JPWO2015152266A1 - エチレン・α−オレフィン共重合体及びオレフィン系樹脂組成物 - Google Patents

エチレン・α−オレフィン共重合体及びオレフィン系樹脂組成物 Download PDF

Info

Publication number
JPWO2015152266A1
JPWO2015152266A1 JP2016511946A JP2016511946A JPWO2015152266A1 JP WO2015152266 A1 JPWO2015152266 A1 JP WO2015152266A1 JP 2016511946 A JP2016511946 A JP 2016511946A JP 2016511946 A JP2016511946 A JP 2016511946A JP WO2015152266 A1 JPWO2015152266 A1 JP WO2015152266A1
Authority
JP
Japan
Prior art keywords
ethylene
olefin
olefin copolymer
copolymer
mfr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016511946A
Other languages
English (en)
Other versions
JP6569667B2 (ja
Inventor
由之 石濱
由之 石濱
亮太郎 原田
亮太郎 原田
勝 青木
勝 青木
顕司 飯場
顕司 飯場
和史 小玉
和史 小玉
大翔 林
大翔 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Polyethylene Corp
Original Assignee
Japan Polyethylene Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Polyethylene Corp filed Critical Japan Polyethylene Corp
Publication of JPWO2015152266A1 publication Critical patent/JPWO2015152266A1/ja
Application granted granted Critical
Publication of JP6569667B2 publication Critical patent/JP6569667B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/34Polymerisation in gaseous state
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】ポリオレフィン系樹脂の成形加工特性改善効果に優れ、同時に、衝撃強度と剛性のバランス改良効果にも優れ、更には透明性改良効果にも優れるエチレン・α−オレフィン共重合体の提供。【解決手段】特定のMFR、密度、分子量分布を有し、分岐指数で特徴付けられる長鎖分岐構造を適度に含有し、かつ、溶媒分別挙動で特徴付けられる特定の組成分布構造を有するエチレン・α−オレフィン共重合体により提供。【選択図】なし

