JPWO2016006421A1 - ロックアップクラッチの制御装置 - Google Patents

ロックアップクラッチの制御装置

Info

Publication number
JPWO2016006421A1
JPWO2016006421A1 JP2016532852A JP2016532852A JPWO2016006421A1 JP WO2016006421 A1 JPWO2016006421 A1 JP WO2016006421A1 JP 2016532852 A JP2016532852 A JP 2016532852A JP 2016532852 A JP2016532852 A JP 2016532852A JP WO2016006421 A1 JPWO2016006421 A1 JP WO2016006421A1
Authority
JP
Japan
Prior art keywords
torque
engagement
lockup clutch
capacity
clutch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016532852A
Other languages
English (en)
Other versions
JP6208358B2 (ja
Inventor
知明 本間
知明 本間
光平 神谷
光平 神谷
佑太 鈴木
佑太 鈴木
到 篠原
到 篠原
寛 関谷
寛 関谷
啓 荻野
啓 荻野
泰弘 遠藤
泰弘 遠藤
譲 遠田
譲 遠田
洸輝 斉藤
洸輝 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
JATCO Ltd
Original Assignee
Nissan Motor Co Ltd
JATCO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, JATCO Ltd filed Critical Nissan Motor Co Ltd
Publication of JPWO2016006421A1 publication Critical patent/JPWO2016006421A1/ja
Application granted granted Critical
Publication of JP6208358B2 publication Critical patent/JP6208358B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/14Control of torque converter lock-up clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/14Control of torque converter lock-up clutches
    • F16H61/143Control of torque converter lock-up clutches using electric control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/18Inputs being a function of torque or torque demand dependent on the position of the accelerator pedal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10406Clutch position
    • F16D2500/10412Transmission line of a vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10443Clutch type
    • F16D2500/1045Friction clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/3041Signal inputs from the clutch from the input shaft
    • F16D2500/30412Torque of the input shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/314Signal inputs from the user
    • F16D2500/31406Signal inputs from the user input from pedals
    • F16D2500/3144Accelerator pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70422Clutch parameters
    • F16D2500/70426Clutch slip
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/708Mathematical model
    • F16D2500/7082Mathematical model of the clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H2059/145Inputs being a function of torque or torque demand being a function of power demand of auxiliary devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H2059/147Transmission input torque, e.g. measured or estimated engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/14Control of torque converter lock-up clutches
    • F16H61/143Control of torque converter lock-up clutches using electric control means
    • F16H2061/145Control of torque converter lock-up clutches using electric control means for controlling slip, e.g. approaching target slip value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Fluid Gearings (AREA)

Abstract

車両の駆動源である原動機(1)と自動変速機構(4)との間に設けられたトルクコンバータ(2)に装備されたロックアップクラッチ(20)と、トルクコンバータ(20)をコンバータ状態からロックアップ状態へ切り替える締結制御時に、ロックアップクラッチ(20)の締結容量を時間経過とともに増大するように制御する締結制御手段(8H)と、を備えたロックアップクラッチの制御装置であって、原動機(1)で駆動される補機(110)を有し、締結制御手段(8H)は、ロックアップクラッチ(20)の締結容量を増大する制御をしている時に、補機(110)の負荷の低減により原動機(1)からトルクコンバータ(2)に入力される入力トルクが増大した場合には、そのトルク増大分に基づきロックアップクラッチ(20)の締結容量の増大を促進する。本発明のロックアップクラッチの制御装置によれば、ロックアップ状態への過渡時に発生する昇圧不足の現象を確実に回避できる。

