JPWO2017110838A1 - 共焦点変位計 - Google Patents

共焦点変位計 Download PDF

Info

Publication number
JPWO2017110838A1
JPWO2017110838A1 JP2017558172A JP2017558172A JPWO2017110838A1 JP WO2017110838 A1 JPWO2017110838 A1 JP WO2017110838A1 JP 2017558172 A JP2017558172 A JP 2017558172A JP 2017558172 A JP2017558172 A JP 2017558172A JP WO2017110838 A1 JPWO2017110838 A1 JP WO2017110838A1
Authority
JP
Japan
Prior art keywords
light
unit
measurement
measurement object
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017558172A
Other languages
English (en)
Other versions
JP6779234B2 (ja
Inventor
翔馬 久我
翔馬 久我
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keyence Corp
Original Assignee
Keyence Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keyence Corp filed Critical Keyence Corp
Publication of JPWO2017110838A1 publication Critical patent/JPWO2017110838A1/ja
Application granted granted Critical
Publication of JP6779234B2 publication Critical patent/JP6779234B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/50Using chromatic effects to achieve wavelength-dependent depth resolution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/268Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light using optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

【課題】計測対象物の変位を容易かつ正確に計測することが可能な共焦点変位計を提供する。【解決手段】色収差を有する光がレンズユニット(220)により収束されて計測ヘッド(200)から計測対象物(S)に照射される。計測対象物(S)の表面で合焦しつつ反射された波長の光が計測ヘッド(200)内の光ファイバ(314)を通過する。光ファイバ(314)を通過した光は、処理装置(100)内の分光部(130)に導かれ、分光される。処理装置(100)においては、分光部(130)により分光された光は受光部(140)により受光され、受光部(140)から出力される受光信号が制御部(152)により取得される。制御部(152)は、取得された受光信号に基づいて変位を計測するとともに、受光信号を外部のPC(600)に与える。PC(600)のCPU(601)は、現時点よりも前の時点で取得された受光信号から現時点で取得された受光信号への変化を変化情報として表示部(700)に表示させる。【選択図】図1

