に鉛筆硬度試験を施して鉛筆に荷重をかけて押しこんだときに、光学フィルム50の変形が抑制されて、傷や凹み変形が少なくなるためである。第1のハードコート層52Bのマルテンス硬度が第2のハードコート層52Cのマルテンス硬度よりも大きくする方法としては、例えば、後述する無機粒子の含有量を第1のハードコート層52B側により多く含有するよう制御する方法等が挙げられる。なお、ハードコート層が単層構造の場合には、ハードコート層に無機粒子が樹脂基材側に偏在するように、すなわち、上記ハードコート層における無機粒子の存在割合が、樹脂基材側でより大きく、光学フィルムの表面側に向かう従って小さくなるよう傾斜していることが好ましい。
第1のハードコート層52Bは、樹脂を含んでいる。第1のハードコート層52Bは、樹脂中に分散された無機粒子をさらに含有することが好ましい。
(樹脂)
樹脂は、重合性化合物(硬化性化合物)の重合体(硬化物)を含む。重合性化合物は、分子内に重合性官能基を少なくとも1つ有するものである。重合性官能基としては、例えば、(メタ)アクリロイル基、ビニル基、アリル基等のエチレン性不飽和基が挙げられる。なお、「(メタ)アクリロイル基」とは、「アクリロイル基」および「メタクリロイル基」の両方を含む意味である。
重合性化合物としては、多官能(メタ)アクリレートが好ましい。上記多官能(メタ)アクリレートとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、テトラペンタエリスリトールデカ(メタ)アクリレート、イソシアヌル酸トリ(メタ)アクリレート、イソシアヌル酸ジ(メタ)アクリレート、ポリエステルトリ(メタ)アクリレート、ポリエステルジ(メタ)アクリレート、ビスフェノールジ(メタ)アクリレート、ジグリセリンテトラ(メタ)アクリレート、アダマンチルジ(メタ)アクリレート、イソボロニルジ(メタ)アクリレート、ジシクロペンタンジ(メタ)アクリレート、トリシクロデカンジ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレートや、これらをPO、EO、カプロラクトン等で変性したものが挙げられる。
これらの中でも上述したマルテンス硬度を好適に満たし得ることから、3〜6官能のものが好ましく、例えば、ペンタエリスリトールトリアクリレート(PETA)、ジペンタエリスリトールヘキサアクリレート(DPHA)、ペンタエリスリトールテトラアクリレート(PETTA)、ジペンタエリスリトールペンタアクリレート(DPPA)、トリメチロールプロパントリ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、テトラペンタエリスリトールデカ(メタ)アクリレート等が好ましい。なお、本明細書において、(メタ)アクリレートとは、アクリレート及びメタクリレートを意味する。
なお、硬度や組成物の粘度調整、密着性の改善等のために、更に単官能(メタ)アクリレートモノマーを含んでいてもよい。上記単官能(メタ)アクリレートモノマーとしては、例えば、ヒドロキシエチルアクリレート(HEA)、グリシジルメタクリレート、メトキシポリエチレングリコール(メタ)アクリレート、イソステアリル(メタ)アクリレート、2−アクリロイルオキシエチルサクシネート、アクリロイルモルホリン、N−アクリロイルオキシエチルヘキサヒドロフタルイミド、シクロヘキシルアクリレート、テトラヒドロフリルアクリレート、イソボルニルアクリレート、フェノキシエチルアクリレート、及び、アダマンチルアクリレート等が挙げられる。
上記モノマーの重量平均分子量は、樹脂層の硬度を向上させる観点から、1000未満が好ましく、200以上800以下がより好ましい。また、上記重合性オリゴマーの重量平均分子量は、1000以上2万以下であることが好ましく、1000以上1万以下であることがより好ましく、2000以上7000以下であることが更に好ましい。
(無機粒子)
無機粒子としては、硬度を向上させることができれば、特に限定されないが、優れた硬度を得る観点から、シリカ粒子が好ましい。シリカ粒子の中でも、反応性シリカ粒子が好ましい。上記反応性シリカ粒子は、上記多官能(メタ)アクリレートとの間で架橋構造を構成することが可能なシリカ粒子であり、この反応性シリカ粒子を含有することで、第1のハードコート層52Bの硬度を充分に高めることができる。
上記反応性シリカ粒子は、その表面に反応性官能基を有することが好ましく、該反応性官能基とてしては、例えば、上記の重合性官能基が好適に用いられる。
上記反応性シリカ粒子としては特に限定されず、従来公知のものを用いることができ、例えば、特開2008−165040号公報記載の反応性シリカ粒子等が挙げられる。また、上記反応性シリカ粒子の市販品としては、例えば、日産化学工業社製;MIBK−SD、MIBK−SDMS、MIBK−SDL、MIBK−SDZL、日揮触媒化成社製;V8802、V8803等が挙げられる。
また、上記シリカ粒子は、球形シリカ粒子であってもよいが、異形シリカ粒子であることが好ましい。球形シリカ粒子と異形シリカ粒子とを混合させてもよい。なお、本明細書における「球形シリカ粒子」とは、例えば、真球状、楕円球状等のシリカ粒子を意味しまた、「異形シリカ粒子」とは、ジャガイモ状のランダムな凹凸を表面に有する形状のシリカ粒子を意味する。上記異形シリカ粒子は、その表面積が球形シリカ粒子と比較して大きいため、このような異形シリカ粒子を含有することで、上記多官能(メタ)アクリレート等との接触面積が大きくなり、上記ハードコート層の硬度を向上させることができる。上記異形シリカ粒子か否かは、ハードコート層の電子顕微鏡による断面観察により確認することができる。
上記シリカ粒子の平均粒子径は、5nm以上200nm以下であることが好ましい。5nm未満であると、粒子自身の製造が困難になり、粒子同士が凝集したりすることがあり、また、異形にするのが極めて困難になることがあり、更に、上記塗工前のインキの段階で異形シリカ粒子の分散性が悪く凝集したりすることがある。一方、上記異形シリカ粒子の平均粒子径が200nmを超えると、ハードコート層に大きな凹凸が形成されたり、ヘイズの上昇といった不具合が生じたりすることがある。シリカ粒子が球形シリカ粒子の場合には、シリカ粒子の平均粒子径は、透過型電子顕微鏡(TEM)または走査透過型電子顕微鏡(STEM)の画像から、画像処理ソフトウェアを用いて測定される値である。また、シリカ粒子が異形シリカ粒子である場合には、シリカ粒子の平均粒子径は、上記ハードコート層の断面顕微鏡観察にて現れた異形シリカ粒子の外周の2点間距離の最大値(長径)と最小値(短径)との平均値である。
上記無機粒子の大きさ及び配合量を制御することで第1のハードコート層52Bの硬度(マルテンス硬度)を制御できる。例えば、第1のハードコート層52Bを形成する場合、上記シリカ粒子は直径が5nm以上200nm以下であり、上記重合性化合物100質量部に対して、25〜60質量部であることが好ましい。
<第2のハードコート層>
第2のハードコート層52Cは、上述した折り畳み試験を充足させるための層である。第2のハードコート層52Cは、第2のハードコート層52Cの断面中央におけるマルテンス硬度が375MPa以上1500MPa以下であることが好ましい。375MPa未満であると、ハードコート層の耐擦傷性が不充分となることがあり、1500MPaを超えると、光学フィルムの耐折り畳み性能が不充分となって上述した折り畳み試験を充足できないことがある。第2のハードコート層52Cの断面中央におけるマルテンス硬度の下限は450MPa以上であることがより好ましく、上限は575MPa以下であることがより好ましい。
