JPWO2016067384A1 - 工作機械の制御方法および工作機械の制御装置 - Google Patents

工作機械の制御方法および工作機械の制御装置 Download PDF

Info

Publication number
JPWO2016067384A1
JPWO2016067384A1 JP2016556098A JP2016556098A JPWO2016067384A1 JP WO2016067384 A1 JPWO2016067384 A1 JP WO2016067384A1 JP 2016556098 A JP2016556098 A JP 2016556098A JP 2016556098 A JP2016556098 A JP 2016556098A JP WO2016067384 A1 JPWO2016067384 A1 JP WO2016067384A1
Authority
JP
Japan
Prior art keywords
tool
cutting force
workpiece
allowable
spindle motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016556098A
Other languages
English (en)
Other versions
JP6381665B2 (ja
Inventor
一成 石井
一成 石井
毅仁 品田
毅仁 品田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Makino Milling Machine Co Ltd
Original Assignee
Makino Milling Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Makino Milling Machine Co Ltd filed Critical Makino Milling Machine Co Ltd
Publication of JPWO2016067384A1 publication Critical patent/JPWO2016067384A1/ja
Application granted granted Critical
Publication of JP6381665B2 publication Critical patent/JP6381665B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/402Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for positioning, e.g. centring a tool relative to a hole in the workpiece, additional detection means to correct position
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4065Monitoring tool breakage, life or condition
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37077Relative movement
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45044Cutting
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50206Tool monitoring integrated in nc control

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Automatic Control Of Machine Tools (AREA)

Abstract

主軸モータ(9)により回転する工具(6)とテーブルに固定されたワーク(15)とを相対移動させながらワーク(15)を加工する工作機械(1)の制御方法であって、主軸モータ(9)のトルク指令値、電流指令値、または実際の電流値に基づいて、ワーク(15)の加工中に工具(6)の予め定められたい位置のワーク(15)から受ける実際の切削力を算出し、算出した実際の切削力を表示部(28)に表示する。