Description

本発明は、車両に装備されたロックアップクラッチの制御装置に関するものである。
自動車等の車両において、エンジンと自動変速機構との間に介装されるトルクコンバータにロックアップクラッチを装備して、トルクコンバータの滑りに起因する燃費の悪化を低減できるようにしたものがある。このロックアップクラッチの動作状態としては、トルクコンバータの入出力要素間を直結状態とするロックアップ状態と、該入出力要素間を完全解放し、流体を介してトルク伝達を行なうコンバータ状態と、ロックアップクラッチを半締結状態とし、所定のスリップ状態を維持するスリップ状態とがある。
ロックアップクラッチの制御では、これらの3つの動作状態を車両の運転状態により適宜切り換えるが、この動作モードの切り替えは、ロックアップ差圧〔ロックアップクラッチのアプライ室の油圧Paとレリーズ室の油圧Prとの差圧ΔP(=Pa−Pr)、以下、ロックアップクラッチ締結圧とも記す〕を変化させることにより行なう。ロックアップ差圧ΔPを大きくしていけばロックアップ状態となり、ロックアップ差圧ΔPを小さくしていけばコンバータ状態となる。ロックアップ差圧ΔPをこれらの中間的な大きさにすれば、スリップ状態となる。
このうち、コンバータ状態からロックアップ状態に切り替える場合には、所定のロックアップ差圧に上昇するまではオープンループ制御で昇圧し、その後フィードバック制御によるスリップ制御を経てロックアップ状態に切り替える。これにより、ロックアップ状態に滑らかに移行することができる。この場合のオープンループ制御では、所定の変化量を周期的に加算してロックアップクラッチの締結容量を増大することでロックアップクラッチ締結圧を時間経過とともに上昇させる。
しかし、所定の変化量を周期的に加算して締結容量を増大しロックアップクラッチ締結圧を上昇させる制御では、制御中にスロットル(又はアクセルペダル)が閉じられエンジントルクが減少する場合、これに対応できない。このため、クラッチ容量が過多になり、締結ショックやエンジン回転の急激な落ち込みなどが発生する。そこで、ロックアップクラッチを締結する過程で、トルクコンバータに入力されるエンジンの出力トルクの推定値からトルクコンバータの滑りトルク相当値を差し引いたものをロックアップクラッチの締結容量としてロックアップクラッチの締結状態を制御する技術が提案されている(特許文献1)。
しかしながら、特許文献1の発明では、運転者によるアクセルペダルの踏み戻しや踏み増しといったアクセル操作によってエンジンの出力トルクが増減する場合には対応することができるが、運転者のアクセル操作を伴わないで、即ち、エンジンの出力トルク自体が変化しないで、トルクコンバータへの入力トルクが変動した場合には対応することができない。
例えば、エアコンのコンプレッサ等のエンジンで駆動される補機が作動状態から停止状態になれば、補機を駆動していたエンジンの出力トルク分がトルクコンバータへの入力トルクに追加されるため、エンジンの出力トルクが増加しなくてもトルクコンバータへの入力トルクが増大する。特許文献1の発明では、エンジンの出力トルクに基づいてロックアップクラッチの締結状態を制御するので、この場合のトルクコンバータへの入力トルクの増大には何ら対応しえない。したがって、このようなロックアップ状態への過渡時において発生する昇圧不足の現象を回避することができない。
また、ロックアップクラッチの急な締結は、運転者に与える違和感が大きいので、より確実に回避できるようにしたい。特に、アクセルペダルの踏み戻しによってエンジンの出力トルクが減少する場合、トルクコンバータへの入力トルクの減少によってロックアップクラッチが完全締結する圧力が低下するため、クラッチ容量が過多になって急激に完全締結し、締結ショックやエンジン回転の急激な落ち込みなどが発生する。こうした締結ショック等を確実に回避できるようにしたい。
特許文献1の発明では、アクセルペダルの踏み戻しの結果として現れるスロットル開度から算出するエンジンの出力トルクに基づいてロックアップクラッチの締結状態を制御するので、締結制御に用いる油圧の応答遅れからロックアップクラッチの制御に遅れが生じ易くなる。このため、ロックアップクラッチ締結圧を低下させる前に締結ショック等が発生してしまうおそれがあり、こうした不具合をより確実に回避できるようにしたい。
特開2006−162002号公報
本発明は、このような課題に鑑み創案されたもので、ロックアップクラッチの制御装置において、ロックアップ状態への過渡時において発生する昇圧不足の現象を確実に回避できるようにすることを第1の目的とし、さらに、アクセルペダルの踏み戻しに起因したクラッチ容量過多の現象をも確実に回避できるようにすることを第2の目的とする。
(1)上記の目的を達成するために、本発明のロックアップクラッチの制御装置は、車両の駆動源である原動機と自動変速機構との間に設けられたトルクコンバータに装備されたロックアップクラッチと、前記トルクコンバータをコンバータ状態からロックアップ状態へ切り替える締結制御時に、前記ロックアップクラッチの締結容量を時間経過とともに増大するように制御する締結制御手段と、を備えたロックアップクラッチの制御装置であって、前記原動機で駆動される補機を有し、前記締結制御手段は、前記ロックアップクラッチの締結容量を増大する制御をしている時に、前記補機の負荷の低減により前記原動機から前記トルクコンバータに入力される入力トルクが増大した場合には、そのトルク増大分に基づき前記ロックアップクラッチの締結容量の増大を促進する。
(2)前記原動機から前記トルクコンバータに入力される入力トルクを推定する入力トルク推定手段と、前記入力トルク推定手段で推定された前記入力トルクが増大するか否かを判定するトルク増大判定手段と、前記ロックアップクラッチの締結容量の指示値を所定の演算周期で演算する締結容量演算手段と、を備え、前記締結容量演算手段は、前記ロックアップクラッチの締結容量が時間経過とともに増大するように前回の指示値に所定の変化量を加算することにより今回の指示値を演算する第1演算部と、前記トルク増大判定手段により前記入力トルクが増大したと判定された場合に前回の指示値に前記所定の変化量と前記トルク増大分に基づく変化量とを加算することにより今回の指示値を演算する第2演算部とを有し、前記締結制御手段は、前記トルク増大判定手段による判定結果に基づいて、前記入力トルクが増大したと判定された場合は前記第2演算部で演算された今回の指示値に基づいて、前記入力トルクが増大しないと判定された場合は前記第1演算部で演算された今回の指示値に基づいて、それぞれ、前記ロックアップクラッチの締結容量を制御することが好ましい。
(3)前記車両のアクセル開度を検出するアクセル開度検出手段と、前記アクセル開度検出手段で検出された前記アクセル開度が減少したか否かを判定する開度減少判定手段と、を備え、前記締結容量演算手段は、前記開度減少判定手段で前記アクセル開度が減少したと判定されると、前回の指示値に所定の変化量を減算することにより今回の指示値を演算する第3演算部をさらに備え、前記締結制御手段は、前記アクセル開度が減少していないと判定され且つ前記入力トルクが増大していないと判定された場合には前記第1演算部で演算された今回の指示値に基づいて、前記アクセル開度が減少していないと判定され且つ前記入力トルクが増大したと判定された場合には前記第2演算部で演算された今回の指示値に基づいて、前記アクセル開度が減少したと判定された場合には前記第3演算部で演算された今回の指示値に基づいて、それぞれ、前記ロックアップクラッチの締結容量を制御することが好ましい。
(4)前記入力トルク推定手段は、前記原動機の出力トルクと、前記原動機から前記補機に供給される補機駆動トルクと、から前記入力トルクを推定することが好ましい。
(5)前記補機にはエアコンのコンプレッサが含まれていることが好ましい。
(6)もう一つの本発明のロックアップクラッチの制御装置は、車両の駆動源である原動機と自動変速機構との間に設けられたトルクコンバータに装備されたロックアップクラッチと、前記トルクコンバータをコンバータ状態からロックアップ状態へ切り替える締結制御時に、前記ロックアップクラッチの締結容量を時間経過とともに増大するように演算する締結容量演算手段と、演算された前記締結容量に基づいて前記ロックアップクラッチの締結圧を制御する締結制御手段と、を備えたロックアップクラッチの制御装置であって、前記車両のアクセル開度を検出するアクセル開度検出手段と、検出された前記アクセル開度が減少したか否かを判定する開度減少判定手段と、前記原動機から前記トルクコンバータに入力される入力トルクを推定する入力トルク推定手段と、推定された前記入力トルクが増大するか否かを判定するトルク増大判定手段と、を備え、前記締結容量演算手段は、前記アクセル開度が減少したと判定された場合には、その開度減少分に基づき前記ロックアップクラッチの締結容量を減少させ、前記アクセル開度が減少していないと判定され且つ前記入力トルクが増大したと判定された場合には、そのトルク増大分に基づき前記ロックアップクラッチの締結容量の増大を促進する。
本発明のロックアップクラッチの制御装置によれば、ロックアップクラッチの締結容量を増大する制御をしている時に、補機の負荷の低減により原動機からトルクコンバータに入力される入力トルクが増大した場合に、そのトルク増大分に基づきロックアップクラッチの締結容量の増大を促進するので、このような入力トルクの増大の場合でも、コンバータ状態からロックアップ状態へ移行する過渡期において発生する昇圧不足の現象を回避することができる。
また、アクセル開度が減少した場合には、その開度減少分に基づきロックアップクラッチの締結容量を減少させる制御を他に優先して行なうことにより、アクセルペダルの踏み戻しに起因したクラッチ容量過多の現象を未然に確実に回避することができる。
本発明の一実施形態にかかるロックアップクラッチの制御装置が適用された車両の駆動系と制御系を示す全体構成図である。 本発明の一実施形態にかかるロックアップクラッチの制御装置による基本制御を説明するタイムチャートである。 本発明の一実施形態にかかるロックアップクラッチの制御装置におけるロックアップクラッチの締結容量の演算に係るブロック図であり、(a)はアクセル踏み戻し制御に係る締結容量の演算に関し、(b)は入力トルク増加制御及び定常制御に係る締結容量の演算に関し、(c)は締結容量の演算に用いる入力トルクの演算に関する。 本発明の一実施形態にかかるロックアップクラッチの制御装置による制御を説明するフローチャートである。 本発明の一実施形態にかかるロックアップクラッチの制御装置によるアクセル踏み戻し制御を示すタイムチャートである。 本発明の一実施形態にかかるロックアップクラッチの制御装置による入力トルク増加制御(その1)を示すタイムチャートである。 本発明の一実施形態にかかるロックアップクラッチの制御装置による入力トルク増加制御(その2)を示すタイムチャートである。