Description

本発明は、広い波長帯域の光を用いた共焦点変位計に関する。
計測対象物の表面の変位を非接触方式により計測する装置として、共焦点変位計が知られている。例えば、特許文献1には、計測対象物の表面の変位として所定の基準位置から計測対象物までの距離を計測するクロマティックポイントセンサ(CPS)システムが記載されている。特許文献1のCPSは、2個の共焦点系の光路を有する。複数波長の光が各光路に入力され、いずれかの光路を通過した光が選択的に計測対象物に出力される。
第1光路は、光軸方向における計測対象物の表面位置の近傍の異なった距離において異なる波長の光が焦点を結ぶように構成される。第1光路を通過した光は、計測対象物の表面で反射される。反射光のうち、空間的なフィルタとして第1経路に配置された開口部の位置で合焦した光のみが当該開口部を通過して波長検出器に導かれる。波長検出器により検出された光のスペクトルプロファイル(第1出力スペクトルプロファイル)は、計測距離を示す成分(距離依存性のプロファイル成分)を含むとともに、距離非依存性のプロファイル成分をも含む。
第2光路は、計測対象物の表面位置の近傍の略同一距離において異なる波長の光が焦点を結ぶように構成される。第2光路を通過した光は、計測対象物の表面で反射される。反射光のうち、空間的なフィルタとして第2経路に配置された開口部の位置で合焦した光のみが当該開口部を通過して波長検出器に導かれる。波長検出器により検出された光のスペクトルプロファイル(第2出力スペクトルプロファイル)は、距離依存性のプロファイル成分を含まず、距離非依存性のプロファイル成分のみを含む。第2出力スペクトルプロファイルを用いて、第1出力スペクトルプロファイルについて、距離非依存性のプロファイル成分に関連する潜在的な計測誤差のための補正が行われる。
特開2013−130581号公報
特許文献1記載のCPSシステムにおいては、第1出力スペクトルプロファイルについて上記の補正が行われることにより、信頼性が向上される。具体的には、距離非依存性のプロファイル成分として、計測対象物の材料成分、光源に関連付けられる光源のスペクトルプロファイル成分または波長検出器に関連付けられる成分による計測誤差が低減される。
ところで、第1光路から計測対象物に出力される光の進行方向と計測対象物の位置および姿勢との関係によっては、正確な計測が困難な場合がある。例えば、第1光路から出力されかつ計測対象物の表面で合焦しつつ反射される光の大部分が第1光路の開口部からずれた位置に進行すると、その光は波長検出器により検出されない可能性がある。
そこで、使用者は、実際に計測対象物の変位を計測する前に、第1光路から出力されかつ計測対象物の表面で合焦しつつ反射される光の大部分が第1光路の開口部を通るように、第1光路と計測対象物との相対的な位置決めを行う必要がある。しかしながら、使用者は、計測対象物の表面で合焦しつつ反射される光と第1光路の開口部とを直接視認することはできない。したがって、このような位置決めは、熟練を要するとともに正確な作業が難しい。
本発明の目的は、計測対象物の変位を容易かつ正確に計測することが可能な共焦点変位計を提供することである。
(1)本発明に係る共焦点変位計は、複数の波長を有する光を出射する投光部と、投光部により出射された光に光軸方向に沿った色収差を発生させるとともに、色収差を有する光を収束させて計測対象物に照射する光学部材と、光学部材により計測対象物に照射された光のうち、計測対象物の表面で合焦しつつ反射された波長の光を通過させるピンホールを有するピンホール部材と、計測対象物の表面で反射されるとともにピンホールを通過する光についての波長ごとの強度を示す受光信号を取得する取得部と、ピンホールを通過した光についての波長ごとの信号強度に基づいて計測対象物の変位を算出する変位計測部とを備える共焦点変位計であって、現時点よりも前の時点で取得部により取得された受光信号から現時点で取得部により取得された受光信号への変化を変化情報として表示する表示部を備える。
その共焦点変位計においては、複数の波長を有する光が投光部から出射される。投光部から出射された光には、光学部材により光軸方向に沿った色収差が発生する。また、色収差を有する光が光学部材により収束されて計測対象物に照射される。
光学部材により計測対象物に照射された光のうち、計測対象物の表面で合焦しつつ反射された波長の光がピンホール部材のピンホールを通過する。計測対象物の表面で反射されてピンホールを通過した光について波長ごとの強度を示す受光信号が取得される。ピンホールを通過した光についての波長ごとの信号強度に基づいて計測対象物の変位が算出される。
光学部材とピンホールと計測対象物との相対的な位置および姿勢の関係が変化すると、光学部材により計測対象物に照射された光のうち、計測対象物の表面で反射されるとともにピンホールを通過する光の強度も変化する。計測対象物から反射される光の大部分がピンホールを通ると、ピンホールを通過する光の強度は高くなる。したがって、取得部により取得される受光信号の値が高くなる。一方、計測対象物から反射される光の大部分がピンホールからずれた位置に進行すると、ピンホールを通過する光の強度は低くなる。したがって、取得部により取得される受光信号の値が低くなる。ノイズ等の影響を受けることなく計測対象物の変位を正確に算出するために、光学部材とピンホールと計測対象物との相対的な位置および姿勢の関係は、受光信号の値がより高くなるように調整されることが好ましい。
上記の構成によれば、前の時点で取得部により取得された受光信号から現時点で取得部により取得された受光信号への変化を示す情報が変化情報として表示部により表示される。それにより、使用者は、表示部に表示される変化情報を視認することにより、受光信号の変化に応じて光学部材とピンホールと計測対象物との相対的な位置関係および姿勢関係を調整することができる。その結果、計測対象物の変位を容易かつ正確に計測することが可能になる。
(2)変化情報は、現時点よりも前の1または複数の時点で取得部により取得された1または複数の受光信号のピーク値から現時点で取得部により取得された受光信号のピーク値への変化を含んでもよい。
計測対象物の変位は、取得部により取得される受光信号のピーク値に基づいて算出することができる。上記の構成によれば、現時点よりも前の1または複数の時点で取得部により取得された1または複数の受光信号のピーク値から現時点で取得部により取得された受光信号のピーク値への変化を示す情報が変化情報として表示部により表示される。したがって、使用者は、受光信号のピーク値がより高くなるように、位置関係および姿勢関係の調整を行うことができる。
(3)変化情報は、現時点よりも前の時点で取得部により取得された受光信号の波形から現時点で取得部により取得された受光信号の波形への変化を含んでもよい。
この場合、使用者は、変化情報を視認することにより受光信号の波形の変化を確認することができる。受光信号のピークの波長は光学部材と計測対象物との間の距離に対応する。そのため、使用者は受光信号のピークの位置に基づいて光学部材と計測対象物との相対的な位置関係および姿勢関係の変化を認識することができる。その結果、光学部材とピンホールと計測対象物との相対的な位置関係および姿勢関係の調整をより容易に行うことができる。
(4)共焦点変位計は、計測対象物の変位を計測する計測モードと変化情報を表示部に表示させる確認モードとで動作可能に構成された処理部をさらに備え、処理部は、計測モードにおいて取得部により取得された波長ごとの強度に基づいて計測対象物の変位を算出してもよい。
この場合、使用者は、確認モードで光学部材とピンホールと計測対象物との相対的な位置関係および姿勢関係の調整を行った後、計測モードで計測対象物の変位を計測することができる。
(5)処理部は、現時点で取得部により取得された受光信号のピーク値が予め定められた条件を満たすか否かを判定し、判定結果を変化情報とともに表示部に表示させてもよい。
この場合、使用者は、光学部材とピンホールと計測対象物との相対的な位置関係および姿勢関係が一定の条件を満たしているか否かを容易に確認することができる。
(6)共焦点変位計は、取得部により取得される受光信号について波長の範囲を指定する波長範囲指定部をさらに備え、処理部は、波長範囲指定部により指定された波長の範囲内で、現時点よりも前の時点で取得部により取得された受光信号のピーク値から現時点で取得部により取得された受光信号のピーク値の変化を変化情報として表示部に表示させてもよい。
この場合、使用者は所望の波長の範囲内で受光信号のピーク値の変化を経時的に確認することができる。したがって、光学部材とピンホールと計測対象物との相対的な位置関係および姿勢関係の調整の利便性が向上する。
(7)処理部は、計測対象物の変位を算出する前に、取得部により取得される受光信号から計測対象物の表面で合焦しつつ反射される光を除く不要な光に対応する不要成分の少なくとも一部が除去されるように補正処理を行ってもよい。
この場合、計測対象物の変位が算出される前に、処理部により受光信号から不要な光の成分の少なくとも一部が除去されるので、受光信号のピーク値をより正確に表示部に表示させることができる。
(8)共焦点変位計は、処理装置と、ヘッド部とをさらに備え、処理装置は、投光部および取得部を含むとともに投光部および取得部を収容する第1の筐体をさらに含み、ヘッド部は、光学部材およびピンホール部材を含むとともに光学部材およびピンホール部材を収容する第2の筐体をさらに含んでもよい。
この場合、投光部および取得部を含む処理装置と光学部材およびピンホール部材を含むヘッド部とが別体的に設けられる。そのため、計測対象物の形状もしくは配置等に応じて適切な色収差を発生させる光学部材または適切な焦点距離を有する光学部材を含むヘッド部を用いることが容易になる。
さらに、ヘッド部では、第2の筐体内に光学部材およびピンホール部材が収容される。それにより、第2の筐体内で予め光学部材およびピンホール部材の相対的な位置関係および姿勢関係を固定しておくことができる。この場合、光学部材とピンホールと計測対象物との相対的な位置関係および姿勢関係を個別に調整する必要がない。これらの結果、計測対象物の変位をより容易に計測することができる。
(9)共焦点変位計は、ヘッド部を複数備え、取得部は、複数のヘッド部のうちの一のヘッド部の光学部材から出射され、他のヘッド部のピンホールを通過する光についての波長ごとの強度を示す受光信号を取得可能に構成されてもよい。
この場合、複数のヘッド部のうち一のヘッド部から他のヘッド部のピンホールを通過する光の受光信号についての変化情報を表示部に表示することができる。それにより、使用者は、光学部材が対向するように一のヘッド部と他のヘッド部とを配置した状態で、一のヘッド部の光軸と他のヘッド部の光軸とを容易に一致させることができる。この状態で、一のヘッド部と他のヘッド部との間に計測対象物を配置することにより、その計測対象物の厚みを正確に計測することが可能になる。
本発明によれば、計測対象物の変位を容易かつ正確に計測することが可能になる。
第1の実施の形態に係る共焦点変位計の構成を示す模式図である。 計測ヘッドを用いた共焦点変位計の動作原理を説明するための図である。 受光部により受光された光の波長と受光信号の強度との関係を示す図である。 投光部の構成を示す平面図および断面図である。 計測対象物とは異なる部分で反射される不要光の一例を示す模式図である。 不要な成分を含む受光波形を示す図である。 受光波形の基底波形を示す図である。 基底波形が除去された受光波形を示す図である。 受光部に導かれる光の経路を示す図である。 図9の受光部に導かれる光の受光波形を示す図である。 第1の実施の形態に係る共焦点変位計の初期状態における主表示部の表示例を示す図である。 図11の第1の表示領域に表示される計測結果の例を示す図である。 図11の第1の表示領域に表示される受光波形の例を示す図である。 図11の第1の表示領域に表示される設定情報の入力画面の一例を示す図である。 受光確認処理により図11の第1の表示領域に表示される変化情報の例を示す図である。 受光確認処理により図11の第1の表示領域に表示される変化情報の例を示す図である。 受光確認処理により図11の第1の表示領域に表示される変化情報の例を示す図である。 受光確認処理により図11の第1の表示領域に表示される変化情報の例を示す図である。 受光確認処理により図11の第1の表示領域に表示される変化情報の例を示す図である。 受光確認処理により図11の第1の表示領域に表示される変化情報の例を示す図である。 第1の実施の形態に係る変位計測処理を示すフローチャートである。 図21の受光確認処理を示すフローチャートである。 図21の受光確認処理を示すフローチャートである。 レンズユニットの第1〜第4の変形例を示す図である。 投光部の変形例を示す図である。 分光部の変形例を示す図である。 第2の実施の形態に係る共焦点変位計の構成を示す模式図である。 第2の実施の形態に係る共焦点変位計による計測対象物の厚み計測の例を示す図である。 図28の計測対象物と2個の計測ヘッドとの位置関係を示す図である。 第2の実施の形態に係る共焦点変位計の初期状態における主表示部の表示例を示す図である。 対向確認機能により図30の第1の表示領域に表示される第1および第2の変化情報の表示例を示す図である。 透明な計測対象物について外表面および内表面の変位を計測する例を示す図である。 図32の計測対象物に光が照射されることにより取得される受光波形を示す図である。 図11の第1の表示領域に表示される設定情報の入力画面の他の例を示す図である。 使用者によりしきい割合が設定された状態で受光確認処理により図11の第1の表示領域に表示される変化情報の例を示す図である。 他の実施の形態に係る共焦点変位計の構成を示す模式図である。
以下、本発明の一実施の形態に係る共焦点変位計について図面を参照しながら説明する。
[1]第1の実施の形態
(1)共焦点変位計の基本構成
図1は、第1の実施の形態に係る共焦点変位計の構成を示す模式図である。図1に示すように、共焦点変位計500は、処理装置100、計測ヘッド200、導光部300、PC(パーソナルコンピュータ)600、主表示部700および操作部800を備える。導光部300は、複数の光ファイバを含み、処理装置100と計測ヘッド200とを光学的に接続する。
処理装置100は、筐体110、投光部120、分光部130、受光部140、演算処理部150および副表示部400を含む。筐体110は、投光部120、分光部130、受光部140および演算処理部150を収容する。副表示部400は、7セグメント表示器またはドットマトリクス表示器等の表示器を含み、筐体110に取り付けられる。投光部120は、広い波長帯域(例えば500nm〜700nm)の光すなわち複数の波長を有する光を出射可能に構成される。投光部120の詳細な構成については後述する。投光部120により出射された光は、後述する導光部300の光ファイバ311に入力される。
分光部130は、回折格子131および複数(本例では2個)のレンズ132,133を含む。後述するように、投光部120により出射されて計測対象物Sの表面で反射された光の一部が、導光部300の光ファイバ312から出力される。光ファイバ312から出力された光は、レンズ132を通過することにより略平行化され、回折格子131に入射される。本実施の形態においては、回折格子131は反射型の回折格子である。回折格子131に入射された光は、波長ごとに異なる角度で反射するように分光され、レンズ133を通過することにより波長ごとに異なる一次元上の位置に合焦される。
受光部140は、複数の画素が一次元状に配列された撮像素子(一次元ラインセンサ)を含む。撮像素子は、多分割PD(フォトダイオード)、CCD(電荷結合素子)カメラまたはCMOS(相補性金属酸化膜半導体)イメージセンサであってもよいし、他の素子であってもよい。受光部140は、分光部130のレンズ133により形成された波長ごとに異なる複数の合焦位置で撮像素子の複数の画素がそれぞれ光を受光するように配置される。受光部140の各画素からは、受光量に対応するアナログの電気信号(以下、受光信号と呼ぶ。)が出力される。受光信号は、各画素で受光される光の強度を示す。
演算処理部150は、記憶部151および制御部152を含む。記憶部151は、例えばROM(リードオンリメモリ)、RAM(ランダムアクセスメモリ)またはハードディスクを含む。記憶部151には、処理装置100内の各構成要素を制御するための制御プログラムおよび変位を算出するための算出プログラムが記憶されるとともに、変位計測に用いられる種々のデータが記憶される。制御部152は、例えばCPU(中央演算処理装置)を含む。
制御部152は、受光部140により出力される受光信号を取得し、記憶部151に記憶された算出プログラムおよびデータに基づいて計測対象物Sの変位を計測し、計測結果を副表示部400に表示する。
ここで、演算処理部150には、PC600が接続される。PC600は、CPU(中央演算処理装置)601およびメモリ602を含む。メモリ602には、変位計測プログラムが記憶されるとともに、変位計測に用いられる種々のデータが記憶される。
処理装置100の制御部152は、さらに受光部140から取得された受光信号をPC600のCPU601に与える。CPU601は、制御部152から与えられた受光信号を取得し、メモリ602に記憶された変位計測プログラムおよびデータに基づいて計測対象物Sの変位計測処理を実行する。また、CPU601は、計測モードおよび確認モードで動作可能に構成される。変位計測処理は、後述する受光確認処理を含む。
変位計測処理の実行中に、CPU601は、計測モードで計測対象物Sの変位を算出する。一方、CPU601は、確認モードで制御部152からの受光信号を取得し、メモリ602に記憶されたデータに基づいて受光確認処理を実行する。受光確認処理は、現時点よりも前の時点で取得された受光信号から現時点で取得された受光信号への変化を変化情報として生成し、生成された変化情報を主表示部700に表示させる処理である。本実施の形態では、現時点よりも前の時点で取得された受光信号のピーク値から現時点で取得された受光信号のピーク値への変化が変化情報として生成される。
計測ヘッド200は、略軸対称形状(例えば、円筒形状)を有する筐体210、光ファイバ314およびレンズユニット220を含む。筐体210は、光ファイバ314およびレンズユニット220を収容する。
筐体210の一端に後述する導光部300のファイバコネクタ330が取り付けられている。光ファイバ314は、筐体210内でファイバコネクタ330に接続されている。処理装置100から光ファイバ314に導光部300を通して光が導かれる。光ファイバ314に導かれた光は、筐体210内で光ファイバ314から出力され、レンズユニット220に導かれる。
レンズユニット220は、屈折レンズ221、回折レンズ222および対物レンズ223を含む。レンズユニット220に導かれた光は、屈折レンズ221および回折レンズ222を順に通過する。これにより、光軸方向に沿って光に色収差が発生する。色収差が発生した光は、対物レンズ223を通して筐体210の外部に導かれ、計測対象物Sに照射される。対物レンズ223は、色収差が発生した光が計測対象物Sの表面近傍の位置で合焦可能に配置される。
導光部300は、複数(本例では3個)の光ファイバ311,312,319、ファイバカプラ320およびファイバコネクタ330を含む。図1の例では、ファイバカプラ320は処理装置100の筐体110に設けられる。ファイバコネクタ330は計測ヘッド200の筐体210に取り付けられる。
ファイバカプラ320は、いわゆる1×2型の構成を有し、3個のポート321〜323および本体部324を含む。ポート321,322とポート323とは、本体部324を挟んで対向するように本体部324に接続される。ポート321,322の少なくとも1つのポートに入力された光は、ポート323から出力される。ポート323に入力された光は、ポート321,322の各々から出力される。