第2のハードコート層52Cは、樹脂を含んでいる。第2のハードコート層52Cは、樹脂中に分散された無機粒子をさらに含んでいてもよい。
(樹脂)
樹脂は、重合性化合物(硬化性化合物)の重合体(硬化物)を含む。重合性化合物としては、多官能(メタ)アクリレートが好ましい。上記多官能(メタ)アクリレートとしては、第1のハードコート層52Bの欄の多官能(メタ)アクリレートと同様のものが挙げられる。また、第2のハードコート層52Cは、上記多官能(メタ)アクリレートに加えて、多官能ウレタン(メタ)アクリレート及び/又は多官能エポキシ(メタ)アクリレート等が含まれてもよい。
(無機粒子)
無機粒子としては、第1のハードコート層52Bの欄の無機粒子と同様のものが挙げられる。第2のハードコート層52Cにおける無機粒子の含有量としては、特に限定されないが、例えば、第2のハードコート層52Cに対し0〜50質量%であることが好ましい。
第1のハードコート層52Bおよび第2のハードコート層52Cの少なくともいずれかは、上述したマルテンス硬度を充足する範囲で、上述した材料以外の材料を含んでいてもよく、例えば、樹脂成分の材料として、電離放射線の照射により硬化物を形成する重合性モノマーや重合性オリゴマー等を含んでいてもよい。上記重合性モノマー又は重合性オリゴマーとしては、例えば、分子中にラジカル重合性不飽和基を有する(メタ)アクリレートモノマー、又は、分子中にラジカル重合性不飽和基を有する(メタ)アクリレートオリゴマーが挙げられる。上記分子中にラジカル重合性不飽和基を有する(メタ)アクリレートモノマー、又は、分子中にラジカル重合性不飽和基を有する(メタ)アクリレートオリゴマーとしては、例えば、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレート、メラミン(メタ)アクリレート、ポリフルオロアルキル(メタ)アクリレート、シリコーン(メタ)アクリレート等のモノマー又はオリゴマーが挙げられる。これら重合性モノマー又は重合性オリゴマーは、1種又は2種以上を組み合わせて使用してもよい。なかでも、多官能(6官能以上)で重量平均分子量が1000〜1万のウレタン(メタ)アクリレートが好ましい。
ハードコート層52(第1のハードコート層52Bおよび第2のハードコート層52Cの少なくともいずれか)は、紫外線吸収剤、分光透過率調整剤、および/または防汚剤をさらに含んでいてもよい。紫外線吸収剤、分光透過率調整剤、および防汚剤は、第1の実施形態で説明した紫外線吸収剤、分光透過率調整剤、および防汚剤と同様であるので、ここでは説明を省略するものとする。
<<樹脂層>>
樹脂層53は、光透過性を有する樹脂からなる層である。樹脂層53は、衝撃吸収性を有する層である。樹脂層は、2以上の樹脂層からなる多層構造となっていてもよい。
樹脂層53の膜厚は、30μm以上200μm未満となっている。樹脂層53の膜厚が、30μm未満であると、樹脂層の硬度が低下するおそれがあり、また200μm以上であると、膜厚が厚すぎるので、薄型化に適さないとともに、加工性が悪化するおそれがある。樹脂層53の膜厚は、走査型電子顕微鏡(SEM)を用いて、樹脂層53の断面を撮影し、その断面の画像において樹脂層53の膜厚を20箇所測定し、その20箇所の膜厚の算術平均値とする。樹脂層53の下限は好ましくは40μm以上であり、樹脂層53の上限は好ましくは180μm以下、より好ましくは150μm以下、さらに好ましくは100μm以下である。なお、本明細書における「未満」という文言は、基準値を含まない意味で用いるものとする。例えば、「200μm未満」という文言は、200μmは含まない。
樹脂層53を構成する樹脂は、光学フィルム50における25℃、500HzHz以上1000Hz以下の周波数域の剪断貯蔵弾性率G´および剪断損失弾性率G´´が上記範囲内となるような樹脂であれば、特に限定されない。このような樹脂としては、アクリル系ゲル、ウレタン系ゲル、シリコーン系ゲル、ウレタン系樹脂、エポキシ系樹脂等が挙げられる。これらの中でも、アクリル系ゲルが好ましい。なお、樹脂層53は、アクリル系ゲルやウレタン系樹脂等の他、ゴムや熱可塑性エラストマーを含有していてもよい。アクリル系ゲルやウレタン系樹脂は、樹脂層12の欄で説明したアクリル系ゲルやウレタン系樹脂と同様であるので、ここでは説明を省略するものとする。
樹脂層53は、光学フィルム50における25℃、500HzHz以上1000Hz以下の周波数域の剪断貯蔵弾性率G´および剪断損失弾性率G´´が上記範囲内となっていれば、紫外線吸収剤、分光透過率調整剤、防汚剤、無機粒子および/または有機粒子等を含んでいてもよい。紫外線吸収剤等は、ハードコート層52の欄で説明した紫外線吸収剤等と同様のものが使用できるので、ここでは説明を省略するものとする。
<<光学フィルムの製造方法>>
光学フィルム50は、樹脂層53を構成する樹脂の種類によって様々な方法によって作製することができる。例えば、樹脂層53がアクリル系ゲルからなる層である場合には、例えば、以下のようにして作製することができる。まず、樹脂基材51の一方の面51A上に、バーコーター等の塗布装置によって、第1のハードコート層用組成物を塗布して、第1のハードコート層用組成物の塗膜を形成する。
<第1のハードコート層用組成物>
第1のハードコート層用組成物は、第1のハードコート層52Bを形成するための重合性化合物を含んでいる。第1のハードコート層用組成物は、その他、必要に応じて、紫外線吸収剤、分光透過率調整剤、防汚剤、無機粒子、レベリング剤、溶剤、重合開始剤を含んでいてもよい。溶媒および重合開始剤は、第1の実施形態で説明した溶媒および重合開始剤と同様であるので、ここでは説明を省略するものとする。
第1のハードコート層用組成物の塗膜を形成した後、各種の公知の方法で塗膜を、例えば30℃以上120℃以下の温度で10秒間〜120秒間加熱することにより乾燥させ、溶剤を蒸発させる。
塗膜を乾燥させた後、塗膜に紫外線等の電離放射線を照射して、塗膜を半硬化(ハーフキュア)させる。本明細書における「半硬化」とは、電離放射線をさらに照射すると硬化が実質的に進行することを意味する。ただし、この段階で、塗膜を完全硬化(フルキュア)させてもよい。本明細書における「完全硬化」とは、これ以上電離放射線を照射しても硬化が実質的に進行しないことを意味する。
塗膜を半硬化させた後、塗膜上に、バーコーター等の塗布装置によって、第2のハードコート層52Cを形成するための第2のハードコート層用組成物を塗布して、第2のハードコート層用組成物の塗膜を形成する。
<第2のハードコート層用組成物>
第2のハードコート層用組成物は、第2のハードコート層52Cを形成するための重合性化合物を含んでいる。第2のハードコート層用組成物は、その他、必要に応じて、紫外線吸収剤、溶剤、重合開始剤を含んでいてもよい。第2のハードコート層用組成物は、第1のハードコート層用組成物と同様に、総固形分が25〜55%であることが好ましい。溶剤および重合開始剤は、第1のハードコート層用組成物で説明した溶剤および重合開始剤と同様であるので、ここでは説明を省略するものとする。
第2のハードコート層用組成物の塗膜を形成した後、各種の公知の方法で塗膜を例えば30℃以上120℃以下の温度で10秒間〜120秒間加熱することにより乾燥させ、溶剤を蒸発させる。