以下、図面を参照して、本発明の実施形態について説明する。
なお、以下に示す実施形態はあくまでも例示に過ぎず、以下の実施形態で明示しない種々の変形や技術の適用を排除する意図はない。
まず、本実施形態にかかるロックアップクラッチの制御装置が適用された車両の駆動系と制御系の構成を説明する。なお、本実施形態では、自動変速機に、ベルト式無段変速機(以下、ベルト式CVT、又は、単に、CVTとも記す)が適用されたものを例示するが、自動変速機としては、トロイダルCVTなどその他の無段変速機や、有段変速機を適用することもできる。
[全体システム構成]
図1は、本実施形態にかかる車両の駆動系と制御系を示す構成図である。
図1に示すように、車両の駆動系は、駆動源であるエンジン(原動機,内燃機関)1と、トルクコンバータ2と、前後進切替機構3と、ベルト式無段変速機構(自動変速機構)4と、終減速機構5と、駆動輪6,6と、を備えている。なお、トルクコンバータ2と前後進切替機構3とベルト式無段変速機構4とをトランスミッションケース内に収納することによりベルト式無段変速機(CVT)100が構成される。
エンジン1には、スロットルバルブ開閉動作や燃料カット動作等により出力トルク制御を行なう出力トルク制御アクチュエータ10が装備される。これによって、エンジン1は、ドライバによるアクセル操作による出力トルクの制御以外に、外部からのエンジン制御信号による出力トルクの制御も可能になっている。
トルクコンバータ2は、トルク増大機能を有する発進要素であり、トルク増大機能を必要としないとき、エンジン出力軸11(=トルクコンバータ入力軸)とトルクコンバータ出力軸21を直結可能なロックアップクラッチ20を有する。このトルクコンバータ2は、エンジン出力軸11にコンバータハウジング22を介して連結されたポンプインペラ23と、トルクコンバータ出力軸21に連結されたタービンランナ24と、ケースにワンウェイクラッチ25を介して設けられたステータ26と、を構成要素とする。
また、ロックアップクラッチ20は、車両の状態や運転状態に応じてロックアップ状態(クラッチ完全締結状態)と、アンロックアップ状態(クラッチ完全解放状態)と、スリップロックアップ状態(クラッチ滑り締結状態、つまり、ロックアップクラッチの入力側の回転部材の回転数と、出力側の回転部材に差回転があるが、入力側から出力側へトルクが伝達されている状態)との何れかに、切り替え制御される。
この切り替え制御と、ロックアップ状態やスリップロックアップ状態でのクラッチ係合力、即ち、クラッチのトルク伝達容量の制御は、ロックアップクラッチ20へ供給する供給油圧の制御により行なう。この供給油圧とは、ロックアップクラッチ20の前後の図示しない二つの油室の差圧、即ち、アプライ室のトルクコンバータ供給圧Paとレリーズ室のトルクコンバータ解放圧Prの差圧(ロックアップ差圧)ΔP(=Pa−Pr)であり、ロックアップクラッチ20の締結(スリップ締結も含む)を制御することから、ロックアップクラッチ締結圧とも称する。
前後進切替機構3は、ベルト式無段変速機構4への入力回転方向を前進走行時の正転方向と後退走行時の逆転方向で切り替える機構である。この前後進切替機構3は、ダブルピニオン式遊星歯車30と、複数のクラッチプレートから成る前進クラッチ31(前進側摩擦締結要素)と、複数のブレーキプレートから成る後退ブレーキ32(後退側摩擦締結要素)と、を有する。
前進クラッチ31は、Dレンジ(ドライブレンジ)等の前進走行レンジの選択時に前進クラッチ圧Pfcにより締結される。後退ブレーキ32は、後退走行レンジであるRレンジ(後退レンジ)の選択時に後退ブレーキ圧Prbにより締結される。なお、前進クラッチ31及び後退ブレーキ32は、Nレンジ(ニュートラルレンジ、非走行レンジ)の選択時、前進クラッチ圧Pfcと後退ブレーキ圧Prbをドレーンすることで、いずれも解放される。
ベルト式無段変速機構4は、ベルト接触径の変更により変速機入力回転数と変速機出力回転数の比である変速比を無段階に変化させる無段変速機能を備え、プライマリプーリ42と、セカンダリプーリ43と、ベルト44と、を有する。プライマリプーリ42は、固定プーリ42aとスライドプーリ42bにより構成され、スライドプーリ42bは、プライマリ圧室45に導かれるプライマリ圧Ppriにより軸方向に移動する。セカンダリプーリ43は、固定プーリ43a及びスライドプーリ43bにより構成され、スライドプーリ43bは、セカンダリ圧室46に導かれるセカンダリ圧Psecにより軸方向に移動する。
プライマリプーリ42の固定プーリ42a及びスライドプーリ42bの各対向面であるシーブ面、及び、セカンダリプーリ43の固定プーリ43a及びスライドプーリ43bの各対向面であるシーブ面は、何れもV字形状をなし、ベルト44の両側のフランク面は、これらの各シーブ面と接触する。スライドプーリ42b,43bの移動に応じて、プライマリプーリ42及びセカンダリプーリ43へのベルト44の巻付き半径が変更されることにより、変速比が変更される。
終減速機構5は、ベルト式無段変速機構4の変速機出力軸41からの変速機出力回転を減速するとともに差動機能を与えて左右の駆動輪6,6に伝達する機構である。この終減速機構5は、変速機出力軸41と左右のドライブ軸51,51との間に介装され、変速機出力軸41に設けられた第1ギヤ52,アイドラ軸50に設けられた第2ギヤ53及び第3ギヤ54と、最終減速ギヤ55と、差動機能を持つディファレンシャルギヤ56とを有する。
車両の制御系のうち、特にCVT100の制御系は、図1に示すように、油圧コントロールユニット7と、CVT電子コントロールユニット(CVTECU)8と、を備えている。また、このCVT電子コントロールユニット8と情報を授受するエンジン電子コントロールユニット(エンジンECU)9が装備されている。なお、各電子コントロールユニット(ECU:Electric Control Unit)8,9は、入出力装置,多数の制御プログラムを内蔵した記憶装置(ROM,RAM,BURAM等),中央処理装置(CPU),タイマカウンタ等を備えて構成される。
油圧コントロールユニット7は、プライマリ圧室45に導かれるプライマリ圧Ppriと、セカンダリ圧室46に導かれるセカンダリ圧Psecと、前進クラッチ31への前進クラッチ圧Pfcと、後退ブレーキ32への後退ブレーキ圧Prbと、ロックアップコントロールバルブ78へのソレノイド圧Psolとを作り出す制御ユニットである。この油圧コントロールユニット7は、オイルポンプ70と、油圧制御回路71と、を備え、油圧制御回路71は、ライン圧ソレノイド72と、プライマリ圧ソレノイド73と、セカンダリ圧ソレノイド74と、前進クラッチ圧ソレノイド75と、後退ブレーキ圧ソレノイド76と、ロックアップソレノイド77とを有する。
ライン圧ソレノイド72は、CVTECU8から出力されるライン圧指示に応じ、オイルポンプ70から圧送される作動油を、指示されたライン圧PLに調圧する。
プライマリ圧ソレノイド73は、CVTECU8から出力されるプライマリ圧指示に応じ、ライン圧PLを元圧として指示されたプライマリ圧Ppriに減圧調整する。
セカンダリ圧ソレノイド74は、CVTECU8から出力されるセカンダリ圧指示に応じ、ライン圧PLを元圧として指示されたセカンダリ圧Psecに減圧調整する。
前進クラッチ圧ソレノイド75は、CVTECU8から出力される前進クラッチ圧指示に応じ、ライン圧PLを元圧として指示された前進クラッチ圧Pfcに減圧調整する。
後退ブレーキ圧ソレノイド76は、CVTECU8から出力される後退ブレーキ圧指示に応じ、ライン圧PLを元圧として指示された後退ブレーキ圧Prbに減圧調整する。
ロックアップソレノイド77は、CVTECU8からの指示により、ロックアップコントロールバルブ78への指示信号圧としてのソレノイド圧Psolを作り出す。ロックアップコントロールバルブ78は、ソレノイド圧Psolを作動信号圧として、ロックアップクラッチ20のクラッチ前後油室の差圧であるロックアップ差圧ΔP(ΔP=Pa−Pr)がCVTECU8からの指示に基づく値となるようにトルクコンバータ供給圧とトルクコンバータ解放圧とを作り出す。
CVTECU8は、スロットル開度等に応じた目標ライン圧を得る指示をライン圧ソレノイド72に出力するライン圧制御、車速やスロットル開度等に応じて目標変速比を得る指示をプライマリ圧ソレノイド73及びセカンダリ圧ソレノイド74に出力する変速油圧制御、前進クラッチ31と後退ブレーキ32の締結/解放を制御する指示を前進クラッチ圧ソレノイド75及び後退ブレーキ圧ソレノイド76に出力する前後進切替制御を行なうとともに、ロックアップソレノイド77に指示を出力してロックアップクラッチ20の締結,解放,スリップ係合(クラッチ滑り締結)等の制御を行なう。
このCVTECU8には、プライマリ回転センサ80,セカンダリ回転センサ81,セカンダリ圧センサ82,油温センサ83,エンジン回転数センサ84,ブレーキスイッチ85,スロットル開度センサ86,プライマリ圧センサ87,ライン圧センサ89,車速センサ90,アクセル開度センサ91,アイドルスイッチ92,エアコンコントローラ93等からのセンサ情報やスイッチ情報が入力される。また、エンジンECU9からはトルク情報が入力され、エンジン1へはトルクリクエストを出力する。ここで、図示しないインヒビタースイッチは、運転者のシフトレバーの操作によって選択されているレンジ位置(Dレンジ,Nレンジ,Rレンジ等)を検出し、レンジ位置に応じたレンジ位置信号を出力する。
[ロックアップクラッチの制御装置の構成]
ところで、本実施形態にかかるロックアップクラッチの制御装置は、ロックアップクラッチ20をコンバータ状態からロックアップ状態へ切り替える締結制御時に、ロックアップクラッチ20の締結容量〔この「締結容量」は「クラッチ容量」とも称する〕の指示値(締結圧を制御ための目標値に相当する)を時間経過とともに増大するように演算し、演算した締結容量の指示値に基づいてロックアップクラッチ20の締結圧を制御する点に特徴がある。
つまり、ロックアップクラッチ20の動作状態としては、トルクコンバータ2の入出力要素間を直結状態とするロックアップ状態(完全締結状態)と、該入出力要素間を完全解放し、流体を介してトルク伝達を行なうコンバータ状態と、ロックアップクラッチ20を半締結状態とし、該入出力要素間を所定のスリップ状態に維持するスリップ状態とがある。