Description

本発明は、工作機械の制御方法および工作機械の制御装置に関する。
従来の技術では、ワークに対して工具を相対移動させて切削等の加工を行う工作機械が知られている。また、このような工作機械において工具の経路を所定の送り軸の座標等により指定し、ワークに対して工具を移動させながら加工を行う数値制御式の工作機械が知られている。工作機械は、制御装置の指令に従ってワークおよび工具のうち少なくとも一方が移動することにより、ワークに対する工具の相対位置を変更しながら自動的に加工することができる。
工作機械にてワークを加工する期間中には、ワークの一部を除去するためにワークに対して工具が相対移動する。また、エンドミルのような工具は軸線の周りに回転しながら加工を行う。ワークの加工中には、工具に対して力が加わる。たとえば、工具にはワークに対して工具が進行する方向と反対向きに力が加わる。また、回転する工具には、工具が回転する方向と反対向きに力が加わる。ワークの加工中に工具に過大な力が加わると、工具が破損したり主軸装置が故障したりする虞がある。たとえば、工具が折れたり工具の刃が欠けたりする虞がある。
特開2005−205517号公報においては、ワークの切削中における主軸負荷が目標負荷範囲内にあるか否かを監視する工作機械の切削制御方法が開示されている。この切削制御方法では、主軸負荷が目標負荷範囲を超えたときに、主軸の回転速度と切削送り速度の各速度設定値に対する各オーバーライド値を下げて、主軸の回転速度と切削送り速度とを制御することが開示されている。
特開2005−205517号公報
ワークを加工している期間中に主軸の回転トルクを監視することにより、工具や主軸装置が損傷する可能性を低減することができる。上記の特開平2005−205517号公報における切削制御装置では、主軸モータの電流値を用いて回転トルクを演算し、回転トルクが目標範囲を超えているか否かを監視している。すなわち、主軸モータが出力する回転トルクを工具に加わる力として判定している。ところが、工具は、様々な工具径を有する。主軸モータが出力する回転トルクが所定の値であっても、工具径に依存して、工具がワークから受ける切削力は変化する。例えば、回転トルクが一定でも、工具径が大きくなれば、工具とワークとの接触部分において工具が受ける力は小さくなる。
工具にはワークを加工する部分に加えることが許される力として、工具の許容切削力が存在する。ところが、作業者は、主軸モータが出力する回転トルクと許容切削力とを関連付けることが難しいという問題がある。従来の技術では、作業者が回転トルクを用いて手計算にて実際の切削力を計算し、工具の健全性を確認する方法が採用されていた。
また、工具の健全性を確認する方法としては、所望の加工と同一の試験加工を予め行って、工具等に損傷が生じないか否かを確認する方法が有る。工具等に損傷が生じない場合には、試験加工を行ったときの回転トルクを許容トルクとして採用することができる。そして、実際の加工期間中には、回転トルクが許容トルクを超えないように監視することができる。ところが、この方法では所望の加工と同一の加工を予め実施する必要があり、生産性が低くなるという問題があった。
本発明は、工具や主軸装置の健全性を簡単に精度よく監視する工作機械の制御方法および工作機械の制御装置を提供することを目的とする。
本発明の工作機械の制御方法は、主軸モータにより回転する工具とテーブルに固定されたワークとを相対移動させながらワークを加工する工作機械の制御方法である。制御方法は、主軸モータのトルク指令値、電流指令値、または実際の電流値に基づいて、ワークの加工中に工具の予め設定された位置のワークから受ける実際の切削力を算出し、算出した実際の切削力を表示部に表示する。
上記発明においては、工具の予め設定された位置に加えることが許される許容切削力に基づいて判定値が予め設定されており、実際の切削力が判定値を超えた場合に、ワークに対する工具の相対速度を低下させることができる。
上記発明においては、複数の工具について、主軸からの工具の突出し長さおよび工具径を関数にした許容切削力が予め定められており、加工に使用する工具の突出し長さおよび工具径に基づいて工具の損傷に関する工具の許容切削力を算出することができる。
上記発明においては、工具の損傷に関する工具の許容切削力、主軸装置の軸受の損傷に関する軸受の許容切削力、および主軸モータの損傷に関する主軸モータの許容切削力を算出し、工具の許容切削力、軸受の許容切削力、および主軸モータの許容切削力のうち、最も小さな許容切削力に基づいて判定値を設定することができる。
本発明の工作機械の制御装置は、主軸モータにより回転する工具とテーブルに固定されたワークとを相対移動させながらワークを加工する工作機械の制御装置である。制御装置は、主軸モータのトルク指令値、電流指令値、または実際の電流値に基づいて、ワークの加工中に工具の予め設定された位置のワークから受ける実際の切削力を算出する切削力演算部と、算出した実際の切削力を表示する表示部とを備える。
本発明によれば、工具や主軸装置の健全性を簡単に精度よく監視する工作機械の制御方法および工作機械の制御装置を提供することができる。
工作機械のブロック図である。 工作機械の主軸ヘッドとワークとの部分の拡大概略断面図である。 切削力を説明する工具およびワークの概略図である。 工作機械の操作盤の概略正面図である。 実施の形態における工具情報画面である。 工具の許容切削力を算出するためのデータテーブルの説明図である。 データテーブルの内挿を説明する図である。 実施の形態における工作機械の第1制御のフローチャートである。 実施の形態における工作機械の第2制御のフローチャートである。 実施の形態における監視情報画面である。
図1から図10を参照して、実施の形態における工作機械の制御方法および工作機械の制御装置について説明する。本実施の形態の工作機械は、加工プログラムに基づいて自動的にワークに対して工具を相対的に移動させて加工を行う数値制御式である。
図1に、本実施の形態における工作機械のブロック図を示す。工作機械1は、各送り軸の移動装置の制御を行う制御装置70を備える。制御装置70は、例えば、バスを介して互いに接続されたCPU(Central Processing Unit)、RAM(Random Access Memory)、およびROM(Read Only Memory)等を備えている。
制御装置70は、入力部71、読取解釈部72、補間演算部73、およびサーボ制御部74を含む。数値制御式の工作機械にて加工する場合には、加工プログラム76を予め準備する。加工プログラム76は、ワークの目標形状に基づいてCAM(Computer Aided Manufacturing)装置等にて作成することができる。ワークの目標形状は、例えば、CAD(Computer Aided Design)装置にて作成することができる。
入力部71には、加工プログラム76が入力される。加工プログラム76には、ワークに対する工具の相対移動の情報、主軸の回転速度の情報、および工具の情報が含まれている。なお、制御装置70の情報制御部20において作業者が新規に作成したり編集したりした加工プログラムが入力部71に入力されても構わない。
読取解釈部72は、入力部71から加工プログラム76を読み込む。読取解釈部72は、移動指令を補間演算部73に送出する。補間演算部73は、補間周期毎の各送り軸の位置指令値を演算する。例えば、補間演算部73は、移動指令に基づいて設定された時間間隔ごとの各送り軸の移動量を算出する。補間演算部73は、各送り軸の位置指令値をサーボ制御部74に送出する。サーボ制御部74は、位置指令値に基づいてX軸、Y軸、およびZ軸等の各送り軸の各軸サーボモータ75を駆動する。サーボ制御部74は、また、工具6を回転させる主軸モータ9を駆動する。サーボ制御部74は、加工プログラム76にて指定される主軸モータ9の回転速度を、読取解釈部72から補間演算部73を素通りして取得する。サーボ制御部74は、主軸モータ9のトルク指令を算出し、電流指令値に変換して主軸モータ9に送出する。
本実施の形態の制御装置70は、ワークの加工に関連する加工情報を制御する情報制御部20と、作業者が加工情報の入力値等を入力する操作部30と、加工情報を表示する表示部28とを含む。加工情報としては、プログラムに関する情報、工具に関する情報、座標に関する情報、および加工中の工作機械やワークに関する情報を例示することができる。情報制御部20は、今回の加工を行うための加工プログラム76を入力部71から取得する。情報制御部20は、加工情報の演算や処理を行う演算処理部25を含む。例えば、演算処理部25は、入力部71から入力された加工プログラム76を編集して今回の加工の加工プログラムを作成し、入力部71に送出することができる。更に、演算処理部25は、作業者により入力された加工情報に基づいて所定の判断や所定の計算を行うことができる。