ファイバコネクタ330は、2個のポート331,332および本体部333を含む。ポート331とポート332とは、本体部333を挟んで対向するように本体部333に接続される。ポート331に入力された光はポート332から出力され、ポート332に入力された光はポート331から出力される。
ファイバカプラ320のポート321,322には、光ファイバ311,312がそれぞれ接続される。ファイバコネクタ330のポート332には、光ファイバ314が接続される。ファイバカプラ320のポート323とファイバコネクタ330のポート331とが光ファイバ319により接続される。
この構成によれば、処理装置100の投光部120により出射された光は、光ファイバ311を通してファイバカプラ320のポート321に入力される。ポート321に入力された光は、ポート323から出力され、光ファイバ319を通してファイバコネクタ330のポート331に入力される。ポート331に入力された光は、ポート332から出力され、光ファイバ314およびレンズユニット220を通して計測対象物Sに照射される。
計測対象物Sの表面で反射された光の一部は、レンズユニット220および光ファイバ314を通してファイバコネクタ330のポート332に入力される。ポート332に入力された光は、ポート331から出力され、光ファイバ319を通してファイバカプラ320のポート323に入力される。ポート323に入力された光は、ポート321,322から出力される。ポート322から出力された光は、光ファイバ312を通して分光部130に導かれる。これにより、変位計測処理が行われる。
主表示部700は、例えば有機EL(エレクトロルミネッセンス)パネルまたは液晶ディスプレイパネル等の表示装置を含む。主表示部700は、PC600に接続される。主表示部700には、CPU601が計測モードにある状態で変位計測処理により算出された計測距離等の数値および制御部152からCPU601に与えられる受光信号の波形等が表示される。また、主表示部700には、CPU601が確認モードにある状態で上記の変化情報が表示される。
操作部800は、キーボードおよびポインティングデバイスを含む。ポインティングデバイスは、マウスまたはジョイスティック等を含む。操作部800は、PC600に接続される。使用者は、操作部800を操作することにより、例えば計測モードおよび確認モードの切り替えを行うことができる。
PC600は、さらにプログラマブルコントローラ等の図示しない外部装置に接続可能に構成され、変位計測処理の結果および変化情報を外部装置に送信することが可能である。
PC600には、計測対象物Sの計測距離に対する良否判定用の基準範囲が設定されてもよい。この場合、計測距離が基準範囲内であるときには、計測対象物Sが良品であることを示す判定結果(例えば「OK」)が主表示部700に表示される。一方、計測距離が基準範囲外であるときには、計測対象物Sが不良品を示す判定結果(例えば「NG」)が主表示部700に表示される。
(2)共焦点変位計の動作原理
図2は、計測ヘッド200を用いた共焦点変位計500の動作原理を説明するための図である。図2に示すように、光ファイバ314は、コア310aおよびクラッド310bを含み、コア310a(光軸)がレンズユニット220の光軸上に位置するように配置される。コア310aはクラッド310bにより被覆される。コア310aの一端部に入力された光は、コア310aの他端部から出力される。なお、図1の光ファイバ311,312,319も光ファイバ314と同様の構成を有する。コア310aの直径は、200μm以下であることが好ましく、50μm以下であることがより好ましい。
光ファイバ314から出力された光は、屈折レンズ221および回折レンズ222を通過する。これにより、光に色収差が発生する。色収差が発生した光は、対物レンズ223を通過することにより波長ごとに異なる位置で合焦する。例えば、波長が短い光は対物レンズ223に近い位置で合焦し、波長が長い光は対物レンズ223から遠い位置で合焦する。対物レンズ223に最も近い合焦位置P1と対物レンズ223から最も遠い合焦位置P2との間の範囲が計測範囲MRとなる。本例では、屈折レンズ221は凸型を有し、回折レンズ222は凹型を有する。この場合、光に発生する色収差が大きくなる。これにより、計測範囲MRを大きくすることができる。
計測範囲MRに計測対象物Sの表面が存在する場合には、対物レンズ223を通過した光は、計測対象物Sの表面に照射された後、当該表面により広範囲に反射される。ここで、本実施の形態においては、光ファイバ314の先端部分は、微小なピンホールを有する空間フィルタとして機能する。したがって、計測対象物Sの表面で反射された光のほとんどは、光ファイバ314に入力されない。
一方、計測対象物Sの表面の位置で合焦した特定の波長を有する光は、当該表面で反射されることによりレンズユニット220を通過し、光ファイバ314のコア310aの先端部分に入力される。光ファイバ314に入力された光の波長は、計測距離を示す。ここで、計測距離とは、所定の基準位置RPから計測対象物Sの表面の位置までの距離である。なお、本例では、基準位置RPは計測対象物Sに最も近い筐体210の端部の位置である。
光ファイバ314に入力された光は、図1の処理装置100に導かれ、回折格子131により分光されるとともにレンズ133により波長ごとに異なる位置に合焦される。受光部140の複数の画素は、波長ごとに異なる複数の光の合焦位置にそれぞれ配置される。そのため、受光部140の各画素は、当該画素に対応付けられた波長の光を受光し、受光信号を出力する。
この構成によれば、ピーク値を示す受光信号を出力する受光部140の画素の位置を特定することにより、受光された光の波長を特定することができる。また、受光された光の波長を特定することにより、計測距離を特定することができる。すなわち、上記の構成によれば、受光信号のピーク値に基づいて計測距離を特定することができる。
ここで、計測対象物Sに対する計測ヘッド200の位置および姿勢が変化すると、計測対象物Sに照射された光のうち計測対象物Sの表面で合焦しつつ反射されるとともに光ファイバ314に入力される光の光量も変化する。そのため、受光部140で受光される光の強度も変化する。本実施の形態においては、計測ヘッド200の姿勢とは、計測ヘッド200の光軸の向きを意味する。
図3は、受光部140により受光された光の波長と受光信号の強度との関係を示す図である。図3の横軸は受光された光の波長を示し、縦軸は受光信号の強度を示す。後述する図6〜図8および図10においても同様である。図3ならびに後述する図6〜図8および図10の横軸は、受光部140の画素の位置に相当する。
図3においては、位置および姿勢が互いに異なる4つの状態で計測ヘッド200から計測対象物Sに光が照射されたときに光ファイバ314に入力される光の受光信号の波形(以下、受光波形と呼ぶ。)W1〜W4が、太い実線、一点鎖線、点線および破線によりそれぞれ示される。受光波形W1〜W4のピークの波長(以下、ピーク波長と呼ぶ。)は、それぞれλ1〜λ4である。複数の受光波形W1〜W4のピーク値は、計測対象物Sに対する計測ヘッド200の位置および姿勢により互いに異なる。
例えば、計測対象物Sの表面で合焦しつつ反射される光の大部分がコア310aに入力されると、図3の受光波形W1,W2に示されるように、受光信号のピーク値が高くなる。一方、計測対象物の表面で合焦しつつ反射される光の大部分がコア310aからずれた位置に進行すると、図3の受光波形W3,W4に示されるように、受光信号のピーク値が低くなる。受光信号のピーク値が低いと、ノイズ等の影響によりその受光信号からピークが識別できない可能性がある。そのため、計測対象物Sの変位を正確に算出することが難しい。
したがって、使用者は、受光部140から出力される受光信号のピーク値が高くなるように、計測対象物Sに対する計測ヘッド200の位置および姿勢を調整する必要がある。
そこで、本実施の形態に係る共焦点変位計500においては、CPU601が確認モードで動作することにより、上記の変化情報が生成され、生成された変化情報が主表示部700に表示される。ここで、本実施の形態において、現時点で取得された受光信号とは、CPU601により取得される最新の受光信号を意味する。
この場合、使用者は、主表示部700に表示される変化情報を視認することにより、受光信号のピーク値の経時的な変化を認識しつつ、より高いピーク値が得られるように計測対象物Sに対する計測ヘッド200の位置および姿勢を適切に調整することができる。その結果、使用者は、計測対象物Sの変位を容易かつ正確に計測することが可能になる。
(3)投光部
図4(a),(b)は、それぞれ投光部120の構成を示す平面図および断面図である。図4(a),(b)に示すように、投光部120は、光源121、蛍光体122、フェルール123、レンズ124、保持具125、フィルタ素子126および素子ホルダ127を含む。素子ホルダ127は、光源固定部127A、フェルール固定部127Bおよびレンズ固定部127Cを含む。光源121、フェルール123およびレンズ124は、素子ホルダ127の光源固定部127A、フェルール固定部127Bおよびレンズ固定部127Cにそれぞれ固定される。
光源121は、単一波長の光を出射するレーザダイオードである。本実施の形態においては、光源121は波長450nm以下の青色領域または紫外領域の光を出射する。蛍光体122は、青色領域または紫外領域の励起光を吸収し、励起光の波長領域とは異なる波長領域の蛍光を放出する。
本例の蛍光体122から放出される蛍光は、励起光に比べて広い範囲の波長を有する。すなわち、蛍光体122から放出される蛍光は、複数の波長を有する。なお、蛍光体122は、黄色領域の蛍光を放出してもよいし、緑色領域の蛍光を放出してもよいし、赤色領域の蛍光を放出してもよい。また、蛍光体122は、複数の蛍光部材により構成されてもよい。
フェルール123は、図1の導光部300の光ファイバ311の端部を保持する。レンズ124は、光源121とフェルール123との間に配置される。フェルール123(光ファイバ311)の端部には、円環状を有する保持具125の一端面が取り付けられる。保持具125の内周部に蛍光体122が収容される。保持具125内の蛍光体122を覆うように保持具125の他端面にフィルタ素子126が取り付けられる。フィルタ素子126は反射型フィルタであり、黄色領域、緑色領域または赤色領域の光を反射するとともに、青色領域または紫外領域の光を透過させる。
この構成によれば、光源121により出射された光は、レンズ124を通過することにより、励起光として蛍光体122上に集光される。蛍光体122は、励起光を吸収して蛍光を放出する。ここで、蛍光体122に吸収されずに透過した励起光と蛍光体122からの蛍光とが混合されることにより、広い波長帯域の光が生成される。本例においては、励起光と蛍光とが所望の割合で混合された光を生成するために、光路方向における蛍光体122の厚みが、例えば10μm〜200μmに形成される。また、保持具125内における蛍光体122の濃度が、例えば30%〜60%に形成される。
投光部120において生成された光は、フェルール123を通過することにより光ファイバ311に入力される。蛍光体122により光ファイバ311とは反対の方向に放出された蛍光は、フィルタ素子126により光ファイバ311の方向に反射される。これにより、蛍光を効率よく光ファイバ311に入力することができる。
本例においては、蛍光体122は保持具125内に収容されるが、本発明はこれに限定されない。蛍光体122は、フェルール123の端面に塗布されてもよい。この場合、投光部120は保持具125を含まない。また、投光部120はフィルタ素子126を含むが、本発明はこれに限定されない。十分な蛍光が光ファイバ311に入力される場合には、投光部120はフィルタ素子126を含まなくてもよい。
(4)演算処理部
図1の演算処理部150の記憶部151には、受光部140の画素の位置と、出力される受光波形のピーク波長と、計測距離との換算式が上記の算出プログラムとともに予め記憶されている。演算処理部150の制御部152は、受光信号を出力する画素の位置を特定するとともに、特定された画素の位置および記憶部151に記憶された換算式に基づいて受光波形のピーク波長および計測距離を順次算出し、算出した計測距離を副表示部400に表示する。これにより、計測対象物Sの厚み、距離または変位を計測することができる。また、制御部152は、計測距離をより正確に算出するために、以下に説明する不要成分除去補正、受光波形シフト補正および受光波形尺度補正を行う。
(a)不要成分除去補正
計測対象物Sの表面で合焦しつつ反射された光とは異なる光が受光部140により受光されることがある。以下の説明では、受光部140により受光される光のうち計測対象物Sの表面で合焦しつつ反射された光を除く光を不要光と呼ぶ。
図5は、計測対象物Sとは異なる部分で反射される不要光の一例を示す模式図である。図5の例においては、レンズユニット220の屈折レンズ221により直接反射された光(矢印で示す光)が光ファイバ314に入力される。このような光に対応する受光波形は、計測距離を示す成分を含まずに、不要な成分を含む。
図6は、不要な成分を含む受光波形を示す図である。図6の受光波形W0には、3個のピークP0,Px,Pyが含まれる。ピークP0は、計測対象物Sの表面で合焦しつつ反射された光により発生する。ピークP0は急峻な形状を有し、ピーク波長はλ0である。ピークPxは、例えば図5の不要光に対応する成分を含み、計測対象物Sとは異なる部分で反射された光により発生する。ピークPxは滑らかな形状を有し、ピーク波長はλxである。ピークPyは、発振波長λyの光源121(図4)の光により発生する。より具体的には、ピークPyは、光源121(図4)により発生されるとともに蛍光体122(図4)を通過しつつ計測対象物Sの表面に導かれ、計測対象物Sの表面で合焦することなく反射された不要光により発生する。ピークPyは急峻な形状を有し、ピーク波長はλyである。
ピーク波長λxはピーク波長λ0に比較的近く、ピークPxの幅は広い。そのため、ピークP0はピークPxに埋もれることとなる。この場合、ピーク波長λ0を正確に特定することは困難である。そこで、受光波形W0からピークPxに起因する部分(以下、基底波形BLと呼ぶ。)を不要成分として除去するための不要成分除去補正が行われる。
図7は、受光波形W0の基底波形BLを示す図である。本実施の形態では、制御部152は、ピークPxとピークP0とを識別する低域通過フィルタ処理を受光波形W0に適用することにより、図7の基底波形BLを取得する。基底波形BLを取得する方式は上記の方式に限定されず、図1の記憶部151に基底波形BLを示すデータが予め記憶されていてもよい。この場合、制御部152は、取得した図7の基底波形BLに基づいて、図6の受光波形W0から基底波形BLを除去するように受光波形W0の補正を行う。
図8は、基底波形BLが除去された受光波形W0を示す図である。図8の例では、ピーク波長λ0が図6のピーク波長λ0よりも短波長側にわずかにシフトしている。このように、受光波形W0から基底波形BLを除去することにより、ピーク波長λ0をより正確に特定することができる。その結果、計測距離をより正確に算出することが可能になる。
ここで、図6の受光波形W0のピークPyに起因する部分は、ピーク波長λ0の正確な特定に影響を与えない。したがって、不要成分除去補正においては、受光波形W0のピークPyに起因する部分は、受光波形W0から除去されなくてもよいし、受光波形W0から除去されてもよい。ピークPyに起因する部分が計測範囲MR(図2)に対応する波長の範囲に近い場合には、基底波形BLとともに受光波形W0のピークPyに起因する部分を受光波形W0から除去することが好ましい。
なお、本実施の形態では、レーザダイオードからなる光源121により出射される励起光の強度が変位の計測に適した強度に対して過剰に大きいので、励起光に相当する波長成分の光を不要光としている。したがって、光源121により出射される励起光の強度が変位の計測に適した範囲内であれば励起光を変位の計測に用いてもよい。
不要光のさらに他の例について説明する。図9は、受光部140に導かれる光の経路を示す図である。図9に示すように、受光部140には、回折格子131により分光された1次光に加えて、回折格子131により0次回折(本例では正反射)された0次光が導かれる。図9においては、1次光が実線で示され、0次光が一点鎖線で示される。
図10は、図9の受光部140に導かれる光の受光波形W0を示す図である。図10に示すように、受光波形W0は、1次光に対応する部分と0次光に対応する部分とを含む。図6の受光波形W0と同様に、1次光に対応する受光波形W0の部分には、3個のピークP0,Px,Pyが含まれる。0次光に対応する受光波形W0の部分には、1個のピークPzが含まれる。
0次光は、波長に関係なく回折格子131により一定の方向に反射される。回折格子131は、0次光が計測範囲MR(図2)に対応する画素で受光されないように配置される。そのため、0次光は、計測距離の算出には用いられない。図10に示すように、受光波形W0が不要光として0次光の成分を含む場合、不要成分除去補正においては、受光波形W0のピークPzに起因する部分は、受光波形W0から除去されなくてもよいし、受光波形W0から除去されてもよい。
(b)受光波形シフト補正および受光波形尺度補正
以下の説明では、図5の例で説明したように、投光部120から出射されるとともにレンズユニット220で反射されて受光部140に受光される不要光を第1の不要光と呼ぶ。また、光源121により発生されて蛍光体122を通過しつつ計測対象物Sの表面に導かれ、計測対象物Sの表面で合焦することなく反射されて受光部140に受光される不要光を第2の不要光と呼ぶ。さらに、図9の例で説明したように、回折格子131により発生されて受光部140に受光される0次光を第3の不要光と呼ぶ。
上記のように、特定の波長を有する光は、当該波長に対応付けられた受光部140の画素により受光される。しかしながら、周囲の温度変化に伴う受光部140の受光面の位置の変化または受光面の傾きの変化により、特定の波長を有する光が予め対応付けられた画素とは異なる画素により受光されることがある。この場合、温度変化に伴って計測結果が変動することにより計測距離を正確に算出することができない。そこで、以下に説明する受光波形シフト補正および受光波形尺度補正が行われる。受光波形シフト補正は、温度に依存する受光波形W0の波長軸上のシフトを補正する処理である。受光波形尺度補正は、温度に依存する受光波形W0の波長軸上での尺度を補正する処理である。
計測対象物Sの変位を計測する際の受光波形W0には、例えば図10に示すように、計測対象物Sの変位に依存するピークP0とともに第1〜第3の不要光にそれぞれ対応するピークPx,Py,Pzが含まれる。
ピークPxは、第1の不要光が計測対象物Sに到達しないので、計測対象物Sの変位に依存しない。また、ピークPyは、第2の不要光が光源121の発振波長λyを有するので、計測対象物Sの変位に依存しない。また、ピークPzは、第3の不要光が波長に関係なく受光部140の特定の画素により受光されるので、計測対象物Sの変位に依存しない。受光波形シフト補正では、3つのピークPx,Py,Pzのうち少なくとも1つが用いられる。受光波形尺度補正では、3つのピークPx,Py,Pzのうち少なくとも2つが用いられる。
受光波形シフト補正を行うために、図1の記憶部151には、ピークPx,Py,Pzのうち少なくとも1つのピークの中心が現れるべき波長が基準波長として予め記憶される。制御部152は、記憶部151に記憶された基準波長に対応するピークPx〜Pzの波長を特定する。制御部152は、特定したピークPx〜Pzの波長と基準波長とを比較することにより受光波形W0の波長軸上でのシフト量を算出し、算出されたシフト量に基づいて受光波形W0の波長軸上でのシフトを補正する。図10には、受光波形W0の波長軸上でのシフトが補正された後の受光波形W0が点線で示されている。