Description

本発明は、新規なエチレン・α−オレフィン共重合体及びオレフィン系樹脂組成物に関し、さらに詳しくは、ポリオレフィン系樹脂にブレンドして成形加工性を向上させるとともに、該樹脂の衝撃強度と剛性のバランスを飛躍的に改善する性能に優れたポリオレフィン系樹脂改質用エチレン・α−オレフィン共重合体、及びこれを含有するオレフィン系樹脂組成物に関する。
近年、各種産業分野において、プラスチック製のフィルム、シート、射出成形体、パイプ、押出成形体、中空成形体等が盛んに用いられるようになった。特に安価・軽量であり、成形加工性、剛性、衝撃強度、透明性、耐薬品性、リサイクル性に優れる等の理由からポリオレフィン系樹脂(オレフィン系重合体)が広範に用いられている。一般に、ポリオレフィン系樹脂の成形加工は、溶融状態において実施される。しかし、単独のオレフィン系重合体の場合、その溶融特性は、例えば、流動性の面で不十分であったり、伸長粘度が不十分であったりして、成形加工性を十分に確保することが困難であったり、透明性や剛性等の固体物性が不足したりする場合が多い。
たとえば、ポリエチレン系樹脂では、エチレンとα−オレフィンを触媒重合して得られた線状の低密度ポリエチレン(L−LDPE)が、高強度を達成する樹脂として知られているが、単独では成形加工性を確保することは難しく、また、透明性や剛性等が低い欠点がある。
これらを補うための対策として、成形性に優れる高圧法ポリエチレン(HPLD)をブレンドしたり、分子量や密度の異なるオレフィン系重合体を改質材としてブレンドしたりして、溶融特性や固体物性の改良が行なわれてきた。
しかしながら、改質材としてHPLDを用いた場合、成形加工性は得られるものの衝撃強度の低下を招いたり、分子量や密度の異なるオレフィン系重合体を用いた場合、十分な成形加工性が得られなかったり、分子量分布や共重合組成分布が広くなることによって透明性が悪化したりする問題があった。
また、最近の容器リサイクル法施行や省資源化の流れにおいて原料樹脂使用量を削減する必要性の観点から、成形体の薄肉化の需要が高まっているが、このためには、衝撃強度とともに剛性(弾性率)の向上が必要となる。
衝撃強度を向上する方法としては、エチレン系重合体の密度を低下させる方法がよく知られているが、剛性も一緒に低下してしまう(柔らかくなる)ので好ましくなく、薄肉化の目的のためには、例えば、密度の異なる二種類の特定のエチレン・α−オレフィン共重合体の組み合わせや、更に、成形加工性や透明性を向上させるために特定のHPLDを加えた三成分系ブレンド組成物を使用する試みがなされている(特許文献1参照)。
この方法によれば、従来より衝撃強度と剛性のバランスに優れ、透明性にも優れたポリエチレン樹脂組成物が得られるものの、やはりHPLDブレンドに伴う衝撃強度の低下は避けられず、更に、三種類のエチレン系重合体のブレンドは、一定品質の製品を工業レベルで安定供給する上では従来よりも経済的に不利と考えられる。
近年、長鎖分岐構造をエチレン系重合体中に形成可能なメタロセン触媒による重合設計技術を活用することによって、成形加工性と樹脂強度を同時に改良するためのポリオレフィン系樹脂改質用エチレン系重合体の開発が報告されている。例えば、特定の伸長粘度挙動を発現する長鎖分岐を含むエチレン系重合体をポリオレフィン系樹脂向け改質材として対象とするポリオレフィン系樹脂にブレンドして使用する例(特許文献2参照)や、特定のポリマー分子構造指標と極限粘度比で規定される長鎖分岐構造を有する低密度エチレン・プロピレン共重合体を改質材とする樹脂組成物の例(特許文献3参照)や、高い流動活性化エネルギーを示す広分子量分布の長鎖分岐ポリエチレンを改質材とする例(特許文献4参照)等が知られている。これらの方法によれば、従来のHPLDによる改質で起こるようなポリオレフィン系樹脂の衝撃強度の大幅な低下は無いものの、長鎖分岐含有エチレン系重合体の設計が不十分なため、やはり強度や透明性の低下が避けられず、その改良レベルは未だ不十分であった。
こうした状況下、従来の改質用エチレン系重合体のもつ問題点を解消し、成形加工性付与に優れ、かつ衝撃強度と剛性のバランスおよび透明性の付与にも優れた改質用エチレン系重合体の開発、更には、それらの特性を有するエチレン系重合体の開発に有用な長鎖分岐構造制御が可能なメタロセン重合触媒の研究が継続されている(特許文献5〜8参照)。その中でも、近年、本発明者等により見出された、特定のシクロペンタジエニル化合物を配した遷移金属触媒が、触媒活性が高く、好ましい長鎖分岐を有するエチレン・α−オレフィン共重合体用触媒として提案されている(特許文献8)。
特開2010−031270号公報 特開2012−214781号公報 特開平09−031260号公報 特開2007−119716号公報 特開2004−217924号公報 特開2004−292772号公報 特開2005−206777号公報 特開2013−227271号公報
本発明の課題は、上記した従来技術の問題点に鑑み、ポリオレフィン系樹脂の成形加工特性改善効果に優れ、同時に、衝撃強度と剛性のバランス改良効果が飛躍的に優れるエチレン・α−オレフィン共重合体を提供することにある。
本発明者らは、上記課題を達成するために、鋭意検討を重ねた結果、特定の長鎖分岐指数と逆コモノマーの組成分布指数を有し、かつ、特定のMFR、密度を有する新規のエチレン・α−オレフィン共重合体が、特に樹脂改質用ポリエチレンとして、衝撃強度と剛性のバランス改良効果の点で、飛躍的に優れた効果を有することを見出し、本発明を完成するに至った。
また、本発明者らは、近年、本出願人が新たに開発した特定の触媒を用いて、特定の重合条件下に制御して重合を行うことで、従来の長鎖分岐を有するエチレン・α−オレフィン共重合体では得られていなかった領域の、特定の低MFR、低密度を有する長鎖分岐を有する上記のエチレン・α−オレフィン共重合体が効率的に得られることを見出した。
すなわち、本発明の第1の発明によれば、下記の条件(1)〜(2)、(5)及び(7)を満足することを特徴とするエチレン・α−オレフィン共重合体が提供される。
(1)MFRが0.001〜0.1g/10分である。
(2)密度が0.895g/cm以上、0.918g/cm未満である。
(5)示差屈折計、粘度検出器および光散乱検出器を組み合わせたGPC測定装置により測定される分岐指数g’の分子量10万から100万の間での最低値(gc)が、0.40〜0.85である。
(7)クロス分別クロマトグラフィー(CFC)により測定される積分溶出曲線から求められた溶出量が50wt%となる温度以下で溶出する成分のうち分子量が重量平均分子量以上の成分の割合(W)及び積分溶出曲線から求められた溶出量が50wt%となる温度より高い温度で溶出する成分のうち分子量が重量平均分子量未満の成分の割合(W)の和(W+W)が、40重量%を超え、80重量%未満である。
また、本発明の第2の発明によれば、第1の発明において、更に、下記の条件(1’)を満足することを特徴とするエチレン・α−オレフィン共重合体が提供される。
(1’)MFRが0.005〜0.1g/10分である。
また、本発明の第3の発明によれば、第1または第2の発明において、更に、下記の条件(2’)を満足することを特徴とするエチレン・α−オレフィン共重合体が提供される。
(2’)密度が0.898〜0.915g/cmである。
また、本発明の第4の発明によれば、第1〜3のいずれかの発明において、α−オレフィンは、炭素数が3〜10であることを特徴とするエチレン・α−オレフィン共重合体が提供される。
また、本発明の第5の発明によれば、第1〜4のいずれかの発明において、更に、下記の条件(3)を満足することを特徴とするエチレン・α−オレフィン共重合体が提供される。
(3)ゲルパーミエーションクロマトグラフィー(GPC)により測定される分子量分布Mw/Mnが3.0〜7.0である。
また、本発明の第6の発明によれば、第1〜5のいずれかの発明において、更に、下記の条件(4)を満足することを特徴とするエチレン・α−オレフィン共重合体が提供される。
(4)GPCにより測定される分子量分布Mz/Mwが2.0〜7.0である。
また、本発明の第7の発明によれば、第1〜6のいずれかの発明において、更に、下記の条件(6)を満足することを特徴とするエチレン・α−オレフィン共重合体が提供される。
(6)昇温溶出分別(TREF)により85℃以上で溶出する成分の割合(X)が0〜15重量%である。
また、本発明の第8の発明によれば、第1〜7のいずれかの発明において、更に、下記の条件(8)を満足するエチレン・α−オレフィン共重合体が提供される。
(8)前記W及びCFCにより測定される積分溶出曲線から求められた溶出量が50wt%となる温度より高温で溶出する成分のうち分子量が重量平均分子量以上の成分の割合(W)の和(W+W)が、29重量%を超え、50重量%未満である。
また、本発明の第9の発明によれば、第1〜8のいずれかの発明において、更に、下記の条件(9)を満足することを特徴とするエチレン・α−オレフィン共重合体が提供される。
(9)前記W及びWの差(W−W)が、−5重量%を超え、30重量%未満である。
また、本発明の第10の発明によれば、下記の成分(A)、(B)及び(C)を含むオレフィン重合用触媒によって製造されることを特徴とする第1〜9のいずれかの発明のエチレン・α−オレフィン共重合体の製造方法が提供される。
成分(A):遷移金属元素を含む架橋シクロペンタジエニルインデニル化合物
成分(B):成分(A)の化合物と反応してカチオン性メタロセン化合物を生成させる化合物
成分(C):無機化合物担体
また、本発明の第11の発明によれば、第10の発明において、成分(C)1gに対する成分(B)の金属のモル数の割合は、0.001〜0.020(モル/g)であることを特徴とするエチレン・α−オレフィン共重合体の製造方法が提供される。
また、本発明の第12の発明によれば、エチレン及びα−オレフィンの共重合は、気相法又はスラリー法によって行われることを特徴とする第1〜9のいずれかの発明のエチレン・α−オレフィン共重合体の製造方法が提供される。
また、本発明の第13の発明によれば、第1〜9のいずれかの発明のエチレン・α−オレフィン共重合体(A)と1種類以上の他のオレフィン系樹脂を含有することを特徴とするオレフィン系樹脂組成物が提供される。
また、本発明の第14の発明によれば、第13の発明において、該樹脂組成物中のエチレン・α−オレフィン共重合体(A)の含有量が1〜59重量%であることを特徴とするオレフィン系樹脂組成物が提供される。
また、本発明の第15の発明によれば、第13又は14の発明において、(A)以外のオレフィン系樹脂として、(A)以外のエチレン・α−オレフィン共重合体(B)を含有することを特徴とするオレフィン系樹脂組成物が提供される。
また、本発明の第16の発明によれば、第15の発明において、該他のエチレン・α−オレフィン共重合体(B)が、下記条件(B−1)および(B−2)を満足することを特徴とするオレフィン系樹脂組成物が提供される。
(B−1)MFRが0.01〜20g/10分
(B−2)密度が0.880〜0.970g/cm
また、本発明の第17の発明によれば、第16の発明において、該他のエチレン・α−オレフィン共重合体(B)が、更に、下記条件(B−3)を満足することを特徴とするオレフィン系樹脂組成物が提供される。
(B−3)[Mw/Mn]=2.0〜4.0
また、本発明の第18の発明によれば、第13〜17のいずれかの発明において、前記エチレン・αーオレフィン共重合体(A)と前記エチレン・α−オレフィン共重合体(B)として、下記条件のいずれか1つ以上を満たす重合体を用いることを特徴とするオレフィン系樹脂組成物が提供される。
(AB−1)MFR>MFR
(AB−2)[Mw/Mn]<[Mw/Mn]
(MFR及び[Mw/Mn]は、夫々、エチレン・αーオレフィン共重合体(A)のMFR及びMw/Mnを表し、MFR及び[Mw/Mn]は、夫々、エチレン・α−オレフィン共重合体(B)のMFR及びMw/Mnを表す。)
また、本発明の第19の発明によれば、第13〜18のいずれかの発明において、前記エチレン・αーオレフィン共重合体(B)が、MFRが0.1〜5.0未満のチーグラー触媒により製造された線状低密度ポリエチレン、又はMFRが0.1〜10以下のメタロセン系触媒により製造されたメタロセン系ポリエチレンであることを特徴とするオレフィン系樹脂組成物が提供される。
また、本発明の第20の発明によれば、第1〜9のいずれかの発明のエチレン・α−共重合体、又は第13〜19のいずれかの発明の樹脂組成物より得られるフィルムが提供される。
本発明のエチレン・α−オレフィン共重合体は、ポリオレフィン系樹脂の改質材として、成形加工特性の改良効果に優れ、同時に、衝撃強度と剛性のバランスの改良効果にも飛躍的に優れる。また、本発明のエチレン・α−オレフィン共重合体により改質されたポリオレフィン系樹脂組成物は、衝撃強度と剛性のバランスに優れ、透明性にも優れる上に、一定品質の製品を工業レベルで安定供給することが期待できる。
ゲル・パーミエーションクロマトグラフィー(GPC)法で用いられるクロマトグラムのベースラインと区間を示すグラフである。 GPC−VIS測定(分岐構造解析)から算出する分子量分布曲線および分岐指数(g’)と分子量(M)との関係を示すグラフである。 昇温溶出分別(TREF)による溶出温度分布を示すグラフである。 クロス分別クロマトグラフィー(CFC)法で測定される溶出温度と分子量に関する溶出量を等高線図として示すグラフである。 クロス分別クロマトグラフィー(CFC)法で測定される溶出温度と各溶出温度における溶出割合(wt%)との関係を示すグラフである。 本発明の実施例と比較例の一部結果を示すグラフである。 〜Wについての概略図である。
本発明は、特定の長鎖分岐指数と組成分布指数を有し、かつ、特定の低MFR、低密度を有する、ポリオレフィン系樹脂改質材として良好なエチレン・α−オレフィン共重合体に係るものである。以下、本発明のエチレン・α−オレフィン共重合体、特に該エチレン・α−オレフィン共重合体を特徴付ける条件(1)〜(9)、および該エチレン・α−オレフィン共重合体の製法、特にその製法に用いられる重合用触媒の各成分やその調製方法、さらには重合方法について、項目毎に、詳細に説明する。
1.本発明のエチレン・α−オレフィン共重合体
本発明のエチレン・α−オレフィン共重合体は、下記に説明する条件(1)〜(2)、(5)及び(7)を全て満たすことを特徴とする。
特に、多すぎない程度の特定範囲の長鎖分岐を有し(条件5)、特定の範囲の逆コモノマー組成分布を有し(条件7)、かつ従来得られていた長鎖分岐を有するエチレン・α−オレフィンでは殆ど達成し得なかった領域である、格段に低い低MFR(条件1)と格段に低い低密度(条件2)を有するという新規な特徴を有する。
従来より、種々の触媒種により、長鎖分岐を有するエチレン・α−オレフィン共重合体を得た例が報告がされているが、密度範囲やMFR範囲として低い範囲を包含し規定したものはあるものの、いずれも、実際に製造し得られた共重合体として、本発明の領域である低MFRかつ低密度かつ逆コモノマー組成を満たす領域の共重合体は得られていなかった。
なお、エチレン・α−オレフィン共重合体の密度を低下させるには、エチレンに共重合するα−オレフィンの量を増加し、一方、MFRを低下させるには、エチレンとα−オレフィンの共重合時の水素とエチレン濃度の比を調整することにより可能であることは理論的には知られているが、実際には特にこの低MFRかつ低密度の領域については工業的に制御が難しく、通常、実施する範囲ではない。また、実際にそうしたポリマーを得ることができるかどうかは、実際に製造してみないとわからないし、そうした重合体がどのような物性と効果を有するのかについても、実際に製造し確認してみないとわからない。
また、密度とMFRの関係は一定の比例関係を有し、かつその比例曲線は触媒種によって異なるので、従来公知の触媒種では、如何にコモノマー量や水素/エチレン濃度比を制御したとしても、低MFRでかつ低密度の領域までは達するのは極めて困難であった。
本発明においては、本発明のエチレン・α−オレフィン共重合体の製造方法として例示する後述の近年開発した特定の触媒種を用いて、エチレンとα−オレフィン共重合体の製造条件を特定範囲に制御することにより、初めて特性(1)〜(2)、(5)及び(7)を満たす新規の共重合体を得ることに成功すると共に、かかる共重合体が、顕著な効果、すなわちポリオレフィン系樹脂の改質材として、成形加工特性の改良効果に優れ、同時に、衝撃強度と剛性のバランスの改良効果が飛躍的に優れることを見出した。
1−1.条件(1)
本発明のエチレン・α−オレフィン共重合体のメルトフローレート(MFR)は、0.001〜0.1g/10分、好ましくは0.005〜0.1g/10分、更に好ましくは0.009〜0.09g/10分である。
MFRがこの範囲にあると、ポリオレフィン系樹脂にブレンドした場合の成形加工性改良効果や、衝撃強度と剛性のバランスおよび透明性の改良効果が飛躍的に優れる。一方、MFRが0.001g/10分未満は製造が困難であり、MFRが0.1g/10分より大きいと、衝撃強度や剛性の改良効果が十分発現しにくいので好ましくない。
なお、本発明で、エチレン・α−オレフィン共重合体のMFRは、JIS K7210の「プラスチック―熱可塑性プラスチックのメルトマスフローレイト(MFR)及びメルトボリュームフローレイト(MVR)の試験方法」に準拠して、190℃、21.18N(2.16kg)荷重の条件で測定したときの値をいう。
1−2.条件(2)
本発明のエチレン・α−オレフィン共重合体の密度は、0.895g/cm以上、0.918g/cm未満であり、好ましく0.898〜0.916g/cm、より好ましくは0.898〜0.915g/cm、更に好ましくは0.900〜0.914g/cm、特に好ましくは0.901〜0.912g/cm、最も好ましくは0.901〜0.910g/cmである。
密度がこの範囲にあると、改質対象となるポリオレフィン系樹脂にブレンドした場合の衝撃強度と剛性のバランスおよび透明性の改良効果が優れる。一方、密度が0.895g/cm未満は製造が困難であり、密度が0.918g/cmより大きいと衝撃強度や剛性の改良効果が十分でなく好ましくない。
なお、本発明で、エチレン・α−オレフィン共重合体の密度は、以下の方法で測定したときの値をいう。
ペレットを熱プレスして2mm厚のプレスシートを作成し、該シートを1000ml容量のビーカーに入れ蒸留水を満たし、時計皿で蓋をしてマントルヒーターで加熱した。蒸留水が沸騰してから60分間煮沸後、ビーカーを木製台の上に置き放冷した。この時60分煮沸後の沸騰蒸留水は500mlとし室温になるまでの時間は60分以下にならないように調整した。また、試験シートは、ビーカー及び水面に接しないように水中のほぼ中央部に浸漬した。シートを23℃、湿度50%の条件で、16時間以上24時間以内でアニーリングを行った後、縦横2mmになるように打ち抜き、試験温度23℃で、JIS K7112の「プラスチック−非発泡プラスチックの密度及び比重の測定方法」に準拠して、測定した。
1−3.条件(5)
本発明におけるエチレン・α−オレフィン共重合体は、上記条件(1)〜(2)に加えて更に、示差屈折計、粘度検出器および光散乱検出器を組み合わせたGPC測定装置により測定される分岐指数g’の分子量10万から100万の間での最低値(gc)が、0.40〜0.85、好ましくは0.45〜0.85、より好ましくは0.50〜0.80、更に好ましくは0.52より大きく、0.80以下、特に好ましくは0.53より大きく、0.73未満である。g値が0.85より大きいと、ポリオレフィン系樹脂にブレンドした場合の成形加工性の改良効果が十分に発現しないので好ましくない。g値が0.40より小さいと、該ポリオレフィン樹脂の成形加工性は向上するが、衝撃強度が低下したり、透明性が悪化したりするので好ましくない。
なお、本発明で、エチレン・α−オレフィン共重合体のg値は、共重合体に導入された長鎖分岐の発達度を指標する物性値であり、gc値が大きいと、長鎖分岐が少なく、gc値が小さいと長鎖分岐の導入量が多いことを示す。gcの値は、重合に用いる触媒の選定により概略制御することができる。
エチレン・α−オレフィン共重合体のg値は、下記のGPC−VIS測定から算出する分子量分布曲線や分岐指数(g’)を用いた長鎖分岐量の評価手法である。
[GPC−VISによる分岐構造解析]
示差屈折計(RI)および粘度検出器(Viscometer)を装備したGPC装置として、Waters社のAlliance GPCV2000を用いた。また、光散乱検出器として、多角度レーザー光散乱検出器(MALLS)Wyatt Technology社のDAWN−Eを用いた。検出器は、MALLS、RI、Viscometerの順で接続した。移動相溶媒は、1,2,4−trichlorobenzene(酸化防止剤Irganox1076を0.5mg/mLの濃度で添加)である。流量は1mL/分である。カラムは、東ソー社 GMHHR−H(S) HTを2本連結して用いた。
カラム、試料注入部および各検出器の温度は、140℃である。試料濃度は1mg/mLとした。注入量(サンプルループ容量)は0.2175mLである。MALLSから得られる絶対分子量(M)、慣性二乗半径(Rg)およびViscometerから得られる極限粘度([η])を求めるにあたっては、MALLS付属のデータ処理ソフトASTRA(version4.73.04)を利用し、以下の文献を参考にして計算を行った。
参考文献:
1.Developments in polymer characterization,vol.4.Essex:Applied Science;1984.Chapter1.
2.Polymer,45,6495−6505(2004)
3.Macromolecules,33,2424−2436(2000)
4.Macromolecules,33,6945−6952(2000)
[分岐指数(g)等の算出]
分岐指数(g’)は、サンプルを上記Viscometerで測定して得られる極限粘度(ηbranch)と、別途、線形ポリマーを測定して得られる極限粘度(ηlin)との比(ηbranch/ηlin)として算出する。