操作部30は、キーボード等を有し、作業者の手動操作により加工情報を入力する手入力部29を含む。本実施の形態の操作部30は、表示部28を含む。本実施の形態では、表示部28は、画面を接触することにより所望の部分の選択が可能なタッチパネル方式が採用されている。作業者が表示部28の画面を操作することにより、加工情報を入力することができる。操作部30としては、この形態に限られず、作業者が加工情報を入力可能な任意の装置を採用することができる。
制御装置70は、加工情報を記憶する記憶部26を含む。記憶部26は、前述のROMやRAMの他に、通信インターフェイスを介して接続されたメモリーカードやハードディスクなどの記憶装置であっても構わない。
情報制御部20は、表示部28に表示する画像を制御する表示制御部22を含む。表示制御部22は、演算処理部25から加工情報を取得したり、演算処理部25に加工情報を提供したりする。また、表示制御部22は、加工情報に基づいて画像を作成し、この画像を表示部28に表示する機能を有する。
制御装置70は、工作機械1の運転状態を検出する運転状態センサ37を含む。情報制御部20は、運転状態センサ37の信号を取得することができる。運転状態センサ37としては、それぞれの送り軸の移動量を検出するセンサ、各軸サーボモータ75や主軸モータ9に取り付けられた回転速度を検出する回転速度センサ、および主軸モータ9に実際に流れる電流値を検出する電流センサ等を例示することができる。送り軸の移動量を検出するセンサと回転速度センサの出力は、サーボ制御部74にフィードバックされる。主軸モータ9の回転速度を検出する回転速度センサの出力は、情報制御部20にも送出される。また、電流センサの出力は、情報制御部20に送出される。
図2は、本実施の形態における主軸装置の概略断面図である。ワーク15は、工作機械1のテーブルに固定されている。主軸装置2は、工具6を支持する主軸4と、主軸4が内部に配置されているハウジング3とを含む。工具6は、工具ホルダ5を介して主軸4に支持されている。
主軸装置2は、工具6を回転させる主軸モータ9を含む。本実施の形態の主軸モータ9は、ハウジング3の内部に配置されているビルトインタイプの回転機である。ハウジング3の内面には、ステータ9bが配置されている。主軸4の外面にはロータ9aが配置されている。ステータ9bおよびロータ9aにより主軸モータ9が構成されている。主軸4は、円筒状に形成されている。主軸4の内部には、工具6を取り換えるための装置が内蔵されている。本実施の形態の主軸モータ9は、ビルトインタイプであるが、この形態に限られず、主軸モータは、主軸4を回転させることができれば、任意の機構を採用することができる。例えば、ハウジングの外側に主軸モータが配置されていても構わない。
本実施の形態においては、主軸4の回転軸線が延びる方向のうち、工具6が固定されている側を前側と称し、工具6が固定されている側と反対側を後側と称する。主軸4の前側の端部は、一方の軸受としてのフロントベアリング7に支持されている。また、主軸4の後側の端部は、他方の軸受としてのリアベアリング8に支持されている。軸受としてのフロントベアリング7およびリアベアリング8は、ハウジング3に支持されている。主軸4は、フロントベアリング7およびリアベアリング8により回転可能に支持されている。
図3に、ワークを加工しているときのワークおよび工具の先端部の拡大概略図を示す。本実施の形態においては、工具6として5枚刃のフラットエンドミルを例に取りあげて説明する。工具6としては、フラットエンドミルに限られず、任意の工具を採用することができる。たとえば、主軸モータ9によって回転しながらワークを加工する工具を採用することができる。
図1を参照して、制御装置70は、主軸モータ9の負荷に関する変数および主軸4の回転速度に基づいて、加工時の実際の切削力を算出する。また、制御装置70は、記憶部26に予め記憶された機械パラメータに基づいて許容切削力を算出し、算出した許容切削力に基づいて切削力の判定値を設定する。そして、制御装置70は、実際の切削力を判定値と比較することにより、工具6および主軸装置2の健全性を判別する。
図2および図3を参照して、工具6に加わる実際の切削力について説明する。図3に示す例では、ワーク15の表面の一部を工具6にて切削加工している。工具6は、主軸モータ9により矢印91に示す向きに回転している。そして、矢印92に示すように、ワーク15に対して工具6を相対的に移動している。この例では、ワーク15を停止させて工具6を水平方向に移動させている。
切削力は、切削加工において工具6に加わる力である。切削力は、工具6とワーク15とが接触している領域にて生じる力であり、切削抵抗とも称される。一般的にフライス加工の場合の切削力は、工具6の外周の回転方向と反対向きの接線方向に作用する力と、工具6の送り方向と反対向きに作用する送り分力と、工具6の軸線方向の切込みと反対向きに作用する背分力とがある。これらの分力のうち主分力が一番大きく、その他の2つの分力は小さいために主分力を切削力とみなして差支えない。したがって、本実施の形態では、以下の説明において主分力を切削力と称する。
図3では、工具6の5つの刃6a,6b,6c,6d,6eのうち、3つの刃6a,6b,6cがワーク15を切削している状態を示している。この場合には、刃6a,6b,6cのそれぞれには、矢印93a,93b,93cに示す接線方向に切削力が作用する。工具6は矢印92の方向に送られているので、工具6の中心TCが通る工具経路TPに近く、半径方向の切込み量が大きな刃6bの切削力(矢印93b)が大きくなる。この次に、工具経路TPからやや離れた矢印93aの刃6aの切削力(矢印93a)が大きくなり、工具経路TPから工具半径の距離で離れた刃6cの切削力(矢印93c)は小さくなる。この結果、工具中心TCから半径方向に作用する切削力(矢印95)は、実際に切削に寄与する3つの刃6a,6b,6cのそれぞれの切削力(矢印93a,93b,93c)の合力になる。図3では、3つの刃が切削に寄与しているが、所定の瞬間には2つの刃のみが切削に寄与する場合もある。その時の矢印95に示す切削力は、これらの2つの刃の切削力の合力である。
矢印95に示す切削力は、X方向の成分(矢印95x)およびY方向の成分(矢印95y)の合力である。矢印95に示す切削力のX成分(矢印95x)は、矢印93aの切削力のX成分(矢印93ax)と、矢印93bの切削力のX成分(矢印93bx)と、矢印93cの切削力のX成分(図3では零)との合計である。矢印95に示す切削力のY成分(矢印95y)は、矢印93aの切削力のY成分(矢印93ay)と、矢印93bの切削力のY成分(矢印93by)と、矢印93cの切削力のY成分(図3では矢印93c)との合計である。本実施の形態では、工具6の予め定め設定された位置のワーク15から受ける実際の切削力は、工具6の先端の中心TPから半径方向に作用する矢印95に示す切削力としている。工具6の予め設定された位置としては、工具6の先端の中心TPに限られず、任意の位置に設定することができる。たとえば、ボールエンドミルの場合には、工具の先端の球状部の中心を予め設定された位置にすることができる。また、エンドミルの側面のみでワークの縁を加工する場合には、工具とワークとが接触している軸線方向の区間の中点を予め設定された位置に決めることができる。
次に、実際の切削力を判定する切削力の判定値について説明する。図2を参照して、工具6に過大な切削力が加わったときに、工具6が破損する場合がある。例えば、切削力が大きくなると工具6が折れたり工具6の刃が欠けたりする場合がある。このために、本実施の形態では、工具の損傷に関する工具の許容切削力を考慮する。
また、過大な切削力に起因する主軸装置2の故障としては、主軸4を支持する軸受の破損を例示することができる。例えば、切削力が大きくなると、フロントベアリング7またはリアベアリング8が、機械的または熱的に損傷する場合がある。そこで、本実施の形態では、軸受の損傷に関する軸受の許容切削力を考慮する。
さらに、主軸装置2の故障としては、主軸モータ9の破損を例示することができる。例えば、切削力が大きくなると、主軸モータ9に大きな電流が流れて、主軸モータ9が焼き付く場合がある。そこで、本実施の形態では、主軸モータの損傷に関する主軸モータの許容切削力を考慮する。
