JP7062518B2 - 共焦点変位計 - Google Patents

共焦点変位計 Download PDF

Info

Publication number
JP7062518B2
JP7062518B2 JP2018101072A JP2018101072A JP7062518B2 JP 7062518 B2 JP7062518 B2 JP 7062518B2 JP 2018101072 A JP2018101072 A JP 2018101072A JP 2018101072 A JP2018101072 A JP 2018101072A JP 7062518 B2 JP7062518 B2 JP 7062518B2
Authority
JP
Japan
Prior art keywords
light
unit
intensity
wavelength
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018101072A
Other languages
English (en)
Other versions
JP2019203866A (ja
Inventor
祐考 藤本
英人 武井
陽平 桝口
翔馬 久我
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keyence Corp
Original Assignee
Keyence Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keyence Corp filed Critical Keyence Corp
Priority to JP2018101072A priority Critical patent/JP7062518B2/ja
Priority to US16/364,209 priority patent/US10591280B2/en
Priority to DE102019207296.8A priority patent/DE102019207296A1/de
Priority to CN201910438651.1A priority patent/CN110530274B/zh
Publication of JP2019203866A publication Critical patent/JP2019203866A/ja
Application granted granted Critical
Publication of JP7062518B2 publication Critical patent/JP7062518B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0625Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of absorption or reflection
    • G01B11/0633Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of absorption or reflection using one or more discrete wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • G01B11/272Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes using photoelectric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/40Caliper-like sensors
    • G01B2210/44Caliper-like sensors with detectors on both sides of the object to be measured
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/50Using chromatic effects to achieve wavelength-dependent depth resolution