ポリマー分子に長鎖分岐が導入されると、同じ分子量の線形のポリマー分子と比較して慣性半径が小さくなる。慣性半径が小さくなると極限粘度が小さくなることから、長鎖分岐が導入されるに従い同じ分子量の線形ポリマーの極限粘度(ηlin)に対する分岐ポリマーの極限粘度(ηbranch)の比(ηbranch/ηlin)は小さくなっていく。したがって分岐指数(g’=ηbranch/ηlin)が1より小さい値になる場合には分岐が導入されていることを意味し、その値が小さくなるに従い導入されている長鎖分岐が増大していくことを意味する。特に本発明では、MALLSから得られる絶対分子量として、分子量10万から100万における上記g’の最低値を、gとして算出する。図2に上記GPC−VISによる解析結果の一例を示した。図2の左は、MALLSから得られる分子量(M)とRIから得られる濃度を元に測定された分子量分布曲線を、図2の右は、分子量(M)における分岐指数(g’)を表す。ここで、線形ポリマーとしては、直鎖ポリエチレンStandard Reference Material 1475a(National Institute of Standards & Technology)を用いた。
1−4.条件(7)
本発明におけるエチレン・α−オレフィン共重合体は、上記条件(1)〜(2)、(5)に加えて更に、クロス分別クロマトグラフィー(CFC)により測定される積分溶出曲線から求められた溶出量が50wt%となる温度以下で溶出する成分のうち分子量が重量平均分子量以上の成分の割合(W)及び積分溶出曲線から求められた溶出量が50wt%となる温度より高い温度で溶出する成分のうち分子量が重量平均分子量未満の成分の割合(W)の和(W+W)が、40重量%を超え、80重量%未満である。
好ましくは41重量%を超え、60重量%未満、更に好ましくは41重量%を超え、56重量%未満、特に好ましくは43重量%を超え、56重量%未満である。
クロス分別クロマトグラフィー(CFC)により測定される積分溶出曲線から得られる上記のW等の数値は、共重合体全体中に含まれる個々のポリマーの、コモノマー量と分子量の分布を総合して指標する“コモノマー組成分布”を示すために用いられる手法である。すなわち、コモノマーの量が多く分子量が小さいポリマー(W)、コモノマーの量が多く分子量が大きいポリマー(W)、コモノマーの量が少なく分子量が小さいポリマー(W)、コモノマーの量が少なく分子量が大きいポリマー(W)が、共重合体全体中に占める割合を示している。図7にW〜Wについての概略図を示す。
従来、一般的な触媒重合により得られるエチレン・α−オレフィン共重合体では、いわゆる順コモノマー組成、すなわち、W+Wが60重量%以上を占めてW+Wが40重量%以下であることが多いが、本発明の好適な一例として本願実施例1等で用いた特定の触媒により得られたエチレン・α−オレフィン共重合体では、その特徴の一つとして、得られる共重合体がいわゆる逆コモノマー組成、すなわちW+Wが40重量%を超え80重量%未満であることが挙げられる。
+W値が40重量%以下であると、エチレン・α−オレフィン共重合体に含まれるポリオレフィン系樹脂の衝撃強度向上に効果的に作用する低密度高分子量成分の割合が減少したり、該ポリオレフィン系樹脂の剛性向上に効果的に作用する高密度低密度成分が減少したりして、物性改良効果を発現させるためにより多量のエチレン・α−オレフィン共重合体のブレンドが必要となって経済的でないので好ましくない。一方、W+W値が80重量%以上であると、エチレン・α−オレフィン共重合体に含まれる該高密度低分子量成分と該低密度高分子量成分の含有量のバランスが崩れ、ポリオレフィン系樹脂の物性改質効果が期待通り発現しなかったり、該高密度低分子量成分と該低密度高分子量成分の分散性が悪くなって、透明性の悪化やゲルが発生したりするので好ましくない。
[CFCの測定条件]
クロス分別クロマトグラフ(CFC)は、結晶性分別を行う昇温溶出分別(TREF)部と分子量分別を行うゲルパーミエーションクロマトグラフィー(GPC)部とから成る。
このCFCを用いた分析は、次のようにして行われる。
まず、ポリマーサンプルを0.5mg/mLのBHTを含むオルトジクロロベンゼン(ODCB)に140℃で完全に溶解した後、この溶液を装置のサンプルループを経て140℃に保持されたTREFカラム(不活性ガラスビーズ担体が充填されたカラム)に注入し、所定の第1溶出温度まで徐々に冷却し、ポリマーサンプルを結晶化させる。所定の温度で30分保持した後、ODCBをTREFカラムに通液することにより、溶出成分がGPC部に注入されて分子量分別が行われ、赤外検出器(FOXBORO社製MIRAN 1A IR検出器、測定波長3.42μm)によりクロマトグラムが得られる。その間、TREF部では次の溶出温度に昇温され、第1溶出温度のクロマトグラムが得られた後、第2溶出温度での溶出成分がGPC部に注入される。以下、同様の操作を繰り返すことにより、各溶出温度での溶出成分のクロマトグラムが得られる。
なお、CFCの測定条件は、以下の通りである。
装置:ダイヤインスツルメンツ社製CFC−T102L
GPCカラム:昭和電工社製AD−806MS(3本を直列に接続)
溶媒:ODCB
サンプル濃度:3mg/mL
注入量:0.4mL
結晶化速度:1℃/分
溶媒流速:1mL/分
GPC測定時間:34分
GPC測定後安定時間:5分
溶出温度:0,5,10,15,20,25,30,35,40,45,49,52,55,58,61,64,67,70,73,76,79,82,85,88,91,94,97,100,102,120,140
データ解析
測定によって得られた各溶出温度における溶出成分のクロマトグラムから、総和が100%となるように規格化された溶出量(クロマトグラムの面積に比例)が求められる。さらに、図5のような溶出温度に対する積分溶出曲線が計算される。この積分溶出曲線を温度で微分して、微分溶出曲線が求められる。また、各クロマトグラムから、次の手順により分子量分布が求められる。保持容量から分子量への換算は、予め作成しておいた標準ポリスチレンによる検量線を用いて行う。使用する標準ポリスチレンは何れも東ソー(株)製の以下の銘柄である。
F380、F288、F128、F80、F40、F20、F10、F4、F1、A5000、A2500、A1000。
各々が0.5mg/mLとなるようにODCB(0.5mg/mLのBHTを含む)に溶解した溶液を0.4mL注入して較正曲線を作成する。
較正曲線は最小二乗法で近似して得られる三次式を用いる。
分子量への換算は森定雄著「サイズ排除クロマトグラフィー」(共立出版)を参考に汎用較正曲線を用いる。その際、使用する粘度式[η]=K×Mαは以下の数値を用いる。
PS:K=1.38×10−4、α=0.7
PE:K=3.92×10−4、α=0.733
なお、第1溶出温度でのクロマトグラムでは、溶媒に添加したBHTによるピークと溶出成分の低分子量側とが重なる場合があるが、その際は、図1のようにベースラインを引き分子量分布を求める区間を定める。
さらに、下記の表1のように、各溶出温度における溶出割合(表中のwt%)と重量平均分子量(表中のMw)からwhole(全体)の重量平均分子量を求める。
Figure 2015152266
また、各溶出温度における分子量分布および溶出量から、文献(S.Nakano,Y.Goto,”Development of automatic Cross Fractionation:Combination of Crystallizability Fractionation and Molecular Weight Fractionation”,J.Appl.Polym.Sci.,vol.26,pp.4217−4231(1981))の方法に従って、図4のように溶出温度と分子量に関する溶出量を等高線として示すグラフ(等高線図)を得る。
上記の等高線図を用いて、以下の成分量を求める。
:積分溶出曲線から求められる溶出量が50wt%となる温度以下で溶出する成分のうち分子量が重量平均分子量未満の成分の割合
:積分溶出曲線から求められる溶出量が50wt%となる温度以下で溶出する成分のうち分子量が重量平均分子量以上の成分の割合
:積分溶出曲線から求められる溶出量が50wt%となる温度より高い温度で溶出する成分のうち分子量が重量平均分子量未満の成分の割合
:積分溶出曲線から求められる溶出量が50wt%となる温度より高い温度で溶出する成分のうち分子量が重量平均分子量以上の成分の割合
なお、W+W+W+W=100である。
本発明におけるエチレン・α−オレフィン共重合体は、上記条件(1)〜(2)、(5)及び(7)を満たすことを必須とするが、好ましい態様としては、更に下記(3)〜(4)、(6)、(8)〜(9)のいずれかの要件を満たす共重合体が挙げられる。
1−5.条件(3)
本発明におけるエチレン・α−オレフィン共重合体の重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)は、3.0〜7.0、好ましくは3.5〜6.0、更に好ましくは4.0より大きく5.5未満、特に好ましくは4.0より大きく5.0以下である。Mw/Mnが3.0未満では、ポリオレフィン系樹脂にブレンドした場合の成形加工性、特に溶融流動性が劣ったり、他の重合体成分と混ざり難かったりするので避けるべきである。
Mw/Mnが7.0より大きいと該ポリオレフィン系樹脂やその成形体の剛性や衝撃強度の改良の効果が不十分となったり、透明性が悪化したり、ベトツキしやすくなるので好ましくない。
Mw/Mnは、共重合体中の分子量分布を示す指標の一つであり、触媒上の重合反応が比較的均一なサイトで行われると数値が小さく、比較的マルチなサイトで行われていると数値が大きくなる。重合に用いる触媒種と触媒の調整条件を選定することにより概略、適宜制御できる。
なお、本発明で、エチレン・α−オレフィン共重合体のMwやMnは、ゲル・パーミエーションクロマトグラフィー(GPC)法で測定したものをいう。
保持容量から分子量への換算は、予め作成しておいた標準ポリスチレンによる検量線を用いて行う。使用する標準ポリスチレンは、何れも東ソー(株)製の以下の銘柄である。
F380、F288、F128、F80、F40、F20、F10、F4、F1、A5000、A2500、A1000。
各々が0.5mg/mLとなるように、ODCB(0.5mg/mLのBHTを含む)に溶解した溶液を0.2mL注入して較正曲線を作成する。較正曲線は、最小二乗法で近似して得られる三次式を用いる。分子量への換算は、森定雄著「サイズ排除クロマトグラフィー」(共立出版)を参考に汎用較正曲線を用いる。その際、使用する粘度式[η]=K×Mαは、以下の数値を用いる。
PS:K=1.38×10−4、α=0.7
PE:K=3.92×10−4、α=0.733
なお、GPCの測定条件は、以下の通りである。
装置:Waters社製GPC(ALC/GPC 150C)
検出器:FOXBORO社製MIRAN 1A IR検出器(測定波長:3.42μm)
カラム:昭和電工社製AD806M/S(3本)
移動相溶媒:o−ジクロロベンゼン
測定温度:140℃
流速:1.0ml/分
注入量:0.2ml
試料の調製:試料は、ODCB(0.5mg/mLのBHTを含む)を用いて、1mg/mLの溶液を調製し、140℃で約1時間を要して溶解させる。
なお、得られたクロマトグラムのベースラインと区間は、図1に例示されるように行う。
1−6.条件(4)
本発明におけるエチレン・α−オレフィン共重合体のZ重量平均分子量(Mz)と重量平均分子量(Mw)の比(Mz/Mw)は、2.0〜7.0、好ましくは2.2〜6.0、更に好ましくは2.2より大きく5.0未満、特に好ましくは2.3〜3.6未満である。Mz/Mwが2.0未満では、ポリオレフィン系樹脂にブレンドした場合の成形加工性、特に溶融流動性が劣ったり、他の重合体成分と混ざり難かったりするので避けるべきである。
Mz/Mwが7.0より大きいと該ポリオレフィン系樹脂やその成形体の剛性や衝撃強度の改良の効果が不十分となったり、透明性が悪化したり、ベトツキしやすくなったり、過剰な高分子量成分によるゲルの発生や成形時の高配向による強度低下が生じたりするので好ましくない。
Mz/Mwは、共重合体中の分子量分布を示す他の指標の一つであり、分子量の高い成分があることを示し、高分子量成分が多いと数値が大きくなる。重合に用いる触媒種を選定することにより概略、適宜制御できる。なお、本発明で、エチレン・α−オレフィン共重合体のMzは、上述のゲル・パーミエーションクロマトグラフィー(GPC)法で測定したものをいう。
1−7.条件(6)
更に、昇温溶出分別(TREF)により85℃以上で溶出する成分の割合(X)が0〜15重量%である。
更に好ましくは0重量%を超え、13重量%未満、更に好ましくは1重量%を超え、13重量%未満、特に好ましくは3〜12重量%、最も好ましくは5〜12重量%である。
X値の量は、共重合体に含まれる比較的高分子量の成分の割合を指標する数値であり、触媒の調整方法と重合条件の制御により調整可能である。
X値が15重量%より大きいと、エチレン・α−オレフィン共重合体に含まれるポリオレフィン系樹脂の衝撃強度向上に効果的に作用する低密度成分の割合が減少し、衝撃強度向上にはより多量のエチレン・α−オレフィン共重合体のブレンドが必要となって経済的でないので好ましくない。数%程度の若干のX値の増加は改質対象のポリオレフィン系樹脂の種類によってはブレンド時の相容性を向上させたり、該ポリオレフィン系樹脂の剛性を向上させたりする場合があるので好ましい場合がある。
[TREFの測定条件]
試料を140℃でオルトジクロロベンゼン(0.5mg/mLBHT入り)に溶解し、溶液とする。これを140℃のTREFカラムに導入した後、8℃/分の降温速度で100℃まで冷却し、引き続き4℃/分の降温速度で40℃まで冷却し、更に続いて1℃/分の降温速度で−15℃まで冷却し、20分間保持する。その後、溶媒であるオルトジクロロベンゼン(0.5mg/mLBHT入り)を1mL/分の流速でカラムに流し、TREFカラム中で−15℃のオルトジクロロベンゼンに溶解している成分を10分間溶出させ、次に昇温速度100℃/時間にてカラムを140℃までリニアに昇温し、溶出曲線を得る。この時、85℃から140℃までの間に溶出する成分量をX(単位wt%)とする。
使用装置は、下記のとおりである。
(TREF部)
TREFカラム:4.3mmφ×150mmステンレスカラム
カラム充填材:100μm表面不活性処理ガラスビーズ
加熱方式:アルミヒートブロック
冷却方式:ペルチェ素子(ペルチェ素子の冷却は水冷)
温度分布:±0.5℃
温調器:(株)チノー デジタルプログラム調節計KP1000
(バルブオーブン)
加熱方式:空気浴式オーブン
測定時温度:140℃
温度分布:±1℃
バルブ:6方バルブ、4方バルブ
(試料注入部)
注入方式:ループ注入方式
注入量:ループサイズ 0.1ml
注入口加熱方式:アルミヒートブロック
測定時温度:140℃
(検出部)
検出器:波長固定型赤外検出器 FOXBORO社製 MIRAN 1A
検出波長:3.42μm
高温フローセル:LC−IR用ミクロフローセル、光路長1.5mm、窓形状2φ×4mm長丸、合成サファイア窓板
測定時温度:140℃
(ポンプ部)
送液ポンプ:センシュウ科学社製 SSC−3461ポンプ
測定条件
溶媒:オルトジクロロベンゼン(0.5mg/mLBHT入り)
試料濃度:5mg/mL
試料注入量:0.1mL
溶媒流速:1mL/分
1−8.条件(8)
本発明におけるエチレン・α−オレフィン共重合体は、上記条件(1)〜(7)に加えて、更に、(7)で前記したW及びWの和(W+W)が、29重量%を超え、50重量%未満、好ましくは31重量%を超え、45重量%未満、より好ましくは31重量%を超え、44重量%未満、更に好ましくは32〜43重量%、特に好ましくは32〜42重量%である。W+Wが29重量%以下であると、エチレン・α−オレフィン共重合体に含まれるポリオレフィン系樹脂の衝撃強度向上に効果的に作用する高分子量成分が減少するので好ましくなかったり、エチレン・α−オレフィン共重合体に含まれるポリオレフィン系樹脂の成型加工性向上に特に効果的に作用する高分子量の長鎖分岐成分が減少するので好ましくなかったり、それら高分子量成分や長鎖分岐成分の割合が減少するのでポリオレフィン系樹脂の改質により多量のブレンドが必要となるので経済性を悪化させる。一方、W+W値が50重量%以上であると、エチレン・α−オレフィン共重合体に含まれる高分子量成分や高分子量の長鎖分岐成分の割合が多いためポリオレフィン系樹脂への分散性が悪くなって、透明性の悪化やゲルが発生したりするので好ましくない。
1−9.条件(9)
本発明におけるエチレン・α−オレフィン共重合体は、上記条件(1)〜(8)に加えて、更に、(8)で前記したWとWの差(W−W)が、−5重量%を超え、30重量%未満、好ましくは−5重量%を超え、20重量%未満、より好ましくは0重量%を超え、20重量%未満、更に好ましくは0重量%を超え、15重量%未満、特に好ましくは0重量%を超え、10重量%未満である。W−Wが−5重量%以下であると、エチレン・α−オレフィン共重合体に含まれるポリオレフィン系樹脂の衝撃強度向上に特に効果的に作用する低密度高分子量成分が減少するので好ましくない。一方、W−W値が30重量%以上であると、エチレン・α−オレフィン共重合体に含まれる高密度高分子量成分と低密度高分子量成分の含有量のバランスが崩れ、ポリオレフィン系樹脂の物性改質効果が期待通り発現しなかったり、該ポリオレフィン系樹脂への分散性が悪くなって、透明性の悪化やゲルが発生したりするので好ましくない。
1−10.本発明のエチレン・α−オレフィンン共重合体の組成
本発明のエチレン・α−オレフィン共重合体は、エチレンと炭素数3〜10のα−オレフィンとの共重合体である。ここで用いられる共重合成分であるα−オレフィンとしては、プロピレン、ブテン−1、3−メチルブテン−1、3−メチルペンテン−1、4−メチルペンテン−1、ペンテン−1、ヘキセン−1、ヘプテン−1、オクテン−1、ノネン−1、デセン−1等が挙げられる。また、これらα−オレフィンは1種のみでもよく、また2種以上が併用されていてもよい。これらのうち、より好ましいα−オレフィンは、炭素数3〜8のものであり、具体的にはプロピレン、ブテン−1、3−メチルブテン−1、4−メチルペンテン−1、ペンテン−1、ヘキセン−1、ヘプテン−1、オクテン−1等が挙げられる。更に好ましいα−オレフィンは、炭素数4〜6のものであり、具体的にはブテン−1、4−メチルペンテン−1、ヘキセン−1が挙げられる。特に好ましいα−オレフィンは、ヘキセン−1である。
本発明のエチレン・α−オレフィン共重合体中におけるエチレンとα−オレフィンの割合は、エチレン約75〜98重量%、α−オレフィン約2〜25重量%であり、好ましくはエチレン約80〜96重量%、α−オレフィン約4〜20重量%であり、より好ましくはエチレン約82〜95重量%、α−オレフィン約5〜18重量%であり、更に好ましくはエチレン約82〜90重量%、α−オレフィン約10〜18重量%であり、特に好ましくはエチレン約82〜88重量%、α−オレフィン約12〜18重量%である。エチレン含量がこの範囲内であれば、ポリエチレン系樹脂への改質効果が高い。
共重合は、交互共重合、ランダム共重合、ブロック共重合のいずれであっても差し支えない。もちろん、エチレンやα―オレフィン以外のコモノマーを少量使用することも可能であり、この場合、スチレン、4−メチルスチレン、4−ジメチルアミノスチレン等のスチレン類、1,4−ブタジエン、1,5−ヘキサジエン、1,4−ヘキサジエン、1,7−オクタジエン等のジエン類、ノルボルネン、シクロペンテン等の環状化合物、ヘキセノール、ヘキセン酸、オクテン酸メチル等の含酸素化合物類、等の重合性二重結合を有する化合物を挙げることができる。ただし、ジエン類を使用する場合は、長鎖分岐構造や分子量分布が上記条件(3)〜(5)を満たす範囲内において使用しなくてはいけないことは言うまでもない。
2.本発明のエチレン・α−オレフィン共重合体の製法
本発明のエチレン・α−オレフィン共重合体は、上記条件(1)〜(5)を全て満たすように製造して使用される。その製造は、オレフィン重合用触媒を用いてエチレンと上述のα−オレフィンとを共重合する方法によって実施される。
本発明のエチレン・α−オレフィン共重合体が有する特定の長鎖分岐構造、組成分布構造、MFR、密度を同時に実現するための好適な製造方法例として、以下に説明する特定の触媒成分(A)、(B)及び(C)を含むオレフィン重合用触媒を用いて、特定の製造条件を採用する方法を挙げることができる。
特に、先に本発明者等が開発した新規の触媒(特開2013−227271号公報)を用いて、特定の領域の重合条件下に制御して重合を行うことにより、本発明の特定のエチレン・α−オレフィン共重合体を得ることができる。ただし、本発明の知見を得れば、各種触媒や重合条件の適宜変更工夫は可能であるため、本発明の共重合体は、これら特定の触媒や製法により得られたものに何ら限定されるものではない。
成分(A):遷移金属元素を含む架橋シクロペンタジエニルインデニル化合物
成分(B):成分(A)の化合物と反応してカチオン性メタロセン化合物を生成させる化合物
成分(C):無機化合物担体
2−1.触媒成分(A)
本発明のエチレン・α−オレフィン共重合体を製造するのに好ましい触媒成分(A)は、遷移金属元素を含む架橋シクロペンタジエニルインデニル化合物であり、より好ましくは下記の一般式[1]で表されるメタロセン化合物であり、更に好ましくは下記の一般式[2]で表されるメタロセン化合物である。
Figure 2015152266
[但し、式[1]中、MはTi、ZrまたはHfのいずれかの遷移金属を示す。Aはシクロペンタジエニル環(共役五員環)構造を有する配位子を、Aはインデニル環構造を有する配位子を、QはAとAを任意の位置で架橋する結合性基を示す。XおよびYは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1〜20の炭化水素基、酸素原子若しくは窒素原子を含む炭素数1〜20の炭化水素基、炭素数1〜20の炭化水素基置換アミノ基または炭素数1〜20のアルコキシ基を示す。]
Figure 2015152266
[但し、式[2]中、MはTi、ZrまたはHfのいずれかの遷移金属を示す。Qはシクロペンタジエニル環とインデニル環を架橋する結合性基を示す。XおよびYは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1〜20の炭化水素基、酸素原子若しくは窒素原子を含む炭素数1〜20の炭化水素基、炭素数1〜20の炭化水素基置換アミノ基または炭素数1〜20のアルコキシ基を示す。10個のRは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1〜20の炭化水素基、ケイ素数1〜6を含む炭素数1〜18のケイ素含有炭化水素基、炭素数1〜20のハロゲン含有炭化水素基、酸素原子を含む炭素数1〜20の炭化水素基または炭素数1〜20の炭化水素基置換シリル基を示す。]
本発明のエチレン・α−オレフィン共重合体を製造するのに特に好ましい触媒成分(A)は、特開2013−227271号公報に記載された一般式(1c)で表されるメタロセン化合物である。
Figure 2015152266