一般的には、工具の許容切削力よりも軸受の許容切削力の方が大きくなる。また、軸受の許容切削力よりも主軸モータの許容切削力の方が大きくなる。ところが、これらの許容切削力の大きさの順序が逆転する場合がある。たとえば、工具6の工具径が非常に大きい場合には、工具の許容切削力が軸受の許容切削力よりも大きくなる場合がある。または、軸受の機械強度が非常に大きい場合には、軸受の許容切削力が主軸モータの許容切削力よりも大きくなる場合がある。
本実施の形態の制御装置70は、工具の許容切削力、軸受の許容切削力および主軸モータの許容切削力を算出して比較する。そして、制御装置70は、一番小さな許容切削力を切削力の判定値に設定している。すなわち、制御装置70は、3つの許容切削力を比較して、最も小さな許容切削力を実際の切削力の判定値として設定している。そして、制御装置70は、実際の切削力を判定値と比較する。
図1を参照して、演算処理部25は、切削力演算部39を含む。切削力演算部39は、加工プログラム76に記載されている工具の種類および工具径を取得する。または、切削力演算部39は、記憶部26に記憶されている工具の種類および工具径を取得する。切削力演算部39は、サーボ制御部74または運転状態センサ37から主軸モータ9の負荷に関する変数を取得する。本実施の形態では、負荷に関する変数として、主軸モータ9を駆動するための電流指令値を取得する。
切削力演算部39が取得する負荷に関する変数としては、電流指令値の他に、主軸モータ9に対するトルク指令値や主軸モータ9に流れる実際の電流値等を採用することができる。切削力演算部39は、運転状態センサ37から主軸モータ9の回転速度、すなわち主軸4の回転速度を取得する。そして、切削力演算部39は、工具に加わる実際の切削力を算出する。表示制御部22は、算出した実際の切削力を表示部28に表示する。
演算処理部25は、切削力制御部38を含む。切削力制御部38は、工具の種類、工具長および工具径を取得する。また、記憶部26には、許容切削力を算出するための情報が記憶されている。切削力制御部38は、許容切削力を算出し、切削力の判定値を設定する。表示制御部22は、設定した切削力の判定値を表示部28に表示する。本実施の形態の切削力制御部38は、軸受の許容切削力および工具の許容切削力を算出する。主軸モータの許容切削力は、予め記憶部26に記憶されている。切削力制御部38は、3つの許容切削力を比較して、最も小さな許容切削力に基づいて判定値を設定する。
更に、切削力制御部38は、実際の切削力を切削力の判定値と比較する。そして、切削力制御部38は、実際の切削力が判定値を超えている場合には、主軸の送り速度を低下させる。すなわち、切削力制御部38は、ワーク15に対する工具6の相対速度を低下させる。相対速度の低下には、ワーク15に対する工具6の相対速度を零にする場合が含まれる。切削力制御部38は、送り速度のオーバーライド値を低減して、読取解釈部72に送出する。表示制御部22は、相対移動を継続しながら送り速度を低下させたワーニングを表示部28に表示する。または、切削力制御部38は、ワーク15に対する工具6の相対速度を零にする指令を読取解釈部72に送出する。表示制御部22は、送り速度を零にしたアラームを表示部28に表示する。
図4に、工作機械の制御装置に配置されている操作盤の正面図を示す。図1および図4を参照して、制御装置70の操作部30は、操作盤31を含む。操作盤31は、キー入力部32を含む。キー入力部32には、複数のキースイッチが配置されている。キー入力部32のキースイッチを押すことにより、所定の数字や文字を入力することができる。また、操作盤31は、所定の操作の選択を行う操作スイッチ部34およびオーバーライド値の設定を行うオーバーライド設定部33を含む。オーバーライド設定部33は、例えば、主軸の回転速度のオーバーライド値や加工の送り速度のオーバーライド値等を手動で設定することができる。キー入力部32、操作スイッチ部34およびオーバーライド設定部33等は、手入力部29として機能する。その他に操作盤31は、工作機械1の異常時に即時に工作機械1を停止させる非常停止ボタン36や工作機械1の駆動を開始するための実行ボタン35等のボタンを含む。また、操作盤31には、表示パネルにて構成されている表示部28を含む。
図5に、操作盤31の表示部28に表示される工具情報画面を示す。工具情報画面56は、工具に関する情報を入力、表示および編集するための画面である。画面の左側には、表示する情報を切り替える選択部51a〜51fが配置されている。図5の例では、作業者が工具情報の選択部51bを押すことにより、工具情報画面56が表示されている。
作業者は、選択部51a〜51dを押すことにより、実際の加工の際に頻繁に使う主画面を表示することができる。プログラム編集の選択部51aを押すことにより、プログラム編集画面を表示することができる。プログラム編集画面は、加工プログラムを表示および編集するための画面である。座標情報の選択部51cを押すことにより、座標情報画面を表示することができる。座標情報画面は、座標情報を入力、表示および編集するための画面である。プログラム実行情報の選択部51dを押すことにより、実行情報画面を表示することができる。実行情報画面は、加工プログラムを実行している期間中に工作機械の状態や加工状態を表示する画面である。加工結果の選択部51eを押すことにより、加工結果画面を表示することができる。加工結果画面は、加工後にワークの検査を行ったり、ワークの検査結果を表示したりする画面である。監視情報画面の選択部51fを押すことにより、監視情報画面を表示することができる。監視情報画面は、ワークを加工している期間中に切削力等の加工の状態を監視する画面である。
それぞれの主画面の下部には、ボタン領域54が配置されている。ボタン領域54には、予め定められた操作を行うためのボタンが配置されている。
工具情報画面56には、加工に使用する工具を表示する画面を選択する選択部56aと、記憶部26に記憶されている全ての工具の情報を表示および編集する画面を選択する選択部56bとを有する。ここでは、工具データの選択部56bが選択されている。それぞれの工具の情報は、表形式で表示されている。工具番号は、それぞれの工具を特定するための番号である。ポット番号の欄には、工具マガジンのツールポットの番号が示されている。
工具情報画面56では、それぞれの工具に対して複数の情報が表示可能に形成されている。スクロールバー56dを動かすことにより、画面に表示されていない工具の情報を表示することができる。また、スクロールバー56cを動かすことにより、それぞれの工具についての様々な情報を表示することができる。表示欄57aには、工具の種類が表示されている。表示欄57bには、それぞれの工具の工具長が表示されている。表示欄57cには、それぞれの工具の工具径が表示される。表示欄57dには、工具種類、工具長および工具径に基づいて算出された工具の許容切削力が表示される。それぞれの表示欄57a,57b,57c,57dは、作業者が所望の情報を入力したり編集したりすることができる。または、演算処理部25は、工具の種類、工具長および工具径を加工プログラムから読み込むことができる。
次に、切削力の判定値を設定するための許容切削力の算出方法について説明する。許容切削力は、工具の種類、工具長および工具径に基づいて算出することができる。図2を参照して、工具径TDは、工具6の直径であり、工具長TLは、主軸4の前側の端面から工具6の先端までの長さである。換言すると、工具長TLは、主軸4からの工具6の突出し長さである。
始めに軸受の許容切削力の算出方法について説明する。図2を参照して、主軸4は、フロントベアリング7とリアベアリング8とに支持されている。切削力制御部38は、それぞれの軸受の耐荷重に基づいて、矢印95に示すように工具6の先端に加えることができる荷重、すなわち、径方向の許容切削力を算出する。
距離Lは、主軸4の軸方向において、主軸4の前側の端面とフロントベアリング7の位置との間の長さである。複数個のフロントベアリング7が軸方向に配置されている場合には、複数個のフロントベアリング7が配置されている領域のうち、軸方向の中点の位置をフロントベアリング7の位置に選定する。距離Lは、主軸4の軸方向において、フロントベアリング7とリアベアリング8との間の長さである。複数個のリアベアリング8が配置されている場合には、複数個のリアベアリング8が配置されている領域のうち、軸方向の中点の位置をリアベアリング8の位置に選定する。そして、これらの距離L,Lを用いて許容切削力を算出する。
ここで、フロントベアリング7が破損する場合を検討する。工具6の先端に大きな切削力が加わると、リアベアリング8の位置が支点となってフロントベアリング7に荷重が加わり、フロントベアリング7が破損することが考えられる。フロントベアリング7の耐荷重FFは予め定められている。フロントベアリング7に関する許容切削力FF-Limitは、フロントベアリング7の耐荷重FFを用いて次の式(1)で表すことができる。