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、計測対象物の厚みを計測可能な共焦点変位計に関する。
計測対象物の表面の変位を非接触方式により計測する装置として、共焦点変位計がある。共焦点変位計においては、広い波長帯域の光が光学部材を通して計測対象物に照射され、計測対象物の表面で合焦しつつ反射された光の受光信号に基づいて計測対象物の表面の変位が計測される。
2つの共焦点変位計の光学部材を対向して配置するとともに、それらの2つの光学部材の間に配置される計測対象物の厚みを計測する方法が知られている。この方法においては、高い精度で計測対象物の厚みを計測するために、一方の共焦点変位計の光学部材の光軸と他方の共焦点変位計の光学部材の光軸とを正確に一致させることが求められる。
特許文献1には、上記のように計測対象物の厚みを計測するために、2つの共焦点計測装置の2つのセンサヘッドの光軸を一致させる光軸調整方法が記載されている。その光軸調整方法においては、作業者が2つのセンサヘッドを対向配置させるとともに、それらのセンサヘッドの姿勢(向き)および位置を粗調整する。その後、一方のセンサヘッドから検出光を発生させ、他方のセンサヘッドに入射する検出光の強度を計測し、計測により得られる検出光の波形が1つのピーク値を有するように2つのセンサヘッドの少なくとも一方の位置が互いに直交する3方向に調整される。
特開2015-169546号公報
特許文献1に記載された方法では、作業者は、2つのセンサヘッドの光軸が平行となるように、2つのセンサヘッドの姿勢を調整する。しかしながら、実際には、2つのセンサヘッドの光軸が互いに平行となるように、2つのセンサヘッドの姿勢を正確に調整することは容易ではない。一方のセンサヘッドの光軸に対して他方のセンサヘッドの光軸が傾斜していると、2つのセンサヘッドの位置関係を調整しても、2つのセンサヘッドの光軸を一致させることはできない。そのため、計測対象物の厚みの計測精度が低下する。
上記の例に限らず、1つのセンサヘッドを用いて計測対象物の計測を行う場合でも、当該計測をより正確に行うために、センサヘッドの姿勢は容易かつ正確に調整されることが望まれる。
本発明の目的は、計測対象物について高い精度で計測が行われるように、計測ヘッド部の姿勢を容易かつ正確に調整することを可能にする共焦点変位計を提供することである。
(1)第1の発明に係る共焦点変位計は、複数の波長を有する光を出射する投光部と、第1の回折レンズを含み、投光部により出射された光に光軸方向に沿う色収差を発生させ、計測対象物の第1の面に収束させる第1の共焦点光学系を有する第1のヘッド部と、第1の面で反射されて第1の共焦点光学系を通過した第1の光を波長ごとに分光する第1の分光器と、分光された第1の光を波長ごとに受光し、波長ごとの光の強度を取得する第1の受光部と、第1の面を有する基準部材を用いて第1のヘッド部の光軸を調整可能に構成された制御装置とを備え、第1のヘッド部は、第1のヘッド部の光軸が第1の面に直交する場合に、第1のヘッド部を通して第1の面に照射される一の波長を有する第1の1次光が第1の面で反射されて一の波長を有する第1の多次光の経路を通って第1の共焦点光学系を通過するように構成され、制御装置は、光軸調整時において、第1のヘッド部の光の出射側に基準部材が配置された状態で、第1の受光部により取得された光の強度のうち第1の1次光が第1の面で反射されて第1の多次光の経路を通って第1の共焦点光学系を通過することにより得られる第1の判定光の強度に対応する情報を第1の強度情報として表示部に表示させる強度情報表示制御部を含む。
その共焦点変位計においては、第1のヘッド部の光軸の調整時に、第1のヘッド部の光の出射側に基準部材が配置された状態で、第1の判定光の強度に対応する情報が第1の強度情報として表示部に表示される。第1の判定光の強度は、第1の面に対する第1のヘッド部の光軸の垂直度が高いほど高くなり、第1の面に対する第1のヘッド部の光軸の垂直度が低いほど低くなる。したがって、使用者は、第1の強度情報を視認しつつ、第1のヘッド部の光軸が基準部材の第1の面に対して垂直となるように第1のヘッド部の姿勢を容易かつ正確に調整することができる。
これにより、使用者は、高い精度で計測が行われるように計測対象物の計測面に対する第1のヘッド部の姿勢を容易かつ正確に調整することができる。
(2)第2の発明に係る共焦点変位計は、互いに反対側の第1および第2の面を有する計測対象物の厚みを計測可能な共焦点変位計であって、複数の波長を有する光を出射する投光部と、第1の回折レンズを含み、投光部により出射された光に光軸方向に沿う色収差を発生させ、計測対象物の第1の面に収束させる第1の共焦点光学系を有する第1のヘッド部と、第2の回折レンズを含み、投光部により出射された光に光軸方向に沿う色収差を発生させ、計測対象物の第2の面に収束させる第2の共焦点光学系を有する第2のヘッド部と、第1の面で反射されて第1の共焦点光学系を通過した第1の光を波長ごとに分光する第1の分光器と、分光された第1の光を波長ごとに受光し、波長ごとの光の強度を取得する第1の受光部と、計測対象物の代わりに互いに平行な第1の面および第2の面を有する基準部材を用いて第1のヘッド部の光軸を調整可能に構成された制御装置とを備え、第1のヘッド部は、第1のヘッド部の光軸が第1の面に直交する場合に、第1のヘッド部を通して第1の面に照射される一の波長を有する第1の1次光が第1の面で反射されて一の波長を有する第1の多次光の経路を通って第1の共焦点光学系を通過するように構成され、第2のヘッド部は、第2のヘッド部の光軸が第2の面に直交する場合に、第2のヘッド部を通して第2の面に照射される一の波長を有する第2の1次光が第2の面で反射されて一の波長を有する第2の多次光の経路を通って第2の共焦点光学系を通過するように構成され、制御装置は、光軸調整時において、第1のヘッド部と第2のヘッド部との間に基準部材が配置された状態で、第1の受光部により取得された光の強度のうち第1の1次光が第1の面で反射されて第1の多次光の経路を通って第1のピンホールを通過することにより得られる第1の判定光の強度に対応する情報を第1の強度情報として表示部に表示させる強度情報表示制御部を含む。
その共焦点変位計においては、第1のヘッド部の光軸の調整時に、第1のヘッド部と第2のヘッド部との間に基準部材が配置された状態で、第1の判定光の強度に対応する情報が第1の強度情報として表示部に表示される。第1の判定光の強度は、第1の面に対する第1のヘッド部の光軸の垂直度が高いほど高くなり、第1の面に対する第1のヘッド部の光軸の垂直度が低いほど低くなる。したがって、使用者は、第1の強度情報を視認しつつ、第1のヘッド部の光軸が基準部材の第1の面に対して垂直となるように第1のヘッド部の姿勢を容易かつ正確に調整することができる。
上記のように、使用者は、第1のヘッド部の姿勢を調整するとともに、第1および第2のヘッド部の相対的な位置関係を調整することにより、第1および第2のヘッド部の光軸を一致させることができる。
その結果、使用者は、第1および第2のヘッド部の光軸の調整後に、計測対象物の厚みを高い精度で計測することが可能になる。
(3)共焦点変位計は、第2の面で反射されて第2の共焦点光学系を通過した第2の光を波長ごとに分光する第2の分光器と、分光された第2の光を波長ごとに受光し、波長ごとの光の強度を取得する第2の受光部とをさらに備え、制御装置は、基準部材を用いて第2のヘッド部の光軸をさらに調整可能に構成され、強度情報表示制御部は、光軸調整時において、第1のヘッド部と第2のヘッド部との間に基準部材が配置された状態で、第2の受光部により取得された光の強度のうち第2の1次光が第2の面で反射されて第2の多次光の経路を通って第2の共焦点光学系を通過することにより得られる第2の判定光の強度に対応する情報を第2の強度情報として表示部にさらに表示させてもよい。
この場合、第2のヘッド部の光軸の調整時に、第1のヘッド部と第2のヘッド部との間に基準部材が配置された状態で、第2の判定光の強度に対応する情報が第2の強度情報として表示部に表示される。第2の判定光の強度は、第2の面に対する第2のヘッド部の光軸の垂直度が高いほど高くなり、第2の面に対する第2のヘッド部の光軸の垂直度が低いほど低くなる。したがって、使用者は、第2の強度情報を視認しつつ、第2のヘッド部の光軸が基準部材の第2の面に対して垂直となるように第2のヘッド部の姿勢を容易かつ正確に調整することができる。
上記のように、使用者は、第2のヘッド部の姿勢を調整するとともに、第1および第2のヘッド部の相対的な位置関係を調整することにより、第1および第2のヘッド部の光軸を一致させることができる。
その結果、使用者は、第1および第2のヘッド部の光軸の調整後に、計測対象物の厚みを高い精度で計測することが可能になる。
(4)第1の強度情報は、第1の判定光の強度の時間的変化を示し、第2の強度情報は、第2の判定光の強度の時間的変化を示してもよい。
この場合、使用者は、第1および第2の強度情報を視認することにより、第1のおよび第2のヘッド部の姿勢をより容易かつ正確に調整することができる。
(5)制御装置は、第1の判定光の強度の時間的変化における現時点までの最大の強度を示す第1の最大強度情報を表示部に表示させ、第2の判定光の強度の時間的変化における現時点までの最大の強度を示す第2の最大強度情報を表示部に表示させる最大強度表示制御部をさらに含んでもよい。
この場合、使用者は、第1および第2の最大強度情報を視認することにより、第1のおよび第2のヘッド部の姿勢をさらに容易かつ正確に調整することができる。
(6)第1の判定光のピーク波長は、第1の面と第1のヘッド部との間の距離に依存して変化し、第2の判定光のピーク波長は、第2の面と第2のヘッド部との間の距離に依存して変化し、制御装置は、波長軸上に第1の判定光の波形を表示するとともに第1の面と第1のヘッド部との間の距離の変化に応じて波長軸上で第1の判定光の波形の位置を変化させるように表示部を制御し、第1の面と第1のヘッド部との間の距離が予め定められた第1の距離範囲にある場合における第1の判定光の波長の範囲を第1の波長範囲として波長軸上に表示し、波長軸上に第2の判定光の波形を表示するとともに第2の面と第2のヘッド部との間の距離の変化に応じて波長軸上で第2の判定光の波形の位置を変化させるように表示部を制御し、第2の面と第2のヘッド部との間の距離が予め定められた第2の距離範囲にある場合における第2の判定光の波長の範囲を第2の波長範囲として波長軸上に表示するように表示部を制御する範囲表示制御部をさらに含んでもよい。
この場合、使用者は、表示部に表示される第1の判定光の波形が第1の波長範囲に位置するように第1の面と第1のヘッド部との間の距離を調整する。それにより、第1の面と第1のヘッド部との間の距離が第1の距離範囲内となる。また、使用者は、表示部に表示される第2の判定光の波形が第2の波長範囲に位置するように第2の面と第2のヘッド部との間の距離を調整する。それにより、第2の面と第2のヘッド部との間の距離が第2の距離範囲内となる。その結果、基準部材の第1および第2の面に直交する方向における第1のヘッド部と第2のヘッド部との間の距離を容易かつ適切に調整することができる。
(7)第1および第2の受光部は、第1および第2のヘッド部の間に基準部材が存在しない状態で、第1のヘッド部の第1の共焦点光学系から出射されて第2のヘッド部の第2の共焦点光学系に入射する光の強度、および第2の共焦点光学系から出射されて第1のヘッド部の第1の共焦点光学系に入射する光の強度のうち少なくとも一方を取得し、制御装置は、第1および第2の受光部により取得された少なくとも一方の強度に基づいて第1および第2のヘッド部の光軸の一致度を示す一致度情報を表示部に表示させる一致度表示制御部をさらに含んでもよい。
この場合、使用者は、一致度情報を視認することにより、第1のヘッド部の光軸と第2のヘッド部の光軸とを容易に一致させることができる。
(8)制御装置は、光軸調整時において、第1のヘッド部と基準部材との間の距離を調整するための操作を促す第1の距離調整画像を表示部に表示させ、第2のヘッド部と基準部材との間の距離を調整するための操作を促す第2の距離調整画像を表示部に表示させる距離調整画像表示制御部と、光軸調整時において、第1および第2の距離調整画像が表示部に表示された後、基準部材に対する第1のヘッド部の姿勢を調整するための操作を促す第1の姿勢調整画像を表示部に表示させ、基準部材に対する第2のヘッド部の姿勢を調整するための操作を促す第2の姿勢調整画像を表示部に表示させる姿勢調整画像表示制御部と、光軸調整時において、第1および第2の姿勢調整画像が表示部に表示された後、第1および第2のヘッド部のうち少なくとも一方を移動させることにより第1および第2の光学部材の光軸を一致させるための操作を促す軸調整画像を表示部に表示させる軸調整画像表示制御部とをさらに含んでもよい。
この場合、表示部には、第1および第2の距離調整画像が表示された後、第1および第2の姿勢調整画像が表示される。また、表示部には、第1および第2の姿勢調整画像が表示された後、軸調整画像が表示される。これにより、使用者は、表示部に表示される画像に従って、適切な順序で第1および第2のヘッド部の位置および姿勢を調整することができる。その結果、使用者は、第1および第2の光学部材の光軸を効率よく調整することができる。
(9)共焦点変位計は、第1および第2の距離調整画像の表示を指示するために使用者により操作される第1の操作部と、範囲表示制御部による第1および第2の波長範囲の表示後に、第1および第2の姿勢調整画像の表示を指示するために使用者により操作される第2の操作部と、強度情報表示制御部による第1および第2の強度情報の表示後に、軸調整画像の表示を指示するために使用者により操作される第3の操作部とをさらに備えてもよい。
この場合、使用者は、第1、第2および第3の操作部を順次操作することにより、適切な順序で第1および第2のヘッド部の位置および姿勢を調整することができる。
(10)投光部は、第1の共焦点光学系に光を出射する第1の投光部と、第2の共焦点光学系に光を出射する第2の投光部とを含み、制御装置は、一致度表示制御部による一致度情報の表示時に、第2の受光部から出力される受光信号に基づいて第1の投光部における光の出射を制御する第1の制御、および第1の受光部から出力される受光信号に基づいて第2の投光部における光の出射を制御する第2の制御のうち少なくとも一方を行う光制御部をさらに備えてもよい。
この場合、第1の制御によれば、第2の受光部において適切な強度の光が受光されるように第1の投光部における光の出射が制御される。また、第2の制御によれば、第1の受光部において適切な強度の光が受光されるように第2の投光部における光の出射が制御される。これにより、一致度情報が表示部に適切に表示される。
(11)強度情報表示制御部は、第1および第2の強度情報を表示部が有する単一の画面上に同時に表示させてもよい。
この場合、第1および第2の強度情報が表示部の単一の画面上に同時に表示される。したがって、使用者は、第1および第2の強度情報を対比しつつ第1のおよび第2のヘッド部の姿勢を調整することができる。
(12)共焦点変位計は、第1のヘッド部および第2のヘッド部が互いに対向するように配置された状態で、第1のヘッド部および第2のヘッド部のうち一方のヘッド部から他方のヘッド部に入射した光を他方のヘッド部の光軸調整に用いてもよい。
この場合、第1および第2のヘッド部のうち一方のヘッド部の姿勢を他方のヘッド部からの光に基づいて正確に調整することができる。
(13)第3の発明に係る共焦点変位計は、互いに反対側の第1および第2の面を有する計測対象物の厚みを計測可能な共焦点変位計であって、複数の波長を有する複数の光を出射する投光部と、第1および第2のヘッド部と、第1のヘッド部に設けられ、投光部により出射された複数の光に光軸方向に沿った色収差を発生させる回折レンズを含むとともに、色収差を有する複数の光を収束させて計測対象物の第1の面にそれぞれ照射する第1の光学部材と、第1のヘッド部に設けられ、第1の光学部材により第1の面に照射された複数の光のうち、第1の面で合焦しつつ反射された波長の複数の光を複数の第1の光としてそれぞれ通過させる複数の第1のピンホールを有する第1のピンホール部材と、第2のヘッド部に設けられ、投光部により出射された複数の光に光軸方向に沿った色収差を発生させる回折レンズを含むとともに、色収差を有する複数の光を収束させて計測対象物の第2の面にそれぞれ照射する第2の光学部材と、第2のヘッド部に設けられ、第2の光学部材により第2の面に照射された複数の光のうち、第2の面で合焦しつつ反射された波長の複数の光を複数の第2の光としてそれぞれ通過させる複数の第2のピンホールを有する第2のピンホール部材と、複数の第1のピンホールを通過した複数の第1の光の各々についての波長ごとの強度を取得し、複数の第2のピンホールを通過した複数の第2の光の各々についての波長ごとの強度を取得する取得部と、取得部により取得された複数の第1および第2の光の各々についての波長ごとの強度に基づいて計測対象物の第1の面と第2の面との間の厚みを算出する厚み算出部と、計測対象物の代わりに互いに平行な第1の面および第2の面を有する基準部材を用いて第1および第2の光学部材の光軸を調整可能に構成された制御装置とを備え、第1のヘッド部は、第1の光学部材の光軸が第1の面に直交する場合に、第1の光学部材を通して第1の面に照射される一の波長を有する第1の1次光が第1の面で反射されて一の波長を有する第1の多次光の経路を通って第1のピンホールを通過するように構成され、第2のヘッド部は、第2の光学部材の光軸が第2の面に直交する場合に、第2の光学部材を通して第2の面に照射される一の波長を有する第2の1次光が第2の面で反射されて一の波長を有する第2の多次光の経路を通って第2のピンホールを通過するように構成され、制御装置は、光軸調整時において、第1のヘッド部と第2のヘッド部との間に基準部材が配置された状態で、取得部により取得された複数の光の各々の強度のうち第1の1次光が第1の面で反射されて第1の多次光の経路を通って第1のピンホールを通過することにより得られる第1の判定光の強度に対応する情報を第1の強度情報として表示部に表示させ、取得部により取得された複数の光の各々の強度のうち第2の1次光が第2の面で反射されて第2の多次光の経路を通って第2のピンホールを通過することにより得られる第2の判定光の強度に対応する情報を第2の強度情報として表示部に表示させる強度情報表示制御部を含む。
その共焦点変位計においては、第1および第2の光学部材の光軸の調整時に、第1のヘッド部と第2のヘッド部との間に基準部材が配置された状態で、第1の強度情報が表示部に表示される。したがって、使用者は、第1の強度情報を視認しつつ、第1の光学部材の光軸が基準部材の第1の面に対して垂直となるように第1のヘッド部の姿勢を容易かつ正確に調整することができる。
また、第1のヘッド部と第2のヘッド部との間に基準部材が配置された状態で、第2の強度情報が表示部に表示される。したがって、使用者は、第2の強度情報を視認しつつ、第2の光学部材の光軸が基準部材の第2の面に対して垂直となるように第2のヘッド部の姿勢を容易かつ正確に調整することができる。
上記のように、使用者は、第1のおよび第2のヘッド部の姿勢を調整するとともに、第1および第2のヘッド部の相対的な位置関係を調整することにより、第1および第2の光学部材の光軸を一致させることができる。
その結果、使用者は、第1および第2の光学部材の光軸の調整後に、計測対象物の厚みを高い精度で計測することが可能になる。
(14)第1の強度情報は、第1のヘッドに対応する複数の第1の判定光の複数の強度のうち最大強度値と最小強度値との差分に基づく値であり、第2の強度情報は、第2のヘッドに対応する複数の第2の判定光の複数の強度のうち最大強度値と最小強度値との差分に基づく値であってもよい。
この場合、複数の第1の判定光の複数の強度のうち最大強度値と最小強度値との差分に基づいて第1のヘッド部の姿勢を調整することができる。また、複数の第2の判定光の複数の強度のうち最大強度値と最小強度値との差分に基づいて第2のヘッド部の姿勢を調整することができる。