塗膜を乾燥させた後、第2のハードコート層用組成物の塗膜に紫外線等の電離放射線を照射して、第1のハードコート層用組成物の塗膜および第2のハードコート層用組成物の塗膜を完全硬化(フルキュア)させて、第1のハードコート層52Bおよび第2のハードコート層52Cを形成して、ハードコート層52を得る。その後、ハードコート層52が形成された樹脂基材51における他方の面51Bに樹脂層53を貼り付ける。これにより、図4に示される光学フィルム50が得られる。
<<<画像表示装置>>>
光学フィルム50は、折り畳み可能な画像表示装置に組み込んで使用することが可能である。図5は、本実施形態に係る画像表示装置の概略構成図である。図5に示されるように、画像表示装置60は、観察者側に向けて、主に、電池等が収納された筐体61、保護フィルム62、表示パネル63、タッチセンサ64、円偏光板65、および光学フィルム50がこの順で積層されている。表示パネル63とタッチセンサ64との間、タッチセンサ64と円偏光板65との間、円偏光板65と光学フィルム50との間には、光透過性接着層66が配置されており、これら部材は光透過性接着層66によって互いに固定されている。また、光学フィルム50の裏面50Bの一部には、黒色層67が設けられている。
光学フィルム50は、ハードコート層52が樹脂基材51よりも観察者側となるように配置されている。画像表示装置60においては、光学フィルム50のハードコート層52の表面52A(第2のハードコート層52Cの表面)が、画像表示装置60の表面60Aを構成している。
光透過性接着層66としては、例えば、OCA(Optical Clear Adhesive)を用いることができるが、耐衝撃性を向上させて、表示パネル63の損傷を防ぐ観点から、上記アクリル系ゲルからなる粘着層を用いることが好ましい。なお、光透過性接着層66に上記アクリル系ゲルからなる粘着層を用いる場合、表示パネル63とタッチセンサ64との間、タッチセンサ64と円偏光板65との間、円偏光板65と光学フィルム50との間の少なくともいずれに上記粘着層を配置すればよい。また、上記アクリル系ゲルは粘着性があるので、樹脂層63が上記アクリル系ゲルからなる場合には、円偏光板65と光学フィルム50との間に光透過性接着層66を設けなくとも、円偏光板65に直接樹脂層53を貼り付けることによって、円偏光板65と光学フィルム50を固定することができる。
上記したように、衝撃吸収性能を表す指標としては、従来から剪断損失正接tanδが知られている。したがって、樹脂基材の一方の面側にハードコート層および他方の面側に樹脂層を備える構造の光学フィルムにおける耐衝撃性を剪断損失正接tanδで表すことも考えられるが、剪断損失正接tanδでは、光学フィルムの表面(ハードコート層の表面)に衝撃を加えたときに、光学フィルムの表面における凹みおよび光学フィルムよりも画像表示装置の内部に位置する部材の損傷の両方を抑制することはできなかった。これは、剪断損失正接tanδが、剪断損失弾性率G´´と剪断貯蔵弾性率G´との比(G´´/G´)であるためであると考えられる。本発明者らが鋭意研究をさらに重ねたところ、光学フィルムの表面に衝撃を加えたときの光学フィルムの表面における凹みおよび光学フィルムよりも画像表示装置の内部に位置する部材の損傷の両方を抑制するためには、樹脂層の膜厚、剪断貯蔵弾性率G´および剪断損失弾性率G´´のバランスが重要であることを見出した。本実施形態によれば、樹脂基材51の一方の面51A側にハードコート層52および他方の面51B側に樹脂層53を備える構造の光学フィルム50において、樹脂層53の膜厚が30μm以上200μm未満と薄くなっており、光学フィルム50における上記剪断貯蔵弾性率G´が、1MPa以上200MPa以下となっており、かつ光学フィルム50における上記剪損失弾性率G´´が、0.1MPa以上100MPa以下となっているので、折り畳み可能でありながら、光学フィルム50の表面50Aに衝撃を加えた場合に、光学フィルム50の表面50Aの凹みを抑制することができるとともに、画像表示装置60の内部に位置する表示パネル63等の部材の損傷を抑制できる。これにより、優れた耐衝撃性を得ることができる。
本発明を詳細に説明するために、以下に実施例を挙げて説明するが、本発明はこれらの記載に限定されない。なお、下記の「固形分換算値」とは、溶剤希釈品中の固形分を100%としたときの値である。
<樹脂層用組成物の調製>
まず、下記に示す組成となるように各成分を配合して、樹脂層用組成物を得た。
(樹脂層用組成物1)
・ウレタンアクリレート(製品名「UV3310B」、日本合成化学社製、2官能):90質量部
・フェノキシエチルアクリレート(製品名「ビスコート#192」、大阪有機化学工業社製):10質量部
・重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):5質量部
・メチルイソブチルケトン:10質量部
(樹脂層用組成物2)
・ウレタンアクリレート(製品名「UA−160TM」、新中村化学社製):90質量部
・フェノキシエチルアクリレート(製品名「ビスコート#192」、大阪有機化学工業社製):10質量部
・重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):5質量部
・メチルイソブチルケトン:10質量部
(樹脂層用組成物3)
・ウレタンアクリレート(製品名「UV2000B」、日本合成化学社製、2官能):50質量部
・フェノキシエチルアクリレート(製品名「ビスコート#192」、大阪有機化学工業社製):50質量部
・重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):5質量部
・メチルイソブチルケトン:10質量部
<ハードコート層用組成物の調製>
下記に示す組成となるように各成分を配合して、ハードコート層用組成物を得た。
(ハードコート層用組成物1)
・ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(製品名「M403」、東亜合成社製):25質量部
・ジペンタエリスリトールEO変性ヘキサアクリレート(製品名「A−DPH−6E」、新中村化学社製):25質量部
・異形シリカ微粒子(平均粒子径25nm、日揮触媒化成社製):50質量部(固形分換算値)
・光重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):4質量部
・フッ素系レベリング剤(製品名「F568」、DIC社製):0.2質量部(固形分換算値)
・メチルイソブチルケトン(MIBK):150質量部
(ハードコート層用組成物2)
・ウレタンアクリレート(製品名「UX5000」、日本化薬社製):25質量部
・ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(製品名「M403」、東亜合成社製):50質量部
・多官能アクリレートポリマー(製品名「アクリット8KX−012C」、大成ファインケミカル社製):25質量部(固形分換算値)
・防汚剤(製品名「BYKUV3500」、ビックケミー社製):1.5質量部(固形分換算値)
・光重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):4質量部
・メチルイソブチルケトン(MIBK):150質量部
<実施例A1>