受光波形尺度補正を行うために、記憶部151には、ピークPx,Py,Pzの少なくとも2つのピークの中心が現れるべき波長の間隔が基準間隔として予め記憶される。制御部152は、記憶部151に記憶された基準間隔に対応するピークPx〜Pzの間隔を特定する。制御部152は、特定したピークPx〜Pzの間隔と基準間隔とを比較することにより受光波形W0の波長軸上での尺度のずれを算出し、算出した尺度のずれに基づいて受光波形W0の波長軸上での尺度を補正する。
受光部140の温度特性に関する補正として、受光波形シフト補正および受光波形尺度補正のうち一方のみが行われてもよいし、両方が行われてもよい。受光波形シフト補正および受光波形尺度補正は、上記の不要成分除去補正よりも先に行われる。受光波形シフト補正および受光波形尺度補正が行われた後の受光波形W0のピークP0を特定することにより、計測距離をより正確に算出することができる。
制御部152において不要成分除去補正、受光波形シフト補正および受光波形尺度補正が行われた受光信号がPC600に与えられる。この場合、CPU601は、適切に補正された受光信号に基づいて変位計測処理を行うことができる。
(5)共焦点変位計の基本的な使用例
共焦点変位計500について基本的な使用例を説明する。以下の使用例においては、初期状態で共焦点変位計500の電源がオンされているものとする。また、CPU601は計測モードにあるものとする。
使用者は、まず計測対象物Sを変位計測用の載置台上に固定する。その後、使用者は、計測ヘッド200から出射される光が計測対象物Sに当たるように、計測ヘッド200を計測対象物Sに対して大まかに位置決めする。計測ヘッド200は、クランプ部材等により使用者の所望の位置に所望の姿勢で固定される。
図11は、第1の実施の形態に係る共焦点変位計500の初期状態における主表示部700の表示例を示す図である。図11に示すように、主表示部700には、例えば第1の表示領域410および第2の表示領域450が設定される。初期状態では、第1の表示領域410には何も表示されない。一方、第2の表示領域450には、受光確認ボタン451、確認設定ボタン452、確認終了ボタン453および計測開始ボタン454が表示される。
上記のように、計測対象物Sに対する計測ヘッド200の相対的な位置および姿勢が適切でないと、計測対象物Sの変位を正確に計測することは難しい。そこで、使用者は、計測ヘッド200の位置および姿勢をより適切に調整するために、図1の操作部800を用いて受光確認ボタン451を操作する。この場合、図1のCPU601が計測モードから確認モードに切り替えられる。確認モードにおいては、CPU601により一定の周期で変化情報が生成され、生成された変化情報が第1の表示領域410に表示される。変化情報の具体的な内容および表示例は後述する。
この状態で、使用者は、変化情報を確認しつつ計測ヘッド200の位置および姿勢を微調整することにより、計測ヘッド200をより適切に位置決めすることができる。
計測ヘッド200の位置決めが完了すると、使用者は、図1の操作部800を用いて確認終了ボタン453を操作する。それにより、図1のCPU601の動作モードが確認モードから計測モードに切り替えられる。その後、使用者は、計測開始ボタン454を操作することにより、計測対象物Sの変位を計測することができる。
CPU601が計測モードにある状態で計測対象物Sの変位が計測される際には、図11の第1の表示領域410に計測結果を示す数値または現時点で取得される受光波形が表示される。図12は、図11の第1の表示領域410に表示される計測結果の例を示す図である。図13は、図11の第1の表示領域410に表示される受光波形の例を示す図である。
図12の例では、第1の表示領域410内に、変位の計測結果を示す数値が表示されるとともに切替ボタン491が表示される。また、図13の例では、第1の表示領域410内に、現時点で取得される受光波形が表示されるとともに切替ボタン491が表示される。使用者は、図1の操作部800を用いて図12の切替ボタン491を操作することにより、第1の表示領域410の表示状態を図13の受光波形の表示状態に切り替えることができる。また、使用者は、図1の操作部800を用いて図13の切替ボタン491を操作することにより、第1の表示領域410の表示状態を図12の数値による計測結果の表示状態に切り替えることができる。
CPU601は、確認モードにある状態で受光確認処理中に、受光信号のピーク値があるしきい値よりも高いか否かに基づいて、計測ヘッド200の位置および姿勢の適否を判定し(以下、適否判定と呼ぶ。)、判定結果を変化情報とともに主表示部700に表示させることができる。また、CPU601は、ある波長範囲内にあるピークのみを上記の適否判定に用いることができる。さらに、CPU601は、種々の態様で変化情報を主表示部700に表示することができる。
受光確認処理で用いられる適否判定のしきい値、適否判定の波長範囲および表示態様を含む種々の情報は、設定情報として図1のメモリ602に記憶される。使用者は、図1の操作部800を用いて図11の確認設定ボタン452を操作するとともにそれらの情報を入力することにより、所望の設定情報をメモリ602に記憶させることができる。
図14は、図11の第1の表示領域410に表示される設定情報の入力画面の一例を示す図である。図14の例では、第1の表示領域410内に、2つの入力欄461,462および2つの表示態様ボタン463,464が表示される。一方の入力欄461は、適否判定のしきい値を使用者が指定するために用いられる。他方の入力欄462は、適否判定の波長範囲を使用者が指定するために用いられる。表示態様ボタン463,464は、変化情報として現時点よりも前の時点から現時点までの受光量のピーク値の変化を例えばドットプロットグラフで表示するのか波形グラフで表示するのかを使用者が選択するために用いられる。
なお、適否判定のしきい値は、複数の波長範囲についてそれぞれ異なる値に設定されてもよい。この場合、設定画面では、例えば複数の波長範囲にそれぞれ対応する複数のしきい値を入力するための複数の入力欄が表示されてもよい。また、適否判定のしきい値は、共焦点変位計500の製造者により予めメモリ602に記憶されてもよい。
図15〜図20は、受光確認処理により図11の第1の表示領域410に表示される変化情報の例を示す図である。図15の例では、変化情報として、現時点で取得された受光信号のピーク値(以下、現在ピーク値と呼ぶ。)、受光確認処理が開始されてから現時点までに取得された受光信号のピーク値の最大値(以下、過去最大ピーク値と呼ぶ。)、および受光確認処理が開始されてから現時点までの受光信号のピーク値の変化を示すドットプロットグラフが表示される。また、計測ヘッド200の位置および姿勢の適否判定結果が表示される。
図15のドットプロットグラフにおいては、横軸は時間を示し、縦軸は受光信号の強度を示す。そのドットプロットグラフでは、受光確認処理が開始されてから一定の周期で制御部152により取得された受光信号のピーク値がドット表示されるとともに、予め設定された適否判定のしきい値が点線で示される。なお、ピーク値の表示周期および横軸のスケールは、使用者により設定可能であってもよい。
さらに、図15の例では、ハッチングで示すように、過去最大ピーク値およびそのピーク値に対応するドットが強調表示される。これにより、使用者は、主表示部700を視認することにより受光信号のピーク値の経時的な変化を容易に認識することができるので、より高いピークが得られるように計測ヘッド200の位置および姿勢を調整することができる。
また、図15の例では、位置姿勢適否判定結果が表示されている。位置姿勢適否判定結果は、受光信号のピーク値がしきい値を超えるときに「OK」と表示され、受光信号のピーク値がしきい値を超えないときに「NG」と表示される。位置姿勢適否判定結果が「OK」と表示されることにより、使用者は調整の終了を促される。この位置姿勢適否判定結果の「OK」または「NG」を表示するためのしきい値は、図14の画面により設定された適否判定のしきい値と同じであってもよいし、別のしきい値であってもよい。
例えば、位置姿勢適否判定結果は、現時点での位置姿勢の適否が,過去よりも良くなっていれば「OK」と判定してもよい。また、位置姿勢適否判定結果は、現時点での位置姿勢適否が、過去の位置姿勢よりも良く、かつ、共焦点変位計500が計測対象物Sを計測しうる最低限の範囲よりも高いときに「OK」と表示してもよい。
位置姿勢適否判定結果は、これ以上調整しても、計測の精度に大きな影響を与えないような範囲に入ったときに、使用者に調整終了を報知し、変位計測のステップへ促すものである。
図16の例は、以下の点を除き図15の例と同じである。図16の例では、受光確認処理が開始されてから現時点までの受光信号のピーク値の変化が図15のドットプロットグラフに代えて波形グラフで表示される。
図17の例では、変化情報として、現在ピーク値および過去最大ピーク値が表示される。また、変化情報として、現時点の受光波形および過去最大ピーク値が得られたときの受光波形を含む波形グラフが表示される。さらに、計測ヘッド200の位置および姿勢の適否判定結果が表示される。
図17の波形グラフにおいては、横軸は受光部140により受光された光の波長を示し、縦軸は受光信号の強度を示す。その波形グラフでは、過去最大ピーク値が得られたときの受光波形が一点鎖線で示され、現時点の受光波形が実線で示される。これにより、使用者は、主表示部700を視認しつつ、現時点の受光波形のピークが一点鎖線で示される過去の受光波形のピークを超えるように、計測ヘッド200の位置および姿勢を調整することができる。
また、図17の波形グラフの横軸で示される波長は、計測ヘッド200の光軸方向における計測対象物Sと計測ヘッド200との間の距離に対応する。したがって、使用者は、現時点の受光波形を視認することにより、計測ヘッド200の光軸方向における計測対象物Sと計測ヘッド200との位置関係を認識することができる。それにより、使用者は、受光信号のピーク波長が図2の計測範囲MRに対応する波長の範囲に入るように、計測ヘッド200の位置を容易に調整することができる。
図18の例は、以下の点を除き図17の例と同じである。図18の例では、図17の波形グラフに変えて、現時点の受光波形と受光確認処理が開始されてから一定の周期で制御部152により取得された複数の受光波形とを含む波形グラフが表示される。
図18の波形グラフにおいては、横軸は受光部140により受光された光の波長を示し、縦軸は受光信号の強度を示す。その波形グラフでは、過去に取得された複数の受光波形が点線で示され、現時点の受光波形が実線で示される。これにより、使用者は、主表示部700を視認しつつ、現時点の受光信号のピークが点線で示される過去の複数の受光波形のピークを超えるように、計測ヘッド200の位置および姿勢を調整することができる。
図19の例は、以下の点を除き図17の例と同じである。図19の例では、図17の波形グラフに代えて、現時点の受光波形と受光確認処理が開始されてから制御部152により取得された複数の受光波形のピークを結ぶ包絡線とを含む波形グラフが表示される。
図19の波形グラフにおいては、横軸は受光部140により受光された光の波長を示し、縦軸は受光信号の強度を示す。その波形グラフでは、過去に取得された複数の受光波形のピークを結ぶ包絡線が点線で示され、現時点の受光波形が実線で示される。これにより、使用者は、主表示部700を視認しつつ、現時点の受光信号のピークの高さが点線で示される包絡線の最高点に近づくかその最高点を超えるように、計測ヘッド200の位置および姿勢を調整することができる。
図20の例は、以下の点を除き図15の例と同じである。図20の例では、図15のドットプロットグラフとともに、図17の波形グラフが表示される。この場合、使用者は、受光信号のピークの経時的な変化および受光波形の経時的な変化を容易に認識することができる。なお、図20の例においては、第1の表示領域410の左側に表示されるドットプロットグラフに代えて図16の波形グラフが表示されてもよく、第1の表示領域410の右側に表示される波形グラフとして図18または図19の波形グラフが表示されてもよい。
(6)変位計測処理
図21は、第1の実施の形態に係る変位計測処理を示すフローチャートである。図1のCPU601は、共焦点変位計500の電源がオンされることにより、一定の周期で以下の変位計測処理を実行する。初期状態において、CPU601は計測モードにある。また、主表示部700には、図11の画面が表示されているものとする。
まず、CPU601は、例えば図11の受光確認ボタン451が操作されることにより確認モードへの切り替えが指令されたか否かを判定する(ステップS1)。確認モードへの切り替えが指令された場合、CPU601は、後述するステップS20の受光確認処理を行った後、変位計測処理を終了する。
一方、確認モードへの切り替えが指令されていない場合、CPU601は、例えば図11の確認設定ボタン452が操作されることにより確認モードの設定が指令されたか否かを判定する(ステップS2)。確認モードの設定が指令された場合、制御部152は、使用者による操作部800の操作に応答して設定情報を受け付け(ステップS11)、受け付けられた設定情報をメモリ602に記憶し(ステップS12)、変位計測処理を終了する。
ステップS2において確認モードの設定が指令されていない場合、CPU601は、例えば図11の計測開始ボタン454が操作されることにより、計測の開始が指令されたか否かを判定する(ステップS3)。計測の開始が指令されていない場合、CPU601は、ステップS1の処理を実行する。
一方、計測の開始が指令された場合、CPU601は、制御部152から与えられる受光信号を取得する(ステップS4)。ここで、制御部152から与えられる受光信号には、制御部152により不要成分除去補正、受光波形シフト補正および受光波形尺度補正が行われている。
メモリ602には、記憶部151と同様に、受光部140の画素の位置と、出力される受光波形のピーク波長と、計測距離との換算式が予め記憶されている。CPU601は、補正後の受光信号とメモリ602に記憶された換算式とに基づいて計測対象物Sの変位を算出する(ステップS5)。さらに、CPU601は、算出された変位を主表示部700に表示する(ステップS6)。その後、CPU601は、例えば使用者が図1の操作部800を操作することにより計測の終了が指令されたか否かを判定する(ステップS7)。CPU601は、計測の終了が指令された場合に変位計測処理を終了し、計測の終了が指令されない場合にステップS4の処理を実行する。
図22および図23は、図21の受光確認処理を示すフローチャートである。上記のように、図22および図23の受光確認処理は図21のステップS1において確認モードへの切り替えが指令された場合に実行される。
まず、CPU601は、PC600に内蔵されるタイマをリセットするとともにカウントをスタートさせる(ステップS21)。また、CPU601は受光信号の取得回数を示す変数iの値を1とする(ステップS22)。
続いて、CPU601は、制御部152から与えられる受光信号を取得する(ステップS23)。ここで、制御部152から与えられる受光信号には、制御部152により不要成分除去補正、受光波形シフト補正および受光波形尺度補正が行われている。その後、CPU601は、取得された受光信号の受光波形を1番目の受光波形としてメモリ602に記憶し、取得された受光信号のピークを抽出するとともにそのピーク値を1番目のピーク値としてメモリ602に記憶する(ステップS24)。また、CPU601は、メモリ602に記憶された1番目のピーク値を現在ピーク値として主表示部700に表示する(ステップS25)。
次に、CPU601は、タイマのカウントに基づいてステップS21の処理から予め定められた一定期間が経過したか否かを判定する(ステップS26)。一定期間が経過していない場合、CPU601は後述するステップS33の処理を実行する。一方、一定期間が経過している場合、CPU601は、タイマをリセットするとともにカウントをスタートさせる(ステップS27)。また、CPU601は変数iの値に1を加算する(ステップS28)。
続いて、CPU601は、受光部140から出力される受光信号を取得する(ステップS29)。ここで、制御部152から与えられる受光信号には、制御部152により不要成分除去補正、受光波形シフト補正および受光波形尺度補正が行われている。その後、CPU601は、取得された受光信号の受光波形をi番目の受光波形としてメモリ602に記憶し、取得された受光信号のピークを抽出するとともにそのピーク値をi番目のピーク値としてメモリ602に記憶する(ステップS30)。また、CPU601は、メモリ602に記憶されたi番目のピーク値および受光波形と1番目〜(i−1)番目までのピーク値および受光波形とに基づいて、変化情報を生成し、生成された変化情報を主表示部700に表示する(ステップS31)。なお、変化情報は、1番目〜(i−1)番目までのピーク値のうちの少なくとも1つとi番目のピーク値(現在ピーク値)とを含む。
その後、CPU601は、予め設定情報としてメモリ602に記憶されているしきい値に基づいて計測ヘッド200の位置および姿勢の適否を判定し、判定結果を主表示部700に表示する(ステップS32)。なお、しきい値がメモリ602に記憶されていない場合、ステップS32の処理は省略されてもよい。
次に、CPU601は、例えば図11の確認終了ボタン453が操作されることにより、受光確認処理の終了が指令されたか否かを判定する(ステップS33)。受光確認処理の終了が指令されていない場合、CPU601は、ステップS26の処理を実行する。一方、受光確認処理の終了が指令された場合、CPU601は、受光確認処理を終了する。
ここで、CPU601は、変化情報が受光信号のピーク値の経時的な変化を示すグラフ(図15および図16参照)を含む場合、受光確認処理の終了時点のグラフを記憶部151に記憶してもよい。
(7)効果
第1の実施の形態に係る共焦点変位計500においては、複数の波長を有する光が投光部120から出射される。投光部120から出射された光には、レンズユニット220により光軸方向に沿った色収差が発生する。また、色収差を有する光はレンズユニット220により収束されて計測対象物Sに照射される。
計測ヘッド200から計測対象物Sに照射された光のうち、計測対象物Sの表面で合焦しつつ反射された波長の光が光ファイバ314を通過する。光ファイバ314を通過した光は、ファイバコネクタ330、光ファイバ319、ファイバカプラ320および光ファイバ312を通して分光部130に導かれ、分光される。分光部130により分光された光は受光部140により受光される。受光部140から出力される受光信号が制御部152により取得される。制御部152は、取得された受光信号に基づいて計測対象物Sの変位を算出するとともに、取得された受光信号をPC600に与える。
計測対象物Sに対する計測ヘッド200の位置および姿勢が変化すると、計測対象物Sに照射された光のうち計測対象物Sの表面で合焦しつつ反射されるとともに光ファイバ314に入力される光の強度も変化する。計測対象物Sから反射される光の大部分が光ファイバ314を通ると、光ファイバ314を通過する光の強度は高くなる。したがって、取得される受光信号のピーク値が高くなる。一方、計測対象物Sから反射される光の大部分が光ファイバ314からずれた位置に進行すると、光ファイバ314を通過する光の強度は低くなる。したがって、取得される受光信号のピーク値が低くなる。
ノイズ等の影響を受けることなく計測対象物Sの変位を正確に算出するために、計測ヘッド200と計測対象物Sとの相対的な位置および姿勢の関係は、受光信号の値がより高くなるように調整されることが好ましい。
そこで、上記の共焦点変位計500においては、CPU601が確認モードで動作することにより、現時点よりも前の時点で取得された受光信号のピーク値から現時点で取得された受光信号のピーク値への変化が変化情報として主表示部700に表示される。