(15)共焦点変位計は、計測対象物を計測する計測モードと、ヘッド部の光軸を調整する光軸調整モードとを有してもよい。
この場合、共焦点変位計が計測モードで動作することにより、計測対象物の計測が行われる。また、共焦点変位計が光軸調整モードで動作することにより、ヘッド部の光軸が調整される。
本発明によれば、計測対象物について高い精度で計測が行われるように、計測ヘッド部の姿勢を容易かつ正確に調整することが可能になる。
第1の実施の形態に係る共焦点変位計の構成を示す模式図である。 計測対象物の厚みを計測する際に計測ヘッドの光軸が一致しない場合の一例を示す模式図である。 計測対象物の厚みを計測する際に計測ヘッドの光軸が一致しない他の例を示す模式図である。 図1の計測ヘッドを用いた共焦点変位計の動作原理を説明するための図である。 (a)は計測ヘッドの光軸が計測対象物の表面に直交するときの複数の波長の光の進行経路の一例を示す図であり、(b)は計測ヘッドと計測対象物とが(a)の位置関係にあるときに取得される受光信号の波形の一例を示す図である。 (a)は計測ヘッドの光軸が計測対象物の表面に直交しないときの複数の波長の光の進行経路の一例を示す図であり、(b)は計測ヘッドと計測対象物とが(a)の位置関係にあるときに取得される受光信号の波形の一例を示す図である。 計測ヘッドを保持可能な保持装置の一例を示す図である。 計測ヘッドの光軸調整時に図1の主表示部に順次表示される誘導画面の例を示す図である。 計測ヘッドの光軸調整時に図1の主表示部に順次表示される誘導画面の例を示す図である。 計測ヘッドの光軸調整時に図1の主表示部に順次表示される誘導画面の例を示す図である。 計測ヘッドの光軸調整時に図1の主表示部に順次表示される誘導画面の例を示す図である。 計測ヘッドの光軸調整時に図1の主表示部に順次表示される誘導画面の例を示す図である。 計測ヘッドの光軸調整時に図1の主表示部に順次表示される誘導画面の例を示す図である。 計測ヘッドの光軸調整時に図1の主表示部に順次表示される誘導画面の例を示す図である。 計測ヘッドの光軸調整時に図1の主表示部に順次表示される誘導画面の例を示す図である。 図1の共焦点変位計における機能的な構成を示すブロック図である。 PCにおいて行われる光軸調整処理を示すフローチャートである。 PCにおいて行われる光軸調整処理を示すフローチャートである。 第2の実施の形態に係る共焦点変位計の構成を示す模式図である。 第2の実施の形態に係る光軸調整において第4ステップで主表示部に表示される誘導画面の一例を示す図である。 第2の実施の形態に係る光軸調整において第4ステップで主表示部に表示される誘導画面の一例を示す図である。
以下、本発明の一実施の形態に係る共焦点変位計について図面を参照しながら説明する。
[1]第1の実施の形態
(1)共焦点変位計の基本構成
図1は、第1の実施の形態に係る共焦点変位計の構成を示す模式図である。図1に示すように、共焦点変位計500は、計測ユニット100A,100B、計測ヘッド200A,200B、導光部300A,300B、制御ユニット400およびPC(パーソナルコンピュータ)600を備える。導光部300Aは、複数の光ファイバを含み、計測ユニット100Aと計測ヘッド200Aとを光学的に接続する。
計測ユニット100Aは、筐体110、投光部120、分光部130、受光部140、計測制御部150および副表示部190を含む。筐体110は、投光部120、分光部130、受光部140および計測制御部150を収容する。副表示部190は、7セグメント表示器またはドットマトリクス表示器等の表示器を含み、筐体110に取り付けられる。投光部120は、広い波長帯域(例えば500nm~700nm)の光すなわち複数の波長を有する光を出射可能に構成される。投光部120により出射された光は、導光部300Aの後述する光ファイバ311に入力される。
分光部130は、回折格子131および複数(本例では2個)のレンズ132,133を含む。後述するように、投光部120により出射されて計測対象物Sの表面で反射された光の一部が、導光部300Aの後述する光ファイバ312から出力される。光ファイバ312から出力された光は、レンズ132を通過することにより略平行化され、回折格子131に入射される。本実施の形態においては、回折格子131は反射型の回折格子である。回折格子131に入射された光は、波長ごとに異なる角度で反射するように分光され、レンズ133を通過することにより波長ごとに異なる一次元上の位置に合焦される。
受光部140は、複数の画素が一次元状に配列された撮像素子(一次元ラインセンサ)を含む。撮像素子は、多分割PD(フォトダイオード)、CCD(電荷結合素子)カメラまたはCMOS(相補性金属酸化膜半導体)イメージセンサであってもよいし、他の素子であってもよい。受光部140は、分光部130のレンズ133により形成された波長ごとに異なる複数の合焦位置で撮像素子の複数の画素がそれぞれ光を受光するように配置される。受光部140の各画素からは、受光量に対応するアナログの電気信号(以下、受光信号と呼ぶ。)が出力される。受光信号は、各画素で受光される光の強度を示す。
計測制御部150は、CPU(中央演算処理装置)およびメモリ、またはマイクロコンピュータを含む。計測制御部150には、制御プログラムが記憶されるとともに、変位計測に用いられる計測条件等の種々のデータが記憶される。これらのデータは、後述する制御ユニット400から与えられる。計測制御部150は、記憶された制御プログラムおよびデータに基づいて投光部120および受光部140を制御し、受光部140により出力される受光信号に基づいて計測対象物Sの表面の変位を算出する。計測制御部150は、変位の算出結果を副表示部190に表示させる。
計測制御部150は制御ユニット400に接続され、制御ユニット400はさらにPC600に接続される。計測制御部150は、変位の算出結果および受光部140から出力される受光信号を制御ユニット400に与える。制御ユニット400およびPC600の構成および動作については後述する。
計測ヘッド200は、軸対称形状(本例では、円筒形状)を有する筐体210、光ファイバ314およびレンズユニット220を含む。筐体210は、光ファイバ314およびレンズユニット220を収容する。
筐体210の一端に導光部300Aの後述するファイバコネクタ330が取り付けられている。光ファイバ314は、筐体210内でファイバコネクタ330に接続されている。処理装置100から光ファイバ314に導光部300Aを通して光が導かれる。光ファイバ314に導かれた光は、筐体210内で光ファイバ314から出力され、レンズユニット220に導かれる。
レンズユニット220は、屈折レンズ221、回折レンズ222および対物レンズ223を含む。レンズユニット220に導かれた光は、屈折レンズ221および回折レンズ222を順に通過する。これにより、光軸方向に沿って光に色収差が発生する。対物レンズ223は、色収差が発生した光が計測対象物Sの表面近傍の位置で合焦可能に配置される。
導光部300Aは、複数(本例では3個)の光ファイバ311,312,319、ファイバカプラ320およびファイバコネクタ330を含む。図1の例では、ファイバカプラ320は計測ユニット100Aの筐体110に設けられる。ファイバコネクタ330は計測ヘッド200の筐体210に取り付けられる。
ファイバカプラ320は、いわゆる1×2型の構成を有し、3個のポート321~323および本体部324を含む。ポート321,322とポート323とは、本体部324を挟んで対向するように本体部324に接続される。ポート321,322の少なくとも1つのポートに入力された光は、ポート323から出力される。ポート323に入力された光は、ポート321,322の各々から出力される。
ファイバカプラ320のポート321,322には、光ファイバ311,312がそれぞれ接続される。ファイバカプラ320のポート323とファイバコネクタ330とが光ファイバ319により接続される。
この構成によれば、計測ユニット100Aの投光部120により出射された光は、光ファイバ311を通してファイバカプラ320のポート321に入力される。ポート321に入力された光は、ポート323から出力され、光ファイバ319を通してファイバコネクタ330に入力される。ファイバコネクタ330に入力された光は、光ファイバ314およびレンズユニット220を通して計測対象物Sに照射される。
計測対象物Sの表面で反射された光の一部は、レンズユニット220および光ファイバ314を通してファイバコネクタ330に入力される。ファイバコネクタ330に入力された光は、光ファイバ319を通してファイバカプラ320のポート323に入力される。ポート323に入力された光は、ポート321,322から出力される。ポート322から出力された光は、光ファイバ312を通して分光部130に導かれる。これにより、計測ユニット100Aから計測対象物Sに照射される光に基づいて計測対象物Sの変位が算出される。
計測ユニット100Aおよび計測ユニット100Bは同じ構成を有し、計測ヘッド200Aおよび計測ヘッド200Bは同じ構成を有し、導光部300Aおよび導光部300Bは同じ構成を有する。計測ユニット100Bおよび計測ヘッド200Bは、上記の計測ユニット100Aおよび計測ヘッド200Aの例と同様に、導光部300Bにより光学的に接続される。また、計測ユニット100Bの計測制御部150(図示せず)は、制御ユニット400に接続される。
計測ユニット100Bの投光部120(図示せず)から出射される光は、計測ヘッド200Bを通して計測対象物Sに照射される。計測対象物Sの表面で反射された光の一部が、計測ヘッド200Bを通して計測ユニット100Bに戻される。それにより、計測ユニット100Bから計測対象物Sに照射される光に基づいて計測対象物Sの変位が算出される。この場合、計測ユニット100Bに設けられる計測制御部150(図示せず)は、変位の算出結果および受光部140から出力される受光信号を制御ユニット400に与える。
制御ユニット400は、CPUおよびメモリ、またはマイクロコンピュータを含む。制御ユニット400には、例えば計測ユニット100A,100Bにおける変位の計測条件がPC600から入力される。計測条件には、例えば投光部120における光の出射量、投光部120における光の出射タイミング、および受光部140における露光量等が含まれる。制御ユニット400は、入力された計測条件を各計測ユニット100A,100Bの計測制御部150に与える。それにより、各計測ユニット100A,100Bにおいて、与えられた計測条件に基づく計測動作が行われる。
PC600は、CPU601およびメモリ602を含む。メモリ602には、厚み計測プログラムが記憶されるとともに、厚み計測に用いられる種々のデータが記憶される。CPU601がメモリ602に記憶された厚み計測プログラムを実行することにより、PC600が計測モードおよび光軸調整モードで動作する。各計測ユニット100A,100Bから制御ユニット400に与えられる変位の算出結果および受光信号は、制御ユニット400からPC600に与えられる。
PC600には、主表示部610および操作部620が接続されている。主表示部610は、例えば有機EL(エレクトロルミネッセンス)パネルまたは液晶ディスプレイパネル等の表示装置を含む。操作部620は、キーボードおよびポインティングデバイスを含む。ポインティングデバイスは、マウスまたはジョイスティック等を含む。使用者は、操作部620を操作することにより、PC600の動作モードを計測モードおよび光軸調整モードの間で切り替えることができる。
本実施の形態に係る共焦点変位計500においては、図1に示すように、計測対象物Sを挟んで対向するように計測ヘッド200A,200Bが配置される。計測対象物Sは、互いに反対側の一面および他面を有する。この状態で、計測ヘッド200A,200B間の距離(以下、ヘッド間距離と呼ぶ。)が既知であれば、計測ユニット100A,100Bにより計測される計測対象物Sの一面および他面の変位とヘッド間距離とに基づいて計測対象物Sの厚みを算出することができる。
計測モードでは、計測ユニット100A,100Bの間に配置された計測対象物Sの厚みの計測が行われる。CPU601は、計測モードにおいて、使用者が操作部620を操作することにより入力されるヘッド間距離を受け付ける。また、CPU601は、制御ユニット400を通して変位の計測を計測ユニット100A,100Bに指令する。その上で、CPU601は、受け付けたヘッド間距離と、計測ヘッド200A,200Bから与えられる変位の算出結果とに基づいて、計測対象物Sの厚みを算出し、算出された厚みを計測結果として主表示部610に表示させる。
上記のように、計測対象物Sの厚みを計測する場合には、計測ヘッド200Aのレンズユニット220の光軸と、計測ヘッド200Bのレンズユニット220の光軸とを一致させる必要がある。以下の説明では、計測ヘッド200Aのレンズユニット220の光軸を計測ヘッド200Aの光軸と呼び、計測ヘッド200Bのレンズユニット220の光軸を計測ヘッド200Bの光軸と呼ぶ。
図2は、計測対象物Sの厚みを計測する際に計測ヘッド200A,200Bの光軸が一致しない場合の一例を示す模式図である。図2の例では、計測ヘッド200Aの光軸oa1に対して計測ヘッド200Bの光軸oa2が傾斜し、光軸oa1,oa2が一直線上にない。この場合、計測対象物Sの厚み方向に対して傾斜した方向において計測対象物Sの厚みが計測されることになる。そのため、計測対象物Sの厚みの計測精度が低下する。
図3は、計測対象物Sの厚みを計測する際に計測ヘッド200A,200Bの光軸が一致しない他の例を示す模式図である。図3の例では、計測ヘッド200Aの光軸oa1と計測ヘッド200Bのレンズユニット220の光軸oa2とが互いに平行であるが互いに離間している。この場合、計測対象物Sの一面および他面に平行な方向において計測ヘッド200A,200Bによる変位の計測位置がずれる。そのため、計測対象物Sの厚みの計測精度が低下する。
光軸調整モードでは、計測モードによる計測対象物Sの厚みの計測前に、対向配置される計測ヘッド200A,200Bの光軸oa1,oa2が調整される。計測ヘッド200A,200Bの光軸調整の詳細は後述する。
(2)動作原理
ここで、図1の計測ヘッド200A,200Bを用いた共焦点変位計500の動作原理について、計測ヘッド200Aの例を代表して説明する。図4は、図1の計測ヘッド200Aを用いた共焦点変位計500の動作原理を説明するための図である。図4に示すように、光ファイバ314は、コア310aおよびクラッド310bを含む。コア310aはクラッド310bにより被覆される。コア310aの一端部に入力された光は、コア310aの他端部から出力される。
光ファイバ314から出力された光は、屈折レンズ221および回折レンズ222を通過する。これにより、光に色収差が発生する。色収差が発生した光は、対物レンズ223を通過することにより波長ごとに異なる位置で合焦する。例えば、波長が短い光は対物レンズ223に近い位置で合焦し、波長が長い光は対物レンズ223から遠い位置で合焦する。対物レンズ223に最も近い合焦位置F1と対物レンズ223から最も遠い合焦位置F2との間の範囲が計測範囲MRとなる。
計測範囲MRに計測対象物Sの表面が存在する場合には、対物レンズ223を通過した光は、計測対象物Sの表面に照射された後、当該表面により広範囲に反射される。ここで、本実施の形態においては、光ファイバ314の先端部分は、微小なピンホールを有する空間フィルタとして機能する。
計測対象物Sの表面の位置で合焦した特定の波長を有する光は、当該表面で反射されることによりレンズユニット220を通過し、光ファイバ314のコア310aの先端部分に入力される。光ファイバ314に入力された光の波長は、計測距離を示す。ここで、計測距離とは、所定の基準位置RPから計測対象物Sの表面の位置までの距離である。なお、本例では、基準位置RPは計測対象物Sに最も近い筐体210の端部の位置である。
光ファイバ314に入力された光は、図1の計測ユニット100Aに導かれ、回折格子131により分光されるとともにレンズ133により波長ごとに異なる位置に合焦される。受光部140の複数の画素は、波長ごとに異なる複数の光の合焦位置にそれぞれ配置される。そのため、受光部140の各画素は、当該画素に対応付けられた波長の光を受光し、受光信号を出力する。
図1の計測制御部150には、受光部140の画素の位置と、受光信号の波形におけるピークの波長と、計測距離との換算式が予め記憶されている。計測制御部150は、ピーク値を示す受光信号を出力する受光部140の画素の位置を特定するとともに、特定された画素の位置および予め記憶された換算式に基づいて計測距離を算出する。また、計測制御部150は、算出された計測距離に基づいて計測対象物Sの表面の変位を算出する。
(3)回折レンズ222により形成される光の経路
計測ヘッド200A,200Bに用いられる図4のレンズユニット220においては、回折レンズ222により、その回折レンズ222を通過する光の波長ごとに複数の次数の回折光の経路が形成される。
図5(a)は計測ヘッド200Aの光軸oa1が計測対象物Sの表面に直交するときの複数の波長の光の進行経路の一例を示す図であり、図5(b)は計測ヘッド200Aと計測対象物Sとが図5(a)の位置関係にあるときに取得される受光信号の波形の一例を示す図である。
計測ヘッド200Aにより計測対象物Sの表面に複数の波長の光が照射される。各波長の光について1次光および複数の多次光(2次光および3次光等)が存在する。図5(a)の例では、太い実線で示すように、計測対象物Sの表面に照射される複数の波長の光のうち、計測対象物Sの表面で合焦する1次光L1が計測対象物Sの表面で反射されると、反射された1次光L1は図4の光ファイバ314に入力される。1次光L1と異なる波長を有する1次光のほとんどは、図4の光ファイバ314に入力されない。
図5(a)に二点鎖線で示すように、1次光L1とは異なる波長を有する1次光L2は、計測対象物Sの表面で合焦せず、計測対象物Sの表面よりも下方の位置で合焦する。また、図5(a)に太い点線で示すように、1次光L2と同じ波長を有する多次光L3は、計測対象物Sの表面で合焦せず、計測対象物Sの表面よりも上方の位置F0で合焦する。この場合、多次光L3が位置F0で反射されたと仮定すると、その反射光は光ファイバ314に入力される。したがって、計測対象物Sの表面で反射された1次光L2が多次光L3の経路を通る場合、その1次光L2は光ファイバ314に入力されることになる。
その結果、図5(b)に示すように、計測対象物Sから光ファイバ314に入力される光の受光信号の波形には、1次光L1に起因するピークP1および1次光L2に起因するピークP2が現れる。ピークP2の強度は、ピークP1の強度よりも低い。
本実施の形態では、計測対象物Sの表面が計測範囲MR内に位置しかつ計測ヘッド200Aの光軸oa1が計測対象物Sの表面に直交するときに、受光信号の波形において、多次光L3の経路を通って光ファイバ314に入力される1次光L2に起因するピークP2が現れるように、計測ヘッド200Aのレンズユニット220が構成される。
なお、多次光L3の経路を通って光ファイバ314に入力される1次光L2のピークP2は、例えば計測対象物Sの表面に対する計測ヘッド200Aの光軸oa1の角度が90°±0.2°の範囲内にあるときに受光信号の波形として現れる。
図6(a)は計測ヘッド200Aの光軸oa1が計測対象物Sの表面に直交しないときの複数の波長の光の進行経路の一例を示す図であり、図6(b)は計測ヘッド200Aと計測対象物Sとが図6(a)の位置関係にあるときに取得される受光信号の波形の一例を示す図である。
本例においても、図5(a)の例と同様に、計測対象物Sの表面に照射される複数の波長の光のうち、計測対象物Sの表面で合焦する1次光L1が計測対象物Sの表面で反射されると、反射された1次光L1は図4の光ファイバ314に入力される。
しかし、図6(a)に二点鎖線で示すように、1次光L2は、図5(a)の例とは異なり、多次光L3の経路を通らない。そのため、1次光L2は図4の光ファイバ314には入力されない。