樹脂基材として、厚さ30μmの上記式(4)で表されるポリイミド骨格を有するポリイミド基材を準備し、ポリイミド基材の一方の面に、バーコーターで樹脂層用組成物1を塗布し、塗膜を形成した。その後、形成した塗膜に対して、70℃、1分間加熱させることにより塗膜中の溶剤を蒸発させ、紫外線照射装置(フュージョンUVシステムジャパン社製、光源Hバルブ)を用いて、紫外線を空気中にて積算光量が1200mJ/cmになるように照射して塗膜を硬化させて、膜厚が200μmのウレタン系樹脂からなる樹脂層を形成した。これにより、ポリイミド基材上に樹脂層が形成された光学フィルムを得た。なお、ポリイミド基材の厚みは厚み測定装置(製品名「デジマチックインジケーターIDF−130」、ミツトヨ社製)を用いて、ポリイミド基材の厚みを10点測定し、その算術平均値とした。また、樹脂層の膜厚は、走査型電子顕微鏡(SEM)を用いて、ポリイミド基材および樹脂層の断面を撮影し、その断面の画像において樹脂層の膜厚をそれぞれ20箇所測定し、その20箇所の膜厚の算術平均値とした。実施例A2〜実施例A8および比較例A1およびA2においても、実施例A1と同様の手法によって基材の厚みや樹脂層の膜厚を測定した。
<実施例A2>
実施例A2においては、樹脂層の膜厚を90μmとした以外、実施例A1と同様にして、光学フィルムを得た。
<実施例A3>
実施例A3においては、樹脂層の膜厚を150μmとした以外、実施例A1と同様にして、光学フィルムを得た。
<実施例A4>
実施例A4においては、ポリイミド基材の代わりに厚みが30μmの上記式(22)で表されるアラミド骨格を有するアラミド基材を用いたこと以外は、実施例A1と同様にして、光学フィルムを得た。
<実施例A5>
実施例A5においては、樹脂層用組成物1の代わりに樹脂層用組成物2を用いたこと以外は、実施例A1と同様にして、光学フィルムを得た。
<実施例A6>
実施例A6においては、樹脂層用組成物1の代わりに樹脂層用組成物3を用いたこと以外は、実施例A1と同様にして、光学フィルムを得た。
<実施例A7>
実施例A7においては、ポリイミド基材にウレタン系樹脂からなる樹脂層を形成する代わりに膜厚が200μmのアクリル系ゲルからなる樹脂層(製品名「メークリンゲル」、共同技研化学社製)をポリイミド基材に貼り付けたこと以外は、実施例A1と同様にして、光学フィルムを得た。
<実施例A8>
実施例A8においては、ポリイミド基材の代わりに厚みが30μmの上記式(22)で表されるアラミド骨格を有するアラミド基材を用いたこと以外は、実施例A7と同様にして、光学フィルムを得た。
<比較例A1>
比較例A1においては、ポリイミド基材にウレタン系樹脂からなる樹脂層を形成する代わりに膜厚が200μmのシリコーン系ゲルからなる樹脂層(製品名「αGEL(登録商標)」、タイカ社製)をポリイミド基材に貼り付けたこと以外は、実施例A1と同様にして、光学フィルムを得た。なお、比較例A1の樹脂層は、膜厚1mmのαGELの市販品を200μmにスライスして得た。
<比較例A2>
比較例A2においては、ポリイミド基材の代わりに厚みが30μmの上記式(22)で表されるアラミド骨格を有するアラミド基材を用いたこと以外は、比較例A1と同様にして、光学フィルムを得た。
<G´、G´´、tanδの測定>
実施例A1〜A8および比較例A1、A2に係る光学フィルムの剪断貯蔵弾性率G´、剪断損失弾性率G´´、および剪断損失正接tanδを測定した。具体的には、まず、光学フィルムを100mm×50mmの長方形状に打ち抜いて、サンプルとした。そして、このサンプルを2枚準備し、動的粘弾性測定装置(製品名「Rheogel-E4000」、ユービーエム社製)の測定治具に取り付けた。具体的には、測定治具は、水平方向に3枚の板(厚みが1mmの1枚の金属製の中板と、この中板の両側に配置された2枚の金属製の外板)を備えており、中板と一方の外板との間で一方のサンプルを挟み、かつ中板と他方の外板で他方のサンプルを挟んだ。この場合、樹脂層が中板側となり、基材が外板側となるようにサンプルを挟んだ。そして、動的粘弾性測定装置(製品名「Rheogel-E4000」、株式会社ユービーエム社製)に、測定治具をチャック間距離20mmで設置し、2℃/minで昇温し設定温度を25℃とした。この状態で、中板を固定しながら2枚の外板に歪み量1%かつ周波数500Hz以上1000Hz以下の範囲の縦振動を与えながら、25℃で固体の動的粘弾性測定を行い、光学フィルムの剪断貯蔵弾性率G´、剪断損失弾性率G´´および剪断損失正接tanδを測定した。ここで、光学フィルムにおける500Hz以上1000Hz以下の周波数域での剪断貯蔵弾性率G´、剪断損失弾性率G´´および剪断損失正接tanδは、外板に周波数500Hz、750Hz、950Hzの縦振動をそれぞれ与えて、それぞれの周波数において光学フィルムの剪断貯蔵弾性率G´、剪断損失弾性率G´´および剪断損失正接tanδを測定し、これらの剪断貯蔵弾性率G´、剪断損失弾性率G´´および剪断損失正接tanδの算術平均値を求め、さらに、この測定を3回繰り返し、それぞれ得られた3つの算術平均値をさらに算術平均した値とした。
<耐衝撃性試験>
厚さ0.7mmのソーダガラスの上に、ソーダガラス側が基材側となるように実施例A1〜A8及び比較例A1、A2に係る光学フィルムを置き、高さ30cmの位置から重さ100g、直径30mmの鉄球を光学フィルムの樹脂層の表面に落下させる試験を各3回行った。なお、鉄球を落下させる位置はその都度変えるものとした。そして、目視によって樹脂層の表面に凹みが確認されるかを評価するとともに、ソーダガラスに割れが生じているか評価した。評価結果は、以下の通りとした。
(樹脂層の表面の凹み評価)
◎:樹脂層を正面および斜めから観察した場合の両方において、樹脂層の表面に凹みが確認されなかった。
○:樹脂層を正面から観察した場合には樹脂層の表面に凹みが観察されなかったが、斜め観察した場合には樹脂層の表面に実用上問題のないレベルの凹みが確認された。
×:樹脂層を正面および斜めから観察した場合の両方において、樹脂層の表面に明らかな凹みが観察された。
(ソーダガラスの割れ評価)
◎:ソーダガラスが割れなかった。
○:ソーダガラスに傷が入ったが割れなかった。
△:1〜2回ソーダガラスに割れが生じた。
×:3回ともソーダガラスに割れが生じた。
<折り畳み試験>
実施例A1〜A8及び比較例A1、A2に係る光学フィルムを、30mm×100mmの長方形にカットして作製したサンプルを、耐久試験機(製品名「DLDMLH−FS」、ユアサシステム機器社製)に、サンプルの短辺(30mm)側を固定部でそれぞれ固定し、図2(C)に示したように対向する2つの辺部の最小の間隔が3mm(屈曲部の外径3.0mm)となるようにして取り付け、サンプルの樹脂層側の面を180°折り畳む試験(樹脂層が内側となり、基材が外側となるように折り畳む試験)を10万回行い、屈曲部に割れ又は破断が生じていないか調べた。また、実施例A1〜A8及び比較例A1、A2に係る光学フィルムで上記同様に作製した新しいサンプルを、上記の耐久試験機に、上記と同様に取り付け、サンプルの基材側の面を180°折り畳む試験(樹脂層が外側となり、基材が内側となるように折り畳む試験)を10万回行い、屈曲部に割れ又は破断が生じていないか調べた。折り畳み試験の結果を、以下の基準で評価した。
○:いずれの折り畳み試験においても、屈曲部に割れ又は破断が生じていなかった。
×:いずれかの折り畳み試験において、屈曲部に割れ又は破断が生じていた。
<鉛筆硬度>