Figure 2016067384
次に、リアベアリング8が破損する場合を検討する。工具6の先端に大きな切削力が加わると、フロントベアリング7の位置が支点となってリアベアリング8に荷重が加わり、リアベアリング8が破損することが考えられる。リアベアリング8の耐荷重FRは予め定められている。リアベアリング8に関する許容切削力FR-Limitは、リアベアリング8の耐荷重FRを用いて次の式(2)で表すことができる。
Figure 2016067384
工具6に大きな切削力が加わった場合に、上記の式(1)および式(2)のうち、小さな許容切削力になる軸受が先に破損する。このため、許容切削力FF-Limitおよび許容切削力FR-Limitのうち、小さい方の値を軸受の許容切削力として選定する。
このように、軸受の許容切削力は、工具長TLに基づいて算出することができる。軸受の許容切削力は、上記の計算方法に限られず、任意の方法にて軸受が破損する虞を回避できる許容切削力を算出することができる。
工具の損傷に関する工具の許容切削力については、矢印95に示す様に、工具6の先端に径方向の切削力が加わったときに工具が破損する場合を検討する。工具の許容切削力は、工具径および工具長に依存する。工具6の工具径TDが大きいほど破損しにくくなり、工具の許容切削力も大きくなる。また、工具6の工具長TLが大きいほど破損しやすくなり、工具の許容切削力が小さくなる。本実施の形態では、工具を円柱状の棒と仮定し、この円柱状の棒のせん断限界に基づいて工具の許容切削力を算出している。
図6に、工具長および工具径に基づく工具の許容切削力のデータテーブルの説明図を示す。本実施の形態では、工具長および工具径を関数にするデータテーブルに基づいて工具の許容切削力を算出する。このようなデータテーブルは、工具の種類ごとに予め記憶部26に記憶されている。なお、工具の許容切削力のデータテーブルは、工具の種類に加えて、工具の材質ごとに予め記憶部26に記憶されていても構わない。
切削力制御部38は、使用する工具6の工具長および工具径に基づいて、工具の許容切削力を算出する。図6に示す例では、工具長TLについて、工具長TL1から工具長TL6まで設定されている。また工具径TDについて、工具径D1から工具径D4まで設定されている。それぞれの工具長および工具径について、工具の許容切削力Fmnが設定されている。例えば、工具長TL1および工具径D1の工具は許容切削力F11になる。このデータテーブルに基づいて、使用される工具径DXおよび工具長TLYの工具の許容切削力FXYを内挿により算出する。
図7に、工具の許容切削力を算出する時の内挿を説明する図を示す。この例では、工具長TL1,TL2および工具径D1,D2のそれぞれの許容切削力F11,F12,F21,F22を用いて、許容切削力FXYを算出する。それぞれの内分比a,b,c,dは、次の式(3)から式(6)に示すようになる。
Figure 2016067384
そして、工具長TLYおよび工具径DXの許容切削力FXYは、次の式(7)に示すように内分点の公式により算出することができる。
Figure 2016067384
このように、本実施の形態においては、工具長および工具径を関数にした複数の工具の許容切削力がデータテーブルとして予め定められている。そして、加工に使用する工具の工具長および工具径に基づいて工具の許容切削力を算出している。この方法により、容易に工具の許容切削力を算出することができる。
図1および図5を参照して、本実施の形態では、工具情報画面56を表示することにより工具の許容切削力が自動的に算出される。切削力制御部38は、工具長、工具径、および工具種類を加工プログラム76から読み込むことができる。または、作業者が操作部30を操作して、予め情報制御部20に入力し、記憶部26に記憶させておくことができる。この場合には、切削力制御部38は、記憶部26から工具長、工具径、および工具種類を取得する。次に、切削力制御部38は、工具の許容切削力を算出する。表示制御部22は、表示欄57dに算出した工具の許容切削力を表示する。
作業者が表示欄57dに手入力にて工具の許容切削力を入力した場合には、表示欄57eに作業者が入力したことを示すマークが表示される。たとえば、工具番号が4番のフラットエンドミルは、作業者により工具の許容切削力が入力されて、表示欄57eにマークが表示されている。
図8に、工具に加わる実際の切削力を判定する判定値を設定する制御のフローチャートを示す。この制御は、工具を変更するごとに実施することができる。または、主軸の回転速度が変化するごとに実施することができる。本実施の形態では、この制御は、演算処理部25の切削力制御部38において実施する。
ステップ111においては、工具径が設定されているか否かを判別する。工具径が設定されていない場合には、ステップ112に移行する。工具径が設定されていない場合には、工具の許容切削力を算出することは不可能である。また、後述の式(9)の主軸モータの負荷率の判定値の算出が不可能になる。そこで、許容切削力としては、主軸モータの許容切削力を設定する。ステップ112においては、主軸モータの許容切削力を記憶部26から読み込む。そして、ステップ113においては、主軸モータの許容切削力を判定値に設定する。
ステップ111において、工具径が設定されている場合には、ステップ114に移動する。ステップ114において、工具長が設定されているか否かを判別する。ステップ114において、工具長が設定されていない場合には、ステップ118に移行する。この場合には、工具の許容切削力を算出せずに、軸受の許容切削力を算出する。例えば、工具長を零にして軸受の許容切削力を算出することができる。このために、ステップ115からステップ117における工具の許容切削力の計算を行わずにステップ118に移行する。
ステップ114において、工具長が設定されている場合には、ステップ115に移行する。ステップ115においては、工具種類が設定されているか否かを判別する。ステップ115において、工具種類が設定されていない場合には、ステップ116に移行する。本実施の形態においては、工具種類が設定されていない場合には、工具種類をフラットエンドミルに設定する。すなわち、工具をフラットエンドミルと仮定して許容切削力を算出する。
ステップ115において、工具種類が設定されている場合には、ステップ117に移行する。ステップ117においては、上記の式(3)から式(7)を用いて、工具の許容切削力を算出する。ステップ118においては、上記の式(1)および式(2)を用いて軸受の許容切削力を算出する。ステップ119においては、主軸モータの許容切削力を記憶部26から読み込む。
ステップ120において、許容切削力に基づいて実際の切削力の判定を行う判定値を設定する。それぞれの許容切削力の単位は、力の単位である。工具の許容切削力、軸受の許容切削力、および主軸モータの許容切削力のうち、最も小さな許容切削力を切削力の判定値に設定する。
本実施の形態においては、工具の損傷に関する工具の許容切削力、主軸装置の軸受の損傷に関する軸受の許容切削力、および主軸モータの損傷に関する主軸モータの許容切削力を算出する。そして、これらの許容切削力のうち、最も小さな許容切削力に基づいて判定値を設定する。この制御を実施することにより、安全側に切削力の判定値を設定して、工具や主軸装置の監視を行うことができる。なお、本実施の形態では、最も小さい許容切削力を判定値に設定したが、この形態に限られず、判定値は、許容切削力に基づいて設定することができる。例えば、選定した許容切削力に予め定められた余裕を減算して判定値を定めても構わない。
次に、設定した判定値に基づいて、加工期間中に実際の切削力の監視を行う制御について説明する。図1を参照して、実際の切削力の算出は、切削力演算部39にて行うことができる。また、実際の切削力の判定は切削力制御部38にて行うことができる。
図9に、ワークを加工している期間中に行う制御のフローチャートを示す。図9に示す制御は、例えば、予め定められた時間間隔ごとに行うことができる。ステップ131においては、設定した切削力の判定値を読み込む。
次に、工具に加わる実際の切削力を算出する。ステップ132においては、運転状態センサ37から主軸4の回転速度を取得する。ステップ133においては、運転状態センサ37から主軸モータの負荷率を取得する。主軸モータの負荷率は、主軸モータの最大出力に対する主軸モータの加工中の出力の比である。本実施の形態では、主軸モータの出力として電流値を検出している。すなわち、主軸モータの負荷率として、主軸モータの定格電流に対する加工中の電流値の比を算出している。