この場合、使用者は、変化情報を視認することにより受光信号のピーク値の経時的な変化を認識しつつ、より高いピーク値が得られるように計測ヘッド200の位置および姿勢を適切に調整することができる。その結果、使用者は、計測対象物Sの変位を容易かつ正確に計測することが可能になる。
CPU601は、計測モードにおいて計測対象物Sの変位を計測する。それにより、使用者は、確認モードで計測対象物Sに対する計測ヘッド200の位置および姿勢を調整した後、計測モードで計測対象物Sの変位を計測することができる。このように、計測ヘッド200の位置決め作業および計測対象物Sの変位の計測作業を円滑に行うことができる。
上記の受光確認処理においては、受光信号のピーク値があるしきい値よりも高いか否かに基づいて、計測ヘッド200の位置および姿勢の適否が判定され、判定結果が変化情報とともに主表示部700に表示される。それにより、使用者は、計測ヘッド200の位置および姿勢の適否を容易に認識することができる。
上記の例では、使用者は、操作部800を操作することにより、計測ヘッド200の位置および姿勢の適否を判定する際の判定対象となる波長の範囲を指定することができる。この場合、CPU601は、指定された波長範囲内にあるピークのみを上記の適否判定に用いることができる。また、CPU601は、指定された波長範囲内で、現時点よりも前の時点で取得された受光信号のピーク値から現時点で取得された受光信号のピーク値の変化を変化情報として主表示部700に表示してもよい。したがって、計測ヘッド200の位置および姿勢の調整の利便性が向上する。
上記のように、制御部152は、受光部140から出力される受光信号に対して不要成分除去補正、受光波形シフト補正および受光波形尺度補正を行う。そのため、図21〜図23のステップS4,S23,S29の処理でCPU601が取得する受光信号には不要な成分が除去されている。それにより、計測対象物Sの変位をより正確に算出することができる。したがって、共焦点変位計500により計測される計測対象物Sの変位の誤差を低減することができるとともに、受光確認処理において受光信号のピーク値をより正確に主表示部700に表示させることができる。
また、受光波形シフト補正により受光信号の波長軸上のシフトが補正される。それにより、温度変化に伴って受光波形W0が波長軸上でシフトすることによる計測結果の変動を補償することができる。さらに、受光波形尺度補正により受光信号の波長軸での尺度のずれが補正される。それにより、温度変化に伴う受光波形W0の波長軸上での尺度のずれによる計測結果の変動を補償することができる。
また、本実施の形態においては、処理装置100と計測ヘッド200とが別体的に設けられ、導光部300により光学的に接続される。そのため、計測対象物Sの形状もしくは配置等に応じて適切な色収差を発生させるレンズユニット220または適切な焦点距離を有するレンズユニット220を含む計測ヘッド200を用いることが容易になる。これにより、計測対象物Sの変位をより容易に計測することができる。
また、導光部300が光ファイバを含むことにより、処理装置100と計測ヘッド200とを離間して配置することができる。計測ヘッド200には機械駆動する部品は設けられず、発熱源が存在しない。そのため、計測ヘッド200を多様な環境に配置することができる。また、後述するように、計測ヘッド200の露出する部分をガラスにより形成することにより、計測ヘッド200をより多様な環境に配置することができる。
光源121としてレーザダイオードを用いる場合には、導光部300が光ファイバを含むことが好ましい。例えば、図4に示すように、光源121により出射されるレーザ光により蛍光体122を励起し、複数の波長を有する光を生成する場合には、光ファイバを用いることにより生成された光を効率よく抽出することができる。また、光ファイバを用いることにより、抽出された光を計測ヘッド200に効率よく供給できる。
さらに、計測ヘッド200では、筐体210内にレンズユニット220および光ファイバ314が収容される。したがって、筐体210内でレンズユニット220と光ファイバ314との位置関係を固定しておくことができる。この場合、使用者は、レンズユニット220と光ファイバ314との間の位置関係を調整する必要がない。したがって、計測対象物Sの変位をより容易に計測することができる。
また、本実施の形態においては、光ファイバ314の先端部分がピンホールとして機能する。このように、光ファイバ314のクラッド310bを遮光部とし、コア310aをピンホールとして用いることにより、簡易な構成で共焦点光学系を実現することができる。一方で、光の損失を許容できる場合には、遮光性を有する板にピンホールを設けた遮光部材を計測ヘッド200側における光ファイバ314の端部に配置してもよい。
(8)レンズユニットの変形例
本実施の形態において、レンズユニット220は屈折レンズ221および回折レンズ222を含むが、本発明はこれに限定されない。レンズユニット220は屈折レンズ221および回折レンズ222の一方または両方を含まなくてもよい。図24(a)〜(d)は、レンズユニット220の第1〜第4の変形例を示す図である。
図24(a)に示すように、第1の変形例におけるレンズユニット220は、図1の屈折レンズ221を含まずに回折レンズ222および対物レンズ223を含む。図24(b)に示すように、第2の変形例におけるレンズユニット220は、第1の変形例と同様に、図1の屈折レンズ221を含まずに回折レンズ222および対物レンズ223を含む。第2の変形例においては、回折レンズ222および対物レンズ223は、第1の変形例における回折レンズ222および対物レンズ223の位置とは逆に配置される。
図24(c)に示すように、第3の変形例におけるレンズユニット220は、第1の変形例の回折レンズ222に代えて、ダブレットレンズ224を含む。図24(d)に示すように、第4の変形例におけるレンズユニット220は、第2の変形例の回折レンズ222に代えて、ダブレットレンズ224を含む。このように、レンズユニット220は、例えば回折レンズ、ダブレットレンズ、GRIN(グレーデッドインデックス)レンズもしくはプリズムまたはこれらの組み合わせにより構成されてもよい。これらのレンズユニット220の構成によれば、投光部120により出射された光に光軸方向に沿った色収差を発生させるとともに、色収差を有する光を収束させて計測対象物Sに照射することができる。
上記のレンズは、ガラスレンズであってもよいし、樹脂レンズであってもよいし、表面上に樹脂がコーティングされたガラスレンズであってもよい。ガラスレンズは、高い耐熱性を有する。樹脂レンズは、安価に製造することができる。樹脂がコーティングされたガラスレンズは、比較的安価に製造することができ、かつ比較的高い耐熱性を有する。
レンズユニット220のうち、計測対象物Sに最も接近させることが可能なレンズは、例えば外部に露出する状態で配置される。このように、外部に露出するレンズは、ガラスにより形成されることが好ましい。工場等の製造ラインにおいては、計測ヘッド200は、水分または油分等が存在する環境に配置される。計測ヘッド200の外部に露出している部分の光学系をガラスにより形成することにより、計測ヘッド200の耐油性、耐水性および耐汚染性を向上させることができる。
上記の例と同じ理由により、レンズユニット220に外部に露出する部分が存在する場合、その露出部分はガラスにより形成されることが好ましい。なお、レンズユニット220の全体を計測ヘッド200の外部の雰囲気から遮断することができるのであれば、屈折レンズ221、回折レンズ222、対物レンズ223またはダブレットレンズ224がガラスではなく、樹脂により形成されてもよい。例えば、図24(a)〜(d)の例においては、レンズユニット220が筐体210内に配置された状態で、レンズユニット220の下側(計測対象物S側)にカバーガラスが設けられてもよい。
(9)投光部の変形例
本実施の形態において、光源121から出射される光の光軸とフェルール123の中心軸とが一直線上に配置されるが、本発明はこれに限定されない。図25は、投光部120の変形例を示す図である。図25に示すように、変形例における投光部120は、光源121、蛍光体122、フェルール123、レンズ124,128および反射部材129を含む。レンズ124は、光源121と反射部材129との間に配置される。レンズ128は、反射部材129とフェルール123との間に配置される。蛍光体122は、反射部材129の反射面に塗布される。
光源121により出射された光は、レンズ124を通過することにより、励起光として反射部材129に塗布された蛍光体122上に集光される。蛍光体122は、励起光を吸収して蛍光を放出する。ここで、蛍光体122に吸収されずに透過した励起光と蛍光体122からの蛍光とが混合されることにより、広い波長帯域の光が生成される。生成された光は、反射部材129の反射面で反射されることにより、レンズ128を通してフェルール123に導かれる。これにより、光ファイバ311に光が入力される。この構成においては、光学素子の配置の自由度が大きくなる。そのため、投光部120を小型化することが容易になる。
投光部120により生成される光の強度を増加させるために、光源121により出射される光の光量を大きくすることが好ましい。一方で、光源121からの光の光量を大きくすると、蛍光体122の発熱が大きくなることにより、反射部材129の反射効率が低下するとともに、蛍光体122からの蛍光の放出が飽和しやすくなる。そこで、反射部材129が回転または移動可能に構成されてもよい。これにより、蛍光体122が冷却され、発熱を抑制することができる。その結果、投光部120により生成される光の強度をより増加させることができる。
(10)分光部の変形例
本実施の形態において、分光部130の回折格子131は反射型を有するが、本発明はこれに限定されない。図26は、分光部130の変形例を示す図である。図26に示すように、分光部130の変形例においては、回折格子131は透過型を有する。回折格子131に入射された光は、波長ごとに異なる角度で透過するように分光される。回折格子131により分光された光は、レンズ133を通過することにより波長ごとに異なる受光部140の画素の位置に合焦される。
本例の分光部130においては、回折格子131を直進して通過する0次光が発生する場合がある。その0次光が受光部140により受光される場合には、0次光に対応する受光波形のピークを、上記の受光波形シフト補正および受光波形尺度補正に用いることができる。
[2]第2の実施の形態
(1)共焦点変位計の基本構成
第2の実施の形態に係る共焦点変位計について、第1の実施の形態に係る共焦点変位計500と異なる点を説明する。図27は、第2の実施の形態に係る共焦点変位計の構成を示す模式図である。図27に示すように、本実施の形態に係る共焦点変位計500は2個の処理装置100、2個の計測ヘッド200、2個の導光部300、PC600、主表示部700および操作部800を備える。2個の処理装置100は、第1の実施の形態に係る処理装置100と同じ構成を有する。2個の計測ヘッド200は、第1の実施の形態に係る計測ヘッド200と同じ構成を有する。2個の導光部300は、第1の実施の形態に係る導光部300と同じ構成を有する。本実施の形態では、2個の処理装置100に1個のPC600が接続されている。
以下、2個の計測ヘッド200を区別する場合には、一方の計測ヘッド200を第1計測ヘッド200Aと呼び、他方の計測ヘッド200を第2計測ヘッド200Bと呼ぶ。
上記の構成を有する共焦点変位計500においては、2個の処理装置100の投光部120の各々から複数の波長を有する光が出射される。各投光部120により出射された光は、対応する導光部300を通して対応する計測ヘッド200に伝送され、計測対象物Sに照射される。計測対象物Sの表面で合焦しつつ反射された光がその光を照射する計測ヘッド200の光ファイバ314を通過する。計測ヘッド200の光ファイバ314を通過した光は、対応する導光部300を通して対応する処理装置100の分光部130に導かれ、分光される。分光された光が対応する受光部140により受光される。このようにして、2個の計測ヘッド200に対応する受光信号が2個の処理装置100の受光部140からそれぞれ出力される。各処理装置100の制御部152は、受光部140から出力される受光信号を取得し、その受光信号について上記の補正を行うとともに計測対象物Sの変位を計測する。また、制御部152は、補正後の受光信号を1個のPC600に与える。
PC600のCPU601は、2つの処理装置100の制御部152から取得される2つの受光信号を用いて変位計測処理を行うことにより、2個の計測ヘッド200により光が照射される計測対象物Sの2つの部分の変位を計測する。この場合、CPU601は、第1計測ヘッド200Aに対応する受光信号を用いた変位計測処理と第2計測ヘッド200Bに対応する受光信号を用いた変位計測処理とを並行して行ってもよい。または、CPU601は、第1計測ヘッド200Aに対応する受光信号を用いた変位計測処理と第2計測ヘッド200Bに対応する受光信号を用いた変位計測処理とを交互に行ってもよい。
(2)第2の実施の形態に係る共焦点変位計に特有の使用例
本実施の形態に係る共焦点変位計500によれば、1個の計測対象物Sの複数の部分の変位を2個の計測ヘッド200を用いて計測することができる。この場合、図25の共焦点変位計500は、例えば計測対象物Sの厚みを計測するために用いることもできる。
図28は、第2の実施の形態に係る共焦点変位計500による計測対象物Sの厚み計測の例を示す図である。本例では、共焦点変位計500は、シート状の計測対象物Sの厚みを計測するために用いられる。
図28に太い実線の矢印で示すように、例えば計測対象物Sが巻回された第1のロールSR1からその計測対象物Sが繰り出される。また、第1のロールSR1から繰り出された計測対象物Sが第2のロールSR2に巻き取られる。この状態で、第1および第2のロールSR1,SR2の間に位置する計測対象物Sの部分を挟んで対向するように、計測対象物Sの上下に2つの計測ヘッド200が配置される。
2個の計測ヘッド200の位置関係が既知である場合には、2個の計測ヘッド200によりそれぞれ計測される計測対象物Sの上面および下面の変位に基づいて計測対象物Sの厚みを計測することができる。しかしながら、2個の計測ヘッド200の配置状態によっては、計測対象物Sの所望の部分の厚みを正確に計測することができない場合がある。
図29は、図28の計測対象物Sと2個の計測ヘッド200との位置関係を示す図である。本例では、下面の一部にくぼみSCを有する計測対象物SのくぼみSCの部分の厚みd1を計測する場合を想定する。
図29(a)の例では、第1計測ヘッド200Aの光軸oa1と第2計測ヘッド200Bの光軸oa2とが一致している。すなわち、第1計測ヘッド200Aの光軸oa1と第2計測ヘッド200Bの光軸oa2とが共通の軸上に位置する。この場合、計測対象物SのくぼみSCの部分の厚みd1を正確に計測することができる。
一方、図29(b)の例では、第1計測ヘッド200Aの光軸oa1と第2計測ヘッド200Bの光軸oa2とが一致していない。本例では、第1計測ヘッド200Aの光軸oa1と第2計測ヘッド200Bの光軸oa2とは互いに平行に配置されるが、2つの光軸oa1,oa2は同一軸上にない。それにより、第1計測ヘッド200Aから出射される光がくぼみSCに重なる計測対象物Sの上面に照射され、第2計測ヘッド200Bから出射される光がくぼみSCからずれた位置で計測対象物Sの下面に照射されている。この場合、計測対象物SのくぼみSCの部分の厚みd1ではなく、計測対象物SのくぼみSCからずれた部分の厚みd2が誤って計測される。
上記のように、2個の計測ヘッド200を対向配置し、2個の計測ヘッド200の間に配置される計測対象物Sの厚みを計測する場合には、2個の計測ヘッド200の光軸oa1,oa2を一致させる必要がある。しかしながら、熟練していない使用者が、2個の計測ヘッド200の光軸oa1,oa2が合うように各計測ヘッド200の位置および姿勢を調整することは難しい。
そこで、本実施の形態に係る共焦点変位計500においては、2個の計測ヘッド200を対向配置する際に、2個の計測ヘッド200の光軸oa1,oa2が一致しているか否かを確認するための機能(以下、対向確認機能と呼ぶ。)が設けられている。
図30は、第2の実施の形態に係る共焦点変位計500の初期状態における主表示部700の表示例を示す図である。図30の表示例では、第1の実施の形態に係る図11の表示例に加えて、第2の表示領域450に対向確認ボタン455が表示される。使用者は、図27の操作部800を用いて対向確認ボタン455を操作することにより、対向確認機能を使用することができる。
レンズユニット220が互いに対向するように配置された2つの計測ヘッド200の間に計測対象物Sが存在しない場合には、一方の計測ヘッド200から出射される光は他方の計測ヘッド200の光ファイバ314に入射する。また、他方の計測ヘッド200から出射される光は一方の計測ヘッド200の光ファイバ314に入射する。
2個の計測ヘッド200の各々の光ファイバ314に入射する光の強度は、2個の計測ヘッド200の光軸oa1,oa2が一致する状態に近づくほど大きくなり、光軸oa1,oa2が一致するときに最大となる。一方、2個の計測ヘッド200の各々の光ファイバ314に入射する光の強度は、光軸oa1,oa2のずれが大きくなるほど小さくなる。そこで、対向確認機能は、CPU601が2個の計測ヘッド200について上記の変位計測処理と基本的に同じ処理を行うことにより実現される。
具体的には、CPU601は、第1計測ヘッド200Aから出射され、第2計測ヘッド200Bの光ファイバ314から受光部140に導かれる光の受光信号について、変化情報(以下、第1の変化情報と呼ぶ。)を生成する。また、CPU601は、第2計測ヘッド200Bから出射され、第1計測ヘッド200Aの光ファイバ314から受光部140に導かれる光の受光信号について、変化情報(以下、第2の変化情報と呼ぶ。)を生成する。このようにして生成された第1および第2の変化情報を主表示部700に表示する。
図31は、対向確認機能により図30の第1の表示領域410に表示される第1および第2の変化情報の表示例を示す図である。図31の例では、第1および第2の変化情報が、第1の実施の形態の図15の例と同様に表示される。この場合、使用者は、主表示部700に表示される第1および第2の変化情報に基づいて光軸oa1,oa2が一致するように2個の計測ヘッド200の位置決めを行うことができる。なお、第1の表示領域410においては、第1および第2の変化情報は図15〜図20のいずれの態様で表示されてもよい。
ここで、CPU601は、第1計測ヘッド200Aおよび第2計測ヘッド200Bが同期するように2個の処理装置100の演算処理部150を制御してもよい。例えば、CPU601は、2個の演算処理部150に投光部120を発光させるためのトリガとして同期信号を与えてもよい。この場合、2個の処理装置100の制御部152は、例えば2個の投光部120の光源121(図4)を時系列で同時に発光させる。それにより、CPU601は、第1の変化情報を生成するための受光信号と第2の変化情報を生成するための受光信号とを同時に取得する。したがって、2個の計測ヘッド200にそれぞれ対応する受光信号の取得時間が短縮される。
CPU601は、図28に示すように計測対象物Sの厚みを計測する場合には、上記の例と同様に2個の投光部120の発光タイミングを同期させることが好ましい。それにより、計測対象物Sの上下の変位を同時に計測することが可能になる。その結果、計測対象物Sの厚みをより正確に計測することができる。
なお、制御部152は、上記の例とは逆に、例えば2個の投光部120の光源121(図4)を時系列で交互に発光させることにより、第1の変化情報を生成するための受光信号と第2の変化情報を生成するための受光信号とを交互に取得してもよい。それにより、2個の計測ヘッド200から同時に光が出射されることによる光の干渉が防止される。