その結果、図6(b)に示すように、計測対象物Sから光ファイバ314に入力される光の受光信号の波形には、1次光L1に起因するピークP1のみが現れ、1次光L2に起因するピークP2は現れない。
上記のように、計測ヘッド200Aの光軸oa1が計測対象物Sの表面に直交する場合、多次光L3の経路を通って光ファイバ314に入力される1次光L2のピークP2を含む受光信号の波形が取得される。このピークP2のピーク値(強度)は、計測対象物Sの表面に対してレンズユニット220の光軸oa1が垂直であるときに最も高く、計測対象物Sの表面に対するレンズユニット220の光軸oa1の垂直度が低くなるにつれて低くなる。そこで、本実施の形態では、多次光L3の経路を通って光ファイバ314に入力される1次光L2を、計測対象物Sの表面に対するレンズユニット220の光軸oa1の垂直度を示す判定光として用いる。
(4)計測ヘッド200A,200Bの光軸調整
本実施の形態においては、計測ヘッド200A,200Bの光軸調整を行うために基準部材が用いられる。基準部材は、平板形状を有し、互いに平行でかつ互いに反対側の第1の面および第2の面を有する。本実施の形態においては、基準部材の厚み、すなわち第1の面と第2の面との間の距離は、計測ヘッド200A,200Bの計測範囲MR(図4)に等しいかまたはほぼ等しい大きさに設定される。
計測ヘッド200Aの光出射部が第1の面に対向し、計測ヘッド200Bの光出射部が第2の面に対向するように、基準部材が計測ヘッド200A,200B間に配置される。この状態で、計測ヘッド200A,200Bから基準部材の第1および第2の面にそれぞれ光が照射されることにより得られる判定光の受光信号に基づいて、計測ヘッド200A,200Bの光軸調整が行われる。
本実施の形態においては、計測ヘッド200A,200Bの光軸調整を行うために計測ヘッド200A,200Bをそれぞれ保持するための保持装置が用いられる。図7は、計測ヘッド200A,200Bを保持可能な保持装置の一例を示す図である。図7(a)に、計測ヘッド200Aを保持する保持装置900を斜め前方かつ上方から見た外観斜視図が示される。図7(b)に、計測ヘッド200Aを保持する保持装置900を斜め後方かつ上方から見た外観斜視図が示される。
図7(a),(b)に示すように、本例の保持装置900においては、台座910上に、保持装置900の前後方向に移動可能に第1の支持部材920が設けられる。第1の支持部材920の前部には、第1の支持部材920に対して左右方向に延びる水平軸の周りで揺動可能かつ鉛直軸の周りで揺動可能に第2の支持部材930が設けられている。
第2の支持部材930の中央部には、第2の支持部材930に対して上下方向および左右方向に移動可能に第3の支持部材940が設けられている。第3の支持部材940は、円筒形状を有し、前後方向に延びる。第3の支持部材940の前部には、第3の支持部材940の中心軸の周りで回転可能に保持部材950が設けられている。計測ヘッド200Aは、保持部材950により保持される。
台座910には、台座910に対して第1の支持部材920を前後方向に移動させるための前後位置つまみ911が設けられている。使用者は、図7(a)に太い矢印a1で示すように、前後位置つまみ911を操作する。それにより、計測ヘッド200Aが前後方向に移動する。
第1の支持部材920には、第1の支持部材920に対して第2の支持部材930を上下方向に揺動させるための鉛直角度つまみ921が設けられている。使用者は、図7(b)に太い矢印a2で示すように、鉛直角度つまみ921を操作する。それにより、図7(b)に白抜きの矢印b2で示すように、計測ヘッド200Aの姿勢(向き)が上下方向に変更される。
第1の支持部材920には、第1の支持部材920に対して第2の支持部材930を左右方向に揺動させるための水平角度つまみ922が設けられている。使用者は、図7(b)に太い矢印a3で示すように、水平角度つまみ922を操作する。それにより、図7(b)に白抜きの矢印b3で示すように、計測ヘッド200Aの姿勢(向き)が左右方向に変更される。
第2の支持部材930には、第2の支持部材930に対して第3の支持部材940を上下方向に移動させるための鉛直位置つまみ931が設けられている。使用者は、図7(a)に太い矢印a4で示すように、鉛直位置つまみ931を操作する。それにより、計測ヘッド200Aが上下方向に移動する。
第2の支持部材930には、第2の支持部材930に対して第3の支持部材940を左右方向に移動させるための水平位置つまみ932が設けられている。使用者は、図7(a)に太い矢印a5で示すように、水平位置つまみ932を操作する。それにより、計測ヘッド200Aが左右方向に移動する。
第3の支持部材940には、第3の支持部材940に対して保持部材950を第3の支持部材940の中心軸の周りで回転させるための軸回転ダイヤル941が設けられている。使用者は、図7(a)に太い矢印a6で示すように、軸回転ダイヤル941を操作する。それにより、計測ヘッド200Aがその光軸oa1の周りで回転する。
上記の基準部材および保持装置900を用意した上で、使用者は、図1の操作部620を操作することにより、図1のPC600を光軸調整モードで動作させる。それにより、図1の主表示部610には、使用者による操作部620の操作に応答して光軸調整のために行うべき作業内容を示す画像および光軸の調整度合いを示す情報を含む複数の誘導画面が順次表示される。
図8~図15は、計測ヘッド200A,200Bの光軸調整時に図1の主表示部610に順次表示される誘導画面の例を示す図である。
図8に示すように、主表示部610に最初に表示される誘導画面691は、初期状態画像im1、第1のメッセージtx1および次へボタン611を含む。初期状態画像im1は、誘導画面691の中央に表示され、最初に設定されるべき計測ヘッド200A,200Bと基準部材との位置関係を示す。第1のメッセージtx1は、初期状態画像im1の下部に表示され、基準部材を挟んで計測ヘッド200A,200Bを対向配置させるべき作業指示を含む。次へボタン611は、誘導画面691の最下部右隅に表示される。
ここで、図8および後述する図9~図15に示されるように、光軸調整モードにおいて主表示部610に順次表示される誘導画面691~698の最上部には、光軸調整の現時点の進捗を示す画像が表示される。本実施の形態においては、光軸調整は、基本的に第1ステップ、第2ステップ、第3ステップおよび第4ステップの4つのステップで行われる。そのため、各誘導画面691~698の最上部には、当該誘導画面に対応するステップを示す指標と他の誘導画像に対応するステップを示す指標とが互いに識別可能な態様で表示される。例えば、各誘導画面691~698においては、当該誘導画面に対応するステップを示す指標のみがハイライト表示される。
第1ステップは、基準部材を挟んで計測ヘッド200A,200Bを対向配置させるとともに、基準部材の第1の面と計測ヘッド200Aとの間の距離および基準部材の第2の面と計測ヘッド200Bとの間の距離を調整するステップである。第2ステップは、基準部材の第1の面に対して計測ヘッド200Aの光軸oa1が直交するとともに基準部材の第2の面に対して計測ヘッド200Bの光軸oa2が直交するように、計測ヘッド200A,200Bの姿勢を調整するステップである。
第3ステップは、計測ヘッド200Aの光軸oa1と計測ヘッド200Bの光軸oa2とが一致するかまたはほぼ一致するように計測ヘッド200A,200Bの相対的な位置関係を粗調整するステップである。第4ステップは、計測ヘッド200Aの光軸oa1と計測ヘッド200Bの光軸oa2とが精密に一致するように計測ヘッド200A,200Bの相対的な位置関係を微調整するステップである。
第1ステップにおいて、使用者は、図8に示される誘導画面691を視認しつつ、計測ヘッド200A,200Bと基準部材との位置関係を設定した後、図1の操作部620を用いて図8の次へボタン611を操作する。それにより、主表示部610に図9の誘導画面692が表示される。
図9に示すように、誘導画面692は、距離調整画像im2、保持装置画像im3、第2のメッセージtx2、次へボタン611および戻るボタン612を含む。距離調整画像im2は誘導画面692の中央左に表示され、保持装置画像im3は誘導画面692の中央右に表示される。第2のメッセージtx2は距離調整画像im2および保持装置画像im3の下部に表示される。次へボタン611および戻るボタン612は、誘導画面692の最下部右隅に表示される。
距離調整画像im2は、使用者に計測ヘッド200A,200Bと基準部材との間の距離を調整させるための画像であり、計測ヘッド200A,200Bが基準部材を挟んで対向配置されつつ前後方向に移動する状態を示す。第2のメッセージtx2は、計測ヘッド200Aと基準部材の第1の面との間の距離、計測ヘッド200Bと基準部材の第2の面との間の距離を調整すべき作業指示を含む。保持装置画像im3においては、それらの調整時に操作されるべき保持装置900(図7)の前後位置つまみ911(図7)の位置が示される。
使用者は、図9の誘導画面692を視認することにより、自己が行うべき作業内容と保持装置900(図7)の操作対象とを認識する。その上で、使用者は、図1の操作部620を用いて図9の次へボタン611を操作する。それにより、主表示部610に図10の誘導画面693が表示される。このとき、計測ヘッド200A,200Bは基準部材に対してそれぞれ光を照射する。なお、使用者は、図1の操作部620を用いて図9の戻るボタン612を操作することにより、主表示部610に直前の図8の誘導画面691を表示させることができる。
図10に示すように、誘導画面693は、波形表示領域da1、波形表示領域da2、第3のメッセージtx3、次へボタン611および戻るボタン612を含む。
波形表示領域da1は誘導画面693の中央左に表示され、波形表示領域da2は誘導画面693の中央左に表示される。第3のメッセージtx3は波形表示領域da1,da2の下部に表示される。次へボタン611および戻るボタン612は、誘導画面693の最下部右隅に表示される。
波形表示領域da1上には、受光信号の強度を示す縦軸および波長を示す横軸(波長軸)が表示されるとともに、計測ヘッド200Aから基準部材の第1の面に照射される光に基づいて取得される受光信号の波形が表示される。波形表示領域da2上には、受光信号の強度を示す縦軸および波長を示す横軸(波長軸)が表示されるとともに、計測ヘッド200Bから基準部材の第2の面に照射される光に基づいて取得される受光信号の波形が表示される。
波形表示領域da1においては、計測ヘッド200Aの光軸oa1が第1の面に概ね直交するときに、基準部材の第1の面で合焦する1次光のピーク波形と判定光のピーク波形とが同時に表示されることになる。したがって、使用者は、波形表示領域da1に2つのピーク波形が表示されるように、計測ヘッド200Aを保持する保持装置900(図7)の姿勢および位置を調整する。
また、波形表示領域da1においては、2つのピーク波形が表示される状態で計測ヘッド200Aと基準部材の第1の面との間の距離が変化すると、波形軸上の1次光のピーク波形と判定光のピーク波形の位置が変化する。
本実施の形態においては、光軸調整時に調整されるべき計測ヘッド200Aと基準部材との間の距離の範囲が第1の距離範囲として予め定められている。第1の距離範囲は、例えば計測ヘッド200Aの先端から計測ヘッド200Aの計測範囲MR内の所定位置までの距離を含むように定められる。波形表示領域da1においては、計測ヘッド200Aと基準部材の第1の面との間の距離の範囲が第1の距離範囲にある場合における判定光のピーク波長の範囲が第1の波長範囲wr1として波長軸上に表示される。
波形表示領域da2においては、計測ヘッド200Bの光軸oa2が第2の面に概ね直交するときに、基準部材の第2の面で合焦する1次光のピーク波形と判定光のピーク波形とが同時に表示されることになる。したがって、使用者は、波形表示領域da2に2つのピーク波形が表示されるように、計測ヘッド200Bを保持する保持装置900(図7)の姿勢および位置を調整する。
また、波形表示領域da2においては、2つのピーク波形が表示される状態で計測ヘッド200Bと基準部材の第2の面との間の距離が変化すると、波形軸上の1次光のピーク波形と判定光のピーク波形の位置が変化する。
本実施の形態においては、光軸調整時に調整されるべき計測ヘッド200Bと基準部材との間の距離の範囲が第2の距離範囲として予め定められている。第2の距離範囲は、例えば計測ヘッド200Bの先端から計測ヘッド200Bの計測範囲MR内の所定位置までの距離を含むように定められる。波形表示領域da2においては、計測ヘッド200Bと基準部材の第2の面との間の距離の範囲が第2の距離範囲にある場合における判定光のピーク波長の範囲が第2の波長範囲wr2として波長軸上に表示される。
第3のメッセージtx3は、2つのピークのうち小さいピークが第1および第2の波長範囲wr1,wr2を示す点線の枠内に位置するように、計測ヘッド200A,200Bの前後方向の位置を調整すべき作業指示を含む。
そこで、使用者は、波形表示領域da1,da2に表示される受光信号の波形を視認しつつ、計測ヘッド200A,200Bをそれぞれ保持する保持装置900(図7)の前後位置つまみ911(図7)を操作する。それにより、使用者は、計測ヘッド200Aと基準部材の第1の面との間の距離を調整する。また、使用者は、計測ヘッド200Bと基準部材の第2の面との間の距離を調整する。
ここで、図10の誘導画面693では、波形表示領域da1,da2の上部に判定枠mk1,mk2がそれぞれ表示される。判定枠mk1では、計測ヘッド200Aを通して得られる判定光のピーク波長が第1の波長範囲wr1内に位置しかつ判定光のピーク値が予め定められたしきい値を超える場合に「OK」が表示され、それ以外の場合に「NG」が表示される。判定枠mk2では、計測ヘッド200Bを通して得られる判定光のピーク波長が第2の波長範囲wr2内に位置しかつ判定光のピーク値が予め定められたしきい値を超える場合に「OK」が表示され、それ以外の場合に「NG」が表示される。したがって、使用者は、判定枠mk1,mk2内に表示される情報に基づいて、光軸調整の作業を次のステップに進めるべきか否かを決定することができる。
使用者は、計測ヘッド200Aと基準部材の第1の面との間の距離、および計測ヘッド200Bと基準部材の第2の面との間の距離を調整した後(第1ステップ完了後)、図1の操作部620を用いて図10の次へボタン611を操作する。それにより、主表示部610に図11の誘導画面694が表示され、第2ステップが開始される。
図11に示すように、誘導画面694は、姿勢調整画像im4、第4のメッセージtx4、次へボタン611および戻るボタン612を含む。姿勢調整画像im4は誘導画面694の中央に表示され、第4のメッセージtx4は姿勢調整画像im4の下部に表示される。次へボタン611および戻るボタン612は、誘導画面694の最下部右隅に表示される。
姿勢調整画像im4は、使用者に基準部材に対向する計測ヘッド200A,200Bの姿勢を調整させるための画像であり、基準部材に対向する計測ヘッド200Aの姿勢を調整する状態を示す。本例の姿勢調整画像im4においては、その調整時に操作されるべき保持装置900(図7)の鉛直角度つまみ921(図7)および水平角度つまみ922(図7)の位置が示される。第4のメッセージtx4は、基準部材の第1および第2の面に対して計測ヘッド200A,200Bの光軸oa1,oa2が直交するように、計測ヘッド200A,200Bの姿勢を調整すべき作業指示を含む。
使用者は、図11に示される姿勢調整画像im4および第4のメッセージtx4を視認することにより、自己が行うべき作業内容と保持装置900(図7)の操作対象とを認識する。その上で、使用者は、図1の操作部620を用いて図11の次へボタン611を操作する。それにより、主表示部610に図12の誘導画面695が表示される。
図12に示すように、誘導画面695は、変化表示領域da3,da4、第5のメッセージtx5、次へボタン611および戻るボタン612を含む。変化表示領域da3は誘導画面695の中央左に表示され、変化表示領域da4は誘導画面695の中央右に表示される。第5のメッセージtx5は変化表示領域da3,da4の下部に表示される。次へボタン611および戻るボタン612は、誘導画面695の最下部右隅に表示される。
変化表示領域da3上には、受光信号の強度を示す縦軸および時間を示す横軸(時間軸)が表示されるとともに、計測ヘッド200Aに対応する判定光の強度の現時点までの一定時間分の時間的変化がスクロール表示される。また、変化表示領域da3においては、計測ヘッド200Aを通して得られる判定光の強度の時間的変化における現時点までの最大値を示す過去最大強度値が一点鎖線で表示される。さらに、変化表示領域da3の上部には、計測ヘッド200Aに対応する現時点の判定光の強度値および過去最大強度値が数値表示される。
変化表示領域da4上には、変化表示領域da3の例と同様に、受光信号の強度を示す縦軸および時間を示す横軸(時間軸)が表示されるとともに、計測ヘッド200Bに対応する判定光の強度の現時点までの一定時間分の時間的変化がスクロール表示される。また、変化表示領域da4においては、計測ヘッド200Bを通して得られる判定光の強度の時間的変化における現時点までの最大値を示す過去最大値が一点鎖線で表示される。さらに、変化表示領域da4の上部には、計測ヘッド200Bに対応する現時点の判定光の強度値および過去最大強度値が数値表示される。
各変化表示領域da3,da4において、判定光の強度に対応する縦軸の表示レンジは、使用者が判定光の強度の時間的変化を容易に把握できるようにその強度の値に応じて自動的に調整される。各変化表示領域da3,da4の下部には、リセットボタンrbが表示されている。リセットボタンrbは、変化表示領域da3,da4における縦軸および横軸の表示レンジを予め設定された初期値にリセットするとともに過去最大強度値をリセットするために用いられる。
第5のメッセージtx5は、計測ヘッド200A,200Bの各々についての判定光の強度が大きくなるように、計測ヘッド200A,200Bの姿勢を調整すべき作業指示を含む。
使用者は、変化表示領域da3,da4に表示される判定光の強度の時間的変化を視認しつつ、保持装置900(図7)の鉛直角度つまみ921(図7)および水平角度つまみ922(図7)を操作する。このようにして、使用者は、基準部材の第1の面に対して計測ヘッド200Aの光軸oa1が直交するように、計測ヘッド200Aの姿勢を調整する。また、使用者は、基準部材の第2の面に対して計測ヘッド200Bの光軸oa2が直交するように、計測ヘッド200Bの姿勢を調整する。それにより、計測ヘッド200A,200Bの光軸oa1,oa2が互いに平行となる。
本例では、変化表示領域da3,da4が主表示部610の単一の画面上に同時に表示される。それにより、使用者は、計測ヘッド200Aを通して得られる判定光の強度と計測ヘッド200Bを通して得られる判定光の強度とを対比しつつ、計測ヘッド200A,200Bの姿勢を調整することができる。
使用者は、基準部材の第1および第2の面に対して計測ヘッド200A,200Bの光軸oa1,oa2を直交させた後(第2ステップ完了後)、図1の操作部620を用いて図12の次へボタン611を操作する。それにより、主表示部610に図13の誘導画面696が表示され、第3ステップが開始される。
図13に示すように、誘導画面696は、軸調整画像im5、第6のメッセージtx6、次へボタン611および戻るボタン612を含む。軸調整画像im5は誘導画面696の中央に表示され、第6のメッセージtx6は軸調整画像im5の下部に表示される。次へボタン611および戻るボタン612は、誘導画面696の最下部右隅に表示される。