次に、ステップ134において、実際の切削力を算出する。切削力演算部39は、次の式(8)に基づいて実際の切削力を算出する。
Figure 2016067384
実際の切削力Fは、主軸の回転速度および工具半径に依存している。本実施の形態では、主軸の回転速度が変化したり、工具が交換されたりしても、実際の切削力を算出することができる。次に、ステップ135においては、実際の切削力および判定値を表示部28に表示する。
図10に、ワークを加工している期間中の監視情報画面を示す。選択部51fが押されて監視情報画面が表示されている。更に、ボタン領域54のボタン54aを押して表示される選択メニューから切削力が選定されている。切削力に関する監視情報画面61は、表示領域61a,61b,61c,61dを有する。
表示領域61aには、ワークの加工時の主軸装置の情報およびワークに対する工具の移動に関する情報が表示されている。表示領域61bには、主軸モータの負荷率が表示されている。さらに、主軸モータの負荷率の現在までの最大値、最小値および平均値が表示されている。そして、表示領域61cには、現在の切削力(実際の切削力)および切削力の判定値が表示されている。また、表示領域61cには、実際の切削力が判定値を超えた時の運転モードが表示されている。
本実施の形態の制御装置70は、実際の切削力が判定値を超えた時に、相対移動を継続しながら送り速度を低減する制御を実施することができる。または、制御装置70は、実際の切削力が判定値を超えた時に、送り速度を零にする制御を実施することができる。ボタン54bを押すことにより、送り速度を零にする制御、すなわち加工を停止するSL運転モードを選択することができる。ボタン54cを押すことにより、ワークに対する工具の相対移動を継続しながら送り速度を低減するAC運転モードを選択することができる。図10に示す例では、AC運転モードが選定されている。表示領域61cには、AC運転モードが選択されていることが表示されている。
表示領域61dには、主軸モータの負荷率のグラフ62aと、切削力のグラフ62bが表示されている。それぞれのグラフの横軸は時間である。主軸モータの負荷率のグラフの縦軸の単位は「%」である。切削力のグラフの縦軸の単位は「N」である。それぞれのグラフには、SL運転モードの判定値と、AC運転モードの判定値が表示されている。本実施の形態では、選定した許容切削力をSL運転モードの判定値としている。AC運転モードの判定値は、SL運転モードの判定値に予め定められた比率を乗じて算出することができる。それぞれの運転モードの判定値は、この形態に限られず、許容切削力に基づいて任意に設定することができる。
それぞれのグラフ62a,62bには、判定値の線が表示されている。そして、実際の加工期間中に検出された主軸モータの負荷率と切削力とが棒グラフにて示されている。このように、本実施の形態では、ワークの加工中に工具がワークから受ける切削力を算出し、算出した切削力を表示部に表示することができる。このために、作業者は、時間とともに変化する実際の切削力を確認することができる。作業者は、工具に加わる実際の切削力を把握することができて、工具や主軸装置の健全性を簡単に精度よく監視することができる。
図9を参照して、次に、ステップ136において、切削力制御部38が実際の切削力と判定値とを比較する。本実施の形態では、実際の切削力を切削力の判定値と比較するために、切削力の判定値を主軸モータの負荷率に対応する変数に換算している。そして、換算した判定値を主軸モータの負荷率と比較している。切削力の判定値を主軸モータの負荷率に対応する判定値に換算するためには、次の式(9)を用いる。
Figure 2016067384
ここで、主軸最大出力Pmaxは、主軸の回転速度に依存する主軸モータの最大出力である。主軸最大出力Pmaxは、予め記憶部に記憶されている。このようにして算出された主軸モータの負荷率の判定値SLlimと、実際の主軸モータの負荷率とを比較する。主軸モータの負荷率が、主軸モータの負荷率の判定値SLlimを超えていれば、実際の切削力が切削力の判定値を超えていると判別することができる。なお、切削力換算係数δは、実験により予め求めておくことができる。
本実施の形態においては、切削力の判定値を主軸モータの負荷率と同じ単位に変換して切削力の比較を行っているが、この形態に限られず、切削力の単位にて判定値と実際の切削力とを比較しても構わない。なお、図8のステップ120における判定値の設定においても、複数の許容切削力を主軸モータの負荷率と同じ単位に換算して、複数の許容切削力の比較を行っても構わない。この場合に、主軸モータの許容切削力は、主軸モータの負荷率と同じ単位に換算した値を記憶部に記憶させておくことができる。
ステップ136において、実際の切削力が切削力の判定値以下の場合には、工具および主軸装置に過大な力が加わっていないと判別することができる。工具および主軸装置の健全性が保たれていると判別することができる。この場合には、この制御を終了することができる。
ステップ136において、実際の切削力が切削力の判定値よりも大きい場合には、ステップ137に移行する。ステップ137においては、ワークに対する工具の相対移動を継続しながら送り速度を低減させる制御が選択されているか否かを判別する。すなわち、前述のAC運転モードが選択されているか否かを判別する。ステップ137において、送り速度を低減させる制御が選択されている場合には、ステップ138に移行する。
ステップ138においては、ワークに対する工具の相対移動を継続しながら送り速度を低減する。切削力制御部38は、送り速度のオーバーライド値を小さくする制御を行う。オーバーライド値の低減幅は予め定めておくことができる。または、実際の切削力と判定値との差が大きいほど、オーバーライド値の低減幅を大きくする制御を行うことができる。
次に、ステップ139においては、実際の切削力が判定値を超えて送り速度を低減したことを通知するワーニングの画像を表示部28に表示する。たとえば、表示部28において主画面に重ねて主画面よりも小さな補助画面を表示して、補助画面にワーニングの画像を表示する。
ステップ137において、送り速度を低減させる制御が選択されていない場合には、ステップ140に移行する。この場合には、ワークに対する工具の相対速度を零にする制御が選定されている。すなわち前述のSL運転モードが選択されている。ステップ140においては、ワークの加工を停止する。切削力制御部38は、送り速度を零にする指令を読取解釈部72に送出する。そして、ワークに対する工具の送り速度を零にする。
次に、ステップ141においては、実際の切削力が判定値を超えて加工を停止したことを通知するアラームの画像を表示部28に表示する。たとえば、表示部28において主画面に重ねて主画面よりも小さな補助画面を表示して、補助画面にアラームの画像を表示する。
作業者は、ワーニングの画像やアラームの画像を見ることにより、実際の切削力が所定の判定値を超えて、送り速度が低減されたり、加工が停止されたりしたことを把握することができる。実際の切削力が判定値を超えた場合に、ワークに対する工具の相対速度を低下させる方法を採用することにより、主軸装置や工具の破損を抑制することができる。なお、送り速度の低減の制御が実施された場合に、予め定められた時間よりも長い間、実際の切削力が判定値を超えない場合には、送り速度を増大する制御を実施しても構わない。例えば、送り速度を減速前の元の速度まで戻す制御を実施しても構わない。
このように主軸モータのトルク指令値、電流指令値、または実際の電流値に基づいて刻々の実際の切削力を演算して表示するので、工作機械の取扱説明書に「kgf」または「N」(ニュートン)の単位で記載されている許容切削力と使用工具との関連性が作業者にとって分かり易くなる。また、工具で加工する場合に、工具に加えることができる切削力の大きさの判断が容易に、ほぼ正確に行えるようになる。さらに、判定値を自動的に設定できるために、作業者の負担が軽減される。
上述のそれぞれの制御においては、機能および作用が変更されない範囲において適宜ステップの順序を変更することができる。上記の実施の形態は、適宜組み合わせることができる。
上述のそれぞれの図において、同一または相等する部分には同一の符号を付している。なお、上記の実施の形態は例示であり発明を限定するものではない。また、実施の形態においては、請求の範囲に示される形態の変更が含まれている。
1 工作機械
4 主軸
6 工具
7 フロントベアリング
8 リアベアリング
9 主軸モータ
15 ワーク
25 演算処理部
28 表示部
30 操作部
37 運転状態センサ
38 切削力制御部
39 切削力演算部
31 操作盤
56 工具情報画面
61 監視情報画面
62b グラフ
70 制御装置