[但し、式(1c)中、M1cは、Ti、ZrまたはHfのいずれかの遷移金属を示す。X1cおよびX2cは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1〜20の炭化水素基、酸素原子若しくは窒素原子を含む炭素数1〜20の炭化水素基、炭素数1〜20の炭化水素基置換アミノ基または炭素数1〜20のアルコキシ基を示す。Q1cとQ2cは、各々独立して、炭素原子、ケイ素原子またはゲルマニウム原子を示す。R1cは、それぞれ独立して、水素原子または炭素数1〜10の炭化水素基を示し、4つのR1cのうち少なくとも2つが結合してQ1cおよびQ2cと一緒に環を形成していてもよい。mは、0または1であり、mが0の場合、Q1cは、R2cを含む共役5員環と直接結合している。R2cおよびR4cは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1〜20の炭化水素基、ケイ素数1〜6を含む炭素数1〜18のケイ素含有炭化水素基、炭素数1〜20のハロゲン含有炭化水素基、酸素原子を含む炭素数1〜20の炭化水素基または炭素数1〜20の炭化水素基置換シリル基を示す。R3cは、下記一般式(1−ac)で示される置換アリール基を示す。]
Figure 2015152266

[但し、式(1−ac)中、Y1cは、周期表14族、15族または16族の原子を示す。R5c、R6c、R7c、R8cおよびR9cは、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、炭素数1〜20の炭化水素基、酸素若しくは窒素を含む炭素数1〜20の炭化水素基、炭素数1〜20の炭化水素基置換アミノ基、炭素数1〜20のアルコキシ基、ケイ素数1〜6を含む炭素数1〜18のケイ素含有炭化水素基、炭素数1〜20のハロゲン含有炭化水素基、または炭素数1〜20の炭化水素基置換シリル基を示し、R5c、R6c、R7c、R8cおよびR9cは隣接する基同士で結合して、それらに結合している原子と一緒に環を形成していてもよい。nは、0または1であり、nが0の場合、Y1cに置換基R5cが存在しない。pは、0または1であり、pが0の場合、R7cが結合する炭素原子とR9cが結合する炭素原子は直接結合している。
1cが炭素原子の場合、R5c、R6c、R7c、R8c、R9cのうち少なくとも1つは水素原子ではない。]
本発明のエチレン・α−オレフィン共重合体を製造するのに最も好ましい触媒成分(A)は、特開2013−227271号公報に記載された一般式(2c)で表されるメタロセン化合物である。
Figure 2015152266
上記の一般式(2c)で示されるメタロセン化合物において、M1c、X1c、X2c、Q1c、R1c、R2cおよびR4cは、前述の一般式(1c)で示されるメタロセン化合物の説明で示した原子および基と同様な構造を選択することができる。また、R10cは、前述の一般式(1c)で示されるメタロセン化合物の説明で示したR5c、R6c、R7c、R8c、R9cの原子および基と同様な構造を選択することができる。
上記メタロセン化合物の具体例として、特開2013−227271号公報の一般式(4c)と表1c−1〜5、および一般式(5c)、(6c)と表1c−6〜9に記載されている化合物を挙げることができるが、これらに限定するものではない。
上記具体例の化合物は、ジルコニウム化合物またはハフニウム化合物であることが好ましく、ジルコニウム化合物であることが更に好ましい。
本発明のエチレン・α−オレフィン共重合体を製造するのに好ましい触媒成分(A)として、上述の架橋シクロペンタジエニルインデニル化合物を2種以上用いることもできる。
2−2.触媒成分(B)
本発明のエチレン・α−オレフィン共重合体を製造するのに好ましい触媒成分(B)は、成分(A)の化合物と反応してカチオン性メタロセン化合物を生成させる化合物であり、より好ましくは特開2013−227271号公報[0064]〜[0083]に記載された成分(B)であり、更に好ましくは同[0065]〜[0069]に記載された有機アルミニウムオキシ化合物である。
2−3.触媒成分(C)
本発明のエチレン・α−オレフィン共重合体を製造するのに好ましい触媒成分(C)は、無機化合物担体であり、より好ましくは特開2013−227271号公報[0084]〜[0088]に記載された無機化合物である。この時、無機化合物として好ましいのは該公報[0085]に記載された金属酸化物である。
2−4.オレフィン重合用触媒の製法
本発明のエチレン・α−オレフィン共重合体は、上記触媒成分(A)〜(C)を含むオレフィン重合用触媒を用いてエチレンと上述のα−オレフィンとを共重合する方法によって好適に製造される。本発明の上記触媒成分(A)〜(C)からオレフィン重合用触媒を得る際の各成分の接触方法は、特に限定されず、例えば、以下に示す(I)〜(III)の方法が任意に採用可能である。
(I)上記遷移金属元素を含む架橋シクロペンタジエニルインデニル化合物である触媒成分(A)と、上記触媒成分(A)の化合物と反応してカチオン性メタロセン化合物を生成させる化合物である触媒成分(B)とを接触させた後、無機化合物担体である触媒成分(C)を接触させる。
(II)触媒成分(A)と触媒成分(C)とを接触させた後、触媒成分(B)を接触させる。
(III)触媒成分(B)と触媒成分(C)とを接触させた後、触媒成分(A)を接触させる。
これらの接触方法の中で(I)と(III)が好ましく、さらに(I)が最も好ましい。いずれの接触方法においても、通常は窒素またはアルゴンなどの不活性雰囲気中、一般にベンゼン、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素(通常炭素数は6〜12)、ペンタン、ヘプタン、ヘキサン、デカン、ドデカン、シクロヘキサンなどの脂肪族あるいは脂環族炭化水素(通常炭素数5〜12)等の液状不活性炭化水素の存在下、撹拌下または非撹拌下に各成分を接触させる方法が採用される。この接触は、通常−100℃〜200℃、好ましくは−50℃〜100℃、さらに好ましくは0℃〜50℃の温度にて、5分〜50時間、好ましくは30分〜24時間、さらに好ましくは30分〜12時間で行うことが望ましい。
また、触媒成分(A)、触媒成分(B)および触媒成分(C)の接触に際しては、上記した通り、ある種の成分が可溶ないしは難溶な芳香族炭化水素溶媒と、ある種の成分が不溶ないしは難溶な脂肪族または脂環族炭化水素溶媒とがいずれも使用可能である。
各成分同士の接触反応を段階的に行う場合にあっては、前段で用いた溶媒などを除去することなく、これをそのまま後段の接触反応の溶媒に用いてもよい。また、可溶性溶媒を使用した前段の接触反応後、ある種の成分が不溶もしくは難溶な液状不活性炭化水素(例えば、ペンタン、ヘキサン、デカン、ドデカン、シクロヘキサン、ベンゼン、トルエン、キシレンなどの脂肪族炭化水素、脂環族炭化水素あるいは芳香族炭化水素)を添加して、所望生成物を固形物として回収した後に、あるいは一旦可溶性溶媒の一部または全部を、乾燥等の手段により除去して所望生成物を固形物として取り出した後に、この所望生成物の後段の接触反応を、上記した不活性炭化水素溶媒のいずれかを使用して実施することもできる。本発明では、各成分の接触反応を複数回行うことを妨げない。
本発明において、触媒成分(A)、触媒成分(B)および触媒成分(C)の使用割合は、特に限定されないが、以下の範囲が好ましい。
触媒成分(B)として、有機アルミニウムオキシ化合物を用いる場合、触媒成分(A)中の遷移金属(M)に対する有機アルミニウムオキシ化合物のアルミニウムの原子比(Al/M)は、通常、1〜100,000、好ましくは5〜1000、さらに好ましくは50〜500、特に好ましくは100〜400の範囲が望ましく、また、ボラン化合物やボレート化合物を用いる場合、触媒成分(A)中の遷移金属(M)に対する、ホウ素の原子比(B/M)は、通常、0.01〜100、好ましくは0.1〜50、さらに好ましくは0.2〜10の範囲で選択することが望ましい。さらに、触媒成分(B)として、有機アルミニウムオキシ化合物と、ボラン化合物、ボレート化合物との混合物を用いる場合にあっては、混合物における各化合物について、遷移金属(M)に対して上記と同様な使用割合で選択することが望ましい。
触媒成分(C)の使用量は、触媒成分(A)中の遷移金属0.0001〜5ミリモル当たり、好ましくは0.001〜0.5ミリモル当たり、さらに好ましくは0.01〜0.1ミリモル当たり1gである。
また、本発明において、触媒成分(C)1gに対する触媒成分(B)の金属のモル数の割合は、好ましくは、0.001〜0.020(モル/g)、より好ましくは、0.003〜0.012(モル/g)、更に好ましくは、0.004〜0.010(モル/g)である。
触媒成分(A)、触媒成分(B)および触媒成分(C)を、前記した接触方法(I)〜(III)を適宜選択して相互に接触させ、しかる後、溶媒を除去することで、オレフィン重合用触媒を固体触媒として得ることができる。溶媒の除去は、常圧下または減圧下、0〜200℃、好ましくは20〜150℃、更に好ましくは20〜100℃で1分〜100時間、好ましくは10分〜50時間、更に好ましくは30分〜20時間で行うことが望ましい。
なお、オレフィン重合用触媒は、以下に示す(IV)、(V)の方法によっても得ることができる。
(IV)触媒成分(A)と触媒成分(C)とを接触させて溶媒を除去し、これを固体触媒成分とし、重合条件下で有機アルミニウムオキシ化合物、ボラン化合物、ボレート化合物またはこれらの混合物と接触させる。
(V)触媒成分(B)である有機アルミニウムオキシ化合物、ボラン化合物、ボレート化合物またはこれらの混合物と触媒成分(C)とを接触させて溶媒を除去し、これを固体触媒成分とし、重合条件下で触媒成分(A)と接触させる。
上記(IV)、(V)の接触方法の場合も、成分比、接触条件および溶媒除去条件は、前記と同様の条件が使用できる。
また、本発明のエチレン・α−オレフィン共重合体を得るのに好適なオレフィン重合用触媒として、触媒成分(A)と反応してカチオン性メタロセン化合物を生成させる触媒成分(B)と触媒成分(C)とを兼ねる成分として、特開平05−301917号公報、同08−127613号公報等に記載されてよく知られている層状珪酸塩を用いることもできる。層状珪酸塩とは、イオン結合等によって構成される面が互いに弱い結合力で平行に積み重なった結晶構造をとる珪酸塩化合物である。大部分の層状珪酸塩は、天然には主に粘土鉱物の主成分として産出するが、これら、層状珪酸塩は特に天然産のものに限らず、人工合成物であってもよい。
これらの中では、モンモリロナイト、ザウコナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、スチーブンサイト、ベントナイト、テニオライト等のスメクタイト族、バーミキュライト族、雲母族が好ましい。
触媒成分(A)と層状珪酸塩担体の使用割合は、特に限定されないが、以下の範囲が好ましい。触媒成分(A)の担持量は、層状珪酸塩担体1gあたり、0.0001〜5ミリモル、好ましくは0.001〜0.5ミリモル、さらに好ましくは0.01〜0.1ミリモルである。
こうして得られるオレフィン重合用触媒は、必要に応じてモノマーの予備重合を行った後に使用しても差し支えない。
2−5.エチレン・α−オレフィン共重合体の重合方法
本発明のエチレン・α−オレフィン共重合体は、好適には上記2−4に記載された製法により準備されたオレフィン重合用触媒を用いて、エチレンと上述のα−オレフィンとを共重合して製造される。
コモノマーであるα−オレフィンとしては、上述したように、炭素数3〜10のα−オレフィンが使用可能であり、2種類以上のα−オレフィンをエチレンと共重合させることも可能であり、該α−オレフィン以外のコモノマーを少量使用することも可能である。
本発明において、上記共重合反応は、好ましくは気相法またはスラリー法にて、行うことができる。気相重合の場合、実質的に酸素、水等を断った状態で、エチレンやコモノマーのガス流を導入、流通、または循環した反応器内においてエチレン等を重合させる。また、スラリー重合の場合、イソブタン、ヘキサン、ヘプタン等の脂肪族炭化水素、ベンゼン、トルエン、キシレン等の芳香族炭化水素、シクロヘキサン、メチルシクロヘキサン等の脂環族炭化水素等から選ばれる不活性炭化水素溶媒の存在下または不存在下で、エチレン等を重合させる。また、液状エチレンや液状プロピレン等の液体モノマーも溶媒として使用できることは言うまでもない。本発明において、更に好ましい重合は、気相重合である。重合条件は、温度が0〜250℃、好ましくは20〜110℃、更に好ましくは60〜100℃であり、圧力が常圧〜10MPa、好ましくは常圧〜4MPa、更に好ましくは0.5〜2MPaの範囲にあり、重合時間としては5分〜20時間、好ましくは30分〜10時間が採用されるのが普通である。
本願発明の特徴の一つである、低MFRかつ低密度の共重合体を得るためには、用いる触媒成分(A)と触媒成分(B)の種類の選定のほか、更に触媒(A)(B)のモル比や、重合温度、重合圧力、H/C比、コモノマー/エチレン比等の重合条件を変えることによって、適宜調節することができる。
具体的には、より低MFRかつ低密度の共重合体を得るためには、重合温度を下げる方向で、かつ水素濃度をごく微量に設定し、コモノマー/エチレン比は高めに設定する方向が挙げられる。たとえば、具体的に本願実施例1記載の錯体を用いた場合、触媒の調整方法としては、錯体/シリカ=10〜100μmol/g、有機アルミニウムオキシ化合物/シリカ=3〜12mmol/g、調整剤の使用は任意であり、重合条件60〜90℃、エチレン圧力0.3〜2.0MPa、H2/C2%=0.005〜0.5%、C6/C2=0.3〜1.0%の範囲で適宜設定する。
また、重合系中に、水分除去を目的とした成分、いわゆるスカベンジャーを加えても何ら支障なく実施することができる。
なお、かかるスカベンジャーとしては、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウムなどの有機アルミニウム化合物、前記有機アルミニウムオキシ化合物、分岐アルキルを含有する変性有機アルミニウム化合物、ジエチル亜鉛、ジブチル亜鉛などの有機亜鉛化合物、ジエチルマグネシウム、ジブチルマグネシウム、エチルブチルマグネシウムなどの有機マグネシウム化合物、エチルマグネシウムクロリド、ブチルマグネシウムクロリドなどのグリニヤ化合物などが使用される。これらのなかでは、トリエチルアルミニウム、トリイソブチルアルミニウム、エチルブチルマグネシウムが好ましく、トリエチルアルミニウムが特に好ましい。
本願発明の特徴の一つである生成共重合体の長鎖分岐構造(すなわちg)やコモノマー共重合組成分布(すなわちXやW〜W)は、触媒成分(A)や触媒成分(B)の種類によって、概略その範囲が定まるが、触媒のモル比、重合温度や圧力、時間等の重合条件や重合プロセスを変えることによって調節可能である。長鎖分岐構造を形成しやすい触媒成分種を選択しても、例えば、重合温度を下げたり、エチレン圧力を上げたりして長鎖分岐構造の少ない共重合体を製造することも可能である。また、分子量分布や共重合組成分布の広い触媒成分種を選択しても、例えば、触媒成分モル比、重合条件や重合プロセスを変えることによって分子量分布や共重合組成分布の狭い共重合体を製造することも可能である。
水素濃度、モノマー量、重合圧力、重合温度等の重合条件が互いに異なる2段階以上の多段階重合方式においても、重合条件を適切に設定するならば、本発明のエチレン・α−オレフィン共重合体を製造することが可能であり得るだろうが、本発明のエチレン・α−オレフィン共重合体は、一段階重合反応により製造される場合、複雑な重合運転条件を設定することなく、より経済的に製造できるので好ましい。
3−1.オレフィン系樹脂組成物
本発明のエチレン・α−オレフィン共重合体は、その顕著な改質効果に着目して、他のオレフィン系樹脂と共に含有して、オレフィン系樹脂組成物に用いることができる。
他のオレフィン系樹脂としては、本発明のエチレン・α−オレフィン共重合体(以下、「エチレン・α−オレフィン共重合体(A)」と称する)とは異なる他のエチレン・α−オレフィン共重合体(B)などのエチレン系樹脂、その他オレフィン系樹脂が挙げられる。
樹脂組成物中のエチレン・α−オレフィン共重合体(A)の含有量は、樹脂組成物100重量%中1〜59重量%、更に好ましくは1〜49重量%、更に好ましくは3〜39重量%が、改質目的では好ましい。
3−2
他のエチレン・α−オレフィン共重合体(B)としては、長鎖分岐構造を実質的には有さず、分子構造が線状であり、たとえばチーグラー系触媒により得られる線状低密度ポリエチレン(LLDPE)、またはメタロセン系触媒により得られる、分子構造が線状であり分子量分布が更に狭いメタロセン系ポリエチレンが挙げられる。
特に好ましくは、下記物性(B−1)および(B−2)を満たすエチレン・α−オレフィン共重合体を用いると、共重合体(A)による改質効果が発揮され、好ましい。
(B−1)MFR=0.01〜20g/10分
(B−2)密度=0.880〜0.970g/cm
更に、他のエチレン・α−オレフィン共重合体(B)として下記物性(B−3)を満たすメタロセン系ポリエチレンを用いると、共重合体(A)による改質効果がより効果的であるため、好ましい。
(B−3)Mw/Mn=2.0〜4.0
なお、MFR、密度、Mw/Mnの定義は上述の共重合体(A)の定義と同様である。
1−1.条件(B−1)