ロックアップクラッチ20の制御では、これらの3つの動作状態を、ロックアップクラッチ締結圧(=ロックアップ差圧ΔP)を変更して行なうが、特に、本締結制御においては、ロックアップクラッチ20のトルク伝達容量である締結容量の指示値TLU(以下、単に、締結容量TLUとも記す)を周期的に求めて、この締結容量TLUに応じてオープンループ制御によりロックアップクラッチの締結圧の指示値PLU(以下、単に、締結圧PLUとも記す)を制御する。
なお、ロックアップクラッチ20の締結容量TLUと締結圧PLUとは、締結容量TLUが増大するに連れて締結圧PLUが増大(例えば、線形に増大)する関係があるので、この関係に基づくマップを用意しておくことにより、変換マップを参照して、締結容量TLUを締結圧PLUに変換することができる。そして、得られた締結圧PLUをロックアップソレノイド77の指令値(ロックアップデューティ)に変換し、指令値によりロックアップソレノイド77を制御し、ロックアップクラッチ20の状態を制御する。
ロックアップクラッチ20をコンバータ状態からロックアップ状態へ切り替える締結制御時には、この締結容量TLUを時間経過とともに増大させていってコンバータ状態からスリップ状態を経てロックアップ状態にするが、ロックアップクラッチ20のロックアップ(完全締結)が急激に行なわれると締結ショックを招き、車両の乗り心地を損なう。そこで、ロックアップクラッチ20をロックアップ状態にする際に、トルク伝達容量の増大を緩やかに行ないスムースにロックアップに移行させる制御(スムースオン制御)を行なう。
このスムースオン制御は、締結ショックを防ぎつつ速やかにロックアップを完了させたいため、図2に示すように、まず、締結圧PLUに初期値(スムースオン初期値)を与えてステップ状に増大させ、その後ランプ状に漸増させる。スムースオン初期値は、コンバータ状態のロックアップクラッチ20を締結側に起動させてクラッチ間の隙間を0付近にする(ガタ詰めする)ためのもので、ロックアップクラッチ20がスリップ状態に移行する直前の状態となる程度の大きさに設定される。
ランプ状に漸増させる過程(ランプ制御)では、初めに、増加率が比較的小さいランプ2の漸増を実施し、その後、増加率が比較的大きいランプ1の漸増を実施する。ランプ2により極めて緩やかに締結圧PLUを増大させることで、締結側に起動したロックアップクラッチ20の動きを落ち着かせるとともに実際の締結圧が指示値である締結圧PLUに近づくのを待つ。その後、トルクコンバータ2の入出力要素間の差回転数(スリップ回転数)ΔNが第1所定値ΔN1以下になったら、ランプ1に切り替えて、ランプ1により、締結に過剰な時間がかからず且つ急締結のおそれを回避できる適度な増加率で締結圧PLUを増大させる。なお、トルクコンバータ2の入出力要素間の差回転数、つまり、スリップ回転数ΔNはエンジン回転数Neとトルクコンバータ2のタービン回転数Ntとの差(=Ne−Nt)に相当する。
このようなランプ制御(ランプ2及びランプ1)によって、トルクコンバータ2の入出力要素間の差回転数(スリップ回転数)ΔNが0付近の微小な締結判定基準値(第2所定値)ΔN0以下になったらスリップ状態からロックアップ状態に切り替わったものとして、締結圧PLUをステップ状に増大し、ロックアップ状態を確実に保持できるようにする。ただし、このロックアップ状態の判定は、演算したスリップ回転数ΔNをノイズキャンセルのためにフィルタリングした上で行なう。
なお、ロックアップクラッチ20がスリップ状態からロックアップ状態に切り替わるのは、ロックアップクラッチ20が伝達するトルク容量(締結容量)TLUがトルクコンバータ2(したがって、ロックアップクラッチ20)に入力される入力トルクTcinを上回った時であり、入力トルクTcinに依存する。つまり、スリップ状態において、ロックアップクラッチ20の締結容量TLUが増加しなくても、入力トルクTcinが低下すればロックアップ状態に切り替わり、ロックアップクラッチ20の締結容量TLUが増加しても入力トルクTcinが増加すれば、なかなかロックアップ状態に切り替わらない。
特に、ランプ制御を行なっていても入力トルクTcinの急減少があるとロックアップクラッチ20が急締結して車両の挙動変動を招く。オープンループ制御による上記のランプ制御ではこのような車両の挙動変動を回避することは困難であり、このような入力トルクTcinの減少によるロックアップクラッチ20の急締結を回避するには締結容量TLUの演算に、この入力トルクTcinの急減少による影響を加味する必要がある。
また、ランプ制御を行なっているときに入力トルクTcinの増加があると、なかなかロックアップ状態に切り替わらないため、ロックアップ状態への切り替えに過剰に時間がかかってしまい、その分、燃費の抑制効果が低下するのでこれを回避したい。また、ロックアップ状態までに時間がかかるだけでなく、ロックアップ状態とスリップ状態との過渡状態においてこれに起因して車両にジャダー(異常振動)が発生することがあるのでこれを回避したい。
ロックアップクラッチ20への入力トルクTcinは、エンジン1の出力トルクTeに依存するが、エンジン1の出力トルクTeはトルクコンバータ2(CVT100)に供給されるだけでなくエンジン1により駆動される補機110にも供給されるので、この点を考慮して入力トルクTcinを把握しなくては、ロックアップ状態への速やかな切り替えを達成できない場合がある。
本ロックアップクラッチの制御装置は、ロックアップクラッチ20と、スロットル開度センサ86,アクセル開度センサ91,補機作動情報の信号を出力する信号出力部93a等のセンサ類と、CVTECU8の機能要素として設けられた開度減少判定部(開度減少判定手段)8A,入力トルク推定部(入力トルク推定手段)8B,トルク増大判定部(トルク増大判定手段)8C,締結容量演算部(締結容量演算手段)8D,締結制御部(締結制御手段)8Hとから構成され、締結制御部8Hでは、締結容量TLUを時間経過とともに増大するように制御する上述のランプ制御時に、ロックアップクラッチ20の急締結を回避するとともにロックアップ状態への速やかな切り替えを達成する制御を行なう。
本実施形態では、この急締結回避にかかる制御を、スムースオン制御中のランプ1,2によって締結圧PLUを増大させる制御を行なっている際に実施する。つまり、ロックアップクラッチ20の締結圧PLUをステップ状に増大させてから、差回転数ΔNが締結判定基準値ΔN0以下になる迄の間において、アクセル踏み戻しによる急締結を回避するアクセル踏み戻し制御を実施する。更に、本実施形態では、早期切り替えにかかる制御を、スムースオン制御中のランプ1によって締結圧PLUを増大させる制御を行なっている際に実施する。つまり、ロックアップクラッチ20がスリップ状態になってトルクコンバータ2の入出力要素間の差回転数ΔNが第1所定値ΔN1以下になってから差回転数ΔNが締結判定基準値ΔN0以下になる迄の間において、入力トルク増加によるジャダー防止,早期切り替えを促進する入力トルク増加制御を実施する。
開度減少判定部8Aは、アクセル開度センサ91で検出されたアクセル開度APOを所定の制御周期(演算周期)で読み込んで、アクセル開度APOが減少したか否かを判定する。ここでは、アクセル開度の今回値APO(n)と前回値APO(n−1)との差分であるアクセル開度変化量ΔAPO〔=APO(n)−APO(n−1)〕を、閾値ΔAPO1(ただし、ΔAPO1<0)と比較して、アクセル開度変化量ΔAPOが閾値ΔAPO1よりも小さければ(ΔAPO<ΔAPO1)、アクセル開度APOが減少したと判定する。
入力トルク推定部8Bは、エンジン1からトルクコンバータ2に入力される入力トルクTcinを所定の制御周期で推定する。前述のように、エンジン1の出力トルクTeはトルクコンバータ2だけでなくエンジン1により駆動される補機110にも供給される。そこで、入力トルク推定部8Bは、補機110の作動状態を考慮して入力トルクTcinを推定する。なお、本実施形態では、補機110としてエアコンのコンプレッサを想定するが、補機110はこれに限るものではない。
つまり、入力トルク推定部8Bは、図3(c)に示すように、エンジン回転数(エンジン回転速度)Neとスロットル開度TPOとからその時点のエンジンの出力トルクTeを例えば特許文献1に開示された公知の手法で演算する。また、補機(エアコンのコンプレッサ)110の作動状態からエンジンの出力トルクTeのうち補機110の送られる分(補機駆動トルク)TACを演算する。補機110の作動状態は、エアコンコントローラ93の信号出力部93aからの信号により把握する。また、補機駆動トルクTACは補機110の作動状態に対応する。そして、入力トルク推定部8Bは、エンジン出力トルクTeから補機駆動トルクTACを減算して入力トルクTcinを算出する。
トルク増大判定部8Cは、入力トルク推定部8Bで推定された入力トルクTcinが増大するか否かを判定する。つまり、トルク増大判定部8Cは、所定の制御周期で入力トルクTcinを読み込んで、入力トルクTcinの今回値Tcin(n)と前回値Tcin(n−1)との差分である入力トルク変化量ΔTcin〔=Tcin(n)−Tcin(n−1)〕を閾値ΔTcin1(ただし、ΔTcin1>0)と比較して、入力トルク変化量ΔTcinが閾値ΔTcin1よりも大きければ(ΔTcin>ΔTcin1)、入力トルクTcinが増大したと判定する。
締結容量演算部8Dは、定常時締結容量を演算する第1演算部(定常時締結容量演算部)8eと、トルク増大時締結容量を演算する第2演算部(トルク増大時締結容量演算部)8fと、アクセル開度減少時締結容量を演算する第3演算部(アクセル開度減少時締結容量演算部)8gと、を備え、各演算部8e〜8gは、所定の制御周期(演算周期)毎に演算を実行する。
第1演算部8eは、入力トルクTcinが定常状態のときに用いる定常時締結容量を演算する。この第1演算部8eでは、図3(b)に実線で示すように、各制御周期において、前回の締結容量TLU(n−1)に所定の変化量(一定量)ΔTLU1(ただし、ΔTLU1>0)を加算して今回の締結容量TLU(n)を演算する。これにより得られる締結容量TLU(n)は定常時締結容量であり、定常時締結容量を用い場合、締結容量TLU(n)は時間経過とともに一定の増加率で増大する。
第2演算部8fは、入力トルクTcinが増大しているときに用いるトルク増大時締結容量を演算する。この第2演算部8fでは、図3(b)に実線及び二点鎖線で示すように、各制御周期において、前回の締結容量TLU(n−1)に所定の変化量(一定量)ΔTLU1(ただし、ΔTLU1>0)を加算するとともに、入力トルクTcinの増大分ΔTcinに基づいた補正用の締結容量変化量ΔTLU(ΔTcin)を加算して、今回の締結容量TLU(n)を演算する。これにより得られる締結容量TLU(n)はトルク増大時締結容量であり、トルク増大時締結容量を用い場合、締結容量TLU(n)は時間経過とともに定常時締結容量を用い場合よりも大きな増加率で増大する。