Claims (5)

  1. 主軸モータにより回転する工具とテーブルに固定されたワークとを相対移動させながら前記ワークを加工する工作機械の制御方法であって、
    主軸モータのトルク指令値、電流指令値、または実際の電流値に基づいて、前記ワークの加工中に工具の予め設定された位置の前記ワークから受ける実際の切削力を算出し、算出した前記実際の切削力を表示部に表示することを特徴とした、工作機械の制御方法。
  2. 工具の予め設定された前記位置に加えることが許される許容切削力に基づいて判定値が予め設定されており、
    前記実際の切削力が判定値を超えた場合に、前記ワークに対する工具の相対速度を低下させる、請求項1に記載の工作機械の制御方法。
  3. 複数の工具について、主軸からの工具の突出し長さおよび工具径を関数にした許容切削力が予め定められており、
    加工に使用する工具の突出し長さおよび工具径に基づいて工具の損傷に関する工具の許容切削力を算出する、請求項2に記載の工作機械の制御方法。
  4. 工具の損傷に関する工具の許容切削力、主軸装置の軸受の損傷に関する軸受の許容切削力、および主軸モータの損傷に関する主軸モータの許容切削力を算出し、
    工具の許容切削力、軸受の許容切削力、および主軸モータの許容切削力のうち、最も小さな許容切削力に基づいて前記判定値を設定する、請求項2に記載の工作機械の制御方法。
  5. 主軸モータにより回転する工具とテーブルに固定されたワークとを相対移動させながら前記ワークを加工する工作機械の制御装置であって、
    主軸モータのトルク指令値、電流指令値、または実際の電流値に基づいて、前記ワークの加工中に工具の予め設定された位置の前記ワークから受ける実際の切削力を算出する切削力演算部と、
    算出した前記実際の切削力を表示する表示部とを備えることを特徴とした、工作機械の制御装置。
JP2016556098A 2014-10-29 2014-10-29 工作機械の制御方法および工作機械の制御装置 Active JP6381665B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/078745 WO2016067384A1 (ja) 2014-10-29 2014-10-29 工作機械の制御方法および工作機械の制御装置