エチレン・α−オレフィン共重合体(B)のメルトフローレイト(MFR)は0.01〜20.0g/10分であり、0.1〜5.0g/10分が好ましい。さらに(B)として、チーグラー系触媒で得られる比較的分子量分布の広い(後述するQ値でいうと3.0超〜の値を示すことが多い)共重合体を用いる場合には、0.3〜3.0g/10分の範囲が、より好ましく、一方(B)として、メタロセン系触媒で得られる比較的分子量分布の狭い(後述するQ値でいうと2.0以上〜3.0以下の値を示すことが多い)共重合体を用いる場合には、0.3〜4.0g/10分の範囲が、より好ましい。MFRが低過ぎると、成形加工性が劣り、一方、MFRが高過ぎると、耐衝撃性、機械的強度等が低下する恐れがある。
1−2.条件(B−2)
また、エチレン・α−オレフィン共重合体(B)の密度は、0.880〜0.970g/cmであり、0.880〜0.950g/cmが好ましく、0.890〜0.940g/cmがより好ましい。密度がこの範囲内にあると、耐衝撃性と剛性のバランスが優れる。また、密度が低過ぎると、剛性が低下し、自動製袋適性を損なう恐れがある。一方、密度が高過ぎると、耐衝撃性を損なう恐れがある。
1−3.条件(B−3)
さらに、エチレン・α−オレフィン共重合体(B)の重量平均分子量(Mw)と数平均分子量(Mn)との比[Mw/Mn](以下、Q値ともいう。)は2.0〜10.0である。Q値が2.0未満の場合、エチレン・α−オレフィン共重合体(B)と他の重合体成分が混ざり難い可能性がある。Q値が10.0を超えると、耐衝撃性の改良効果が充分でなく、耐衝撃性と剛性のバランスが損なわれる。耐衝撃性と剛性のバランス上、Q値の上限は、好ましくは7.5以下、より好ましくは5.0以下である。Q値の下限は、好ましくは2.3以上、より好ましくは2.5以上である。
なお、(B)として、チーグラー系触媒で得られる共重合体を用いる場合には、Q値が3.0超〜5.0g/10分、メタロセン系触媒で得られる共重合体を用いる場合には、2.0〜4.0g/10分のQ値を有することが好ましい。なお、エチレン・α−オレフィン共重合体(B)の重量平均分子量(Mw)と数平均分子量(Mn)との比[Mw/Mn]は、以下の条件(以下、「分子量分布の測定方法」と言うこともある)で測定した時の値をいう。Mw/Mnは、ゲルパーミエーションクロマトグラフィー(GPC)で測定した重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で定義されるものである。
1−4.エチレン・α−オレフィン共重合体(B)の組成
エチレン・α−オレフィン共重合体(B)成分は、エチレンと炭素数3〜20のα−オレフィンとの共重合体である。ここで用いられる共重合成分であるα−オレフィンとしては、前述のエチレン・α−オレフィン共重合体(A)で用いたものと同様である。
前記エチレン・α−オレフィン共重合体(B)中におけるエチレンとα−オレフィンの割合は、エチレン約80〜100重量%、α−オレフィン約0〜20重量%であり、好ましくはエチレン約85〜99.9重量%、α−オレフィン約0.1〜15重量%であり、より好ましくはエチレン約90〜99.5重量%、α−オレフィン約0.5〜10重量%であり、更に好ましくはエチレン約90〜99重量%、α−オレフィン約1〜10重量%である。エチレン含量がこの範囲内であれば、ポリエチレン系樹脂組成物や該成形体の剛性と衝撃強度のバランスがよい。
1−5.エチレン・α−オレフィン共重合体(B)の製法
エチレン・α−オレフィン共重合体(B)は、オレフィン重合用触媒を用いてエチレンを単独重合または上述のα−オレフィンと共重合する方法によって実施される。
オレフィン重合用触媒としては、今日様々な種類のものが知られており、該触媒成分の構成および重合条件や後処理条件の工夫の範囲内において上記エチレン・α−オレフィン共重合体(B)が準備可能であれば何ら制限されるものではないが、エチレン・α−オレフィン共重合体(B)の製造に好適な、工業レベルにおける経済性を満足する技術例として、以下の(i)〜(ii)で説明する遷移金属を含む具体的なオレフィン重合用触媒の例を挙げることができる。
(i)チーグラー触媒
エチレン・α−オレフィン共重合体(B)の製造に好適なオレフィン重合用触媒の例として、遷移金属化合物と典型金属のアルキル化合物等の組み合わせからなるオレフィン配位重合触媒としてのチーグラー・ナッタ触媒が挙げられる。とりわけマグネシウム化合物にチタニウム化合物を担持させた固体触媒成分と有機アルミニウム化合物を組み合わせたいわゆるMg−Ti系チーグラー触媒(例えば、「触媒活用大辞典;2004年工業調査会発行」、「出願系統図―オレフィン重合触媒の変遷―;1995年発明協会発行」等を参照)は安価で高活性かつ重合プロセス適性に優れることから好適である。
(ii)メタロセン触媒
エチレン・α−オレフィン共重合体(B)の製造に好適な重合触媒の例として、メタロセン系遷移金属化合物と助触媒成分からなるオレフィン重合触媒であるメタロセン触媒(例えば、「メタロセン触媒による次世代ポリマー工業化技術(上・下巻);1994年インターリサーチ(株)発行」等を参照)は、比較的安価で高活性かつ重合プロセス適性に優れ、更には分子量分布および共重合組成分布が狭いエチレン系重合体が得られることから使用される。
II.オレフィン系樹脂組成物
以下に、主に本発明のエチレン・α−オレフィン共重合体(A)と、A以外の他のエチレン・α−オレフィン共重合体(B)からなる樹脂組成物であって、主にフィルム用途に適したオレフィン系樹脂組成物について、詳述する。
具体的には、フィルム用、シート用のオレフィン系樹脂組成物としては、本発明の特定のエチレン・α−オレフィン共重合体(A)を1〜49重量%、他のエチレン・α−オレフィン共重合体(B)を99〜51重量%、好ましくは(A)を3〜35重量%、(B)を75重量%〜97重量%、場合により更に好ましくは他のオレフィン系樹脂成分(C)を1〜30重量%添加してなる組成物が挙げられる。
1.MFR
上記成分(A)及び(B)からなる、フィルム用のオレフィン系樹脂組成物のMFRは、0.01〜20g/10分の範囲であることが必要であり、好ましくは0.05〜10g/10分であり、より好ましくは0.10〜5g/10分である。
MFRが0.01g/10分より低いと、流動性が悪く、押出機のモーター負荷が高くなりすぎ、一方、MFRが20g/10分より大きくなると、バブルが安定せず、成形し難くなると共に、フィルムの強度が低くなる。
なお、オレフィン系樹脂組成物のMFRは、JIS K 7210に準拠し、190℃、21.18N(2.16kg)荷重の条件で測定される値であるが、おおよそのMFRは成分(A)、(B)のそれぞれのMFRと割合から、加成則に従って算出することが出来る。
2.密度
上記成分(A)及び(B)からなる、本発明のオレフィン系樹脂組成物の密度は、0.910〜0.950g/cmの範囲であることが必要であり、好ましくは0.910〜0.945g/cmであり、より好ましくは0.915〜0.940g/cmである。
オレフィン系樹脂組成物の密度が0.910g/cmより低いと、フィルムの剛性が低くなり、自動製袋機適性が悪化する。また、オレフィン系樹脂組成物の密度が0.950g/cmより高いと、フィルムの強度が低下する。
なお、オレフィン系脂組成物の密度は、成分(A)、(B)のそれぞれの密度と割合から、加成則に従って算出することが出来る。
3.成分(A)、(B)のMFRの関係
上記成分(A)と(B)からなる、本発明のオレフィン系樹脂組成物を作成するにあたっては、上記成分(A)と(B)のMFRの関係として、MFR>MFR、または20>MFR/MFR>1.0であることが好ましく、より好ましくは15.0>MFR/MFR>1.0であり、より好ましくは10.0>MFR/MFR>1.0である。
上記成分(A)と(B)のMFRの関係がMFR>MFRであると、上記成分(A)の添加によりバブルがより安定する。また、20>MFR/MFR>1.0であることにより、上記成分(B)の添加によるインフレーション成形時にバブルが安定し、加工特性が向上する。
4.成分(A)、(B)の[Mw/Mn]の関係
上記成分(A)と(B)からなる、本発明のオレフィン系樹脂組成物を作成するにあたっては、上記成分(A)と(B)の[Mw/Mn]の関係として、[Mw/Mn]<[Mw/Mn]であることが好ましい。
上記成分(A)、(B)の[Mw/Mn]の関係が[Mw/Mn]<[Mw/Mn]であると、上記成分(B)の添加によるインフレーション成形時のバブルが安定し、加工特性が向上する。
5.その他の配合物等
本発明においては、本発明の特徴を損なわない範囲において、必要に応じ、帯電防止剤、酸化防止剤、ブロッキング防止剤、核剤、滑剤、防曇剤、有機あるいは無機顔料、紫外線防止剤、分散剤などの公知の添加剤を、添加することが出来る。
本発明のオレフィン系樹脂組成物は、上記のエチレン・α−共重合体(A)、他のオレフィン系樹脂、必要に応じて、添加又は配合される各種の添加剤及び樹脂成分を、ヘンシェルミキサー、スーパーミキサー、タンブラー型ミキサー等を用いて混合した後、一軸あるいは二軸押出機、ニーダー等で加熱混練し、ペレット化してもよい。
III.エチレン・α−オレフィン共重合体(A)又はオレフィン系樹脂組成物の用途
本発明のエチレン・α−オレフィン共重合体(A)は、特に衝撃強度と剛性のバランス改良の点で飛躍的な効果を示すため、他のオレフィン系樹脂に添加する樹脂改質材として使用することができるし、単独の重合体としてもフィルム等への成形が可能であるため、本発明のエチレン・α−オレフィン共重合体(A)、又はそれを含有したオレフィン系樹脂組成物は、公知の成形方法、たとえばインフレーション成形法やTダイフィルム成形法などの押出成形法、射出成型法、圧縮成型法などにより、各種成形体に成形され利用される。
本発明の共重合体(A)又はポリエチレン系樹脂組成物の成形体は、上記共重合体(A)又は上記[II]に記載された本発明のポリエチレン系樹脂組成物を成形することによって製造され、その成形の方法は、従来知られている成形方法のいずれをも参照することが可能である。
本発明の成形体の成形方法については、本発明のポリエチレン系樹脂組成物の優れた成形加工特性や機械的諸特性、透明性を有効に活用できる方法であれば特に制限されるものではないが、本発明のポリエチレン系樹脂組成物の主に意図したる用途の一例であるフィルム、袋、シートの場合、その好ましい成形方法、成形条件、用途として、各種のインフレーション成形法、Tダイフィルム成形法、カレンダー成形法、多層共押出成形機やラミネート処理による多層フィルム成形法等および各種用途を具体的に挙げることができる。
このようにして得られる製品のフィルム(又はシート)の厚みは特に制限されず、成形方法・条件により好適な厚みは異なる。たとえば、インフレーション成形の場合、5〜300μm程度であり、Tダイ成形の場合、5μm〜5mm程度のフィルム(又はシート)とすることができる。更に、本発明のポリエチレン系樹脂組成物の用途として、他のポリエチレン系樹脂、ポリエチレン系樹脂組成物や、ポリプロピレン系樹脂等のポリオレフィン系樹脂に適量ブレンドして、成形加工性向上や、機械的強度向上等の改質材として使用できる。
以下においては、実施例及び比較例を挙げて本発明をさらに詳細に説明し、本発明の卓越性と本発明の構成における優位性を実証するが、本発明はこれらの実施例によって限定されるものではない。
なお、実施例及び比較例において使用した測定方法は、以下の通りである。また、以下の触媒合成工程および重合工程は、すべて精製窒素雰囲気下で行い、かつ、使用した溶媒は、モレキュラーシーブ4Aで脱水精製したものを用いた。
[フィルムの評価方法]
(1)引張弾性率:
JIS K7127−1999に準拠して、フィルムの加工方向(MD方向)とフィルムの幅方向(TD方向)の1%変形したときの引張弾性率を測定した。
(2)ダート落下衝撃強度
JIS K 7124 1 A法に準拠して測定した。
[インフレーションフィルムの成形条件]
以下の50mmφ押出機を有するインフレーションフィルム製膜機(成形装置)を用いて、下記の成形条件で、インフレーションフィルムを成形し、評価した。
装置:インフレーション成形装置
押出機スクリュー径:50mmφ
ダイ径:75mmφ
押出量:15kg/hr
ダイリップギャップ:3.0mm
引取速度:20.0m/分
ブローアップ比:2.0
成形樹脂温度:170〜190℃(実施例に記載)
フィルム厚み:30μm
〔実施例1〕
(1)架橋シクロペンタジエニルインデニル化合物の合成;
ジメチルシリレン(4−(4−トリメチルシリル−フェニル)−インデニル)(シクロペンタジエニル)ジルコニウムジクロリドを、下記のとおり、特開2013−227271号公報[0140]〜[0143]記載の方法に従い合成した。
(II)使用材料
[メタロセン化合物の合成]
(i)メタロセン化合物A:ジメチルシリレン(4−(4−トリメチルシリル−フェニル)−インデニル)(シクロペンタジエニル)ジルコニウムジクロリドの合成
(1−1)4−(4−トリメチルシリル−フェニル)−インデンの合成
500mlフラスコに、4−トリメチルシリルフェニルボロン酸10.0g(51.5mmol)とジメトキシエタン200mlを加え溶液とした後、リン酸カリウム27.3g(128mmol)、水100ml、4−ブロモインデン8.37g(43.0mmol)、トリフェニルホスフィン0.22g(0.86mmol)、PdCl(PPh 0.300g(0.430mmol)を順に加え、12時間攪拌還流した。室温まで冷却し水100mlを加えた。有機相を分離した後、水相を酢酸エチル100mlで2回抽出し、得られた有機相を混合して食塩水で洗浄し、硫酸ナトリウムを加え有機相を乾燥させた。硫酸ナトリウムを濾過し、溶媒を減圧留去して、シリカゲルカラムで精製し、4−(4−トリメチルシリル−フェニル)−インデンの黄色液体9.0g(収率79%)を得た。
(1−2)(4−(4−トリメチルシリル−フェニル)−インデニル)(シクロペンタジエニル)ジメチルシランの合成
200mlフラスコに、4−(4−トリメチルシリル−フェニル)−インデン16.2g(61.2mmol)とTHF100mlを加え溶液とした後、−78℃に冷却してn−ブチルリチウム/ヘキサン溶液(2.5M)29.4ml(173.5mmol)を加え、室温に戻して4時間攪拌した。別途用意した300mlフラスコにジメチルジクロロシラン14.8ml(122mmol)とTHF20mlを加え溶液とし、−78℃に冷却して先の反応溶液を加えた。室温に戻して12時間攪拌した。揮発物を減圧留去で除くことで黄色溶液21.8gが得られた。この黄色溶液にTHF80mlを加えて溶液とし、−30℃でCpNa/THF溶液(2M)36.7ml(73.5mmol)を加えた。室温に戻して1時間攪拌し、氷水100mlを加えた。酢酸エチル100mlで2回抽出し、得られた有機相を混合して食塩水で洗浄し、硫酸ナトリウムを加え有機相を乾燥させた。硫酸ナトリウムを濾過し、溶媒を減圧留去して、シリカゲルカラムで精製し、(4−(4−トリメチルシリル−フェニル)−インデニル)(シクロペンタジエニル)ジメチルシランの黄色液体12.0g(収率51%)を得た。
(1−3)ジメチルシリレン(4−(4−トリメチルシリル−フェニル)−インデニル)(シクロペンタジエニル)ジルコニウムジクロリドの合成
300mlフラスコに、(4−(4−トリメチルシリルフェニル)インデニル)(シクロペンタジエニル)ジメチルシラン1.20g(3.00mmol)、ジエチルエーテル20mlを加え、−70℃まで冷却した。ここに2.5mol/Lのn−ブチルリチウム−n−ヘキサン溶液2.60ml(6.60mmol)を滴下した。滴下後、室温に戻し2時間撹拌した。反応液の溶媒を減圧で留去し、ジクロロメタン30mlを加え、ドライアイス−メタノール浴で−70℃まで冷却した。そこに、四塩化ジルコニウム0.770g(3.30mmol)を加えた。その後、徐々に室温に戻しながら一夜撹拌した。反応液をろ過して得られたろ液から溶媒を減圧で留去することで、黄色粉末がえら得た。この粉末をトルエン10mlで再結晶し、ジメチルシリレン(4−(4−トリメチルシリルフェニル)インデニル)(シクロペンタジエニル)ジルコニウムジクロリドを黄色結晶として0.500g(収率31%)得た。
1H−NMR値(CDCl):δ0.21(s,3H),δ0.23(s,9H),δ0.43(s,3H),δ5.48(m,1H),δ5.51(m,1H),δ5.81(d,1H),δ6.60(m,1H),δ6.66(m,1H),δ6.95(dd,1H),δ7.13(s,1H),δ7.39(dd,2H),δ7.57(d,2H),δ7.95(d,2H)。
(2)オレフィン重合用触媒の合成;
窒素雰囲気下、500ml三口フラスコに600℃で5時間焼成したシリカ30グラムを入れ、150℃のオイルバスで加熱しながら真空ポンプで1時間減圧乾燥した。別途用意した200ml二口フラスコに窒素雰囲気下で、上記(1)で合成したジメチルシリレン(4−(4−トリメチルシリル−フェニル)−インデニル)(シクロペンタジエニル)ジルコニウムジクロリド412ミリグラムを入れ、脱水トルエン80.7mlで溶解した後、更に室温でアルベマール社製の20%メチルアルミノキサン/トルエン溶液83.1mlを加え30分間撹拌した。真空乾燥済みシリカの入った500ml三口フラスコを40℃のオイルバスで加熱および撹拌しながら、上記ジルコノセン錯体とメチルアルミノキサンの反応物のトルエン溶液を全量加えた。40℃で1時間撹拌した後、40℃に加熱したままトルエン溶媒を減圧留去することで粉状触媒を得た。