ところで、2個の計測ヘッド200の光軸oa1,oa2が一致した状態で一方の計測ヘッド200から他方の計測ヘッド200を通して受光部140に導かれる光の強度は、計測対象物Sの表面で合焦しつつ反射することにより1の計測ヘッド200を通して受光部140に導かれる光の強度に比べて大きいと考えられる。そのため、制御部152は、対向確認機能により第1および第2の変化情報を生成する際の受光部140の露光時間を、計測対象物Sから反射される光に基づいて計測対象物Sの変位を計測する際の露光時間に比べて短く設定してもよい。または、制御部152は、投光部120において発生される光の光量が計測対象物Sの変位を計測する際に発生される光量に対して小さくなるように調整してもよい。それにより、適切な強度で受光信号を取得することが可能になる。
(3)効果
本実施の形態に係る共焦点変位計500は、2個の処理装置100、2個の計測ヘッド200および2個の導光部300を備える。それにより、2個の計測ヘッド200により光が照射される計測対象物Sの2つの部分の変位を計測することが可能である。
また、本実施の形態に係る共焦点変位計500は、2個の計測ヘッド200を対向配置する際に2個の計測ヘッド200の光軸oa1,oa2が一致しているか否かを確認するための対向確認機能を有する。対向確認機能では、CPU601は、第1計測ヘッド200Aから出射され、第2計測ヘッド200Bの光ファイバ314から受光部140に導かれる光の受光信号について、第1の変化情報を生成する。また、制御部152は、第2計測ヘッド200Bから出射され、第1計測ヘッド200Aの光ファイバ314から受光部140に導かれる光の受光信号について、第2の変化情報を生成する。さらに、CPU601は、生成された第1および第2の変化情報を主表示部700に表示する。
このように、一方の計測ヘッド200から他方の計測ヘッド200の光ファイバ314を通過する光の受光信号についての変化情報が主表示部700に表示される。それにより、使用者は、2個の計測ヘッド200を対向配置した状態で、2個の計測ヘッド200の光軸oa1,oa2を容易に一致させることができる。この状態で、2個の計測ヘッド200の間に計測対象物Sを配置することにより、その計測対象物Sの厚みを正確に計測することが可能になる。
[4]他の実施の形態
(1)上記実施の形態においては、CPU601は、計測対象物Sの表面として計測対象物Sの外表面で合焦しつつ反射される光の受光信号に基づいて、計測対象物Sの外表面の変位を計測するが、本発明はこれに限定されない。CPU601は、計測対象物Sの外表面の変位とともに、計測対象物Sの内表面の変位を計測してもよい。
図32は、透明な計測対象物Sについて外表面および内表面の変位を計測する例を示す図である。図32に太い実線で示すように、計測対象物Sが透明体である場合には、計測ヘッド200から計測対象物Sに照射される光の一部は、計測対象物Sの外表面(上面)で合焦しつつ反射され光ファイバ314のコア310a(図2)に入力される。また、図32に白抜きの実線で示すように、計測ヘッド200から計測対象物Sに照射される光のうち計測対象物Sの外表面で反射されない光の一部は、計測対象物Sの内部を通過して計測対象物Sの内表面(下面)で合焦しつつ反射され光ファイバ314のコア310a(図2)に入力される。
図33は、図32の計測対象物Sに光が照射されることにより取得される受光波形を示す図である。図33の横軸は波長を示し、縦軸は受光信号の強度を示す。図33に示すように、本例の受光波形W0は、計測対象物Sの外表面に対応するピークPpと計測対象物Sの内表面に対応するピークPqとを含む。
この場合、一方のピークPpのピーク波長λpは、計測ヘッド200の基準位置RP(図2)から計測対象物Sの外表面までの距離に対応し、他方のピークPqのピーク波長λqは、計測ヘッド200の基準位置RP(図2)から計測対象物Sの内表面までの距離に対応する。
そこで、CPU601は、2つのピーク波長λp,λqに基づいて、計測対象物Sの外表面および内表面の変位を計測してもよい。また、CPU601は、2つのピーク波長λp,λqの差分に基づいて計測対象物Sの厚みを算出してもよい。
この場合、CPU601は、受光確認処理時に、2つのピークPp,Pqの各々について、変化情報を生成し、生成された2つの変化情報を主表示部700に表示させてもよい。
本例に限らず、受光信号が複数のピークを含む場合、CPU601は、受光確認処理時に、複数のピークのうちの最も高いピークについて、変化情報を生成し、生成された1つの変化情報を主表示部700に表示させてもよい。あるいは、CPU601は、複数のピークのうち予め定められた波形に最も類似する形状を示すピークについて、変化情報を生成し、生成された1つの変化情報を主表示部700に表示させてもよい。
(2)上記実施の形態においては、現時点よりも前の時点で取得された受光信号のピーク値から現時点で取得された受光信号のピーク値への変化が変化情報として生成され、生成された変化情報が主表示部700に表示されるが、本発明はこれに限定されない。上記の変化情報に代えて、現時点よりも前の時点で取得された受光信号の積分値から現時点で取得された受光信号の積分値への変化が制御部152により変化情報として生成され、生成された変化情報が主表示部700に表示されてもよい。
受光信号の積分値は、受光信号の値が大きくなるにつれて増加し、受光信号の値が小さくなるにつれて減少する。したがって、使用者は、変化情報を視認することにより、受光信号の積分値の経時的な変化を認識しつつ、より高い積分値が得られるように計測ヘッド200の位置および姿勢を適切に調整することができる。その結果、使用者は、計測対象物Sの変位を容易かつ正確に計測することが可能になる。なお、積分値を用いた変化情報は、例えば図33の例に示すように、複数のピークを用いて複数の変位を計測する場合に有効に利用することができる。
(3)上記実施の形態においては、受光確認処理が行われる際に主表示部700に変化情報とともに計測ヘッド200の位置および姿勢の適否判定結果が表示されるが、本発明はこれに限定されない。
受光確認処理が行われる際に、主表示部700には、変化情報および適否判定結果とともに、例えば適否判定のしきい値が数値で表示されてもよい。この場合、使用者は、主表示部700に表示されるしきい値を目安として計測ヘッド200の位置および姿勢を調整することができる。
また、受光確認処理が行われる際に、主表示部700には、適否判定結果とともに、取得される受光波形がピークを有するか否かを示す指標が表示されてもよい。さらに、現在ピーク値が過去最大ピーク値に等しいかまたは過去の最大の受光信号のピーク値よりも高い場合に、主表示部700に現在ピーク値が最大であることを示す指標が表示されてもよい。それにより、計測ヘッド200の位置および姿勢を調整する際の利便性が向上する。
なお、計測ヘッド200の位置および姿勢の適否判定結果は、主表示部700に表示される以外の方法で使用者に提示されてもよい。例えば、計測ヘッド200に発光部を設けるとともに、計測ヘッド200の位置および姿勢が適切である場合に発光部を点灯し、計測ヘッド200の位置および姿勢が適切でない場合に発光部を消灯してもよい。この場合、使用者は、主表示部700を視認することなく計測ヘッド200の位置および姿勢を調整することが可能になる。
(4)上記実施の形態においては、CPU601は、受光確認処理において、受光信号のピーク値があるしきい値よりも高いか否かに基づいて、計測ヘッド200の位置および姿勢の適否を判定するが、本発明はこれに限定されない。CPU601は、現在ピーク値が過去最大ピーク値の予め定められた割合(以下、しきい割合と呼ぶ。)の値よりも高いか否かに基づいて、計測ヘッド200の位置および姿勢の適否を判定してもよい。この場合、しきい割合は使用者により設定可能であってもよい。
図34は、図11の第1の表示領域410に表示される設定情報の入力画面の他の例を示す図である。図34の例においては、最上段の入力欄461は、しきい割合を使用者が指定するために用いられる。入力欄461に使用者が所望の割合を入力することにより、入力された割合がしきい割合として設定される。
図35は、使用者によりしきい割合が設定された状態で受光確認処理により図11の第1の表示領域410に表示される変化情報の例を示す図である。図35の例では、図15の例と同様に、現在ピーク値、過去最大ピーク値、受光確認処理が開始されてから現時点までの受光信号のピーク値の変化を示すドットプロットグラフが表示される。また、計測ヘッド200の位置および姿勢の適否判定結果が表示される。
さらに、本例では、使用者により設定されたしきい割合が百分率で表示されるとともに、現時点の過去最大ピーク値に対するしきい割合の値が受光信号の強度の値として表示される。また、図35のドットプロットグラフでは、過去最大ピーク値が更新されるごとに変化する適否判定のしきい値が点線で示される。
(5)上記実施の形態の図15〜図20の表示例において、第1の表示領域410には、さらに受光確認処理が開始されてから現時点までに記憶された受光信号のピーク値および受光波形をメモリ602から削除するためのリセットボタンが表示されてもよい。この場合、使用者は、計測ヘッド200の誤操作またはノイズの影響により異常な受光信号が取得された場合に、リセットボタンを操作する。それにより、異常な受光信号に基づく変化情報が表示されることを防止することができる。
(6)上記実施の形態の図15〜図20の表示例において、第1の表示領域410には、変化情報として、現在ピーク値および過去最大ピーク値とともに受光信号に関するグラフが表示されるが、本発明はこれに限定されない。変化情報としては、現在ピーク値および過去最大ピーク値のみが表示されてもよい。この場合、主表示部700による変化情報の表示面積を小さくすることができる。したがって、主表示部700を小型化することができる。
(7)上記実施の形態では、図15〜図20の表示例に示されるように、変化情報は、計測ヘッド200の位置および姿勢を示すパラメータとして現在ピーク値および過去最大ピーク値を含むが、本発明はこれに限定されない。変化情報は、現在ピーク値および過去最大ピーク値に代えて、現在ピーク値および過去最大ピーク値にそれぞれ対応する評価値を含んでもよい。この場合、評価値を使用者が認識しやすい値に設定する。それにより、共焦点変位計500の利便性が向上する。
(8)上記実施の形態においては、投光部120の光源121として単一波長の光を出射するレーザダイオードが用いられるが、本発明はこれに限定されない。光源121として広い波長帯域の光を出射するLED(発光ダイオード)が用いられてもよい。光源121として白色光を出射するLEDが用いられる場合には、蛍光体122を設けてもよいし、蛍光体122を設けなくてもよい。
(9)上記実施の形態において、投光部120は波長500nm〜700nmの光を出射するが、本発明はこれに限定されない。投光部120は他の波長帯域の光を出射してもよい。例えば、投光部120は赤外領域の光を出射してもよいし、紫外領域の光を出射してもよい。
(10)上記実施の形態において、処理装置100と計測ヘッド200とが別体として構成されるが、本発明はこれに限定されない。処理装置100と計測ヘッド200とが一体的に構成されてもよい。
(11)上記実施の形態において、ファイバカプラ320を用いて光の結合および分岐が行われるが、本発明はこれに限定されない。ファイバカプラ320が用いられず、複数のコア310aが1つに融着された複数の光ファイバ311,312,319を用いて光の結合および分岐が行われてもよい。
(12)第2の実施の形態に係る共焦点計測装置500においては、2個の処理装置100、2個の計測ヘッド200、2個の導光部300、PC600、主表示部700および操作部800を備えることにより対向確認機能が実現されるが、本発明はこれに限定されない。対向確認機能は、以下の構成により実現されてもよい。図36は、他の実施の形態に係る共焦点変位計の構成を示す模式図である。図36の共焦点計測装置500について、第2の実施の形態に係る共焦点変位計500と異なる点を説明する。
図36に示すように、本例の共焦点変位計500は2個の計測ヘッド200に対して1個の処理装置100が設けられる。処理装置100の筐体110内には、2個の計測ヘッド200にそれぞれ対応する2個の投光部120、2個の分光部130および2個の受光部140が収容されている。さらに、図36の共焦点変位計500は、2個の計測ヘッド200にそれぞれ対応する2個の導光部300を備える。
図36の共焦点変位計500においては、2つの投光部120の各々から複数の波長を有する光が出射される。各投光部120により出射された光は、対応する導光部300を通して対応する計測ヘッド200に伝送され、計測対象物Sに照射される。計測対象物Sの表面で合焦しつつ反射された光がその光を照射する計測ヘッド200の光ファイバ314を通過する。計測ヘッド200の光ファイバ314を通過した光は、対応する導光部300を通して対応する分光部130に導かれ、分光される。分光された光が対応する受光部140により受光される。このようにして、2個の計測ヘッド200に対応する受光信号が2個の受光部140からそれぞれ出力される。演算処理部150の制御部152は、2個の受光部140から出力される2つの受光信号を取得する。
制御部152は、各受光部140から取得される2つの受光信号を用いて変位計測処理を行うことにより、2個の計測ヘッド200により光が照射される計測対象物Sの2つの部分の変位を計測する。また、制御部152は、2個の受光部140から出力される2つの受光信号をPC600に与える。それにより、PC600において、第2の実施の形態で説明したように第1および第2の変化情報を生成することが可能になり、対向確認機能が実現される。
本例では、1個の処理装置100に2個の計測ヘッド200が接続されるが、本発明はこれに限定されない。共焦点変位計500の処理装置100は、3個または4個以上の計測ヘッド200を接続可能に構成されてもよい。
(13)上記実施の形態においては、図22の受光確認処理で受光信号が取得されるごとに取得された受光信号の受光波形およびピーク値がメモリ602に記憶されるが、本発明はこれに限定されない。メモリ602に記憶される情報は、変化情報に応じて設定されてもよい。例えば、変化情報として現在ピーク値および過去最大ピーク値のみが主表示部700に表示される場合には、受光波形は記憶されなくてもよい。
(14)第2の実施の形態においては、対向確認機能により第1計測ヘッド200Aおよび第2計測ヘッド200Bに対応する第1および第2の変化情報が生成されるが、本発明はこれに限定されない。対向確認機能においては、第1および第2の変化情報のうち一方の変化情報のみが生成されてもよい。この場合においても、生成された変化情報が主表示部700に表示されることにより、使用者は第1計測ヘッド200Aの光軸oa1と第2計測ヘッド200Bの光軸oa2とを一致させることができる。
(15)上記実施の形態においては、演算処理部150の制御部152は、受光部140から取得される受光信号について補正を行うとともに計測対象物Sの変位を計測し、計測結果を副表示部400に表示する。また、制御部152は、受光部140から取得される受光信号をPC600に与える。一方、PC600のCPU601は、変位計測プログラムに基づいて計測対象物Sの変位計測処理を実行する。本発明はこれに限定されない。
例えば、PC600は設けられなくてもよい。この場合、主表示部700および操作部800を処理装置100の演算処理部150に接続してもよい。また、演算処理部150の記憶部151に変位計測プログラムを記憶させてもよい。それにより、制御部152が変位計測処理を実行してもよい。
(16)上記実施の形態においては、図15〜図20、図31および図35に示すように、受光確認処理において主表示部700に受光信号の強度に対するしきい値またはしきい割合が表示されるが、しきい値は表示されなくてもよい。また、しきい値の表示または非表示が操作部800からの入力により切り替えることができることとしてもよい。
(17)図15、図16、図20、図31および図35の例において、調整にともなう時間の経過により、画面内に収まるプロットまたは波形が、過去最大ピーク値よりも低く、画面外に過去最大ピーク値がある時には、過去最大ピーク値に相当する受光信号の強度に、過去最大ピークがあったことを示す指標を示してもよい。縦軸の受光信号の強度は、現在ピーク値または現時点までの過去最大ピーク値に基づき規格化してもよい。例えば、過去最大ピーク値が80のときは、受光強度の縦軸の上限近くに80が位置するよう縦軸が構成され、調整と時間の経過とともに、過去最大ピーク値が350となれば、受光強度の縦軸の上限近くに350が位置するようトレンドグラフの縦軸が正規化されてもよい。
[5]請求項の各構成要素と実施の形態の各部との対応関係
以下、請求項の各構成要素と実施の形態の各部との対応の例について説明するが、本発明は下記の例に限定されない。
上記実施の形態では、計測対象物Sが計測対象物の例であり、共焦点変位計500が共焦点変位計の例であり、投光部120が投光部の例であり、レンズユニット220が光学部材の例であり、光ファイバ314の先端部分がピンホールの例であり、光ファイバ314がピンホール部材の例である。
また、分光部130、受光部140、演算処理部150および導光部300が取得部の例であり、主表示部700が表示部の例であり、演算処理部150およびCPU601が変位計測部の例であり、CPU601が処理部の例であり、受光信号のピーク値が適否判定用のしきい値よりも高いことが予め定められた条件の例であり、操作部800および図12の入力欄462が波長範囲指定部の例であり、不要成分除去補正が補正処理の例である。
また、処理装置100が処理装置の例であり、計測ヘッド200、第1計測ヘッド200Aおよび第2計測ヘッド200Bがヘッド部の例であり、筐体110が第1の筐体の例であり、筐体210が第2の筐体の例であり、第1計測ヘッド200Aが一のヘッドの例であり、第2計測ヘッド200Bが他のヘッドの例である。
請求項の各構成要素として、請求項に記載されている構成または機能を有する他の種々の要素を用いることもできる。
本発明は、種々の共焦点変位計に有効に利用することができる。
100 処理装置
110,210 筐体
120 投光部
121 光源
122 蛍光体
123 フェルール
124,128,132,133 レンズ
125 保持具
126 フィルタ素子
127 素子ホルダ
127A 光源固定部
127B フェルール固定部
127C レンズ固定部
129 反射部材
130 分光部
131 回折格子
140 受光部
150 演算処理部
151 記憶部
152 制御部
200 計測ヘッド
200A 第1計測ヘッド
200B 第2計測ヘッド
220 レンズユニット
221 屈折レンズ
222 回折レンズ
223 対物レンズ
224 ダブレットレンズ
300 導光部
310a コア
310b クラッド
311,312,314,319 光ファイバ
320 ファイバカプラ
321〜323,331,332 ポート
324,333 本体部
330 ファイバコネクタ
400 副表示部
410 第1の表示領域
450 第2の表示領域
451 受光確認ボタン
452 確認設定ボタン
453 確認終了ボタン
454 計測開始ボタン
455 対向確認ボタン
461,462 入力欄
463,464 表示態様ボタン
500 共焦点変位計
491 切替ボタン
600 PC
601 CPU
602 メモリ
700 主表示部
800 操作部
BL 基底波形
d1,d2 厚み
MR 計測範囲
oa1,oa2 光軸
P0,Px,Py,Pz ピーク
P1,P2 合焦位置
RP 基準位置
S 計測対象物
SC くぼみ
SR1 第1のロール
SR2 第2のロール
W0,W1,W2,W3,W4 受光波形
λ0〜λ4,λx,λy ピーク波長