Publications (2)

Publication Number Publication Date
JPWO2016067384A1 true JPWO2016067384A1 (ja) 2017-06-01
JP6381665B2 JP6381665B2 (ja) 2018-08-29

Family

ID=55856771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016556098A Active JP6381665B2 (ja) 2014-10-29 2014-10-29 工作機械の制御方法および工作機械の制御装置

Country Status (5)

Country Link
US (1) US10261495B2 (ja)
EP (1) EP3214513B1 (ja)
JP (1) JP6381665B2 (ja)
CN (1) CN107077122B (ja)
WO (1) WO2016067384A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10386831B2 (en) * 2016-07-04 2019-08-20 Dmg Mori Co., Ltd. Machining status display apparatus
JP6802054B2 (ja) * 2016-07-04 2020-12-16 Dmg森精機株式会社 加工状態表示装置
JP6595416B2 (ja) * 2016-08-09 2019-10-23 ファナック株式会社 サーボ制御装置、サーボ制御装置を用いた主軸故障検出方法及びコンピュータプログラム
JP6898079B2 (ja) * 2016-11-16 2021-07-07 芝浦機械株式会社 工作機械およびその制御方法
TWI650625B (zh) * 2017-11-16 2019-02-11 財團法人工業技術研究院 刀具磨耗檢測裝置、其檢測方法及刀具磨耗補償方法
WO2019106963A1 (ja) * 2017-11-28 2019-06-06 株式会社安川電機 機械設備制御システム、機械設備制御装置、及び機械設備制御方法
US10900768B2 (en) * 2017-11-29 2021-01-26 Hill Engineering, Llc Systems and methods for analysis of material properties of components and structures using machining processes to enable stress relief in the material under test
US11609169B2 (en) 2017-11-29 2023-03-21 Hill Engineering, Llc Analysis of material properties of internal surfaces using machining processes to enable stress relief in the material under test
JP2020082270A (ja) * 2018-11-26 2020-06-04 ファナック株式会社 工作機械
CN109604636A (zh) * 2018-11-29 2019-04-12 芜湖常瑞汽车部件有限公司 一种复杂面形结构零件车削加工系统及方法
CN109604642A (zh) * 2018-11-30 2019-04-12 芜湖常瑞汽车部件有限公司 一种轴类零件自动加工装置及方法
JP6940474B2 (ja) * 2018-12-05 2021-09-29 ファナック株式会社 工作機械
JPWO2020174585A1 (ja) * 2019-02-26 2021-03-11 国立大学法人東海国立大学機構 切削装置および接触位置特定プログラム
JP7010261B2 (ja) * 2019-03-22 2022-01-26 ブラザー工業株式会社 数値制御装置と制御方法
JP6654740B1 (ja) * 2019-07-19 2020-02-26 ヤマザキマザック株式会社 工作機械、工作機械の加工プログラム編集方法、及び工作機械の加工プログラム編集のためのプログラム
JP7218701B2 (ja) * 2019-09-30 2023-02-07 ブラザー工業株式会社 工作機械、フィードバック制御方法及びコンピュータプログラム
JP7302518B2 (ja) * 2020-03-31 2023-07-04 ブラザー工業株式会社 数値制御装置
JP7230874B2 (ja) * 2020-03-31 2023-03-01 ブラザー工業株式会社 数値制御装置
FR3114529A1 (fr) * 2020-09-29 2022-04-01 Airbus Systeme de controle d’usinage d’une piece
JP2024018610A (ja) * 2022-07-29 2024-02-08 日東電工株式会社 切削加工フィルムの製造方法
CN115415850B (zh) * 2022-09-16 2024-03-22 中达电子(江苏)有限公司 基板分割装置及分割控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215943A (ja) * 1988-07-04 1990-01-19 Matsuura Kikai Seisakusho:Kk 工作機械の主軸駆動制御方法
JPH03219902A (ja) * 1990-01-26 1991-09-27 Shinko Kogyo Co Ltd 走行丸のこ盤の切断送り速度制御装置
JPH06335841A (ja) * 1993-03-31 1994-12-06 Yaskawa Electric Corp 数値制御装置および数値制御加工方法
JPH0751997A (ja) * 1993-08-09 1995-02-28 Fanuc Ltd 加工負荷監視方式
JPH0819939A (ja) * 1994-06-30 1996-01-23 Nakamura Tome Precision Ind Co Ltd 加工負荷の監視装置
JPH1158113A (ja) * 1997-08-15 1999-03-02 Yamazaki Mazak Corp 工具摩耗監視装置
JP2014156005A (ja) * 2013-01-21 2014-08-28 Fanuc Ltd モータがオーバーヒート温度に達するまでの時間を推定する時間推定手段を有する工作機械の制御装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5822212A (en) * 1993-08-06 1998-10-13 Fanuc Ltd Machining load monitoring system
JP3331024B2 (ja) * 1993-10-13 2002-10-07 ファナック株式会社 工具寿命管理方式
JPH08243882A (ja) * 1995-03-05 1996-09-24 Hitachi Seiki Co Ltd 工作機械の切削状態監視方法及びその装置
US6585453B2 (en) * 2001-07-19 2003-07-01 Gerald M. Robinson Apparatus for trenchless underground pipe replacement
JP2003263208A (ja) * 2002-03-11 2003-09-19 Yoshiaki Kakino Ncプログラムの作成方法、nc装置及びコンピュータプログラム
JP4462871B2 (ja) * 2003-08-21 2010-05-12 ローム株式会社 モータドライバ及び磁気ディスク装置
JP2005205517A (ja) 2004-01-21 2005-08-04 Niigata Machine Techno Co Ltd 工作機械の切削制御方法および切削制御装置
US7536237B2 (en) * 2005-07-12 2009-05-19 Donald M. Esterling Sensor-based measurement of tool forces and machining process model parameters
CN101412196B (zh) * 2008-11-10 2010-06-16 西安理工大学 基于刀具角度与切削用量参数变化的车削力预测方法
JP5418110B2 (ja) * 2009-09-24 2014-02-19 株式会社ジェイテクト 工作機械の主軸装置
JP5710391B2 (ja) * 2011-06-09 2015-04-30 株式会社日立製作所 工作機械の加工異常検知装置及び加工異常検知方法
JP5793200B2 (ja) * 2011-11-15 2015-10-14 株式会社日立製作所 工作機械の切削力検出装置、切削力検出方法、加工異常検出方法、および加工条件制御システム
CN202726639U (zh) * 2012-08-14 2013-02-13 沈阳机床(集团)设计研究院有限公司 基于数控铣床主轴伺服电机电流信号的切削状态监测系统
CN103433807B (zh) * 2013-08-23 2016-03-09 上海理工大学 一种铣削力模型工艺参数的优化方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215943A (ja) * 1988-07-04 1990-01-19 Matsuura Kikai Seisakusho:Kk 工作機械の主軸駆動制御方法
JPH03219902A (ja) * 1990-01-26 1991-09-27 Shinko Kogyo Co Ltd 走行丸のこ盤の切断送り速度制御装置
JPH06335841A (ja) * 1993-03-31 1994-12-06 Yaskawa Electric Corp 数値制御装置および数値制御加工方法
JPH0751997A (ja) * 1993-08-09 1995-02-28 Fanuc Ltd 加工負荷監視方式
JPH0819939A (ja) * 1994-06-30 1996-01-23 Nakamura Tome Precision Ind Co Ltd 加工負荷の監視装置
JPH1158113A (ja) * 1997-08-15 1999-03-02 Yamazaki Mazak Corp 工具摩耗監視装置
JP2014156005A (ja) * 2013-01-21 2014-08-28 Fanuc Ltd モータがオーバーヒート温度に達するまでの時間を推定する時間推定手段を有する工作機械の制御装置

Also Published As

Publication number Publication date
US10261495B2 (en) 2019-04-16
EP3214513A4 (en) 2018-08-15
CN107077122B (zh) 2019-08-06
JP6381665B2 (ja) 2018-08-29
CN107077122A (zh) 2017-08-18
EP3214513B1 (en) 2023-11-22
EP3214513A1 (en) 2017-09-06
WO2016067384A1 (ja) 2016-05-06
US20170315535A1 (en) 2017-11-02

Similar Documents

Publication Publication Date Title
JP6381665B2 (ja) 工作機械の制御方法および工作機械の制御装置
CN106312687B (zh) 机床的主轴负载监视装置
JP5710391B2 (ja) 工作機械の加工異常検知装置及び加工異常検知方法
JP6377167B2 (ja) 工作機械の制御装置
EP3203333A1 (en) Control device for machine tool, and machine tool
US10088824B2 (en) Toolpath evaluation method, toolpath generation method, and toolpath generation device
JP5507410B2 (ja) 工作機械における主軸回転速度のモニタ方法及びモニタ装置、工作機械
EP3816745A1 (en) Device for automatically operating machining center using cad data
JP6637689B2 (ja) 工作機械の工具状態判定装置
JP5674449B2 (ja) 工作機械
JP5394093B2 (ja) 工具折損検出機能を有する工作機械を制御する数値制御装置
JP6924529B1 (ja) 工作機械の電流計測システムおよびその方法
JP2012056030A (ja) 工作機械
JP4639058B2 (ja) ねじ切り加工装置
JP6499707B2 (ja) シミュレーション装置、プログラム生成装置、制御装置およびコンピュータの表示方法
JP6962632B1 (ja) 工作機械の電流計測システムおよびその方法
JP2021070089A (ja) 工作機械における主軸回転速度のモニタ装置及びモニタ方法、工作機械
JP6985565B1 (ja) 制御装置
JP6836552B2 (ja) 数値制御装置
JP6002419B2 (ja) 過負荷保護装置
WO2022113957A9 (ja) 工具損傷検出装置、およびコンピュータ読み取り可能な記憶媒体
WO2024062544A1 (ja) 工作機械の表示装置
JP2019034345A (ja) 工具異常検知装置および該方法
JP2013000808A (ja) 振動抑制装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180731

R150 Certificate of patent or registration of utility model

Ref document number: 6381665

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150