軸調整画像im5は、使用者に計測ヘッド200A,200Bの光軸oa1,oa2を一致させる粗調整を行わせるための画像であり、計測ヘッド200A,200Bの間に基準部材に代えて紙が配置された状態を示す。本例の軸調整画像im5においては、使用者により操作されるべき保持装置900(図7)の鉛直位置つまみ931(図7)および水平位置つまみ932(図7)の位置が示される。
第6のメッセージtx6は、基準部材を取り除き、計測ヘッド200A,200Bの間に紙を配置すること、および紙に投影される2つの光スポットが重なり合うように計測ヘッド200A,200Bの位置関係を調整すべき作業指示を含む。
使用者は、図13に示される軸調整画像im5および第6のメッセージtx6を視認することにより、自己が行うべき作業内容と保持装置900(図7)の操作対象とを認識する。その上で、使用者は、計測ヘッド200A,200Bの相対的な位置関係を粗調整した後(第3ステップ完了後)、図1の操作部620を用いて図13の次へボタン611を操作する。それにより、主表示部610に図14の誘導画面697が表示され、第4ステップが開始される。
第4ステップが開始されると、計測ヘッド200A,200Bは、一方(本例では計測ヘッド200A)から光が出射され、他方(本例では計測ヘッド200B)から光が出射されない状態に移行する。ここで、計測ヘッド200A,200Bの光軸oa1,oa2が一致しているかまたは概ね一致している場合には、計測ヘッド200Aから出射された光が計測ヘッド200Bに入射する。それにより、計測ヘッド200A,200Bの光軸oa1,oa2の一致度が高いほど、計測ヘッド200Bを通して取得される受光信号の強度が大きくなる。
図14に示すように、誘導画面697は、軸調整画像im6、第7のメッセージtx7、次へボタン611および戻るボタン612を含む。軸調整画像im6は誘導画面697の中央に表示され、第7のメッセージtx7は軸調整画像im6の下部に表示される。次へボタン611および戻るボタン612は、誘導画面694の最下部右隅に表示される。
軸調整画像im6は、使用者に計測ヘッド200A,200Bの光軸oa1,oa2を一致させる精密な調整を行わせるための画像であり、計測ヘッド200A,200Bが対向配置されかつ計測ヘッド200A,200B間に他の部材が存在しない状態を示す。本例の軸調整画像im6においては、使用者により操作されるべき保持装置900(図7)の鉛直位置つまみ931(図7)および水平位置つまみ932(図7)の位置が示される。第7のメッセージtx7は、計測ヘッド200A,200B間の紙を取り除き、計測ヘッド200A,200Bの光軸oa1,oa2を精密に一致させるべき作業指示を含む。
使用者は、図14に示される軸調整画像im6および第7のメッセージtx7を視認することにより、自己が行うべき作業内容と保持装置900(図7)の操作対象とを認識する。その上で、使用者は、図1の操作部620を用いて図14の次へボタン611を操作する。それにより、主表示部610に図15の誘導画面698が表示される。
図15に示すように、誘導画面698は、変化表示領域da5、第8のメッセージtx8、戻るボタン612および終了ボタン613を含む。変化表示領域da5は誘導画面698の中央に表示され、第8のメッセージtx8は変化表示領域da5の下部に表示される。戻るボタン612および終了ボタン613は、誘導画面698の最下部右隅に表示される。
変化表示領域da5上には、受光信号の強度を示す縦軸および時間を示す横軸(時間軸)が表示されるとともに、計測ヘッド200Aから出射されて計測ヘッド200Bに入射される光の強度の現時点までの一定時間分の時間的変化がスクロール表示される。また、変化表示領域da5においては、計測ヘッド200Bに入射される光の強度の時間的変化における現時点までの最大値を示す過去最大強度値が一点鎖線で表示される。さらに、変化表示領域da5の上部には、計測ヘッド200Bに入射される光の現時点の強度値および過去最大強度値が数値表示される。
変化表示領域da5において、計測ヘッド200Bに入射される光の強度に対応する縦軸の表示レンジは、使用者がその光の強度の時間的変化を容易に把握できるようにその強度に応じて自動的に調整される。変化表示領域da5の側部には、リセットボタンrbが表示されている。リセットボタンrbは、変化表示領域da5における縦軸および横軸の表示レンジを予め設定された初期値にリセットするとともに過去最大強度値をリセットするために用いられる。
第8のメッセージtx8は、受光信号の強度が大きくなるように、計測ヘッド200A,200Bの位置関係を調整すべき作業指示を含む。使用者は、変化表示領域da5に表示される光の強度の時間的変化を視認しつつ、保持装置900(図7)の鉛直位置つまみ931(図7)および水平位置つまみ932(図7)を操作する。それにより、計測ヘッド200A,200Bの光軸oa1,oa2が精密に一致するように、計測ヘッド200A,200Bの位置関係を調整する。
使用者は、計測ヘッド200A,200Bの光軸oa1,oa2を精密に一致させた後(第4ステップ完了後)、図1の操作部620を用いて図15の終了ボタン613を操作する。それにより、計測ヘッド200A,200Bの光軸調整が完了し、図1のPC600の動作モードが光軸調整モードから計測モードに切り替わる。
(5)共焦点変位計500の機能的な構成および動作
図16は、図1の共焦点変位計500における機能的な構成を示すブロック図である。図16に示すように、図1のPC600は、機能的な構成として光制御部651、指令受付部652、受光信号取得部653、判定光抽出部654、強度取得部655、最大強度保持部656、一致度表示制御部657、範囲表示制御部658、時間変化表示制御部659、最大強度表示制御部660、距離調整画像表示制御部661、姿勢調整画像表示制御部662および軸調整画像表示制御部663を含む。これらの各構成要素の機能は、PC600を構成する図1のCPU601がメモリ602に記憶された厚み計測プログラムを実行することにより実現される。なお、上記の構成要素の一部または全てが電子回路等のハードウェアにより構成されてもよい。また、制御ユニット400に厚み計測プログラムの一部または全てが記憶されることにより、上記の構成要素の一部または全てが制御ユニット400により実現されてもよい。
指令受付部652は、使用者による操作部620の操作に基づく指令を受け付け、受け付けた指令を光制御部651、受光信号取得部653、距離調整画像表示制御部661、姿勢調整画像表示制御部662および軸調整画像表示制御部663に与える。
光制御部651は、光軸調整の第1ステップから第3ステップまでの調整が完了するまでの間、計測ヘッド200A,200Bからそれぞれ光を出射すべき旨の指令を制御ユニット400に与える。この場合、制御ユニット400は、光制御部651の指令に応答して計測ヘッド200A,200Bからそれぞれ光を出射させる。
また、光制御部651は、光軸調整の第4ステップで計測ヘッド200Aのみから光を出射すべき指令を制御ユニット400に与える。このとき、光制御部651は、さらに計測ユニット100Bから出力される受光信号を後述する受光信号取得部653を介して受け付ける。その上で、光制御部651は、受け付けた受光信号に基づいて、計測ヘッド200Aにおける光の出射量の制御を制御ユニット400に指令する。すなわち、光制御部651は、計測ユニット100Bの受光部140に適切な量の光が入射するように、計測ユニット100Aの投光部120の動作を制御する。
なお、光制御部651は、計測ヘッド200Bのみから光が出射されるべき指令を制御ユニット400に与えるとともに、計測ユニット100Aから出力される受光信号を受け付けてもよい。あるいは、光制御部651は、計測ヘッド200A,200Bから交互に光が出射されるべき指令を制御ユニット400に与えるとともに、計測ユニット100A,100Bから交互に出力される受光信号を受け付けてもよい。この場合、光制御部651は、受け付けた受光信号に基づいて、計測ヘッド200A,200Bのうち一方から出射される光の制御を制御ユニット400に指令してもよい。
受光信号取得部653は、計測ヘッド200A,200Bから出力される受光信号を取得し、取得した受光信号を光制御部651、判定光抽出部654および一致度表示制御部657に与える。
一致度表示制御部657は、光軸調整の第4ステップで計測ヘッド200Bから出力される受光信号の強度の時間的変化を計測ヘッド200A,200Bの光軸oa1,oa2の一致度を示す情報として主表示部610に表示させる。上記の光軸調整の例では、図15の変化表示領域da5に示される情報が一致度を示す情報に相当する。
判定光抽出部654は、光軸調整の第1および第2ステップで各計測ユニット100A,100Bから出力された受光信号のうち判定光を含む波形を抽出し、抽出した判定光を含む波形を強度取得部655および範囲表示制御部658に与える。
範囲表示制御部658は、光軸調整の第1ステップで、抽出された判定光の波形を波長軸上に表示する。このとき、範囲表示制御部658は、基準部材と各計測ヘッド200A,200Bとの間の距離の変化に応じて波長軸上で判定光の波形の位置が変化するように主表示部610を制御する。また、範囲表示制御部658は、計測ヘッド200Aに対応する波長軸上に、計測ヘッド200Aと基準部材の第1の面との間で調整されるべき予め定められた第1の距離範囲に対応する第1の波長範囲wr1(図10)を表示させる。さらに、範囲表示制御部658は、計測ヘッド200Bに対応する波長軸上に、計測ヘッド200Bと基準部材の第2の面との間で調整されるべき予め定められた第2の距離範囲に対応する第2の波長範囲wr2(図10)を表示させる。
強度取得部655は、光軸調整の第2ステップで、計測ヘッド200A,200Bに関してそれぞれ抽出された判定光の強度を取得し、取得した強度を最大強度保持部656および時間変化表示制御部659に与える。
時間変化表示制御部659は、光軸調整の第2ステップで、計測ヘッド200Aに関して取得された判定光の強度の時間的変化を主表示部610に表示させる。上記の光軸調整の例では、図12の変化表示領域da3上に示される情報が計測ヘッド200Aに関して取得された判定光の強度の時間的変化に相当する。また、時間変化表示制御部659は、光軸調整の第2ステップで、計測ヘッド200Bに関して取得された判定光の強度の時間的変化を主表示部610に表示させる。上記の光軸調整の例では、図12の変化表示領域da4上に示される情報が計測ヘッド200Bに関して取得された判定光の強度の時間的変化に相当する。
最大強度保持部656は、光軸調整の第2ステップで、計測ヘッド200Aに関して取得された判定光の強度の時間的変化における現時点までの最大の強度を更新しつつ保持するとともに、保持される強度を最大強度表示制御部660に与える。また、最大強度保持部656は、光軸調整の第2ステップで、計測ヘッド200Bに関して取得された判定光の強度の時間的変化における現時点までの最大の強度を更新しつつ保持するとともに、保持される強度を最大強度表示制御部660に与える。
最大強度表示制御部660は、光軸調整の第2ステップで、計測ヘッド200Aに関して最大強度保持部656に保持される判定光の強度を過去最大強度値として主表示部610に表示させる。また、最大強度表示制御部660は、光軸調整の第2ステップで、計測ヘッド200Bに関して最大強度保持部656に保持される判定光の強度を過去最大強度値として主表示部610に表示させる。
距離調整画像表示制御部661は、光軸調整の第1ステップで、計測ヘッド200Aと基準部材の第1の面との間の距離、および計測ヘッド200Bと基準部材の第2の面との間の距離を調整するための操作を促す距離調整画像im2および第2のメッセージtx2を主表示部610に表示させる。
姿勢調整画像表示制御部662は、光軸調整の第2ステップで、基準部材の第1および第2の面に対して光軸oa1,oa2が直交するように計測ヘッド200A,200Bの姿勢を調整するための操作を促す姿勢調整画像im4および第4のメッセージtx4を主表示部610に表示させる。
軸調整画像表示制御部663は、光軸調整の第3および第4ステップで、計測ヘッド200A,200Bの光軸oa1,oa2を一致させるための操作を促す軸調整画像im5,im6、第6のメッセージtx6および第7のメッセージtx7を主表示部610に表示させる。
(6)光軸調整計測処理
図17および図18は、PC600において行われる光軸調整処理を示すフローチャートである。図17および図18の光軸調整処理は、図1のCPU601がメモリ602に記憶された厚み計測プログラムを実行するとともに、使用者による図1の操作部620の操作に応答して、PC600が光軸調整モードで動作することにより行われる。
光軸調整処理が開始されると、距離調整画像表示制御部661は、最初に設定されるべき計測ヘッド200A,200Bと基準部材との位置関係を示す初期状態画像im1を主表示部610に表示させる(ステップS10)。
次に、距離調整画像表示制御部661は、使用者による操作部620の操作に応答して、使用者に計測ヘッド200A,200Bと基準部材との間の距離を調整させるための距離調整画像im2を主表示部610に表示させる(ステップS11)。
次に、光制御部651は、2つの計測ヘッド200A,200Bからそれぞれ光が出射されるように制御ユニット400に指令する(ステップS12)。これにより、制御ユニット400の制御に基づいて計測ヘッド200A,200Bからそれぞれ光が出射される。
次に、範囲表示制御部658は、使用者による操作部620の操作に応答して、各計測ヘッド200A,200Bから出射された光の受光信号の波形を波長軸とともに主表示部610に表示させる(ステップS13)。また、範囲表示制御部658は、計測ヘッド200A,200Bに対応する2つの波長軸上に判定光の位置が合わされるべき第1および第2の波長範囲wr1,wr2をそれぞれ表示させる(ステップS14)。
次に、姿勢調整画像表示制御部662は、使用者による操作部620の操作に応答して、使用者に基準部材に対向する計測ヘッド200A,200Bの姿勢を調整させるための姿勢調整画像im4を主表示部610に表示させる(ステップS15)。
次に、時間変化表示制御部659は、使用者による操作部620の操作に応答して、計測ヘッド200A,200Bにそれぞれ対応する判定光の強度の時間的変化を主表示部610に表示させる(ステップS16)。また、最大強度表示制御部660は、計測ヘッド200A,200Bを通して得られる判定光の強度の過去最大強度値を主表示部610に表示させる(ステップS17)。
次に、軸調整画像表示制御部663は、使用者による操作部620の操作に応答して、使用者に計測ヘッド200A,200Bの光軸oa1,oa2を一致させる粗調整を行わせるための軸調整画像im5を主表示部610に表示させる(ステップS18)。
次に、軸調整画像表示制御部663は、使用者による操作部620の操作に応答して、使用者に計測ヘッド200A,200Bの光軸oa1,oa2を一致させる精密な調整を行わせるための軸調整画像im6を主表示部610に表示させる(ステップS19)。
このとき、光制御部651は、計測ヘッド200A,200Bのうち一方のみから光が出射されるように制御ユニット400に指令する(ステップS20)。これにより、制御ユニット400の制御に基づいて計測ヘッド200A,200Bのうち一方のみから光が出射される。
また、光制御部651は、計測ヘッド200A,200Bのうち他方に入射される光の受光信号に基づいて計測ヘッド200A,200Bのうち一方の光の出射を制御するように制御ユニット400に指令する(ステップS21)。
その後、一致度表示制御部657は、計測ヘッド200A,200Bのうち一方から他方に入射する光の強度の時間的変化を、過去最大強度値とともに光軸oa1,oa2の一致度を示す情報として主表示部610に表示させる(ステップS22)。
最後に、指令受付部652は、使用者による操作部620の操作に応答して、光軸調整処理を終了する。
(7)効果
上記の共焦点変位計500においては、計測ヘッド200A,200Bの光軸の調整時の第2ステップにおいて、計測ヘッド200A,200B間に基準部材が配置された状態で、計測ヘッド200A,200Bを通して得られる判定光の強度の時間的変化が過去最大強度値とともに主表示部610に表示される。各判定光の強度は、基準部材の第1または第2の面に対する計測ヘッド200A,200Bの光軸oa1,oa2の垂直度が高いほど高くなる。また、各判定光の強度は、第1または第2の面に対する計測ヘッド200A,200Bの光軸oa1,oa2の垂直度が低いほど低くなる。したがって、使用者は、各判定光の強度の時間的変化を視認しつつ、計測ヘッド200A,200Bの光軸oa1,oa2が基準部材の第1および第2の面に対して垂直となるように計測ヘッド200A,200Bの姿勢を容易かつ正確に調整することができる。
その後、使用者は計測ヘッド200A,200Bの相対的な位置関係を調整することにより、計測ヘッド200A,200Bの光軸oa1,oa2を正確に一致させることができる。その結果、計測ヘッド200A,200Bの上記の光軸調整後にPC600が計測モードで動作することにより、計測対象物Sの厚みが高い精度で計測される。
上記の計測ヘッド200A,200Bの光軸調整においては、使用者が行うべき作業内容を示す複数の誘導画面696~698が、使用者による操作部620の操作に応答して予め定められた順序で主表示部610に表示される。したがって、使用者は、適切な順序で光軸調整を行うことができる。
[2]第2の実施の形態
第2の実施の形態に係る共焦点変位計について、第1の実施の形態に係る共焦点変位計500と異なる点を説明する。図19は、第2の実施の形態に係る共焦点変位計の構成を示す模式図である。図19に示すように、本実施の形態に係る計測ユニット100Aには、4つの光ファイバ314が設けられる。本例の4つの光ファイバ314は、レンズユニット220の光軸oa1に直交する面内でその光軸oa1を中心とする正方形の4つの角部に位置するようにかつ互いに近接するように配置される。
計測ヘッド200Aと計測ユニット100Aとの間には、4つの光ファイバ314にそれぞれ対応する4つの導光部300Aが設けられる。このような構成において、計測ユニット100Aの投光部120は、4つの導光部300Aの光ファイバ311(図1)に光を入力する。この場合、各導光部300Aの光ファイバ311に入力された光は、計測ユニット100Aにおいて対応する光ファイバ314およびレンズユニット220を通して計測対象物Sの表面に照射される。
4つの光ファイバ314を通して計測ヘッド200Aから計測対象物Sに照射される4つの光の進行方向は、当該計測ヘッド200Aの光軸oa1に平行である。そのため、計測対象物Sの表面に対して計測ヘッド200Aの光軸oa1が直交する場合には、計測対象物Sの表面上の4つの光の照射位置は、光軸oa1上に中心を有する正方形の4つの角部に位置する。
各光ファイバ314から計測対象物Sに照射されて、計測対象物Sの表面で反射される光は、当該光ファイバ314に入力される。光ファイバ314に入力された光は、当該光ファイバ314に対応する導光部300Aの光ファイバ312(図1)を通して分光部130に導かれる。
本実施の形態においては、分光部130の受光部140は、複数の画素が二次元状に配列された撮像素子(二次元ラインセンサ)を含む。受光部140には、計測ヘッド200Aの4つの光ファイバ314にそれぞれ対応する矩形状の4個の受光領域を有する。各受光領域は、一次元ラインセンサとして機能する。
4つの光ファイバ314から分光部130に導かれる4つの光は、分光部130においてそれぞれ分光され、4個の受光領域において波長ごとに異なる一次元上の位置に合焦される。各受光領域の各画素からは、受光量に対応する受光信号が計測制御部150に出力される。この場合、計測制御部150は、4つの受光領域に対応する4つの受光信号の波形を取得し、取得した4つの波形について平均化処理を行う。本例の平均化処理とは、4つの光ファイバ314(ピンホール)を通過した4つの光についての波長ごとの強度の平均に対応する平均分布の信号を生成する処理を意味する。平均化処理は例えば積算処理である。また、計測制御部150は、平均化処理により得られる受光信号の波形に基づいて計測対象物Sの表面の変位を算出する。