第3演算部8gは、アクセル開度APOが減少しているときに用いるアクセル開度減少時締結容量を演算する。この第3演算部8gでは、図3(a)に示すように、各制御周期において、前回の締結容量TLU(n−1)にアクセル開度APOの開度減少分ΔAPO(ただし、ΔAPO<0)に基づいた締結容量変化量ΔTLU(ΔAPO)を減算して今回の締結容量TLU(n)を演算する。これにより得られる締結容量TLU(n)はアクセル開度減少時締結容量であり、アクセル開度減少時締結容量を用い場合、締結容量TLU(n)は時間経過とともに減少する。
締結容量演算部8Dは、開度減少判定部8A及びトルク増大判定部8Cによる判定結果に基づいて、アクセル開度APOが減少していないと判定され且つ入力トルクTcinが増大していないと判定された場合には、第1演算部8eで算出された定常時締結容量を、アクセル開度APOが減少していないと判定され且つ入力トルクTcinが増大したと判定された場合には第2演算部8fで算出されたトルク増大時締結容量を、アクセル開度APOが減少したと判定された場合には第3演算部8gで算出されたアクセル開度減少時締結容量を、それぞれ締結容量に採用する。
締結制御部8Hは、締結容量演算部8Dで演算された締結容量TLUに基づいてロックアップクラッチ20の締結圧PLUを制御する。つまり、締結制御部8Hでは、アクセル開度APOが減少していないと判定され且つ入力トルクTcinが増大していないと判定された場合には第1演算部8eで演算された指示値である定常時締結容量に基づいて、アクセル開度APOが減少していないと判定され且つ入力トルクTcinが増大したと判定された場合には第2演算部8fで演算された指示値であるトルク増大時締結容量に基づいて、アクセル開度APOが減少したと判定された場合には第3演算部8gで演算された指示値であるアクセル開度減少時締結容量に基づいて、それぞれ、ロックアップクラッチ20の締結容量を制御する。このとき、締結制御部8Hでは、図示しない変換マップを参照して、締結容量TLUを締結圧PLUに変換する。そして、得られた締結圧PLUをロックアップソレノイド77の指令値(ロックアップデューティ)に変換し、この指令値によりロックアップソレノイド77を制御し、ロックアップクラッチ20の状態を制御する。
[作用及び効果]
本実施形態にかかるロックアップクラッチの制御装置は、上述のように構成されているので、例えば、図4のフローチャートに示すように、ロックアップクラッチ20の制御を実施することができる。なお、図4のフローチャートは、ロックアップクラッチ20をコンバータ状態からロックアップ状態へ切り替える締結制御時(スムースオン制御中且つΔN0≦ΔN≦ΔN1の時)に実施され、締結制御が終了するまで所定の制御周期で繰り返される。また、締結容量の初期値TLU(1)は、締結圧PLUの初期値(スムースオン初期値)と対応した値を予め設定する。
図4に示すように、CVTECU8は、アクセル開度センサ91で検出されたアクセル開度APO及び入力トルク推定部8Bで推定された入力トルクTcinを読み込む(ステップS10)。そして、アクセル開度の今回値APO(n)と前回値APO(n−1)との差分であるアクセル開度変化量ΔAPO〔=APO(n)−APO(n−1)〕を算出する(ステップS20)。
次に、開度減少判定部8Aにより、アクセル開度変化量ΔAPOを閾値ΔAPO1(ただし、ΔAPO1<0)と比較して、アクセル開度APOが減少したか否かを判定する(ステップS30)。アクセル開度変化量ΔAPOが閾値ΔAPO1よりも小さければ、アクセル開度APOが減少したと判定する。
アクセル開度APOが減少したと判定したら、締結容量演算部8Dでは、第3演算部8gで、前回の締結容量TLU(n−1)にアクセル開度APOの開度減少分ΔAPO(ただし、ΔAPO<0)に基づいた締結容量変化量ΔTLU(ΔAPO)を減算して今回の締結容量TLU(n)を演算する(ステップS40)。こうして演算された締結容量TLU(n)(アクセル開度減少時締結容量)は時間経過とともに減少する。そして、ステップS90に進む。
一方、開度減少判定部8Aにより、アクセル開度APOが減少していないと判定したら、入力トルク推定部8Bで推定したトルクコンバータ2に入力される入力トルクTcinの変化量ΔTcinを演算し(ステップS50)、この入力トルク変化量ΔTcinに基づいて、トルク増大判定部8Cで、入力トルクTcinが増大したか否かを判定する(ステップS60)。
トルク増大判定部8Cで入力トルクTcinが増大していないと判定したら、第1演算部8eで、前回の締結容量TLU(n−1)に所定の変化量(一定量)ΔTLU1(ただし、ΔTLU1>0)を加算して今回の締結容量TLU(n)を演算する(ステップS70)。こうして演算された締結容量TLU(n)(定常時締結容量)は時間経過とともに一定の増加率で増大する。そして、ステップS90に進む。
トルク増大判定部8Cで入力トルクTcinが増大したと判定したら、第1演算部8eで、前回の締結容量TLU(n−1)に所定の変化量(一定量)ΔTLU1(ただし、ΔTLU1>0)を加算するとともに、入力トルクTcinの増大分ΔTcinに基づいた締結容量変化量ΔTLU(ΔTcin)を加算して今回の締結容量TLU(n)を演算する(ステップS80)。こうして演算された締結容量TLU(n)(トルク増大時締結容量)は時間経過とともに定常時締結容量よりも大きな増加率で増大する。そして、ステップS90に進む。
トルク増大判定部8Cで入力トルクTcinが増大したと判定するのは、例えば、アクセルペダルの踏み増しでエンジン1の出力トルクTeが増加した場合や、エアコンのコンプレッサ等の補機110が作動状態から停止状態に切り替わった場合である。アクセルペダルの踏み増し後そのアクセル開度を保持している場合や、補機110を停止させた後この状態を保持している場合には、ステップS60で、入力トルクTcinが増大していないと判定され、ステップS70で、前回の締結容量TLU(n−1)に所定の変化量ΔTLU1を加算して今回の締結容量TLU(n)を演算する。
ステップS40,S70,S80の何れかにおいて、アクセル開度減少時締結容量,定常時締結容量又はトルク増大時締結容量にかかる締結容量TLU(n)が演算されたら、締結制御部8Hによって、締結容量TLUを締結圧PLUに変換して(ステップS90)、得られた締結圧PLUをロックアップソレノイド77の指令値(ロックアップデューティ)に変換し、この指令値によりロックアップソレノイド77による油圧状態を指示して、ロックアップクラッチ20の状態を制御する(ステップS100)。
図5は、ロックアップクラッチ20の締結制御中に、アクセル開度APOが減少した場合、即ち、アクセル開度減少時締結容量にかかる締結容量TLU(n)が採用された場合の例を示すタイムチャートである。図5に実線で示すように、時点t11でアクセルペダルの踏み戻し(アクセル開度APOの減少)があると、このときのアクセル開度APOの減少量(制御周期当たりの減少量、減少率に相当する)ΔAPOに応じて締結圧PLUが低下され、ロックアップクラッチ20の急締結が回避される。
つまり、アクセル開度APOが減少すると、エンジン1の出力トルクTeが低下するため、トルクコンバータ2への入力トルクTcinが減少し、ロックアップクラッチ20が完全締結するのに必要な締結圧PLUが低下する。このため、スムースオン制御に従って締結圧PLUをランプ状に増大させるランプ制御を続行すると、トルクコンバータ2の入出力要素間の差回転数(スリップ回転数)ΔNが急減少し、ロックアップクラッチ20は急締結して、車両の挙動変化を招く。
これに対して、本装置では、アクセルペダルの踏み戻しがあると締結圧PLUを低下させるので、ロックアップクラッチ20の急締結が回避される。特に、締結圧PLUの制御には油圧を用いるので、締結圧PLUの指令値を変更しても実際に締結圧PLUが低下するには応答遅れ(タイムラグ)があるが、本装置では、エンジン1の出力トルクTeの低下に基づくのでなく、入力トルクTcinを減少させる出力トルクTeの低下のトリガーとなるアクセル開度APOの減少に基づくので、締結圧PLUの指令値変更が早期に実施され、油圧応答遅れ(タイムラグ)の影響、即ち、ロックアップクラッチ20が急締結し車両の挙動変化を招くこと、が回避される。
また、締結圧PLUの低下量(ロックアップクラッチ20の締結容量TLUの低下量)は、アクセル開度APOの減少量ΔAPOの大きさに応じて設定されるので、締結圧PLUを過剰に低下させることがなく、ロックアップクラッチ20の急締結を回避しながら、ロックアップクラッチ20の締結までに過剰な時間を要さないようにすることができる。
図5に実線で示す例では、時点t11でアクセルペダルの踏み戻しがあり、その後は、アクセルペダルが一定に保持されており、アクセルペダルの踏み戻しを受けて締結圧PLUを低下させた後は、再び、スムースオン制御に従って締結圧PLUをランプ状に増大させるランプ制御を続行する。このスムースオン制御によって、時点t12でトルクコンバータ2の入出力要素間の差回転数(スリップ回転数)ΔNが締結判定基準値ΔN0(例えば10rpm)以下になり、この時点でロックアップクラッチ20が完全締結したと判定して、スムースオン制御を終了し、締結圧PLUをステップ状に増大する。
ただし、この完全締結(ロックアップ状態)の判定は、演算したスリップ回転数ΔNをノイズキャンセルのためにフィルタリングした上で行なうので、スリップ回転数ΔNが実際に締結判定基準値ΔN0(例えば10rpm)以下になってから、僅かな時間であるが一定のタイムラグがあり、この間は、完全締結判定中となって、スムースオン制御は終了しない。しかし、ここでは、スリップ回転数ΔNの生の演算値が締結判定基準値ΔN0以下になったら、締結圧PLUの低下制御を禁止している。
スリップ回転数ΔNが締結判定基準値ΔN0以下になった状態で、図5に破線で示すように締結圧PLUを低下させると、エンジン回転数Neは図5に破線で示すように増大し、スリップ回転数ΔNが再び増大する。このため、トルクコンバータ2がスリップ状態とロックアップ状態との境界付近で不安定な状態となって、ジャダー(異常振動)が発生することがある。締結圧PLUの低下制御を禁止しているのは、こうしたジャダーの発生を回避するためである。したがって、図5に一点鎖線で示すように、完全締結判定中である時点t13でアクセルペダルが踏み戻しされたとしても、締結圧PLUは低下されずに、スムースオン制御による締結圧PLUのランプ状の増大が続行され、ジャダーの発生が回避される。