Claims (9)

  1. 複数の波長を有する光を出射する投光部と、
    前記投光部により出射された光に光軸方向に沿った色収差を発生させるとともに、色収差を有する光を収束させて計測対象物に照射する光学部材と、
    前記光学部材により前記計測対象物に照射された光のうち、前記計測対象物の表面で合焦しつつ反射された波長の光を通過させるピンホールを有するピンホール部材と、
    前記計測対象物の表面で反射されるとともに前記ピンホールを通過する光についての波長ごとの強度を示す受光信号を取得する取得部と、
    前記ピンホールを通過した光についての波長ごとの信号強度に基づいて前記計測対象物の変位を算出する変位計測部とを備える共焦点変位計であって、
    現時点よりも前の時点で前記取得部により取得された受光信号から現時点で前記取得部により取得された受光信号への変化を変化情報として表示する表示部を備える、共焦点変位計。
  2. 前記変化情報は、現時点よりも前の1または複数の時点で前記取得部により取得された1または複数の受光信号のピーク値から現時点で前記取得部により取得された受光信号のピーク値への変化を含む、請求項1記載の共焦点変位計。
  3. 前記変化情報は、現時点よりも前の時点で前記取得部により取得された受光信号の波形から現時点で前記取得部により取得された受光信号の波形への変化を含む、請求項1または2記載の共焦点変位計。
  4. 前記計測対象物の変位を計測する計測モードと前記変化情報を前記表示部に表示させる確認モードとで動作可能に構成された処理部をさらに備え、
    前記処理部は、前記計測モードにおいて前記取得部により取得された波長ごとの強度に基づいて前記計測対象物の変位を算出する、請求項1〜3のいずれか一項に記載の共焦点変位計。
  5. 前記処理部は、現時点で前記取得部により取得された受光信号のピーク値が予め定められた条件を満たすか否かを判定し、判定結果を前記変化情報とともに前記表示部に表示させる、請求項4記載の共焦点変位計。
  6. 前記取得部により取得される受光信号について波長の範囲を指定する波長範囲指定部をさらに備え、
    前記処理部は、前記波長範囲指定部により指定された波長の範囲内で、現時点よりも前の時点で前記取得部により取得された受光信号のピーク値から現時点で前記取得部により取得された受光信号のピーク値の変化を変化情報として前記表示部に表示させる、請求項4または5記載の共焦点変位計。
  7. 前記処理部は、前記計測対象物の変位を算出する前に、前記取得部により取得される受光信号から前記計測対象物の表面で合焦しつつ反射される光を除く不要な光に対応する不要成分の少なくとも一部が除去されるように補正処理を行う、請求項4〜6のいずれか一項に記載の共焦点変位計。
  8. 処理装置と、
    ヘッド部とをさらに備え、
    前記処理装置は、前記投光部および前記取得部を含むとともに前記投光部および前記取得部を収容する第1の筐体をさらに含み、
    前記ヘッド部は、前記光学部材および前記ピンホール部材を含むとともに前記前記光学部材および前記ピンホール部材を収容する第2の筐体をさらに含む、請求項1〜7のいずれか一項に記載の共焦点変位計。
  9. 前記ヘッド部を複数備え、
    前記取得部は、前記複数のヘッド部のうちの一のヘッド部の光学部材から出射され、他のヘッド部のピンホールを通過する光についての波長ごとの強度を示す受光信号を取得可能に構成される、請求項8記載の共焦点変位計。
JP2017558172A 2015-12-25 2016-12-21 共焦点変位計 Active JP6779234B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015254807 2015-12-25
JP2015254807 2015-12-25
PCT/JP2016/088009 WO2017110838A1 (ja) 2015-12-25 2016-12-21 共焦点変位計