(3)エチレン・1−ヘキセン共重合体の製造;
上記(2)で得た粉状触媒を使用してエチレン・1−ヘキセン気相連続共重合を行った。すなわち、温度65℃、ヘキセン/エチレンモル比0.50%、水素/エチレンモル比0.16%、窒素濃度26mol%、全圧0.8MPaに準備された気相連続重合装置(内容積100L、流動床直径10cm、流動床種ポリマ−(分散剤)1.8kg)に該粉状触媒を0.23g/時間の速さで間欠的に供給しながら、ガス組成と温度を一定にして重合を行った。また、系内の清浄性を保つため、トリエチルアルミニウム(TEA)のヘキサン稀釈溶液0.03mol/Lを15.7ml/hrでガス循環ラインに供給した。
その結果、生成ポリエチレンの平均生成速度は333g/時間となった。累積5kg以上のポリエチレンを生成した後に得られたエチレン・1−ヘキセン共重合体のMFRと密度は、各々0.03g/10分、0.903g/cmであった。結果を表2、表3に示した。
〔実施例2〕
(1)オレフィン重合用触媒の合成;
シリカの焼成温度を400℃とした以外は、実施例1(2)と同様にして粉状オレフィン重合用触媒を得た。
(2)エチレン・1−ヘキセン共重合体の製造;
実施例1(2)の粉状触媒の代わりに、上記(1)で得た粉状触媒を使用して、表2に記載の条件以外は、実施例1(3)と同様にしてエチレン・1−ヘキセン気相連続共重合を行った。結果を表2、表3に示した。
〔実施例3〕
(1)オレフィン重合用触媒の合成;
メチルアルミノキサン/トルエン溶液を81.0ml使用した以外は、実施例2(1)と同様にして粉状オレフィン重合用触媒を得た。
(2)エチレン・1−ヘキセン共重合体の製造;
実施例1(2)の粉状触媒の代わりに、上記(1)で得た粉状触媒を使用して、表2に記載の条件以外は、実施例1(3)と同様にしてエチレン・1−ヘキセン気相連続共重合を行った。結果を表2、表3に示した。
〔実施例4〕
(1)オレフィン重合用触媒の合成;
窒素雰囲気下、500ml三口フラスコに400℃で5時間焼成したシリカ30グラムを入れ、次いで脱水トルエン195mlを追加してスラリーとした。別途用意した200ml二口フラスコに窒素雰囲気下で、実施例1(1)で合成したジメチルシリレン(4−(4−トリメチルシリル−フェニル)−インデニル)(シクロペンタジエニル)ジルコニウムジクロリド412ミリグラムを入れ、脱水トルエン80.7mlで溶解した後、更に室温でアルベマール社製の20%メチルアルミノキサン/トルエン溶液78.9mlを加え30分間撹拌した。シリカのトルエンスラリー液の入った500ml三口フラスコを40℃のオイルバスで加熱および撹拌しながら、上記ジルコノセン錯体とメチルアルミノキサンの反応物のトルエン溶液を全量加えた。40℃で1時間撹拌した後、40℃に加熱したまま15分静沈して上澄み221mlを除去し、次いでトルエン溶媒を減圧留去して粉状触媒を得た。
(2)オレフィン重合用触媒の処理
窒素雰囲気下、500ml三口フラスコに、上記(1)で得た粉状触媒のうち31gを入れ、脱水ヘキサン193mlと脱水液状ポリブテン(日石ポリブテンLV−7)12.6gの混合液を室温で加えて10分撹拌した後、40℃で溶媒を減圧留去して再び粉状触媒を得た。
(3)エチレン・1−ヘキセン共重合体の製造;
実施例1(2)の粉状触媒の代わりに、上記(2)で得た粉状触媒を使用して、表2に記載の条件以外は、実施例1(3)と同様にしてエチレン・1−ヘキセン気相連続共重合を行った。結果を表2、表3に示した。
〔実施例5〕
(1)オレフィン重合用触媒の合成;
メチルアルミノキサン/トルエン溶液を51.9ml使用した以外は、実施例1(2)と同様にして粉状オレフィン重合用触媒を得た。
(2)エチレン・1−ヘキセン共重合体の製造;
実施例1(2)の粉状触媒の代わりに、上記(1)で得た粉状触媒を使用して、表2に記載の条件以外は、実施例1(3)と同様にしてエチレン・1−ヘキセン気相連続共重合を行った。結果を表2、表3に示した。
〔実施例6〕
エチレン・1−ヘキセン共重合体の製造;
表2に記載の条件以外は、実施例5(2)と同様にしてエチレン・1−ヘキセン気相連続共重合を行った。結果を表2、表3に示した。
〔実施例7〕
(1)オレフィン重合用触媒の合成;
ジメチルシリレン(4−(4−トリメチルシリル−フェニル)−インデニル)(シクロペンタジエニル)ジルコニウムジクロリドの代わりに、ジメチルシリレン(3−メチル−4−(4−トリメチルシリル−フェニル)―3−メチル−インデニル)(シクロペンタジエニル)ジルコニウムジクロリド421ミリグラムを使用した以外は、実施例1(2)と同様にして粉状のオレフィン重合用触媒を得た。
(2)エチレン・1−ヘキセン共重合体の製造;
実施例1(2)の粉状触媒の代わりに、上記(1)で得た粉状触媒を使用して、表2に記載の条件以外は、実施例1(3)と同様にしてエチレン・1−ヘキセン気相連続共重合を行った。結果を表2、表3に示した。
〔比較例1〕
エチレン・1−ヘキセン共重合体の製造;
表2に記載の条件以外は、実施例5(2)と同様にしてエチレン・1−ヘキセン気相連続共重合を行った。結果を表2、表3に示した。
〔比較例2〕
エチレン・1−ヘキセン共重合体の製造;
特開2012−214781号公報の実施例6a(2)に記載のエチレン系重合体(B−6)の製造方法と同様にしてエチレン・1−ヘキセン気相連続共重合を行った。すなわち、表2記載のメタロセン化合物3を用いて表2記載の触媒調整を行い、表2に記載の条件以外は、実施例1(3)と同様にしてエチレン・1−ヘキセン気相連続共重合を行った。結果を表2、表3に示した。
〔比較例3〕
長鎖分岐を有する市販のエチレン系重合体(住友化学社製CU5001;MFR=0.3g/10分、密度0.922g/cm)の分析結果を表2、表3に示した。
〔比較例4〕
エチレン・1−ヘキセン共重合体の製造;
特開2012−214781号公報の実施例8a(1)に記載のエチレン系重合体(B−8)の製造方法と同様にしてエチレン・1−ヘキセン気相連続共重合を行った。すなわち、実施例1と同じメタロセン化合物1を用いた触媒を用いて、表2に記載の条件以外は、実施例1(3)と同様にしてエチレン・1−ヘキセン気相連続共重合を行った。結果を表2、表3に示した。
〔比較例5〕
(1)オレフィン重合用触媒の合成;
メチルアルミノキサン/トルエン溶液を83.1ml使用した以外は、実施例4(1)と同様にして粉状オレフィン重合用触媒を得た。
(2)エチレン・1−ヘキセン共重合体の製造;
実施例1(2)の粉状触媒の代わりに、上記(1)で得た粉状触媒を使用して、表2に記載の条件以外は、実施例1(3)と同様にしてエチレン・1−ヘキセン気相連続共重合を行った。結果を表2、表3に示した。
〔比較例6〕
(1)オレフィン重合用触媒の合成;
ジメチルシリレン(4−(4−トリメチルシリル−フェニル)−インデニル)(シクロペンタジエニル)ジルコニウムジクロリド412ミリグラムの代わりに、ジメチルシリレンビスインデニルジルコニウムジクロリド338ミリグラムを使用した以外は、実施例5(1)と同様にして粉状のオレフィン重合用触媒を得た。
(2)エチレン・1−ヘキセン共重合体の製造;
実施例1(2)の粉状触媒の代わりに、上記(1)で得た粉状触媒を使用して、表1に記載の条件以外は、実施例1(3)と同様にしてエチレン・1−ヘキセン気相連続共重合を行った。結果を表2、表3に示した。
〔参考例1〕
市販の高圧ラジカル法低密度ポリエチレン(日本ポリエチレン社製LF240;MFR=0.7g/10分、密度0.924g/cm)の分析結果を表2、表3に示した。
〔比較例7〕
長鎖分岐を有しない線状低密度ポリエチレン(エチレン・1−ヘキセン共重合体)の製造;
特開2012−214781号公報の比較例C12a(1)に記載のエチレン系重合体(B−C9)の製造方法と同様にしてエチレン・1−ヘキセン気相連続共重合を行った。すなわち、長鎖分岐を有しない線状低密度ポリエチレンの例として、成分(A)として表2記載のメタロセン5を用いて、表2に記載の条件以外は、実施例1(3)と同様にしてエチレン・1−ヘキセン気相連続共重合を行った。
結果を表2、表3に示した。
〔フィルム成形実験〕
本発明のエチレン・α−オレフィン共重合体によるポリオレフィン系樹脂の改質効果を確認するために以下のフィルム成形実験を行った。
本発明のエチレン・α−オレフィン共重合体がポリオレフィン系樹脂改質材として優れた性能を有することは、本発明の共重合体および本発明でない共重合体を、各々所定量、市販のエチレン系重合体にブレンドして得られるポリオレフィン系樹脂組成物をインフレーションフィルム成形し、そのようにして得られるフィルムの物性を測定することによって示すことができる。
すなわち、上記実施例1〜6、比較例1〜7および参考例1を、マグネシウム・チタニウム複合型チーグラー触媒で製造された市販のエチレン系重合体(日本ポリエチレン社製
UF946;MFR=1.5g/10分、密度0.936g/cm、UF530;MFR=1.1g/10分、密度0.925g/cm、UF230;MFR=1.1g/10分、密度0.921g/cm。いずれもエチレン・1−ブテン共重合体)にブレンドし、上述の条件にてインフレーションフィルム成形を実施した。市販のエチレン系重合体にブレンドする本発明の共重合体および本発明でない共重合体のブレンド比率、得られたフィルムの引張弾性率(単位MPa)、ダートドロップインパクト強度(DDI;単位g)は、表4、表5に示す通りであった。また、その結果の一部としてラン1〜14の結果得られた弾性率をX軸に衝撃強度をY軸にプロットした図を図6に示す。
Figure 2015152266
Figure 2015152266
Figure 2015152266
Figure 2015152266
(表2〜表5の結果による考察)
表2の触媒と重合条件により製造された表3のエチレン・α−オレフィン共重合体のうち、本発明に属する実施例1〜実施例4の共重合体をエチレン系重合体PO−1に改質材として30%ブレンドしたフィルムの物性と、MFRが条件(1)を満足しないために本発明ではない比較例1の共重合体を使用したフィルムの物性とを、表4のラン1〜ラン5で比較を行った。
図6に、ラン1〜5、更には、エチレン系重合体PO−1の単体(ラン11)、参考例1の高圧ラジカル法ポリエチレンを添加した例(10%添加のラン12、15%添加のラン13)、市販の長鎖分岐を有するポリエチレンを30重量%添加したラン10を合わせて、その引張弾性率(X軸)と衝撃強度(Y軸)との値をプロットしたグラフを示す。なお、衝撃強度(Y軸)は数値が高い方がより好ましいが、引張弾性率は高すぎても低すぎても好ましくなく、衝撃強度とのバランスを保ちつつ適度な範囲にあることが好ましい。
ラン1〜4のフィルムの引張弾性率と衝撃強度とのバランスは、ラン5に比較して極めてよく、本発明の改質材としての優位性が理解されるであろう。
同様に、本発明に属する実施例5の共重合体をより少量の20%ブレンドした際のフィルムと、本発明ではない比較例1の共重合体を使用したフィルムを、ラン6とラン7で比較することにより、本発明の実施例5の共重合体の優位性が明らかである。
更に、比較例2で他の触媒成分(A)を使用して製造された本発明ではない共重合体を、比較例3で長鎖分岐を含有するが本発明ではない市販のエチレン・α−オレフィン共重合体を準備し、各々、前記エチレン系重合体PO−1に対し改質材として20%または30%ブレンドし、フィルム(ラン8〜ラン10)を作成した。比較例2の共重合体は、比較例1の共重合体と同程度の改質効果しか示しておらず、また、比較例3の共重合体は、改質前のエチレン系重合体PO−1の引張弾性率を低下させることはあっても衝撃強度を殆ど増加させないことが、PO−1単独のフィルムであるラン11との比較で明らかである。このことから、いずれの他の共重合体も本発明の共重合体に及ばないことが理解されるであろう。
次に、エチレン系重合体PO−1のインフレーションフィルム成形加工特性を向上するための実用的な手法としてよく知られている高圧ラジカル法ポリエチレンを改質材としてブレンドする方法により得られたフィルムと、本発明による共重合体をブレンドしたフィルムの物性を比較することにより、本発明の共重合体が改質材としての有用性をもつことを示したい。
すなわち、ラン11〜ラン13にエチレン系重合体PO−1に市販の高圧法ポリエチレンを0%、10%、15%とブレンドしてフィルムを成形した。高圧法ポリエチレンを15%ブレンドしたラン13のフィルム成形性は、本発明の共重合体を20〜30%ブレンドしたラン1〜ラン4やラン6とほぼ同等であった(溶融張力がほぼ同程度の値であった)が、フィルムの引張弾性率と衝撃強度は、エチレン系重合体PO−1単独フィルムであるラン11とほとんど変わらず、本発明の共重合体を使用した場合に得られる衝撃強度の大幅な向上は得られない。したがって、本発明の共重合体は、従来の改質手法では得られなかったエチレン系フィルムを得るのに優れた手法を提供することを可能とした。
また、エチレン系重合体PO−1の樹脂強度をメタロセン系エチレン・α−オレフィン共重合体のブレンドにより高め、併せてフィルム成形加工特性を高圧法ポリエチレンンのブレンドにより同時に付与するアイデアを、比較例7の共重合体と参考例1の重合体を使用して試行した結果を、以下に説明する。
MFRが本発明の条件(1)を満たさず、LCBを含まないことによりgcが条件(5)を満たさないために本発明ではない比較例7の共重合体30%をエチレン系重合体PO−1にブレンドしたが、安定的なインフレーションフィルム成形は困難であった。
そこで、PO−1に比較例7の共重合体と参考例1の高圧法ポリエチレンを各々25%、15%ブレンドしてフィルム成形を実施した(ラン14)。PO−1単独フィルムや高圧法ポリエチレン改質フィルムのラン11〜ラン13に比較して衝撃強度の改良は達しているものの、その到達レベルは、本発明の共重合体の改質フィルムであるラン1〜ラン4やラン6には大きく劣っており、本発明の共重合体による優れた改質性能が理解される。
ラン6で使用した本発明のエチレン・α−オレフィン共重合体(実施例5)が、他のポリオレフィン系樹脂に対する改質材としても効果的であることを調べるために、エチレン系重合体PO−1とはMFRや密度が異なるエチレン系重合体PO−2、PE−3に対する改質実験を行った(ラン15およびラン22〜ラン24)。
PO−1のときに、本発明である実施例5の共重合体を使用したラン6が、本発明ではない共重合体による対照ラン(ラン7、ラン9、ラン11〜ラン13)に対して示した改質材としての優位性が、上記PO−2やPE−3の改質実験においても成立することが、ラン15とその対照ラン(ラン16〜ラン21)との比較、ラン22〜ラン24とその対照ラン(ラン30〜ラン34)との比較により証明される。
ラン25、ラン26で、長鎖分岐ポリエチレンを改質材とする成形加工性、衝撃強度および剛性に優れたエチレン系樹脂組成物の発明を開示した特開2012−214781号公報で使用されたのと同じ長鎖分岐含有エチレン・α−オレフィン共重合体である比較例4のものを使用してフィルム成形実験を行った。確かに、このラン25やラン26によるフィルムの引張弾性率と衝撃強度のバランスは、長鎖分岐を含有するが本発明ではない市販のエチレン・α−オレフィン共重合体である比較例3の共重合体(ラン30、ラン31)や高圧法ポリエチレンである参考例1の重合体(ラン32〜ラン34)に比較すると幾らかの改質性能の向上は観られている。
しかしながら、これらの改質性能の向上は、本発明のエチレン・α−オレフィン共重合体である実施例5(ラン22〜ラン24)や実施例6(ラン28)の共重合体が示した改質効果に比べると劣っており、これは、比較例4の共重合体が本発明の条件(1)、条件(2)を満足しないためである。
本発明である実施例5の共重合体は、より少量(ブレンド量10%)で比較例4の共重合体(ブレンド量30%)と同等かそれを上回る改質効果を発現することが、例えば、ラン23とラン26の比較や、ラン28とラン26の比較により明らかである。
比較例6では、触媒成分(A)として架橋ビスインデニル化合物(ジメチルシリレンビスインデニルジルコニウムジクロリド)を含むオレフィン重合用触媒によるエチレン・1−ヘキセン共重合を、表1に記載の条件のようにH/C2比とヘキセン/C2比を調整して実施することにより、本発明の要件のうち、条件(1)と条件(2)を満足するエチレン・1−ヘキセン共重合体を製造した。
そうして得られた共重合体は、本発明の要件のうち条件(6)及び(7)を満足せず、その結果として、ラン29で成形したフィルムの衝撃強度は、本発明の共重合体である実施例6によるラン28のフィルム等に比べて極めて低いものとなった。更にはラン29で得られたフィルムには、多量のゲルが観察され、外観を極めて悪いものであった。一方、本発明の実施例によるエチレン・α−オレフィン共重合体を改質材として使用して得られたフィルムは、ゲルの少ない優れた外観を呈していた。
以上から、本発明における構成の要件の合理性と有意性、及び本発明の従来技術に対する優越性が明らかである。
以上から明らかなように、本発明のエチレン・α−オレフィン共重合体は、ポリオレフィン系樹脂の改質材として、成形加工特性の改良効果に優れ、同時に、衝撃強度と剛性のバランスの改良効果にも優れるので、薄肉化された成形製品を経済的に有利に提供することが可能である。
したがって、このような望ましい特性を有する成形製品を経済的に有利に提供することのできる本発明のエチレン・α−オレフィン共重合体の工業的価値は極めて大きい。