図6は、ロックアップクラッチ20の締結制御中に、アクセル開度APOの減少はなく、アクセルペダルの踏み増しによるエンジン出力トルクTeの増加があった場合、即ち、トルク増大時締結容量にかかる締結容量TLU(n)が採用された場合の例を示すタイムチャートである。図6において、エンジン回転数Ne及びタービン回転数Ntは同一基準軸(回転数0)上に記載している。また、図6に示すFは、スリップ状態のトルクコンバータ2への入力トルクTcinが増大し締結圧PLUを増大補正する場合(トルク増大時締結容量を採用する場合)に立ち上がる(F=1)フラグである。ここでは、スリップ回転数ΔNが第1所定値ΔN1以下になったら(時点t23)、締結圧PLUを増大補正する制御モード(F=1)に切り替え、スリップ回転数ΔNが締結判定基準値ΔN0以下になったら(時点t25)、この制御モードを終了(F=0)する。
図6に示すように、例えば車両の停止状態から、時点t21で、アクセルペダルの踏み込みがありこれに応じてスロットル開度TPOが立ち上がり、ロックアップクラッチ20の締結制御が開始される。その後の時点t22で、ロックアップクラッチ20の締結圧の指示値である締結圧PLUが立ち上がり、締結圧PLUは次第に増加する。そして、その後の時点t23でスリップ回転数ΔNが第1所定値ΔN1以下になって締結圧PLUを補正する制御モード(F=1)に切り替わる。
締結圧PLUを補正する制御モードに入ると、エンジントルクTeの増加に対して、補正用の締結容量変化量ΔTLU(ΔTcin)も発生し、この締結容量変化量ΔTLU(ΔTcin)の加算に応じて締結圧PLUも破線で示すように上乗せ増加される。時点t23の直後はアクセル開度が微小に漸増しているため、締結圧PLUの上乗せ補正も僅かであるが、この締結圧PLUの上乗せ補正によって、スリップ回転数ΔNが破線で示すように低下を促進され、ロックアップクラッチ20のロックアップ状態への移行が早められる。
そして、その後の時点t24でアクセルペダルの踏み増しによりスロットル開度のステップ上昇があり、これに応じてエンジントルクTeが急増し、この上昇分だけトルクコンバータ2への入力トルクTcinも急増する。このときには、補正用の締結容量変化量ΔTLU(ΔTcin)も大きくなり、この締結容量変化量ΔTLU(ΔTcin)の増加に応じて締結圧PLUも破線で示すように増加される。
ただし、ここでは、エンジントルクTeを演算により推定する際に、スロットル開度及びエンジン回転数Neに基づくトルク値に無駄時間や時定数を考慮して演算するので、推定したエンジントルクTeの増加は破線で示すように鈍化されて実際値(実Te)に近づけられ、入力トルクTcinも実際値(実Tcin)に近づけられる。したがって、締結容量変化量ΔTLU(ΔTcin)も傾きをもって増加し、締結圧PLUも傾きをもって増加される。
このようにして、トルクコンバータ2への入力トルクTcinの増加に対応して、締結容量変化量ΔTLU(ΔTcin)も増加し、締結圧PLUが増加されるので、エンジン回転数Neは破線で示すように制御しない場合(実線)よりも速やかに低下し、スリップ回転数ΔNは破線で示すように制御しない場合(実線)に比べて速やか且つ安定して0に向かって収束して、実線で示す非制御時におけるロックアップ判定タイミング(時点t25)に比べて早期にロックアップ判定がなされる(時点t25´)。
もちろん、ロックアップクラッチ20は締結ショックを生じない範囲で速やかに締結される。また、ロックアップクラッチ20がスリップ状態とロックアップ状態との境界付近の状態にあるとジャダー(異常振動)が生じやすいが、スリップ回転数ΔNが安定して低下するのでこのようなジャダーの発生も回避することができる。
つまり、入力トルクTcinが増加すると、ロックアップクラッチ20の締結(ロックアップ)に必要な締結圧PLUも増加するため、増加量一定(ΔTLUのみ)の場合のスムースオン制御では、ロックアップクラッチ20の締結までに時間がかかるだけでなく、ロックアップクラッチ20がスリップ状態とロックアップ状態との境界付近で不安定な状態になり、ジャダーがするおそれもある。この点、締結圧PLUを入力トルクTcinの増加に応じた締結容量変化量ΔTLU(ΔTcin)で増加補正するので、ジャダーの発生を回避し、且つ、ロックアップクラッチ20が速やかに締結する(時点t25´)ことができる。
図6に示す例は、エンジン出力トルクTe自体が増加することにより、トルクコンバータ2への入力トルクTcinが増加する場合であって、エンジンで駆動される補機110の作動状態には変化がない場合を想定したが、エンジン出力トルクTe自体が増加しなくても、エンジンで駆動される補機110が作動状態から停止状態になった場合には、トルクコンバータ2への入力トルクTcinが増加する。図7はこのような場合を例示するタイムチャートである。
図7に示すように、時点t31で、アクセルペダルの踏み込みに応じてスロットル開度TPOが立ち上がり、ロックアップクラッチ20の締結制御が開始される。その後の時点t32で、ロックアップクラッチ20がスリップ状態になり締結圧PLUが立ち上がり、締結圧PLUは次第に増加する。そして、その後の時点t33でスリップ回転数ΔNが第1所定値ΔN1以下になって締結圧PLUを補正する制御モード(F=1)に切り替わる。
締結圧PLUを補正する制御モードに入ると、エンジントルクTeの増加に対して、補正用の締結容量変化量ΔTLU(ΔTcin)も演算し、この締結容量変化量ΔTLU(ΔTcin)の加算補正に応じて締結圧PLUも破線で示すように上乗せ増加される。時点t33の直後はアクセル開度が微小に漸増しているため、締結圧PLUの上乗せ補正も僅かであるが、この締結圧PLUの上乗せ補正によって、スリップ回転数ΔNが破線で示すように低下を促進され、ロックアップクラッチ20のロックアップ状態への移行が早められる。ここまでは、図6に示す例と同様である。
その後の時点t34で補機(ここでは、エアコンのコンプレッサ)110が作動状態から停止状態になったものとする。エンジンで駆動される補機110が作動から停止になると、エンジントルクTeのうち補機110に消費されていた分がトルクコンバータ2へ供給されるようになるため、この分だけトルクコンバータ2への入力トルクTcinも急増する。このときには、補正用の締結容量変化量ΔTLU(ΔTcin)も大きくなり、この締結容量変化量ΔTLU(ΔTcin)の増加に応じて締結圧PLUも破線で示すように増加される。
このようにして、トルクコンバータ2への入力トルクTcinの増加に対応して、締結容量変化量ΔTLU(ΔTcin)も増加し、締結圧PLUが増加されるので、この場合も、エンジン回転数Neは破線で示すように制御しない場合(実線)に比べて速やかに低下し、スリップ回転数ΔNは破線で示すように制御しない場合(実線)に比べて速やか且つ安定して0に向かって収束して、実線で示す非制御時におけるロックアップ判定タイミング(時点t35)に比べて早期にロックアップ判定がなされる(時点t35´)。
もちろん、ロックアップクラッチ20は締結ショックを生じない範囲で速やかに締結される。また、ロックアップクラッチ20がスリップ状態とロックアップ状態との境界付近の状態にあるとジャダー(異常振動)が生じやすいが、スリップ回転数ΔNが安定して低下するのでこのようなジャダーの発生も回避することができる。
つまり、補機110が作動から停止になって入力トルクTcinが増加すると、ロックアップクラッチ20の締結(ロックアップ)に必要な締結圧PLUも増加するため、増加量一定(ΔTLUのみ)の場合のスムースオン制御では、ロックアップクラッチ20の締結までに時間がかかるが、入力トルクTcinの増加に応じた締結容量変化量ΔTLU(ΔTcin)で補正することによって、ジャダーの発生を回避し、且つ、ロックアップクラッチ20を速やかに締結する(時点t35´)ことができる。
なお、スムースオン制御における本制御は、限られた時間内に完了するものなので、本制御の実施中に、補機110のオンオフの影響を解消する手法として、補機110のオンオフを禁止することも有効である。しかし、補機110のオンオフのうち作動状態から停止状態への切り替えは、燃費上の観点から遅らせることなく速やかに行ないたい。そこで、本制御では、制御の実施中に補機110のオンオフのうち作動状態から停止状態への切り替えを禁止することなく、この切り替えを制御に反映させることにより、ロックアップクラッチ20の締結制御に対する補機110のオンオフ影響を抑制している。一方、補機110の停止状態から作動状態への切り替えは、燃費低下を招くものではないため、切り替えを禁止して制御に対する補機110のオンオフ影響を抑制することができる。
また、図6,図7においては、説明を簡単にするため、図2で説明したランプ2からランプ1への切り替えについては図示及び説明を行なっておらず、予め設定されたランプは一定のものとして説明を行なっている。
[その他]
以上、本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形したり、一部を採用したりして実施することができる。
上記実施形態では、入力トルク増加制御として、エンジン1の出力トルクTe自体の増加に起因した例(図6)と、補機110のオンからオフへの切り替えに起因した例(図7)と、を説明したが、入力トルクTcinは出力トルクTeと補機110の作動状態とから算出するので、出力トルクTe増加と補機110の切り替えが同時発生したら、両者とも補正用の締結容量変化量ΔTLU(ΔTcin)に反映される。
また、上記実施形態では、エンジン1の補機110への出力トルク(補機負荷)が低減する代表的な例として、補機110のオンからオフへの切替による入力トルクTcinの増加の例を説明したが、補機110がオン状態であっても、高出力作動状態から低出力作動状態に切り替わる場合にも、エンジン1の補機110への出力トルク(補機負荷)が減少して入力トルクTcinが増加するので、この場合も入力トルク増加制御を適用できる。
また、上記実施形態では、本制御の開始条件をランプ制御においてランプ2からランプ1に切り替わる条件と一致させて、差回転数ΔNが第1所定値ΔN1以下になったこととしてシンプルに構成しているが、これらの条件は必ずしも一致させる必要はない。
また、上記実施形態では、アクセル開度が減少した場合には、その開度減少分に基づきロックアップクラッチの締結容量を減少させる制御を他に優先して行なうようにしているため、ロックアップクラッチ20の急締結が回避され、これに起因した車両の挙動変化も回避されるが、このアクセル開度の減少に基づく制御を用いずに、トルクコンバータ2への入力トルクTcinに補機負荷の低減を考慮して、ロックアップクラッチ20の締結容量を制御するだけでも、ロックアップ状態への過渡時に発生する昇圧不足の現象を確実に回避できる効果を得られる。