実施例A1〜A8および比較例A1、A2に係る光学フィルムの表面(樹脂層の表面)における鉛筆硬度を、JIS K5600−5−4:1999に基づいてそれぞれ測定した。なお、鉛筆硬度の測定の際には、鉛筆に1kgの荷重をかけながら、鉛筆を速度1mm/秒で移動させた。鉛筆硬度は、鉛筆硬度試験において光学フィルムの表面に傷が付かなかった最も高い硬度とする。なお、鉛筆硬度の測定の際には、硬度が異なる鉛筆を複数本用いて行うが、鉛筆1本につき5回鉛筆硬度試験を行い、5回のうち4回以上蛍光灯下で光学フィルムの表面を透過観察した際に光学フィルムの表面に傷が視認されなかった場合には、この硬度の鉛筆においては光学フィルムの表面に傷が付かなかったと判断する。
以下、結果を表1に示す。
Figure 2018043627
以下、結果について述べる。比較例A1およびA2に係る光学フィルムにおいては、剪断損失弾性率G´および剪断損失弾性率G´´のバランスが悪いので、樹脂層の表面の凹み量が大きく、またソーダガラスに割れが生じていた。これに対し、実施例A1〜A8に係る光学フィルムにおいては、剪断損失弾性率G´および剪断損失弾性率G´´のバランスが良いので、樹脂層の表面の凹みが確認されず、または若干確認されたが実用上問題のないレベルであり、またソーダガラスにも割れが生じなかった。
また、実施例A1〜A8に係る光学フィルムにおいては、折り畳み試験の結果も良好であり、また実施例A1〜A6に係る光学フィルムにおいては、鉛筆硬度も高かった。
実施例A1に係る光学フィルムの樹脂層(以下、この樹脂層を「第1の樹脂層」と称する。)の表面に、鉛筆硬度が第1の樹脂層よりも高い第2の樹脂層および鉛筆硬度が第1の樹脂層および第2の樹脂層よりも高い第3の樹脂層をこの順で積層した光学フィルムにおいて、光学フィルムの表面(第3の樹脂層の表面)を、#0000番のスチールウール(製品名「BON STAR」、日本スチールウール社製)を用いて、1kg/cmの荷重をかけながら、10回往復摩擦し、その後の光学フィルムの表面に傷の有無を目視により確認したところ、傷が確認されなかった。
<実施例B1>
樹脂基材として、厚さ30μmの上記式(4)で表されるポリイミド骨格を有するポリイミド基材を準備し、ポリイミド基材の一方の面に、バーコーターでハードコート層用組成物1を塗布し、塗膜を形成した。その後、形成した塗膜に対して、70℃、1分間加熱させることにより塗膜中の溶剤を蒸発させ、紫外線照射装置(フュージョンUVシステムジャパン社製、光源Hバルブ)を用いて、紫外線を空気中にて積算光量が100mJ/cmになるように照射して塗膜を半硬化(ハーフキュア)させた。次いで、半硬化させたハードコート層用組成物1の塗膜の表面に、バーコーターでハードコート層用組成物2を塗布し、塗膜を形成した。形成した塗膜に対して、70℃、1分間加熱させることにより塗膜中の溶剤を蒸発させ、紫外線照射装置(フュージョンUVシステムジャパン社製、光源Hバルブ)を用いて、紫外線を酸素濃度が200ppm以下の条件下にて積算光量が200mJ/cmになるように照射して塗膜を完全硬化(フルキュア)させた。これにより、ポリイミド基材上に、膜厚が10μmの第1のハードコート層と、第1のハードコート層上に積層された膜厚が5μmの第2のハードコート層とからなるハードコート層を形成した。ポリイミド基材上にハードコート層を形成した後、ポリイミド基材の他方の面に膜厚が75μmのアクリル系ゲルからなる樹脂層(製品名「メークリンゲル」、共同技研化学社製)を貼り付けて、光学フィルムを得た。なお、ポリイミド基材の厚みは厚み測定装置(製品名「デジマチックインジケーターIDF−130」、ミツトヨ社製)を用いて、ポリイミド基材の厚みを10点測定し、その算術平均値とした。また、ハードコート層および樹脂層の膜厚は、走査型電子顕微鏡(SEM)を用いて、ハードコート層および樹脂層の断面を撮影し、その断面の画像においてハードコート層および樹脂層の膜厚をそれぞれ20箇所測定し、その20箇所の膜厚の算術平均値とした。実施例B2〜実施例B7および比較例B1〜B5においても、実施例B1と同様の手法によって基材の厚み、ハードコート層および樹脂層の膜厚を測定した。
<実施例B2>
実施例B2においては、樹脂層の膜厚を50μmとしたこと以外は、実施例B1と同様にして、光学フィルムを得た。
<実施例B3>
実施例B3においては、樹脂層の膜厚を180μmとしたこと以外は、実施例B1と同様にして、光学フィルムを得た。
<実施例B4>
実施例B4においては、厚さ30μmのポリイミド基材の代わりに厚さ50μmのポリイミド基材を用いたこと以外、実施例B1と同様にして、光学フィルムを得た。
<実施例B5>
実施例B5においては、ポリイミド基材の代わりに厚みが30μmの上記式(22)で表されるアラミド骨格を有するアラミド基材を用いたこと以外は、実施例B1と同様にして、光学フィルムを得た。
<実施例B6>
実施例B6においては、アクリル系ゲルからなる樹脂層の代わりにウレタン系樹脂からなる樹脂層を形成したこと以外は、実施例B1と同様にして、光学フィルムを得た。ウレタン系樹脂からなる樹脂層は、以下のようにして形成された。まず、ハードコート層が形成されたポリイミド基材の他方の面に、バーコーターで樹脂層用組成物1を塗布して、塗膜を形成した。そして、形成した塗膜に対して、70℃、1分間加熱させることにより塗膜中の溶剤を蒸発させ、紫外線照射装置(フュージョンUVシステムジャパン社製、光源Hバルブ)を用いて、紫外線を空気中にて積算光量が1200mJ/cmになるように照射して塗膜を硬化させて、膜厚が75μmのウレタン系樹脂からなる樹脂層を形成した。
<実施例B7>
実施例B7においては、樹脂層の膜厚を180μmとしたこと以外は、実施例B6と同様にして、光学フィルムを得た。
<比較例B1>
比較例B1においては、樹脂層の膜厚を200μmとしたこと以外は、実施例B1と同様にして、光学フィルムを得た。
<比較例B2>
比較例B2においては、樹脂層の膜厚を25μmとしたこと以外は、実施例B1と同様にして、光学フィルムを得た。
<比較例B3>
比較例B3においては、アクリル系ゲルからなる樹脂層の代わりに膜厚が75μmのシリコーン系ゲルからなる樹脂層(製品名「αGEL(登録商標)」、タイカ社製)をポリイミド基材に貼り付けたこと以外は、実施例B1と同様にして、光学フィルムを得た。なお、比較例B3の樹脂層は、膜厚1mmのαGELの市販品を75μmにスライスして得た。
<比較例B4>
比較例B4においては、アクリル系ゲルからなる樹脂層の代わりに膜厚が50μmのシリコーン系ゲルからなる樹脂層(製品名「αGEL(登録商標)」、タイカ社製)をポリイミド基材に貼り付けたこと以外は、実施例B1と同様にして、光学フィルムを得た。なお、比較例B4の樹脂層は、膜厚1mmのαGELの市販品を50μmにスライスして得た。
<比較例B5>
比較例B5においては、アクリル系ゲルからなる樹脂層の代わりに膜厚が200μmのシリコーン系ゲルからなる樹脂層(製品名「αGEL(登録商標)」、タイカ社製)をポリイミド基材に貼り付けたこと以外は、実施例B1と同様にして、光学フィルムを得た。なお、比較例B5の樹脂層は、膜厚1mmのαGELの市販品を200μmにスライスして得た。
<G´、G´´、tanδの測定>