Claims (20)

  1. 下記の条件(1)〜(2)、(5)及び(7)を満足することを特徴とするエチレン・α−オレフィン共重合体。
    (1)MFRが0.001〜0.1g/10分である
    (2)密度が0.895g/cm以上、0.918g/cm未満である
    (5)示差屈折計、粘度検出器および光散乱検出器を組み合わせたGPC測定装置により測定される分岐指数g’の分子量10万から100万の間での最低値(gc)が、0.40〜0.85である
    (7)クロス分別クロマトグラフィー(CFC)により測定される積分溶出曲線から求められた溶出量が50wt%となる温度以下で溶出する成分のうち分子量が重量平均分子量以上の成分の割合(W)及び積分溶出曲線から求められた溶出量が50wt%となる温度より高い温度で溶出する成分のうち分子量が重量平均分子量未満の成分の割合(W)の和(W+W)が、40重量%を超え、80重量%未満である
  2. 更に、下記の条件(1’)を満足することを特徴とする請求項1に記載のエチレン・α−オレフィン共重合体。
    (1’)MFRが0.005〜0.1g/10分である
  3. 更に、下記の条件(2’)を満足することを特徴とする請求項1又は2に記載のエチレン・α−オレフィン共重合体。
    (2’)密度が0.898〜0.915g/cmである
  4. α−オレフィンは、炭素数が3〜10であることを特徴とする請求項1〜3のいずれか一項に記載のエチレン・α−オレフィン共重合体。
  5. 更に、下記の条件(3)を満足することを特徴とする請求項1〜4のいずれか一項に記載のエチレン・α−オレフィン共重合体。
    (3)ゲルパーミエーションクロマトグラフィー(GPC)により測定される分子量分布Mw/Mnが3.0〜7.0である
  6. 更に、下記の条件(4)を満足することを特徴とする請求項1〜5のいずれか一項に記載のエチレン・α−オレフィン共重合体。
    (4)GPCにより測定される分子量分布Mz/Mwが2.0〜7.0である
  7. 更に、下記の条件(6)を満足することを特徴とする請求項1〜6のいずれか一項に記載のエチレン・α−オレフィン共重合体。
    (6)昇温溶出分別(TREF)により85℃以上で溶出する成分の割合(X)が0〜15重量%である
  8. 更に、下記の条件(8)を満足することを特徴とする請求項1〜7のいずれか一項に記載のエチレン・α−オレフィン共重合体。
    (8)前記W及びCFCにより測定される積分溶出曲線から求められた溶出量が50wt%となる温度より高温で溶出する成分のうち分子量が重量平均分子量以上の成分の割合(W)の和(W+W)が、29重量%を超え、50重量%未満である
  9. 更に、下記の条件(9)を満足することを特徴とする請求項1〜8のいずれか一項に記載のエチレン・α−オレフィン共重合体。
    (9)前記W及びWの差(W−W)が、−5重量%を超え、30重量%未満である
  10. 下記の成分(A)、(B)及び(C)を含むオレフィン重合用触媒によって製造されることを特徴とする請求項1〜9のいずれか一項に記載のエチレン・α−オレフィン共重合体の製造方法。
    成分(A):遷移金属元素を含む架橋シクロペンタジエニルインデニル化合物
    成分(B):成分(A)の化合物と反応してカチオン性メタロセン化合物を生成させる化合物
    成分(C):無機化合物担体
  11. 成分(C)1gに対する成分(B)の金属のモル数の割合は、0.001〜0.020(モル/g)であることを特徴とする請求項10に記載のエチレン・α−オレフィン共重合体の製造方法。
  12. エチレン及びα−オレフィンの共重合は、気相法又はスラリー法によって行われることを特徴とする請求項1〜9のいずれか一項に記載のエチレン・α−オレフィン共重合体の製造方法。
  13. 請求項1〜9のいずれか一項に記載のエチレン・α−オレフィン共重合体(A)と1種類以上の他のオレフィン系樹脂を含有することを特徴とするオレフィン系樹脂組成物。
  14. 該樹脂組成物中のエチレン・α−オレフィン共重合体(A)の含有量が1〜59重量%であることを特徴とする、請求項13に記載のオレフィン系樹脂組成物
  15. (A)以外のオレフィン系樹脂として、(A)以外のエチレン・α−オレフィン共重合体(B)を含有することを特徴とする請求項13又は14に記載のオレフィン系樹脂組成物。
  16. 該他のエチレン・α−オレフィン共重合体(B)が、下記条件(B−1)および(B−2)を満足することを特徴とする請求項15に記載のオレフィン系樹脂組成物。
    (B−1)MFRが0.01〜20g/10分
    (B−2)密度が0.880〜0.970g/cm
  17. 該他のエチレン・α−オレフィン共重合体(B)が、更に、下記条件(B−3)を満足することを特徴とする請求項16に記載のオレフィン系樹脂組成物。
    (B−3)[Mw/Mn]=2.0〜4.0
  18. 前記エチレン・αーオレフィン共重合体(A)と前記エチレン・α−オレフィン共重合体(B)として、下記条件のいずれか1つ以上を満たす重合体を用いることを特徴とする請求項13〜17のいずれか一項に記載のオレフィン系樹脂組成物。
    (AB−1)MFR>MFR
    (AB−2)[Mw/Mn]<[Mw/Mn]
    (MFR及び[Mw/Mn]は、夫々、エチレン・αーオレフィン共重合体(A)のMFR及びMw/Mnを表し、MFR及び[Mw/Mn]は、夫々、エチレン・α−オレフィン共重合体(B)のMFR及びMw/Mnを表す。)
  19. 前記エチレン・αーオレフィン共重合体(B)が、MFRが0.1〜5.0未満のチーグラー触媒により製造された線状低密度ポリエチレン、又はMFRが0.1〜10以下のメタロセン系触媒により製造されたメタロセン系ポリエチレンであることを特徴とする請求項13〜18のいずれか一項に記載のオレフィン系樹脂組成物。
  20. 請求項1〜9のいずれか一項に記載のエチレン・α−共重合体、又は請求項13〜19のいずれか一項に記載の樹脂組成物より得られるフィルム。
JP2016511946A 2014-03-31 2015-03-31 エチレン・α−オレフィン共重合体及びオレフィン系樹脂組成物 Active JP6569667B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014073259 2014-03-31
JP2014073259 2014-03-31
PCT/JP2015/060195 WO2015152266A1 (ja) 2014-03-31 2015-03-31 エチレン・α-オレフィン共重合体及びオレフィン系樹脂組成物