Claims (6)

  1. 車両の駆動源である原動機と自動変速機構との間に設けられたトルクコンバータに装備されたロックアップクラッチと、
    前記トルクコンバータをコンバータ状態からロックアップ状態へ切り替える締結制御時に、前記ロックアップクラッチの締結容量を時間経過とともに増大するように制御する締結制御手段と、を備えたロックアップクラッチの制御装置であって、
    前記原動機で駆動される補機を有し、
    前記締結制御手段は、前記ロックアップクラッチの締結容量を増大する制御をしている時に、前記補機の負荷の低減により前記原動機から前記トルクコンバータに入力される入力トルクが増大した場合には、そのトルク増大分に基づき前記ロックアップクラッチの締結容量の増大を促進する、ロックアップクラッチの制御装置。
  2. 前記原動機から前記トルクコンバータに入力される入力トルクを推定する入力トルク推定手段と、
    前記入力トルク推定手段で推定された前記入力トルクが増大するか否かを判定するトルク増大判定手段と、
    前記ロックアップクラッチの締結容量の指示値を所定の演算周期で演算する締結容量演算手段と、を備え、
    前記締結容量演算手段は、前記ロックアップクラッチの締結容量が時間経過とともに増大するように前回の指示値に所定の変化量を加算することにより今回の指示値を演算する第1演算部と、前記トルク増大判定手段により前記入力トルクが増大したと判定された場合に前回の指示値に前記所定の変化量と前記トルク増大分に基づく変化量とを加算することにより今回の指示値を演算する第2演算部とを有し、
    前記締結制御手段は、前記トルク増大判定手段による判定結果に基づいて、前記入力トルクが増大したと判定された場合は前記第2演算部で演算された今回の指示値に基づいて、前記入力トルクが増大しないと判定された場合は前記第1演算部で演算された今回の指示値に基づいて、それぞれ、前記ロックアップクラッチの締結容量を制御する、請求項1記載のロックアップクラッチの制御装置。
  3. 前記車両のアクセル開度を検出するアクセル開度検出手段と、
    前記アクセル開度検出手段で検出された前記アクセル開度が減少したか否かを判定する開度減少判定手段と、を備え、
    前記締結容量演算手段は、前記開度減少判定手段で前記アクセル開度が減少したと判定されると、前回の指示値に所定の変化量を減算することにより今回の指示値を演算する第3演算部をさらに備え、
    前記締結制御手段は、前記アクセル開度が減少していないと判定され且つ前記入力トルクが増大していないと判定された場合には前記第1演算部で演算された今回の指示値に基づいて、前記アクセル開度が減少していないと判定され且つ前記入力トルクが増大したと判定された場合には前記第2演算部で演算された今回の指示値に基づいて、前記アクセル開度が減少したと判定された場合には前記第3演算部で演算された今回の指示値に基づいて、それぞれ、前記ロックアップクラッチの締結容量を制御する、請求項2記載のロックアップクラッチの制御装置。
  4. 前記入力トルク推定手段は、前記原動機の出力トルクと、前記原動機から前記補機に供給される補機駆動トルクと、から前記入力トルクを推定する、請求項2又は3記載のロックアップクラッチの制御装置。
  5. 前記補機にはエアコンのコンプレッサが含まれている、請求項1〜4の何れか1項に記載のロックアップクラッチの制御装置。
  6. 車両の駆動源である原動機と自動変速機構との間に設けられたトルクコンバータに装備されたロックアップクラッチと、
    前記トルクコンバータをコンバータ状態からロックアップ状態へ切り替える締結制御時に、前記ロックアップクラッチの締結容量を時間経過とともに増大するように演算する締結容量演算手段と、
    演算された前記締結容量に基づいて前記ロックアップクラッチの締結圧を制御する締結制御手段と、を備えたロックアップクラッチの制御装置であって、
    前記車両のアクセル開度を検出するアクセル開度検出手段と、
    検出された前記アクセル開度が減少したか否かを判定する開度減少判定手段と、
    前記原動機から前記トルクコンバータに入力される入力トルクを推定する入力トルク推定手段と、
    推定された前記入力トルクが増大するか否かを判定するトルク増大判定手段と、を備え、
    前記締結容量演算手段は、
    前記アクセル開度が減少したと判定された場合には、その開度減少分に基づき前記ロックアップクラッチの締結容量を減少させ、
    前記アクセル開度が減少していないと判定され且つ前記入力トルクが増大したと判定された場合には、そのトルク増大分に基づき前記ロックアップクラッチの締結容量の増大を促進する、ロックアップクラッチの制御装置。
JP2016532852A 2014-07-09 2015-06-22 ロックアップクラッチの制御装置 Active JP6208358B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014141796 2014-07-09
JP2014141796 2014-07-09
PCT/JP2015/067816 WO2016006421A1 (ja) 2014-07-09 2015-06-22 ロックアップクラッチの制御装置