実施例B1〜B7および比較例B1〜B5に係る光学フィルムの剪断貯蔵弾性率G´、剪断損失弾性率G´´、および剪断損失正接tanδを測定した。具体的には、まず、光学フィルムを100mm×50mmの長方形状に打ち抜いて、サンプルとした。そして、このサンプルを2枚準備し、動的粘弾性測定装置(製品名「Rheogel-E4000」、ユービーエム社製)の測定治具に取り付ける。具体的には、測定治具は、水平方向に3枚の板(厚みが1mmの1枚の金属製の中板と、この中板の両側に配置された2枚の金属製の外板)を備えており、中板と一方の外板との間で一方のサンプルを挟み、かつ中板と他方の外板で他方のサンプルを挟んだ。この場合、樹脂層が中板側となり、ハードコート層が外板側となるようにサンプルを挟んだ。そして、動的粘弾性測定装置(製品名「Rheogel-E4000」、株式会社ユービーエム社製)に、測定治具をチャック間距離20mmで設置し、2℃/minで昇温し設定温度を25℃とした。この状態で、中板を固定しながら2枚の外板に歪み量1%かつ周波数500Hz以上1000Hz以下の範囲の縦振動を与えながら、25℃で固体の動的粘弾性測定を行い、光学フィルムの剪断貯蔵弾性率G´、剪断損失弾性率G´´および剪断損失正接tanδを測定した。ここで、光学フィルムにおける500Hz以上1000Hz以下の周波数域での剪断貯蔵弾性率G´、剪断損失弾性率G´´および剪断損失正接tanδは、外板に周波数500Hz、750Hz、950Hzの縦振動をそれぞれ与えて、それぞれの周波数において光学フィルムの剪断貯蔵弾性率G´、剪断損失弾性率G´´および剪断損失正接tanδを測定し、これらの剪断貯蔵弾性率G´、剪断損失弾性率G´´および剪断損失正接tanδの算術平均値を求め、さらに、この測定を3回繰り返し、それぞれ得られた3つの算術平均値をさらに算術平均した値とした。
<耐衝撃性試験>
厚さ0.7mmのソーダガラスの上に、ソーダガラス側が樹脂層側となるように実施例B1〜B7及び比較例B1〜B5に係る光学フィルムを置き、高さ30cmの位置から重さ100g、直径30mmの鉄球を光学フィルムのハードコート層の表面に落下させる試験を各3回行った。なお、鉄球を落下させる位置はその都度変えるものとした。そして、目視によってハードコート層の表面に凹みが生じているかを評価するとともに、ソーダガラスに割れが生じているか評価した。評価結果は、以下の通りとした。
(ハードコート層の表面の凹み評価)
○:ハードコート層を正面および斜めから観察した場合の両方において、ハードコート層の表面に凹みが確認されなかった。
△:ハードコート層を正面から観察した場合にはハードコート層の表面に凹みが観察されなかったが、斜め観察した場合にはハードコート層の表面に凹みが確認された。
×:ハードコート層を正面および斜めから観察した場合の両方において、ハードコート層の表面に明らかな凹みが観察された。
(ソーダガラスの割れ評価)
◎:ソーダガラスが割れなかった。
○:ソーダガラスに傷が入ったが割れなかった。
△:1〜2回ソーダガラスに割れが生じた。
×:3回ともソーダガラスに割れが生じた。
<折り畳み試験>
実施例B1〜B7及び比較例B1〜B5に係る光学フィルムを、30mm×100mmの長方形にカットして作製したサンプルを、耐久試験機(製品名「DLDMLH−FS」、ユアサシステム機器社製)に、サンプルの短辺(30mm)側を固定部でそれぞれ固定し、図2(C)に示したように対向する2つの辺部の最小の間隔が3mm(屈曲部の外径3.0mm)となるようにして取り付け、サンプルのハードコート層側の面を180°折り畳む試験(ハードコート層が内側となり、樹脂層が外側となるように折り畳む試験)を10万回行い、屈曲部に割れ又は破断が生じていないか調べた。また、実施例及び比較例に係る光学フィルムで上記同様に作製した新しいサンプルを、上記の耐久試験機に、上記と同様に取り付け、サンプルの樹脂側の面を180°折り畳む試験(ハードコート層が外側となり、樹脂層が内側となるように折り畳む試験)を10万回行い、屈曲部に割れ又は破断が生じていないか調べた。折り畳み試験の結果を、以下の基準で評価した。
○:いずれの折り畳み試験においても、屈曲部に割れ又は破断が生じていなかった。
×:いずれかの折り畳み試験において、屈曲部に割れ又は破断が生じていた。
以下、結果を表2に示す。
Figure 2018043627
以下、結果について述べる。比較例B1に係る光学フィルムにおいては、樹脂層の膜厚が厚すぎるので、ハードコート層の表面の凹み量が大きかった。比較例B2に係る光学フィルムにおいては、樹脂層の膜厚が薄すぎるので、ソーダガラスに割れが生じた。比較例B3に係る光学フィルムにおいては、剪断貯蔵弾性率G´が小さすぎるので、ハードコート層の表面の凹み量が大きかった。比較例B4に係る光学フィルムにおいては、樹脂層の膜厚が薄いが、剪断貯蔵弾性率G´が小さすぎるので、ハードコート層の表面の凹みが確認され、また剪断損失弾性率G´´が小さすぎるので、衝撃を吸収できず、ソーダガラスに割れが生じた。比較例B5に係る光学フィルムにおいては、樹脂層の膜厚が厚すぎるとともに剪断貯蔵弾性率G´が小さすぎるので、ハードコート層の表面の凹み量が大きく、また剪断損失弾性率G´´が小さすぎるので、衝撃を吸収できず、ソーダガラスに割れが生じた。
これに対し、実施例B1〜B7に係る光学フィルムにおいては、樹脂層の膜厚、剪断貯蔵弾性率G´および剪断損失弾性率G´´のバランスが良いので、ハードコート層の表面の凹みが確認されず、またソーダガラスにも割れが生じなかった。また、実施例B1〜B7に係る光学フィルムにおいては、折り畳み試験の結果も良好であった。
なお、実施例B1〜B7に係る光学フィルムの第1のハードコート層および第2のハードコート層のマルテンス硬度を用いて測定したところ、第1のハードコート層のマルテンス硬度は830MPaであり、第2のハードコート層のマルテンス硬度は500MPaであった。マルテンス硬度は、測定サンプルについてHYSITRON(ハイジトロン)社製の「TI950 TriboIndenter」を用いて、測定した。具体的には、まず1mm×10mmに切り出した光学フィルムを包埋樹脂によって包埋したブロックを作製し、このブロックから一般的な切片作製方法によって穴等がない均一な、厚さ70nm以上100nm以下の切片を切り出した。切片の作製には、「ウルトラミクロトーム EM UC7」(ライカ マイクロシステムズ株式会社)を用いた。そして、この穴等がない均一な切片が切り出された残りのブロックを測定サンプルとした。次いで、このような測定サンプルにおける上記切片が切り出されることによって得られた断面において、圧子としてBerkovich圧子(三角錐)を用いて、以下の測定条件で、各ハードコート層の側面から500nm押し込み、一定時間保持して残留応力の緩和を行った後、除荷し、緩和後の最大荷重を計測し、該最大荷重Pmax(μN)と深さ500nmのくぼみ面積A(nm)とを用い、Pmax/Aにより、マルテンス硬度を算出した。
(測定条件)
・荷重速度:10nm/秒
・保持時間:5秒
・荷重除荷速度:10nm/秒
・測定温度:25℃
また、実施例B1〜B7に係る光学フィルムの表面(ハードコート層の表面)に対し、#0000番のスチールウール(製品名「BON STAR」、日本スチールウール社製)を用いて、1kg/cmの荷重をかけながら、速度50mm/秒で10回往復摩擦し、その後の光学フィルムの表面に傷の有無を目視により確認したところ、傷が確認されなかった。
10、50…光学フィルム
10A、12A、50A、52A…表面
11、51…樹脂基材
12、53…樹脂層
30、60…画像表示装置
33、63…表示パネル
52…ハードコート層