計測ユニット100Aおよび計測ユニット100Bは同じ構成を有し、計測ヘッド200Aおよび計測ヘッド200Bは同じ構成を有し、4つの導光部300Aおよび4つの導光部300Bは同じ構成を有する。したがって、計測ユニット100Bの計測制御部150は、計測ヘッド200Bから計測対象物Sに照射されて反射される4つの光の受光信号の波形に基づいて計測対象物Sの表面の変位を算出する。
CPU601がメモリ602に記憶された厚み計測プログラムを実行することにより、PC600が計測モードおよび光軸調整モードで動作する。計測モードでは、計測ユニット100A,100Bの間に配置された計測対象物Sの厚みの計測が行われる。また、光軸調整モードでは、計測モードによる計測対象物Sの厚みの計測前に、対向配置される計測ヘッド200A,200Bの光軸が調整される。
本実施の形態に係る各計測ユニット100A,200Bにおいては、4つの受光信号の波形が取得される。そこで、本実施の形態に係る光軸調整では、第1ステップにおいて4つの受光信号のうち1の受光信号のみが用いられる。すなわち、第1ステップにおいては、各計測ヘッド200A,200Bにより取得される4つの光の受光信号のうち1の光(以下、代表光と呼ぶ。)の受光信号の波形およびその強度が主表示部610に表示される(図10参照)。それにより、使用者は、代表光の受光信号の波形および強度を視認しつつ、計測ヘッド200A,200Bの距離調整を容易かつ正確に行うことができる。
次の第2ステップにおいては、各計測ヘッド200A,200Bにより取得される4つの光からそれぞれ判定光が抽出される。また、各計測ヘッド200A,200Bについて、4つの判定光のうち強度が最大となる判定光が最大判定光として抽出される。さらに、4つの判定光のうち強度が最小となる判定光が最小判定光として抽出される。
各計測ヘッド200A,200Bに関して、最大判定光の強度と最小判定光の強度との差分絶対値は、基準部材の第1または第2の面に対する計測ヘッド200A,200Bの光軸oa1,oa2の垂直度が高いほど小さくなる。一方、最大判定光の強度と最小判定光の強度との差分絶対値は、基準部材の第1または第2の面に対する計測ヘッド200A,200Bの光軸oa1,oa2の垂直度が低いほど大きくなる。
そこで、本実施の形態では、基準部材の第1または第2の面に対する計測ヘッド200A,200Bの光軸oa1,oa2の垂直度を表す垂直度評価値として、最大判定光の強度と最小判定光の強度との差分絶対値の逆数が用いられる。この場合、垂直度評価値が大きいほど基準部材の第1または第2の面に対する計測ヘッド200A,200Bの光軸oa1,oa2の垂直度は高くなる。一方、垂直度評価値が小さいほど基準部材の第1または第2の面に対する計測ヘッド200A,200Bの光軸oa1,oa2の垂直度は低くなる。
そこで、第2の実施の形態に係る光軸調整において、第2ステップでは、図12の変化表示領域da3,da4に計測ヘッド200A,200Bにそれぞれ対応する垂直度評価値の時間的変化が表示される。それにより、使用者は、垂直度評価値の時間的変化を視認しつつ、計測ヘッド200A,200Bの姿勢調整を容易かつ正確に行うことができる。
垂直度評価値として、最大判定光の強度と最小判定光の強度との単なる差分絶対値が用いられてもよい。この場合、垂直度評価値が小さいほど基準部材の第1または第2の面に対する計測ヘッド200A,200Bの光軸oa1,oa2の垂直度は高くなる。また、垂直度評価値が大きいほど基準部材の第1または第2の面に対する計測ヘッド200A,200Bの光軸oa1,oa2の垂直度は低くなる。
なお、上記の第2ステップにおいては、垂直度評価値に代えて、各計測ヘッド200A,200Bに対応する4つの判定光の全ての強度の時間的変化が図12の変化表示領域da3,da4に表示されてもよい。この場合、使用者は、4つの判定光の強度が一致するように計測ヘッド200A,200Bの姿勢調整を行うことにより、第1または第2の面に対する計測ヘッド200A,200Bの光軸oa1,oa2の垂直度を高くすることができる。
ここで、上記のように、4つの光ファイバ314を通して計測ヘッド200Aから計測対象物Sに照射される4つの光の進行方向は、当該計測ヘッド200Aの光軸oa1に平行であるが、計測ヘッド200Aの光軸oa1には一致しない。そのため、計測ヘッド200Aの4つの光ファイバ314のうち4つの光ファイバ314が、計測ヘッド200Bの4つの光ファイバ314の4つの光ファイバ314にそれぞれ正対しない場合には、光軸oa1,oa2は一致しない。
そこで、本実施の形態に係る計測ヘッド200A,200Bの光軸調整では、第4ステップで主表示部610に表示される誘導画面に、各計測ヘッド200A,200Bの光軸oa1,oa2周りの回転角度を調整すべき作業指令が含まれる。また、第4ステップで主表示部610に表示される誘導画面に、計測ヘッド200Aから出射されて計測ヘッド200Bに入射される4つの光の強度の現時点までの一定時間分の時間的変化がスクロール表示される。
図20および図21は、第2の実施の形態に係る光軸調整において第4ステップで主表示部610に表示される誘導画面の一例を示す図である。図20に示すように、本実施の形態において、光軸調整の第4ステップが開始される際に主表示部610に表示される誘導画面681は、軸調整画像im7、第9のメッセージtx9、次へボタン611および戻るボタン612を含む。軸調整画像im7は誘導画面681の中央に表示され、第9のメッセージtx9は軸調整画像im7の下部に表示される。次へボタン611および戻るボタン612は、誘導画面681の最下部右隅に表示される。
軸調整画像im7は、第1の実施の形態の例と同様に、使用者に計測ヘッド200A,200Bの光軸oa1,oa2を一致させる精密な調整を行わせるための画像であり、計測ヘッド200A,200Bが対向配置されかつ計測ヘッド200A,200B間に他の部材が存在しない状態を示す。本例の軸調整画像im7においては、使用者により操作されるべき保持装置900(図7)の鉛直位置つまみ931(図7)、水平位置つまみ932(図7)および軸回転ダイヤル941(図7)の位置が示される。第9のメッセージtx9は、計測ヘッド200A,200B間の紙を取り除き、計測ヘッド200A,200Bの光軸oa1,oa2を精密に一致させるべき作業指示を含む。
また、第9のメッセージtx9には、光軸oa1,oa2を精密に一致させるために、鉛直位置つまみ931および水平位置つまみ932を操作して各計測ヘッド200A,200Bの位置を調整すべき作業指示が含まれる。さらに、第9のメッセージtx9には、軸回転ダイヤル941を操作して各計測ヘッド200A,200Bの光軸oa1,oa2周りの回転角度を調整すべき作業指示が含まれる。
使用者は、図20に示される軸調整画像im7および第9のメッセージtx9を視認することにより、自己が行うべき作業内容と保持装置900(図7)の操作対象とを認識する。その上で、使用者は、図1の操作部620を用いて次へボタン611を操作する。それにより、主表示部610に図21の誘導画面682が表示される。
図21に示すように、誘導画面682は、変化表示領域da6、第10のメッセージtx10、戻るボタン612および終了ボタン613を含む。変化表示領域da6は誘導画面682の中央に表示され、第10のメッセージtx10は変化表示領域da6の下部に表示される。戻るボタン612および終了ボタン613は、誘導画面682の最下部右隅に表示される。
本実施の形態では、変化表示領域da5上には、計測ヘッド200Aから出射されて計測ヘッド200Bに入射される4つの光の強度の現時点までの一定時間分の時間的変化が互いに識別可能にスクロール表示される。
計測ヘッド200Aの4つの光ファイバ314と計測ヘッド200Bの4つの光ファイバ314とが正対する場合には、計測ヘッド200Aの4つの光ファイバ314から出射される光の大部分が計測ヘッド200Bの4つの光ファイバ314にそれぞれ正確に入射する。そのため、4つの光の強度がともに最大となる。したがって、使用者は、変化表示領域da6に表示される4つの光の強度の時間的変化を視認しつつ、保持装置900(図7)の鉛直位置つまみ931(図7)、水平位置つまみ932(図7)および軸回転ダイヤル941(図7)を操作する。それにより、使用者は、計測ヘッド200A,200Bの光軸oa1,oa2が精密に一致するように、計測ヘッド200A,200Bの位置関係および回転角度を調整する。
本例の変化表示領域da6においては、計測ヘッド200Bに入射される4つの光のうち代表光の強度の時間的変化における現時点までの最大値を示す過去最大強度値が一点鎖線で表示される。さらに、変化表示領域da6の上部には、計測ヘッド200Bに入射される代表光の現時点の強度値および過去最大強度値が数値表示される。変化表示領域da6の側部には、リセットボタンrbが表示されている。リセットボタンrbは、変化表示領域da6における縦軸および横軸の表示レンジを予め設定された初期値にリセットするとともに過去最大強度値をリセットするために用いられる。
第10のメッセージtx10は、第9のメッセージtx9の例と同様に、各計測ヘッド200A,200Bの位置を調整すべき作業指示、および各計測ヘッド200A,200Bの回転角度を調整すべき作業指示を含む。
使用者は、計測ヘッド200A,200Bの光軸oa1,oa2を精密に一致させた後(第4ステップ完了後)、図1の操作部620を用いて終了ボタン613を操作する。それにより、計測ヘッド200A,200Bの光軸調整が完了し、図1のPC600の動作モードが光軸調整モードから計測モードに切り替わる。
本実施の形態に係る共焦点変位計500においても、第1の実施の形態と同様に、光軸調整が行われることにより計測ヘッド200A,200Bの光軸oa1,oa2を容易かつ正確に一致させることができる。
また、本実施の形態に係る計測ユニット100A,100Bにおいては、各計測ヘッド200A,200Bから計測対象物Sに照射される4つの光に基づく4つの受光信号が取得される。4つの受光信号の平均化処理により得られる受光信号に基づいて計測対象物Sの表面の変位が算出される。この場合、平均化された受光信号において複数のピンホールを通過した複数の光についての波長ごとの強度が平均される。それにより、乱反射によるランダムな計測誤差を発生させる光の成分が打ち消される。したがって、各計測ユニット100A,100Bにおいて計測される計測対象物Sの表面の変位の誤差が低減される。その結果、計測対象物Sの厚みの計測誤差が低減される。
[3]他の実施の形態
(1)上記実施の形態では、光軸調整の第2ステップで、計測ヘッド200Aと基準部材の第1の面との間の距離の範囲が第1の距離範囲にある場合における判定光のピーク波長の範囲が第1の波長範囲wr1として主表示部610に表示されるが、本発明はこれに限定されない。
上記の第2ステップにおいては、計測ヘッド200Aと基準部材の第1の面との間の距離の範囲が第1の距離範囲にある場合に、第1の面で合焦して反射する1次光のピーク波長の範囲が第1の波長範囲として主表示部610に表示されてもよい。この場合、使用者は、1次光のピーク波形が第1の波長範囲内に位置するように、計測ヘッド200Aと基準部材の第1の面との間の距離を調整する。それにより、計測ヘッド200Aと基準部材の第1の面との間の距離の範囲が第1の距離範囲に調整される。
また、上記実施の形態では、光軸調整の第2ステップで、計測ヘッド200Bと基準部材の第2の面との間の距離の範囲が第2の距離範囲にある場合における判定光のピーク波長の範囲が第2の波長範囲wr2として主表示部610に表示されるが、本発明はこれに限定されない。
上記の第2ステップにおいては、計測ヘッド200Bと基準部材の第2の面との間の距離の範囲が第2の距離範囲にある場合に、第2の面で合焦して反射する1次光のピーク波長の範囲が第2の波長範囲として主表示部610に表示されてもよい。この場合、使用者は、1次光のピーク波形が第2の波長範囲内に位置するように、計測ヘッド200Bと基準部材の第2の面との間の距離を調整する。それにより、計測ヘッド200Bと基準部材の第2の面との間の距離の範囲が第2の距離範囲に調整される。
(2)第1および第2の実施の形態に示されるように、計測ヘッド200A,200Bには、変位計測用の1の光のみを出射するタイプと、変位計測用の複数の光を出射するタイプとが存在する。そのため、計測ユニット100A,100Bには、接続される計測ヘッド200A,200Bのタイプに応じた種類が存在する。
制御ユニット400は、当該制御ユニット400に接続された計測ユニットの種類を識別可能に構成されてもよい。この場合、PC600のCPU601は、制御ユニット400により識別された2つの計測ユニット100A,100Bの種類が異なる場合に、厚みの計測および光軸調整を行うことができない旨のメッセージを主表示部610に表示させてもよい。
(3)第2の実施の形態に係る共焦点変位計500においては、各計測ヘッド200A,200Bから計測対象物Sに4つの光が照射されることにより、4つの光の受光信号に基づいて計測対象物Sの表面の変位が計測されるが、本発明はこれに限定されない。各計測ヘッド200A,200Bから計測対象物Sには、2つの光、3つの光または5以上の複数の照射されてもよい。この場合、照射された数の受光信号に基づいて計測対象物Sの表面の変位が計測されてもよい。
(4)上記実施の形態においては、計測対象物Sの厚みを得るために、対向配置される計測ヘッド200A,200Bの姿勢を調整する例について説明したが、本発明はこれに限定されない。
例えば、計測ヘッド200A,200Bのうち一方の計測ヘッドを用いて計測対象物Sの表面の変位を計測する場合には、高い精度で計測を行うために、当該計測ヘッドの光軸が計測対象物Sの表面に垂直となることが望ましい。このような場合には、計測ヘッド200A,200Bのうち一方の計測ヘッドの姿勢調整を行うために上記の方法が用いられてもよい。
すなわち、計測対象物Sの表面が配置されるべき位置に上記の基準部材を配置する。その後、基準部材の第1または第2の面のいずれか一方に対して光軸が垂直になるように、計測ヘッド200A,200Bのうち一方の計測ヘッドの姿勢調整が上記実施の形態の例と同様に行われてもよい。
また、計測ヘッド200A,200Bの姿勢は、それらの光軸が平行となるように調整されてもよい。例えば、単一の基準部材の第1または第2の面のいずれか一方に対して光軸が垂直になるように、計測ヘッド200A,200Bの両方の計測ヘッドの姿勢調整が上記実施の形態の例と同様に行われてもよい。この場合、計測ヘッド200A,200Bにそれぞれ対応して取得される2つの変位に基づいて、計測対象物Sの表面に形成された段差の高さ等を計測することが可能になる。
[4]請求項の各構成要素と実施の形態の各部との対応関係
以下、請求項の各構成要素と実施の形態の各部との対応の例について説明するが、本発明は下記の例に限定されない。
上記実施の形態においては、計測ヘッド200Aのレンズユニット220および計測ヘッド200Aの光ファイバ314が第1の共焦点光学系の例であり、計測ヘッド200Bのレンズユニット220および計測ヘッド200Bの光ファイバ314が第2の共焦点光学系の例であり、計測ユニット100Aの分光部130が第1の分光部の例であり、計測ユニット100Bの分光部130が第2の分光部の例である。
また、共焦点変位計500が共焦点変位計の例であり、計測ユニット100A,100Bの投光部120が投光部の例であり、計測ヘッド200Aが第1のヘッド部の例であり、計測ヘッド200Bが第2のヘッド部の例であり、計測ヘッド200Aのレンズユニット220が第1の光学部材の例であり、計測ヘッド200Aの光ファイバ314が第1のピンホール部材の例であり、計測ヘッド200Bのレンズユニット220が第2の光学部材の例であり、計測ヘッド200Bの光ファイバ314が第2のピンホール部材の例である。
また、計測ユニット100A,100Bの分光部130、受光部140および計測制御部150が取得部の例であり、PC600のCPU601が厚み算出部の例であり、PC600が制御装置の例であり、時間変化表示制御部659が強度情報表示制御部の例であり、最大強度表示制御部660が最大強度表示制御部の例である。
また、第1の波長範囲wr1が第1の波長範囲の例であり、第2の波長範囲wr2が第2の波長範囲の例であり、範囲表示制御部658が範囲表示制御部の例であり、一致度表示制御部657が一致度表示制御部の例であり、距離調整画像im2、保持装置画像im3および第2のメッセージtx2が第1および第2の距離調整画像の例であり、距離調整画像表示制御部661が距離調整画像表示制御部の例である。
また、姿勢調整画像im4および第4のメッセージtx4が第1および第2の姿勢調整画像の例であり、姿勢調整画像表示制御部662が姿勢調整画像表示制御部の例であり、軸調整画像im5,im6,im7、第6のメッセージtx6、第7のメッセージtx7および第9のメッセージtx9が軸調整画像の例であり、軸調整画像表示制御部663が軸調整画像表示制御部の例であり、主表示部610に表示される次へボタン611および操作部620が第1~第3の操作部の例である。
また、計測ユニット100Aの投光部120が第1の投光部の例であり、計測ユニット100Bの投光部120が第2の投光部の例であり、計測ユニット100Aの受光部140が第1の受光部の例であり、計測ユニット100Bの受光部140が第2の受光部の例であり、光制御部651が光制御部の例であり、主表示部610が表示部の例である。
請求項の各構成要素として、請求項に記載されている構成または機能を有する他の種々の要素を用いることもできる。
100…処理装置,100A,100B…計測ユニット,110,210…筐体,120…投光部,130…分光部,131…回折格子,132,133…レンズ,140…受光部,150…計測制御部,190…副表示部,200,200A,200B…計測ヘッド,220…レンズユニット,221…屈折レンズ,222…回折レンズ,223…対物レンズ,300A,300B…導光部,310a…コア,310b…クラッド,311,312,314,319…光ファイバ,314…光ファイバ,320…ファイバカプラ,321~323…ポート,324…本体部,330…ファイバコネクタ,400…制御ユニット,500…共焦点変位計,600…PC,601…CPU,602…メモリ,610…主表示部,611…次へボタン,612…戻るボタン,613…終了ボタン,620…操作部,651…光制御部,652…指令受付部,653…受光信号取得部,654…判定光抽出部,655…強度取得部,656…最大強度保持部,657…一致度表示制御部,658…範囲表示制御部,659…時間変化表示制御部,660…最大強度表示制御部,661…距離調整画像表示制御部,662…姿勢調整画像表示制御部,663…軸調整画像表示制御部,681,682,691~698…誘導画面,900…保持装置,910…台座,911…前後位置つまみ,920…第1の支持部材,930…第2の支持部材,940…第3の支持部材,921…鉛直角度つまみ,922…水平角度つまみ,931…鉛直位置つまみ,932…水平位置つまみ,941…軸回転ダイヤル,950…保持部材,da1,da2…波形表示領域,da3,da4,da5,da6…変化表示領域,F0…位置,F1,F2…合焦位置,im1…初期状態画像,im2…距離調整画像,im3…保持装置画像,im4…姿勢調整画像,im5,im6,im7…軸調整画像,L1,L2…1次光,L3…多次光,mk1,mk2…判定枠,oa1,oa2…光軸,P1,P2…ピーク,rb…リセットボタン,S…計測対象物,tx1…第1のメッセージ,tx2…第2のメッセージ,tx3…第3のメッセージ,tx4…第4のメッセージ,tx5…第5のメッセージ,tx6…第6のメッセージ,tx7…第7のメッセージ,tx8…第8のメッセージ,tx9…第9のメッセージ,tx10…第10のメッセージ,wr1,wr2…波長範囲