Publications (2)

Publication Number Publication Date
JPWO2015152266A1 true JPWO2015152266A1 (ja) 2017-04-13
JP6569667B2 JP6569667B2 (ja) 2019-09-04

Family

ID=54240585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016511946A Active JP6569667B2 (ja) 2014-03-31 2015-03-31 エチレン・α−オレフィン共重合体及びオレフィン系樹脂組成物

Country Status (4)

Country Link
US (1) US10066036B2 (ja)
JP (1) JP6569667B2 (ja)
CN (1) CN106062018B (ja)
WO (1) WO2015152266A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015152268A1 (ja) * 2014-03-31 2015-10-08 日本ポリエチレン株式会社 エチレン・α-オレフィン共重合体及びオレフィン系樹脂組成物
JP2018115244A (ja) * 2017-01-17 2018-07-26 日本ポリエチレン株式会社 押出ラミネート用エチレン・α−オレフィン共重合体及びラミネート積層体
CN110352213B (zh) 2017-03-10 2022-09-09 住友化学株式会社
CA3065539A1 (en) * 2017-05-31 2018-12-06 Univation Technologies, Llc Blends of linear low density polyethylenes
ES2927248T3 (es) * 2017-05-31 2022-11-03 Univation Tech Llc Combinaciones de polietilenos de baja densidad lineales
KR102272244B1 (ko) * 2018-12-21 2021-07-01 한화솔루션 주식회사 올레핀 중합용 촉매의 제조방법, 올레핀 중합용 촉매 및 올레핀계 중합체
EP3816198A1 (en) 2019-10-28 2021-05-05 Sumitomo Chemical Company Limited Ethylene-alpha-olefin copolymer, method of producing ethylene-alpha-olefin copolymer, ethylene-based resin composition, and film
WO2021096772A1 (en) 2019-11-14 2021-05-20 Exxonmobil Chemical Patents Inc. Gas phase polyethylene copolymers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011137146A (ja) * 2009-12-02 2011-07-14 Japan Polyethylene Corp エチレン系重合体の製造方法
WO2012133717A1 (ja) * 2011-03-30 2012-10-04 日本ポリエチレン株式会社 エチレン系重合体、ポリエチレン系樹脂組成物とその用途、オレフィン重合用触媒成分、該成分を含むオレフィン重合用触媒および該触媒を用いたエチレン系重合体の製造方法
JP2013227271A (ja) * 2012-03-29 2013-11-07 Japan Polyethylene Corp メタロセン化合物、それを含むオレフィン重合用触媒成分およびオレフィン重合用触媒、並びにそのオレフィン重合用触媒を用いたオレフィン重合体の製造方法
JP2013227482A (ja) * 2012-03-29 2013-11-07 Japan Polyethylene Corp エチレン系重合体の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3886551B2 (ja) 1995-07-25 2007-02-28 三井化学株式会社 フィルム用樹脂組成物
JP4553924B2 (ja) 1996-05-17 2010-09-29 ザ ダウ ケミカル カンパニー 共重合体の製造方法およびそれを含有するブレンド組成物
JPH09309926A (ja) 1996-05-17 1997-12-02 Dow Chem Co:The エチレン共重合体の製造方法
US6242545B1 (en) 1997-12-08 2001-06-05 Univation Technologies Polymerization catalyst systems comprising substituted hafinocenes
JP4023897B2 (ja) 1998-03-04 2007-12-19 旭化成ケミカルズ株式会社 クリーン性に優れたポリエチレン製容器
US7208559B2 (en) 2002-12-27 2007-04-24 Mitsui Chemicals, Inc. Ethylened polymer and molded object obtained therefrom
JP4558312B2 (ja) 2002-12-27 2010-10-06 三井化学株式会社 エチレン重合体およびこれから得られる成形体
JP4903357B2 (ja) 2003-03-28 2012-03-28 住友化学株式会社 エチレン重合体
JP4517695B2 (ja) 2003-12-25 2010-08-04 東ソー株式会社 エチレン系重合体およびその製造方法
JP5055805B2 (ja) 2005-09-30 2012-10-24 住友化学株式会社 エチレン−α−オレフィン共重合体、樹脂組成物およびフィルム
JP5205340B2 (ja) 2008-07-02 2013-06-05 日本ポリエチレン株式会社 ポリエチレン樹脂組成物およびそれよりなるインフレーションフィルム
JP5530124B2 (ja) * 2009-07-03 2014-06-25 株式会社日本マイクロニクス 集積回路の試験装置
JP5891902B2 (ja) 2011-03-30 2016-03-23 日本ポリエチレン株式会社 ポリエチレン系樹脂組成物およびその用途
JP6015306B2 (ja) 2012-09-28 2016-10-26 日本ポリエチレン株式会社 メタロセン化合物、それを含むオレフィン重合用触媒成分およびオレフィン重合用触媒、並びにそのオレフィン重合用触媒を用いたオレフィン重合体の製造方法
JP6344138B2 (ja) 2013-08-27 2018-06-20 日本ポリエチレン株式会社 メタロセン化合物、それを含むオレフィン重合用触媒成分およびオレフィン重合用触媒、並びにそのオレフィン重合用触媒を用いたオレフィン重合体の製造方法
JP6152777B2 (ja) 2013-10-25 2017-06-28 日本ポリエチレン株式会社 改質エチレン系重合体の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011137146A (ja) * 2009-12-02 2011-07-14 Japan Polyethylene Corp エチレン系重合体の製造方法
WO2012133717A1 (ja) * 2011-03-30 2012-10-04 日本ポリエチレン株式会社 エチレン系重合体、ポリエチレン系樹脂組成物とその用途、オレフィン重合用触媒成分、該成分を含むオレフィン重合用触媒および該触媒を用いたエチレン系重合体の製造方法
JP2013227271A (ja) * 2012-03-29 2013-11-07 Japan Polyethylene Corp メタロセン化合物、それを含むオレフィン重合用触媒成分およびオレフィン重合用触媒、並びにそのオレフィン重合用触媒を用いたオレフィン重合体の製造方法
JP2013227482A (ja) * 2012-03-29 2013-11-07 Japan Polyethylene Corp エチレン系重合体の製造方法

Also Published As

Publication number Publication date
CN106062018A (zh) 2016-10-26
JP6569667B2 (ja) 2019-09-04
US10066036B2 (en) 2018-09-04
US20170101490A1 (en) 2017-04-13
WO2015152266A1 (ja) 2015-10-08
CN106062018B (zh) 2019-04-09

Similar Documents

Publication Publication Date Title
JP6569667B2 (ja) エチレン・α−オレフィン共重合体及びオレフィン系樹脂組成物
JP6569669B2 (ja) エチレン・α−オレフィン共重合体及びオレフィン系樹脂組成物
JP5414971B2 (ja) エチレン系樹脂組成物によるフィルム
KR20120038798A (ko) 저온 실링성이 우수한 필름용 폴리에틸렌, 및 이의 제조방법
JP6152777B2 (ja) 改質エチレン系重合体の製造方法
JP2015021112A (ja) ポリエチレン樹脂組成物並びにそれよりなるインフレーションフィルムおよび重量物包装用フィルム
JP6569668B2 (ja) エチレン・α−オレフィン共重合体及びオレフィン系樹脂組成物
JP6701655B2 (ja) ポリエチレン系多層フィルム
JP6690167B2 (ja) ポリエチレン系樹脂組成物並びにそれよりなるフィルム
JP6690168B2 (ja) ポリエチレン系樹脂組成物及びフィルム
JP6772444B2 (ja) フィルム用樹脂組成物及びフィルム
CN114867758A (zh) 茂金属和其方法
JP6641837B2 (ja) ポリエチレン系多層フィルム
JP6500459B2 (ja) ポリエチレン樹脂組成物並びにそれよりなるインフレーションフィルムおよび重量物包装用フィルム
JP6812684B2 (ja) エチレン系重合体及びその製造方法
JP2017061654A (ja) ポリエチレン樹脂組成物並びにそれよりなるインフレーションフィルムおよび重量物包装用フィルム
KR20240041262A (ko) 폴리에틸렌 조성물 및 이를 포함하는 이축 연신 필름
KR20220120295A (ko) 폴리에틸렌 조성물 및 이를 포함하는 블로운 필름
JP2017066182A (ja) 食品容器用エチレン・α−オレフィン共重合体及びそれよりなる中空成形容器
KR20240057689A (ko) 폴리에틸렌 조성물 및 이를 포함하는 이축 연신 필름
JP2017066180A (ja) 中空成形用エチレン・α−オレフィン共重合体及びそれよりなる中空成形品
KR20240062822A (ko) 폴리에틸렌 조성물 및 이를 포함하는 이축 연신 필름
KR20240063035A (ko) 폴리에틸렌 조성물 및 이를 포함하는 이축 연신 필름
TW202311310A (zh) 製備聚烯烴之方法及用其製備之聚烯烴
WO2023177956A1 (en) Metal bis(imino) aryl compounds and methods thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190722

R150 Certificate of patent or registration of utility model

Ref document number: 6569667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250