Claims (7)

  1. 画像表示装置に用いられる折り畳み可能な光透過性の光学フィルムであって、
    樹脂基材と、
    前記樹脂基材の一方の面側に設けられた樹脂層と、を備え、
    前記光学フィルムにおける25℃、500Hz以上1000Hz以下の周波数域での剪断貯蔵弾性率G´が、1MPa以上200MPa以下であり、
    前記光学フィルムにおける25℃、500Hz以上1000Hz以下の周波数域での剪断損失弾性率G´´が、0.1MPa以上100MPa以下であることを特徴とする、光学フィルム。
  2. 画像表示装置に用いられる折り畳み可能な光透過性の光学フィルムであって、
    樹脂基材と、
    前記樹脂基材の一方の面側に設けられたハードコート層と、
    前記樹脂基材における前記一方の面とは反対側の他方の面側に設けられた膜厚が30μm以上200μm未満の樹脂層と、を備え、
    前記光学フィルムにおける25℃、500Hz以上1000Hz以下の周波数域での剪断貯蔵弾性率G´が、1MPa以上200MPa以下であり、
    前記光学フィルムにおける25℃、500Hz以上1000Hz以下の周波数域での剪断損失弾性率G´´が、0.1MPa以上100MPa以下であることを特徴とする、光学フィルム。
  3. 前記光学フィルムの対向する辺部の間隔が3mmとなるように180°折り畳む試験を10万回繰り返し行った場合に割れまたは破断が生じない、請求項1または2に記載の光学フィルム。
  4. 前記樹脂基材が、ポリイミド系樹脂、ポリアミド系樹脂、またはこれらの混合物からなる、請求項1または2に記載の光学フィルム。
  5. 折り畳み可能な画像表示装置であって、
    表示パネルと、
    前記表示パネルよりも観察者側に配置された請求項1に記載の光学フィルムと、を備え、
    前記光学フィルムの前記樹脂層が、前記樹脂基材よりも観察者側に位置していることを特徴とする、画像表示装置。
  6. 折り畳み可能な画像表示装置であって、
    表示パネルと、
    前記表示パネルよりも観察者側に配置された請求項2に記載の光学フィルムと、を備え、
    前記光学フィルムの前記ハードコート層が、前記樹脂基材よりも観察者側に位置していることを特徴とする、画像表示装置。
  7. 前記表示パネルが、有機発光ダイオードパネルである、請求項5または6に記載の画像表示装置。
JP2018537383A 2016-09-01 2017-08-31 光学フィルムおよび画像表示装置 Active JP6773118B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2016171337 2016-09-01
JP2016171336 2016-09-01
JP2016171337 2016-09-01
JP2016171336 2016-09-01
PCT/JP2017/031313 WO2018043627A1 (ja) 2016-09-01 2017-08-31 光学フィルムおよび画像表示装置