Publications (2)

Publication Number Publication Date
JPWO2016006421A1 true JPWO2016006421A1 (ja) 2017-04-27
JP6208358B2 JP6208358B2 (ja) 2017-10-04

Family

ID=55064060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016532852A Active JP6208358B2 (ja) 2014-07-09 2015-06-22 ロックアップクラッチの制御装置

Country Status (6)

Country Link
US (1) US10125864B2 (ja)
EP (1) EP3168504B1 (ja)
JP (1) JP6208358B2 (ja)
KR (1) KR101893671B1 (ja)
CN (1) CN106662244B (ja)
WO (1) WO2016006421A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9029318B2 (en) 2008-09-24 2015-05-12 Tel Hashomer Medical Research, Infrastructure And Services Ltd. Peptides and compositions for prevention of cell adhesion and methods of using same
JP6412635B2 (ja) * 2015-03-30 2018-10-24 ジヤトコ株式会社 自動変速機の制御装置および制御方法
EP3279521B1 (en) * 2015-03-30 2020-11-18 Nissan Motor Co., Ltd. Automatic transmission control device and control method
DE102015108473A1 (de) * 2015-05-28 2016-12-01 Schwing Gmbh Großmanipulator mit schnell ein- und ausfaltbarem Knickmast
BR112018008242B1 (pt) * 2015-10-23 2022-08-02 Nissan Motor Co., Ltd Método de controle e dispositivo de controle de travamento de veículo
WO2017135205A1 (ja) * 2016-02-01 2017-08-10 ジヤトコ株式会社 車両のロックアップ制御装置
JP2018013173A (ja) * 2016-07-21 2018-01-25 ヤマハ発動機株式会社 車両及びその制御方法
US10161512B2 (en) * 2016-08-24 2018-12-25 GM Global Technology Operations LLC System and method for torque converter clutch pressure circuit filling and capacity detection
US10443699B2 (en) * 2017-05-26 2019-10-15 Cnh Industrial America Llc Hydraulic torque converter for work machine
CN110131400B (zh) * 2018-02-08 2021-01-19 上汽通用汽车有限公司 变速器油压控制方法和系统以及汽车
CN109271702B (zh) * 2018-09-11 2023-04-07 贵州大学 工程车发动机与液力变矩器逆向匹配的优化方法
US11112004B2 (en) 2019-10-01 2021-09-07 Allison Transmission, Inc. Transmission control systems to adjust clutch pressure and torque based on grade
CN111043298A (zh) * 2019-12-29 2020-04-21 盛瑞传动股份有限公司 一种自动变速器在液力变矩器动作时防止离合器滑摩的控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310288A (ja) * 2002-04-05 2002-10-23 Nissan Motor Co Ltd 自動変速機のロックアップ制御装置
JP2003120805A (ja) * 2001-10-09 2003-04-23 Toyota Motor Corp パワートレーンの制御装置
JP2008008325A (ja) * 2006-06-27 2008-01-17 Nissan Motor Co Ltd トルクコンバータのスリップ制御装置
JP2009275858A (ja) * 2008-05-16 2009-11-26 Denso Corp 自動変速機の制御装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2306590B (en) * 1992-08-21 1997-08-13 Luk Getriebe Systeme Gmbh Torque transmission arrangement
JP3430272B2 (ja) * 1994-07-08 2003-07-28 日産自動車株式会社 自動変速機のロックアップ制御装置
JPH08135787A (ja) 1994-11-14 1996-05-31 Nissan Motor Co Ltd トルクコンバータのロックアップ制御装置
JP3703952B2 (ja) 1997-09-17 2005-10-05 本田技研工業株式会社 ロックアップクラッチ制御装置
JP2000008325A (ja) * 1998-06-29 2000-01-11 Nippon Steel Corp 床版合成桁構造
JP2003097696A (ja) * 2001-09-25 2003-04-03 Jatco Ltd トルクコンバータのコースト時ロックアップ容量制御装置
EP1531288B1 (en) * 2003-11-12 2011-03-02 Nissan Motor Co., Ltd. Power transmission device having a torque converter with a lockup clutch and lockup control method for torque converter
JP4054778B2 (ja) 2004-03-31 2008-03-05 ジヤトコ株式会社 自動変速機の制御装置
JP2006162002A (ja) 2004-12-09 2006-06-22 Nissan Motor Co Ltd トルクコンバータのスリップ制御装置
EP1739329B1 (en) 2005-06-29 2016-11-02 Nissan Motor Co., Ltd. Device and method for controlling the engaging force of a lockup clutch
US7510505B2 (en) * 2006-08-29 2009-03-31 General Motors Corporation Powertrain and method of operation
DE102008043104A1 (de) * 2008-10-23 2010-04-29 Zf Friedrichshafen Ag Verfahren zum Betätigen einer Kupplung eines hydrodynamischen Drehmomentwandlers
US9422880B2 (en) * 2012-08-13 2016-08-23 Tula Technology, Inc. Torque converter clutch lockup during skip-fire operation
JP6256378B2 (ja) * 2015-02-20 2018-01-10 トヨタ自動車株式会社 車両用自動変速機の制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003120805A (ja) * 2001-10-09 2003-04-23 Toyota Motor Corp パワートレーンの制御装置
JP2002310288A (ja) * 2002-04-05 2002-10-23 Nissan Motor Co Ltd 自動変速機のロックアップ制御装置
JP2008008325A (ja) * 2006-06-27 2008-01-17 Nissan Motor Co Ltd トルクコンバータのスリップ制御装置
JP2009275858A (ja) * 2008-05-16 2009-11-26 Denso Corp 自動変速機の制御装置

Also Published As

Publication number Publication date
KR20170010324A (ko) 2017-01-26
US20170204968A1 (en) 2017-07-20
EP3168504A1 (en) 2017-05-17
US10125864B2 (en) 2018-11-13
CN106662244B (zh) 2019-01-04
CN106662244A (zh) 2017-05-10
JP6208358B2 (ja) 2017-10-04
WO2016006421A1 (ja) 2016-01-14
EP3168504B1 (en) 2020-02-19
KR101893671B1 (ko) 2018-08-30
EP3168504A4 (en) 2017-08-09

Similar Documents

Publication Publication Date Title
JP6208358B2 (ja) ロックアップクラッチの制御装置
US9523400B2 (en) Lockup clutch control device
US10495222B2 (en) Automatic transmission control device and control method
US10527165B2 (en) Automatic transmission control device and control method
JP2014134275A (ja) 車両の制御装置
JP2016008616A (ja) 車両の制御装置
US9255638B2 (en) Device for controlling automatic transmission
JP2010230132A (ja) 車両の制御装置
JP2016161023A (ja) 車両の制御装置
JPWO2020054269A1 (ja) 自動変速機のロックアップ制御装置
JP6588199B2 (ja) 車両の制御装置
JP2022001765A (ja) トルクコンバータのスリップ制御装置
JP5673324B2 (ja) 車両用無段変速機の変速制御装置
US11524670B2 (en) Control device for vehicle and control method for vehicle
JP7393168B2 (ja) ベルト無段変速機の制御装置、及びベルト無段変速機のベルトスリップ判定方法
WO2020121749A1 (ja) 車両の制御装置及び車両の制御方法
JP2017032074A (ja) ベルト式無段変速機の制御装置
JP2020197187A (ja) 車両の制御装置及び車両の制御方法
JP2020034145A (ja) 車両の制御装置及び車両の制御方法
JP2020026811A (ja) 無段変速機の変速制御装置
JP2017106494A (ja) 自動変速機の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170906

R150 Certificate of patent or registration of utility model

Ref document number: 6208358

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150