Claims (15)

  1. 複数の波長を有する光を出射する投光部と、
    第1の回折レンズを含み、前記投光部により出射された光に光軸方向に沿う色収差を発生させ、計測対象物の第1の面に収束させる第1の共焦点光学系を有する第1のヘッド部と、
    前記第1の面で反射されて前記第1の共焦点光学系を通過した第1の光を波長ごとに分光する第1の分光器と、
    前記分光された前記第1の光を波長ごとに受光し、波長ごとの光の強度を取得する第1の受光部と、
    前記第1の面を有する基準部材を用いて前記第1のヘッド部の光軸を調整可能に構成された制御装置とを備え、
    前記第1のヘッド部は、前記第1のヘッド部の光軸が前記第1の面に直交する場合に、前記第1のヘッド部を通して前記第1の面に照射される一の波長を有する第1の1次光が前記第1の面で反射されて前記一の波長を有する第1の多次光の経路を通って前記第1の共焦点光学系を通過するように構成され、
    前記制御装置は、前記光軸調整時において、前記第1のヘッド部の光の出射側に前記基準部材が配置された状態で、前記第1の受光部により取得された光の強度のうち前記第1の1次光が前記第1の面で反射されて前記第1の多次光の経路を通って前記第1の共焦点光学系を通過することにより得られる第1の判定光の強度に対応する情報を第1の強度情報として表示部に表示させる強度情報表示制御部を含む、共焦点変位計。
  2. 互いに反対側の第1および第2の面を有する計測対象物の厚みを計測可能な共焦点変位計であって、
    複数の波長を有する光を出射する投光部と、
    第1の回折レンズを含み、前記投光部により出射された光に光軸方向に沿う色収差を発生させ、計測対象物の前記第1の面に収束させる第1の共焦点光学系を有する第1のヘッド部と、
    第2の回折レンズを含み、前記投光部により出射された光に光軸方向に沿う色収差を発生させ、計測対象物の前記第2の面に収束させる第2の共焦点光学系を有する第2のヘッド部と、
    前記第1の面で反射されて前記第1の共焦点光学系を通過した第1の光を波長ごとに分光する第1の分光器と、
    前記分光された前記第1の光を波長ごとに受光し、波長ごとの光の強度を取得する第1の受光部と、
    前記計測対象物の代わりに互いに平行な前記第1の面および前記第2の面を有する基準部材を用いて前記第1のヘッド部の光軸を調整可能に構成された制御装置とを備え、
    前記第1のヘッド部は、前記第1のヘッド部の光軸が前記第1の面に直交する場合に、前記第1のヘッド部を通して前記第1の面に照射される一の波長を有する第1の1次光が前記第1の面で反射されて前記一の波長を有する第1の多次光の経路を通って前記第1の共焦点光学系を通過するように構成され、
    前記第2のヘッド部は、前記第2のヘッド部の光軸が前記第2の面に直交する場合に、前記第2のヘッド部を通して前記第2の面に照射される一の波長を有する第2の1次光が前記第2の面で反射されて前記一の波長を有する第2の多次光の経路を通って前記第2の共焦点光学系を通過するように構成され、
    前記制御装置は、前記光軸調整時において、前記第1のヘッド部と前記第2のヘッド部との間に前記基準部材が配置された状態で、前記第1の受光部により取得された光の強度のうち前記第1の1次光が前記第1の面で反射されて前記第1の多次光の経路を通って前記第1のピンホールを通過することにより得られる第1の判定光の強度に対応する情報を第1の強度情報として表示部に表示させる強度情報表示制御部を含む、共焦点変位計。
  3. 前記第2の面で反射されて前記第2の共焦点光学系を通過した第2の光を波長ごとに分光する第2の分光器と、
    前記分光された前記第2の光を波長ごとに受光し、波長ごとの光の強度を取得する第2の受光部とをさらに備え、
    前記制御装置は、前記基準部材を用いて前記第2のヘッド部の光軸をさらに調整可能に構成され、
    前記強度情報表示制御部は、前記光軸調整時において、前記第1のヘッド部と前記第2のヘッド部との間に前記基準部材が配置された状態で、前記第2の受光部により取得された光の強度のうち前記第2の1次光が前記第2の面で反射されて前記第2の多次光の経路を通って前記第2の共焦点光学系を通過することにより得られる第2の判定光の強度に対応する情報を第2の強度情報として表示部にさらに表示させる、請求項2記載の共焦点変位計。
  4. 前記第1の強度情報は、前記第1の判定光の強度の時間的変化を示し、
    前記第2の強度情報は、前記第2の判定光の強度の時間的変化を示す、請求項3記載の共焦点変位計。
  5. 前記制御装置は、前記第1の判定光の強度の時間的変化における現時点までの最大の強度を示す第1の最大強度情報を前記表示部に表示させ、前記第2の判定光の強度の時間的変化における現時点までの最大の強度を示す第2の最大強度情報を前記表示部に表示させる最大強度表示制御部をさらに含む、請求項4記載の共焦点変位計。
  6. 前記第1の判定光のピーク波長は、前記第1の面と前記第1のヘッド部との間の距離に依存して変化し、前記第2の判定光のピーク波長は、前記第2の面と前記第2のヘッド部との間の距離に依存して変化し、
    前記制御装置は、
    波長軸上に前記第1の判定光の波形を表示するとともに前記第1の面と前記第1のヘッド部との間の距離の変化に応じて前記波長軸上で前記第1の判定光の波形の位置を変化させるように前記表示部を制御し、前記第1の面と前記第1のヘッド部との間の距離が予め定められた第1の距離範囲にある場合における前記第1の判定光の波長の範囲を第1の波長範囲として前記波長軸上に表示し、波長軸上に前記第2の判定光の波形を表示するとともに前記第2の面と前記第2のヘッド部との間の距離の変化に応じて前記波長軸上で前記第2の判定光の波形の位置を変化させるように前記表示部を制御し、前記第2の面と前記第2のヘッド部との間の距離が予め定められた第2の距離範囲にある場合における前記第2の判定光の波長の範囲を第2の波長範囲として前記波長軸上に表示するように前記表示部を制御する範囲表示制御部をさらに含む、請求項4または5記載の共焦点変位計。
  7. 前記第1および第2の受光部は、前記第1および第2のヘッド部の間に前記基準部材が存在しない状態で、前記第1のヘッド部の前記第1の共焦点光学系から出射されて前記第2のヘッド部の前記第2の共焦点光学系に入射する光の強度、および前記第2の共焦点光学系から出射されて前記第1のヘッド部の前記第1の共焦点光学系に入射する光の強度のうち少なくとも一方を取得し、
    前記制御装置は、前記第1および第2の受光部により取得された前記少なくとも一方の強度に基づいて前記第1および第2のヘッド部の光軸の一致度を示す一致度情報を前記表示部に表示させる一致度表示制御部をさらに含む、請求項6記載の共焦点変位計。
  8. 前記制御装置は、
    前記光軸調整時において、前記第1のヘッド部と前記基準部材との間の距離を調整するための操作を促す第1の距離調整画像を前記表示部に表示させ、前記第2のヘッド部と前記基準部材との間の距離を調整するための操作を促す第2の距離調整画像を前記表示部に表示させる距離調整画像表示制御部と、
    前記光軸調整時において、前記第1および第2の距離調整画像が前記表示部に表示された後、前記基準部材に対する前記第1のヘッド部の姿勢を調整するための操作を促す第1の姿勢調整画像を前記表示部に表示させ、前記基準部材に対する前記第2のヘッド部の姿勢を調整するための操作を促す第2の姿勢調整画像を前記表示部に表示させる姿勢調整画像表示制御部と、
    前記光軸調整時において、前記第1および第2の姿勢調整画像が前記表示部に表示された後、前記第1および前記第2のヘッド部のうち少なくとも一方を移動させることにより前記第1および第2の光学部材の光軸を一致させるための操作を促す軸調整画像を前記表示部に表示させる軸調整画像表示制御部とをさらに含む、請求項7記載の共焦点変位計。
  9. 前記第1および第2の距離調整画像の表示を指示するために使用者により操作される第1の操作部と、
    前記範囲表示制御部による前記第1および第2の波長範囲の表示後に、前記第1および第2の姿勢調整画像の表示を指示するために使用者により操作される第2の操作部と、
    前記強度情報表示制御部による前記第1および第2の強度情報の表示後に、前記軸調整画像の表示を指示するために使用者により操作される第3の操作部とをさらに備える、請求項8記載の共焦点変位計。
  10. 前記投光部は、
    前記第1の共焦点光学系に光を出射する第1の投光部と、
    前記第2の共焦点光学系に光を出射する第2の投光部とを含み、
    前記制御装置は、前記一致度表示制御部による前記一致度情報の表示時に、前記第2の受光部から出力される受光信号に基づいて前記第1の投光部における光の出射を制御する第1の制御、および前記第1の受光部から出力される受光信号に基づいて前記第2の投光部における光の出射を制御する第2の制御のうち少なくとも一方を行う光制御部をさらに備える、請求項7~9のいずれか一項に記載の共焦点変位計。
  11. 前記強度情報表示制御部は、前記第1および第2の強度情報を前記表示部が有する単一の画面上に同時に表示させる、請求項3~10のいずれか一項に記載の共焦点変位計。
  12. 前記共焦点変位計は、前記第1のヘッド部および前記第2のヘッド部が互いに対向するように配置された状態で、前記第1のヘッド部および前記第2のヘッド部のうち一方のヘッド部から他方のヘッド部に入射した光を他方のヘッド部の光軸調整に用いる、請求項3~11のいずれか一項に記載の共焦点変位計。
  13. 互いに反対側の第1および第2の面を有する計測対象物の厚みを計測可能な共焦点変位計であって、
    複数の波長を有する複数の光を出射する投光部と、
    第1および第2のヘッド部と、
    前記第1のヘッド部に設けられ、前記投光部により出射された複数の光に光軸方向に沿った色収差を発生させる回折レンズを含むとともに、色収差を有する複数の光を収束させて計測対象物の前記第1の面にそれぞれ照射する第1の光学部材と、
    前記第1のヘッド部に設けられ、前記第1の光学部材により前記第1の面に照射された複数の光のうち、前記第1の面で合焦しつつ反射された波長の複数の光を複数の第1の光としてそれぞれ通過させる複数の第1のピンホールを有する第1のピンホール部材と、
    前記第2のヘッド部に設けられ、前記投光部により出射された複数の光に光軸方向に沿った色収差を発生させる回折レンズを含むとともに、色収差を有する複数の光を収束させて前記計測対象物の前記第2の面にそれぞれ照射する第2の光学部材と、
    前記第2のヘッド部に設けられ、前記第2の光学部材により前記第2の面に照射された複数の光のうち、前記第2の面で合焦しつつ反射された波長の複数の光を複数の第2の光としてそれぞれ通過させる複数の第2のピンホールを有する第2のピンホール部材と、
    前記複数の第1のピンホールを通過した前記複数の第1の光の各々についての波長ごとの強度を取得し、前記複数の第2のピンホールを通過した前記複数の第2の光の各々についての波長ごとの強度を取得する取得部と、
    前記取得部により取得された前記複数の第1および第2の光の各々についての波長ごとの強度に基づいて前記計測対象物の前記第1の面と前記第2の面との間の厚みを算出する厚み算出部と、
    前記計測対象物の代わりに互いに平行な前記第1の面および前記第2の面を有する基準部材を用いて前記第1および第2の光学部材の光軸を調整可能に構成された制御装置とを備え、
    前記第1のヘッド部は、前記第1の光学部材の光軸が前記第1の面に直交する場合に、前記第1の光学部材を通して前記第1の面に照射される一の波長を有する第1の1次光が前記第1の面で反射されて前記一の波長を有する第1の多次光の経路を通って前記第1のピンホールを通過するように構成され、
    前記第2のヘッド部は、前記第2の光学部材の光軸が前記第2の面に直交する場合に、前記第2の光学部材を通して前記第2の面に照射される一の波長を有する第2の1次光が前記第2の面で反射されて前記一の波長を有する第2の多次光の経路を通って前記第2のピンホールを通過するように構成され、
    前記制御装置は、前記光軸調整時において、前記第1のヘッド部と前記第2のヘッド部との間に前記基準部材が配置された状態で、前記取得部により取得された複数の光の各々の強度のうち前記第1の1次光が前記第1の面で反射されて前記第1の多次光の経路を通って前記第1のピンホールを通過することにより得られる第1の判定光の強度に対応する情報を第1の強度情報として表示部に表示させ、前記取得部により取得された複数の光の各々の強度のうち前記第2の1次光が前記第2の面で反射されて前記第2の多次光の経路を通って前記第2のピンホールを通過することにより得られる第2の判定光の強度に対応する情報を第2の強度情報として表示部に表示させる強度情報表示制御部を含む、共焦点変位計。
  14. 前記第1の強度情報は、前記第1のヘッドに対応する複数の第1の判定光の複数の強度のうち最大強度値と最小強度値との差分に基づく値であり、
    前記第2の強度情報は、前記第2のヘッドに対応する複数の第2の判定光の複数の強度のうち最大強度値と最小強度値との差分に基づく値である、請求項13記載の共焦点変位計。
  15. 前記共焦点変位計は、計測対象物を計測する計測モードと、ヘッド部の光軸を調整する光軸調整モードとを有する、請求項1~14のいずれか一項に記載の共焦点変位計。
JP2018101072A 2018-05-25 2018-05-25 共焦点変位計 Active JP7062518B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018101072A JP7062518B2 (ja) 2018-05-25 2018-05-25 共焦点変位計
US16/364,209 US10591280B2 (en) 2018-05-25 2019-03-26 Confocal displacement sensor
DE102019207296.8A DE102019207296A1 (de) 2018-05-25 2019-05-20 Konfokaler Abstandssensor
CN201910438651.1A CN110530274B (zh) 2018-05-25 2019-05-24 共焦位移传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018101072A JP7062518B2 (ja) 2018-05-25 2018-05-25 共焦点変位計