Publications (2)

Publication Number Publication Date
JPWO2018043627A1 true JPWO2018043627A1 (ja) 2019-06-24
JP6773118B2 JP6773118B2 (ja) 2020-10-21

Family

ID=61301010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018537383A Active JP6773118B2 (ja) 2016-09-01 2017-08-31 光学フィルムおよび画像表示装置

Country Status (6)

Country Link
US (1) US10792901B2 (ja)
JP (1) JP6773118B2 (ja)
KR (1) KR102348582B1 (ja)
CN (1) CN109844847B (ja)
TW (1) TWI717550B (ja)
WO (1) WO2018043627A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102459607B1 (ko) * 2017-11-08 2022-10-31 삼성디스플레이 주식회사 표시 장치용 윈도우, 그 윈도우의 제조 방법 및 그 윈도우를 포함하는 표시 장치
JP2019109289A (ja) * 2017-12-15 2019-07-04 株式会社ジャパンディスプレイ 表示装置
WO2019198823A1 (ja) * 2018-04-13 2019-10-17 株式会社クラレ 多層フィルムおよびそれを備える成形体
CN112313545B (zh) * 2018-04-27 2022-07-05 大日本印刷株式会社 光学膜、偏振片和图像显示装置
JP6611895B2 (ja) * 2018-04-27 2019-11-27 住友化学株式会社 光学フィルム
JP6568290B1 (ja) * 2018-04-27 2019-08-28 住友化学株式会社 光学フィルム
KR102539401B1 (ko) * 2018-05-07 2023-06-01 도요보 가부시키가이샤 폴딩형 디스플레이 및 휴대 단말기기
WO2020036693A1 (en) * 2018-08-14 2020-02-20 Applied Materials, Inc. Multi-layer wet-dry hardcoats for flexible cover lens
CN110843266A (zh) * 2018-08-20 2020-02-28 住友化学株式会社 复合前面板及其制造方法
JP2020030395A (ja) * 2018-08-20 2020-02-27 住友化学株式会社 複合前面板及びその製造方法
US20220088910A1 (en) * 2018-12-27 2022-03-24 Unitika Ltd. Laminate
JP7484882B2 (ja) * 2019-03-01 2024-05-16 大日本印刷株式会社 樹脂層、光学フィルムおよび画像表示装置
KR20200145277A (ko) * 2019-06-21 2020-12-30 엘지디스플레이 주식회사 디스플레이 장치
US20230016838A1 (en) * 2019-09-27 2023-01-19 Dai Nippon Printing Co., Ltd. Resin layer, optical film, and image displaying device
EP4059992A4 (en) * 2020-01-30 2023-12-20 SK microworks Co., Ltd. FILM, FILM MANUFACTURING METHOD, COVER FILM, AND MULTILAYER ELECTRONIC EQUIPMENT
KR20220142429A (ko) * 2020-02-28 2022-10-21 수미토모 케미칼 컴퍼니 리미티드 광학 적층체, 플렉서블 화상 표시 장치
KR102247137B1 (ko) * 2020-04-24 2021-05-04 에스케이이노베이션 주식회사 윈도우 커버 필름 및 이를 포함하는 플렉서블 디스플레이 패널
CN115472648A (zh) * 2021-06-10 2022-12-13 昇佳电子股份有限公司 有机显示装置
CN114464753B (zh) * 2022-01-19 2023-10-31 武汉华星光电半导体显示技术有限公司 显示面板及盖板组件
WO2024071391A1 (ja) * 2022-09-29 2024-04-04 大日本印刷株式会社 表示装置用積層体、表示装置および支持板付き表示装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007040159A1 (ja) * 2005-10-04 2007-04-12 The Inctec Inc. 特定の表面形状と物性を有する構造体及びその構造体形成用の(メタ)アクリル系重合性組成物
JP2007108553A (ja) * 2005-10-17 2007-04-26 Epson Imaging Devices Corp 電気光学装置及び電子機器
JP2008266473A (ja) * 2007-04-20 2008-11-06 Nitto Denko Corp 透明粘着シート及びフラットパネルディスプレイ
JP2009186955A (ja) * 2007-04-04 2009-08-20 Sony Chemical & Information Device Corp 画像表示装置の製造方法
JP2009300506A (ja) * 2008-06-10 2009-12-24 Hitachi Chem Co Ltd ディスプレイ用耐衝撃フィルム
WO2010143503A1 (ja) * 2009-06-12 2010-12-16 シャープ株式会社 反射防止膜、表示装置及び透光部材
WO2013047875A1 (ja) * 2011-09-30 2013-04-04 富士フイルム株式会社 電気音響変換フィルム、フレキシブルディスプレイ、声帯マイクロフォンおよび楽器用センサー
JP2014224179A (ja) * 2013-05-15 2014-12-04 日立化成株式会社 画像表示装置用粘着剤、画像表示装置用粘着シート、及びこれらを用いた画像表示装置の製造方法
US20160115355A1 (en) * 2014-10-24 2016-04-28 Samsung Sdi Co., Ltd. Adhesive film for polarizing plate, polarizing plate including the same and optical display including the same
JP2016126130A (ja) * 2014-12-26 2016-07-11 日東電工株式会社 有機el表示装置用積層体及び有機el表示装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000007978A (ja) * 1998-06-22 2000-01-11 Toyo Ink Mfg Co Ltd コーティング材及び積層体
KR20160130876A (ko) * 2009-09-30 2016-11-14 다이니폰 인사츠 가부시키가이샤 플렉시블 디바이스용 기판, 플렉시블 디바이스용 박막 트랜지스터 기판, 플렉시블 디바이스, 박막 소자용 기판, 박막 소자, 박막 트랜지스터, 박막 소자용 기판의 제조 방법, 박막 소자의 제조 방법 및 박막 트랜지스터의 제조 방법
JP6158479B2 (ja) * 2012-05-23 2017-07-05 名阪真空工業株式会社 タッチスクリーン用透明シート、透明導電シート及びタッチスクリーン
JP6075009B2 (ja) * 2012-10-31 2017-02-08 Dic株式会社 加飾ハードコートフィルム及び加飾ハードコート粘着フィルム。
JPWO2014141866A1 (ja) 2013-03-13 2017-02-16 Dic株式会社 ハードコートフィルム、保護フィルム及び画像表示装置
US9224980B2 (en) * 2013-03-28 2015-12-29 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
JP2016163933A (ja) * 2013-07-02 2016-09-08 コニカミノルタ株式会社 ガスバリアーフィルムの製造方法
JP6481607B2 (ja) * 2014-01-31 2019-03-13 東レ株式会社 積層フィルム
KR102232773B1 (ko) 2014-06-24 2021-03-26 삼성디스플레이 주식회사 표시 장치용 커버 윈도우, 이를 포함하는 표시 장치, 및 표시 장치용 커버 윈도우의 제조 방법
KR102289082B1 (ko) * 2014-08-13 2021-08-13 에스케이이노베이션 주식회사 하드코팅층 형성용 조성물
KR101757057B1 (ko) * 2014-09-30 2017-07-12 주식회사 엘지화학 편광판 및 이를 포함하는 화상표시장치
KR20160083738A (ko) 2015-01-02 2016-07-12 삼성전자주식회사 표시 장치용 윈도우 및 이를 포함하는 표시 장치
JP2016193520A (ja) * 2015-03-31 2016-11-17 コニカミノルタ株式会社 透明積層フィルムおよびその製造方法
CN107531037B (zh) * 2015-03-31 2019-10-01 三菱化学株式会社 叠层体
KR101854524B1 (ko) 2015-08-06 2018-05-03 동우 화인켐 주식회사 하드코팅 필름 및 이를 구비한 플렉시블 디스플레이
KR102494986B1 (ko) 2016-01-11 2023-02-03 삼성디스플레이 주식회사 폴더블 표시장치

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007040159A1 (ja) * 2005-10-04 2007-04-12 The Inctec Inc. 特定の表面形状と物性を有する構造体及びその構造体形成用の(メタ)アクリル系重合性組成物
JP2007108553A (ja) * 2005-10-17 2007-04-26 Epson Imaging Devices Corp 電気光学装置及び電子機器
JP2009186955A (ja) * 2007-04-04 2009-08-20 Sony Chemical & Information Device Corp 画像表示装置の製造方法
JP2008266473A (ja) * 2007-04-20 2008-11-06 Nitto Denko Corp 透明粘着シート及びフラットパネルディスプレイ
JP2009300506A (ja) * 2008-06-10 2009-12-24 Hitachi Chem Co Ltd ディスプレイ用耐衝撃フィルム
WO2010143503A1 (ja) * 2009-06-12 2010-12-16 シャープ株式会社 反射防止膜、表示装置及び透光部材
WO2013047875A1 (ja) * 2011-09-30 2013-04-04 富士フイルム株式会社 電気音響変換フィルム、フレキシブルディスプレイ、声帯マイクロフォンおよび楽器用センサー
JP2014224179A (ja) * 2013-05-15 2014-12-04 日立化成株式会社 画像表示装置用粘着剤、画像表示装置用粘着シート、及びこれらを用いた画像表示装置の製造方法
US20160115355A1 (en) * 2014-10-24 2016-04-28 Samsung Sdi Co., Ltd. Adhesive film for polarizing plate, polarizing plate including the same and optical display including the same
JP2016126130A (ja) * 2014-12-26 2016-07-11 日東電工株式会社 有機el表示装置用積層体及び有機el表示装置

Also Published As

Publication number Publication date
TWI717550B (zh) 2021-02-01
CN109844847A (zh) 2019-06-04
KR102348582B1 (ko) 2022-01-07
TW201812341A (zh) 2018-04-01
KR20190042637A (ko) 2019-04-24
JP6773118B2 (ja) 2020-10-21
US10792901B2 (en) 2020-10-06
US20190315105A1 (en) 2019-10-17
CN109844847B (zh) 2021-07-13
WO2018043627A1 (ja) 2018-03-08

Similar Documents

Publication Publication Date Title
JP6773118B2 (ja) 光学フィルムおよび画像表示装置
US10935700B2 (en) Optical film and image display device
JP7155472B2 (ja) 光学フィルムおよび画像表示装置
JP7331829B2 (ja) 光学フィルムおよび画像表示装置
JP7119424B2 (ja) 光学フィルムおよび画像表示装置
WO2019066078A1 (ja) 光学フィルムおよび画像表示装置
JP7196384B2 (ja) ポリイミドフィルム、光学フィルムおよび画像表示装置
WO2019066080A1 (ja) 光学フィルムおよび画像表示装置
JP7409456B2 (ja) 光学フィルムおよび画像表示装置
JP7435640B2 (ja) 保護フィルム付き光透過性フィルムおよび保護フィルム
JP2024050846A (ja) 光学フィルムおよび画像表示装置
WO2021060560A1 (ja) 樹脂層、光学フィルムおよび画像表示装置
WO2018180304A1 (ja) 光学フィルムおよび画像表示装置
TW201841733A (zh) 光學膜及影像顯示裝置
KR20210134703A (ko) 수지층, 광학 필름 및 화상 표시 장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200914

R150 Certificate of patent or registration of utility model

Ref document number: 6773118

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150