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020171886A Division JP6997277B2 (ja) 2015-12-25 2020-10-12 共焦点変位計

Publications (2)

Publication Number Publication Date
JPWO2017110838A1 true JPWO2017110838A1 (ja) 2018-10-18
JP6779234B2 JP6779234B2 (ja) 2020-11-04

Family

ID=59089459

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017558172A Active JP6779234B2 (ja) 2015-12-25 2016-12-21 共焦点変位計
JP2020171886A Active JP6997277B2 (ja) 2015-12-25 2020-10-12 共焦点変位計

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020171886A Active JP6997277B2 (ja) 2015-12-25 2020-10-12 共焦点変位計

Country Status (5)

Country Link
US (2) US10267622B2 (ja)
JP (2) JP6779234B2 (ja)
CN (1) CN108474645B (ja)
DE (1) DE112016005953T5 (ja)
WO (1) WO2017110838A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106471332B (zh) * 2014-06-27 2019-07-09 株式会社基恩士 多波长共焦测量装置
CN113532286A (zh) 2015-12-25 2021-10-22 株式会社基恩士 共焦位移计
WO2017110838A1 (ja) 2015-12-25 2017-06-29 株式会社キーエンス 共焦点変位計
JP2019066259A (ja) * 2017-09-29 2019-04-25 オムロン株式会社 光学センサおよび光学センサにおける異常検出方法
DE102017122689A1 (de) * 2017-09-29 2019-04-04 Precitec Optronik Gmbh Verfahren und Vorrichtung zur berührungslosen Messung eines Abstands zu einer Oberfläche oder eines Abstands zwischen zwei Oberflächen
JP6939360B2 (ja) * 2017-10-02 2021-09-22 オムロン株式会社 共焦点計測装置
JP6880513B2 (ja) * 2018-03-13 2021-06-02 オムロン株式会社 光学計測装置及び光学計測方法
JP6969459B2 (ja) * 2018-03-15 2021-11-24 オムロン株式会社 センサヘッド
JP7062518B2 (ja) 2018-05-25 2022-05-06 株式会社キーエンス 共焦点変位計
JP2020076653A (ja) * 2018-11-08 2020-05-21 オムロン株式会社 光学計測装置及び光学計測方法
CN109357623A (zh) * 2018-11-16 2019-02-19 中国科学院光电技术研究所 一种用共焦显微镜系统测量手机面板厚度的方法与装置
JP6986235B2 (ja) * 2018-12-20 2021-12-22 オムロン株式会社 共焦点センサ
JP7296313B2 (ja) * 2019-12-20 2023-06-22 株式会社豊田中央研究所 高さ分布計測装置および高さ分布計測方法
CN113175884B (zh) * 2021-04-26 2022-04-26 合肥多彩谱色科技有限公司 一种光谱共焦测量系统的标定装置及标定方法
CN113175883B (zh) * 2021-04-26 2022-04-26 合肥多彩谱色科技有限公司 一种光谱共焦测量系统的光源归一化处理方法
CN113483676B (zh) * 2021-07-07 2023-03-14 珠海横琴美加澳光电技术有限公司 一种基于光谱共焦色度测量的位移传感装置及使用方法
CN114370820B (zh) * 2022-03-22 2022-07-01 武汉精立电子技术有限公司 光谱共焦位移传感器的峰值提取方法、检测方法及系统
CN117739837B (zh) * 2024-02-19 2024-05-07 法博思(宁波)半导体设备有限公司 一种基于衍射元件的对射光谱共焦测厚系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076119A (ja) * 2006-09-19 2008-04-03 Sunx Ltd 変位センサ
JP2009198361A (ja) * 2008-02-22 2009-09-03 Yokogawa Electric Corp 膜厚測定装置及び方法
JP2015169546A (ja) * 2014-03-07 2015-09-28 オムロン株式会社 共焦点計測装置の光軸調整方法、共焦点計測システム、プログラム、及び、プログラムを記録した記録媒体

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3788741A (en) * 1972-07-26 1974-01-29 Syst Res Labor Inc Distance indicating optical probe
CH663466A5 (fr) * 1983-09-12 1987-12-15 Battelle Memorial Institute Procede et dispositif pour determiner la position d'un objet par rapport a une reference.
US5737084A (en) * 1995-09-29 1998-04-07 Takaoka Electric Mtg. Co., Ltd. Three-dimensional shape measuring apparatus
US5760950A (en) * 1996-07-25 1998-06-02 Advanced Scanning, Ltd. Scanning confocal microscope
JPH10333054A (ja) * 1997-05-30 1998-12-18 Yokogawa Electric Corp 共焦点顕微鏡
JPH11132736A (ja) * 1997-10-29 1999-05-21 Komatsu Ltd 共焦点光学装置及びその位置合わせ方法
US7616986B2 (en) * 2001-05-07 2009-11-10 University Of Washington Optical fiber scanner for performing multimodal optical imaging
DE10242373B4 (de) * 2002-09-12 2009-07-16 Siemens Ag Konfokaler Abstandssensor
JP4014536B2 (ja) * 2003-05-14 2007-11-28 横河電機株式会社 共焦点光スキャナ
KR101060634B1 (ko) * 2005-10-05 2011-08-31 에자끼구리고가부시키가이샤 인산화당을 함유한 피부외용제
US9229207B2 (en) * 2008-11-17 2016-01-05 Femtonics Kft Laser scanning microscope with focus-detecting unit
US8061810B2 (en) * 2009-02-27 2011-11-22 Fujifilm Corporation Mitigation of fluid leaks
WO2011108369A1 (ja) * 2010-03-01 2011-09-09 オリンパス株式会社 光分析装置、光分析方法並びに光分析用コンピュータプログラム
TWI414817B (zh) * 2010-07-23 2013-11-11 Univ Nat Taipei Technology 線型彩色共焦顯微系統
JP5904947B2 (ja) * 2010-10-13 2016-04-20 オリンパス株式会社 単一発光粒子検出を用いた粒子の拡散特性値の測定方法
JP5790178B2 (ja) * 2011-03-14 2015-10-07 オムロン株式会社 共焦点計測装置
US9675252B2 (en) * 2011-09-27 2017-06-13 British Columbia Cancer Agency Branch Scanning optical systems
US8587772B2 (en) 2011-12-21 2013-11-19 Mitutoyo Corporation Chromatic point sensor configuration including real time spectrum compensation
JP5674050B2 (ja) * 2012-08-28 2015-02-18 横河電機株式会社 光学式変位計
US10064546B2 (en) * 2012-10-24 2018-09-04 Nidek Co., Ltd. Ophthalmic analysis apparatus and ophthalmic analysis program
JP6044315B2 (ja) * 2012-12-12 2016-12-14 オムロン株式会社 変位計測方法および変位計測装置
JP2014202642A (ja) * 2013-04-05 2014-10-27 オリンパス株式会社 光学素子の面間隔測定装置および面間隔測定方法
JP2014239871A (ja) * 2013-05-07 2014-12-25 安東 秀夫 生体活動検出方法、生体活動測定装置、生体活動検出信号の転送方法および生体活動情報を利用したサービスの提供方法
TWI465683B (zh) * 2013-08-20 2014-12-21 Univ Nat Taiwan 差動濾波式彩色共焦量測系統
DE102013015931B4 (de) * 2013-09-19 2024-05-08 Carl Zeiss Microscopy Gmbh Mikroskop und Verfahren zur hochauflösenden Scanning-Mikroskope
JP6146265B2 (ja) * 2013-11-07 2017-06-14 ソニー株式会社 顕微鏡システムおよびオートフォーカス方法
CN113532286A (zh) 2015-12-25 2021-10-22 株式会社基恩士 共焦位移计
WO2017110838A1 (ja) 2015-12-25 2017-06-29 株式会社キーエンス 共焦点変位計
JP7408265B2 (ja) 2017-06-13 2024-01-05 株式会社キーエンス 共焦点変位計
JP6971645B2 (ja) 2017-06-13 2021-11-24 株式会社キーエンス 共焦点変位計
JP6971646B2 (ja) 2017-06-13 2021-11-24 株式会社キーエンス 共焦点変位計

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076119A (ja) * 2006-09-19 2008-04-03 Sunx Ltd 変位センサ
JP2009198361A (ja) * 2008-02-22 2009-09-03 Yokogawa Electric Corp 膜厚測定装置及び方法
JP2015169546A (ja) * 2014-03-07 2015-09-28 オムロン株式会社 共焦点計測装置の光軸調整方法、共焦点計測システム、プログラム、及び、プログラムを記録した記録媒体

Also Published As

Publication number Publication date
CN108474645B (zh) 2021-02-23
JP6997277B2 (ja) 2022-01-17
JP6779234B2 (ja) 2020-11-04
US10591278B2 (en) 2020-03-17
CN108474645A (zh) 2018-08-31
JP2021001914A (ja) 2021-01-07
WO2017110838A1 (ja) 2017-06-29
US20190204071A1 (en) 2019-07-04
US10267622B2 (en) 2019-04-23
US20180274903A1 (en) 2018-09-27
DE112016005953T5 (de) 2018-10-04

Similar Documents

Publication Publication Date Title
JP6997277B2 (ja) 共焦点変位計
JP6972273B2 (ja) 共焦点変位計
KR101750188B1 (ko) 공초점 계측 장치
CN107044822B (zh) 光谱共焦传感器
JP6615604B2 (ja) 共焦点変位計
CN103673887A (zh) 共聚焦计测装置
KR20190017841A (ko) 변위 계측 장치
JP6654893B2 (ja) 共焦点変位計
JP2014202642A (ja) 光学素子の面間隔測定装置および面間隔測定方法
KR20180101157A (ko) 공초점 계측 장치
WO2013114959A1 (ja) 共焦点計測装置
JP2018028453A (ja) レンズメータ
JP2023009227A (ja) 光学センサおよび光学センサにおける異常検出方法
JP6875489B2 (ja) 共焦点変位計
JP2010091468A (ja) 収差測定装置
JP2011226916A (ja) 測光装置

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190910

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201013

R150 Certificate of patent or registration of utility model

Ref document number: 6779234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250