Publications (2)

Publication Number Publication Date
JP2019203866A JP2019203866A (ja) 2019-11-28
JP7062518B2 true JP7062518B2 (ja) 2022-05-06

Family

ID=68499642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018101072A Active JP7062518B2 (ja) 2018-05-25 2018-05-25 共焦点変位計

Country Status (4)

Country Link
US (1) US10591280B2 (ja)
JP (1) JP7062518B2 (ja)
CN (1) CN110530274B (ja)
DE (1) DE102019207296A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11740356B2 (en) 2020-06-05 2023-08-29 Honeywell International Inc. Dual-optical displacement sensor alignment using knife edges
KR102655064B1 (ko) * 2020-11-05 2024-04-09 세메스 주식회사 거리 측정 시스템 및 거리 측정 방법
JP2022112634A (ja) * 2021-01-22 2022-08-03 株式会社ディスコ 計測装置
CN113945517A (zh) * 2021-10-15 2022-01-18 上海德瀛睿创半导体科技有限公司 一种硅片检测装置及检测方法
JP7481390B2 (ja) 2022-04-15 2024-05-10 トヨタ自動車株式会社 光軸調整治具
CN117739837B (zh) * 2024-02-19 2024-05-07 法博思(宁波)半导体设备有限公司 一种基于衍射元件的对射光谱共焦测厚系统及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090056156A1 (en) 2007-08-31 2009-03-05 Abb Ltd. Web Measurement Device
JP2013174594A (ja) 2012-02-24 2013-09-05 Mitsutoyo Corp クロマティック・レンジ・センサで測定されたスペクトルプロファイルから異常スペクトルプロファイルを識別する方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7535556B2 (en) * 2007-05-31 2009-05-19 Genetix Limited Methods and apparatus for optical analysis of samples in biological sample containers
JP5072688B2 (ja) * 2008-04-02 2012-11-14 キヤノン株式会社 走査型撮像装置
JP5790178B2 (ja) * 2011-03-14 2015-10-07 オムロン株式会社 共焦点計測装置
CN102679894B (zh) * 2012-06-11 2014-07-09 北京理工大学 反射式差动共焦透镜中心厚度测量方法
JP5994504B2 (ja) * 2012-09-14 2016-09-21 オムロン株式会社 共焦点計測装置
JP6044315B2 (ja) * 2012-12-12 2016-12-14 オムロン株式会社 変位計測方法および変位計測装置
JP6331499B2 (ja) 2014-03-07 2018-05-30 オムロン株式会社 共焦点計測装置の光軸調整方法、共焦点計測システム、プログラム、及び、プログラムを記録した記録媒体
JP7010589B2 (ja) 2014-06-27 2022-01-26 株式会社キーエンス 多波長共焦点測定装置
CN104613881A (zh) * 2015-02-12 2015-05-13 江苏宇迪光学股份有限公司 一种基于双面共焦的透镜中心厚度测量装置及测量方法
CN108474646B (zh) 2015-12-25 2021-07-23 株式会社基恩士 共焦位移计
JP6779234B2 (ja) 2015-12-25 2020-11-04 株式会社キーエンス 共焦点変位計
JP6692651B2 (ja) * 2016-02-05 2020-05-13 株式会社ミツトヨ クロマティック共焦点センサ
CN106152951A (zh) * 2016-07-05 2016-11-23 中国工程物理研究院激光聚变研究中心 一种测量非透明薄膜厚度分布的双面干涉装置和方法
JP2018124167A (ja) * 2017-01-31 2018-08-09 オムロン株式会社 傾斜測定装置
CN106918310B (zh) * 2017-02-22 2019-12-03 中国科学院上海光学精密机械研究所 非接触式电光晶体通光面法线与z轴偏离角测量装置及其测量方法
JP6971645B2 (ja) * 2017-06-13 2021-11-24 株式会社キーエンス 共焦点変位計
JP6971646B2 (ja) * 2017-06-13 2021-11-24 株式会社キーエンス 共焦点変位計
JP7408265B2 (ja) * 2017-06-13 2024-01-05 株式会社キーエンス 共焦点変位計

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090056156A1 (en) 2007-08-31 2009-03-05 Abb Ltd. Web Measurement Device
JP2013174594A (ja) 2012-02-24 2013-09-05 Mitsutoyo Corp クロマティック・レンジ・センサで測定されたスペクトルプロファイルから異常スペクトルプロファイルを識別する方法

Also Published As

Publication number Publication date
US20190360796A1 (en) 2019-11-28
US10591280B2 (en) 2020-03-17
JP2019203866A (ja) 2019-11-28
CN110530274B (zh) 2022-12-23
DE102019207296A1 (de) 2019-11-28
CN110530274A (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
JP7062518B2 (ja) 共焦点変位計
JP6997277B2 (ja) 共焦点変位計
JP6972273B2 (ja) 共焦点変位計
JP7143057B2 (ja) 三次元測定装置
JP6685849B2 (ja) 光干渉測定装置及び光干渉測定方法
US6636310B1 (en) Wavelength-dependent surface contour measurement system and method
JP6829993B2 (ja) 光走査高さ測定装置
US7436524B2 (en) Apparatus and method for three-dimensional measurement and program for allowing computer to execute method for three-dimensional measurement
JP2023167380A (ja) 画像測定装置
JP6189134B2 (ja) 電子レベル
CN117053677A (zh) 图像测量设备
JP6831700B2 (ja) 光走査高さ測定装置
JP2003014430A (ja) 3次元測定方法および3次元測定装置
JP2019074477A (ja) 光走査高さ測定装置
JP6287153B2 (ja) センサユニット、形状測定装置、及び構造物製造システム
JP2012242085A (ja) 曲率半径測定機の被測定体保持位置補正方法および曲率半径測定機
JP2878583B2 (ja) レンズメータ
JP2023167386A (ja) 画像測定装置
JP2023167387A (ja) 画像測定装置
JP2023167390A (ja) 画像測定装置
JP2019074475A (ja) 光走査高さ測定装置
JP6768500B2 (ja) 光走査高さ測定装置
JP7340320B2 (ja) 画像計測装置
JP2023167393A (ja) 画像測定装置
JP2023167384A (ja) 画像測定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220420

R150 Certificate of patent or registration of utility model

Ref document number: 7062518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150