JPWO2015045852A1 - 触媒用炭素粉末ならびに当該触媒用炭素粉末を用いる触媒、電極触媒層、膜電極接合体および燃料電池 - Google Patents

触媒用炭素粉末ならびに当該触媒用炭素粉末を用いる触媒、電極触媒層、膜電極接合体および燃料電池 Download PDF

Info

Publication number
JPWO2015045852A1
JPWO2015045852A1 JP2015539083A JP2015539083A JPWO2015045852A1 JP WO2015045852 A1 JPWO2015045852 A1 JP WO2015045852A1 JP 2015539083 A JP2015539083 A JP 2015539083A JP 2015539083 A JP2015539083 A JP 2015539083A JP WO2015045852 A1 JPWO2015045852 A1 JP WO2015045852A1
Authority
JP
Japan
Prior art keywords
catalyst
carbon powder
fuel cell
carbon
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015539083A
Other languages
English (en)
Other versions
JP6461805B2 (ja
Inventor
高橋 真一
真一 高橋
大間 敦史
敦史 大間
徹也 眞塩
徹也 眞塩
健 秋月
健 秋月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Publication of JPWO2015045852A1 publication Critical patent/JPWO2015045852A1/ja
Application granted granted Critical
Publication of JP6461805B2 publication Critical patent/JP6461805B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8673Electrically conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/618Surface area more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/643Pore diameter less than 2 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本発明は、耐久性に優れる触媒を提供できる炭素粉末および触媒を提供する。本発明の触媒用炭素粉末は、炭素を主成分とする炭素粉末であって、重量あたりのBET比表面積が900m2/g以上であり、かつラマン分光法によって1580cm−1付近で計測されるGバンドのピーク強度(G強度)に対する、1620cm−1付近で計測されるD’バンドのピーク強度(D’強度)の比R’(D’/G強度比)が0.6以下であることを特徴とする。

Description

本発明は、触媒用炭素粉末、特に燃料電池に用いられる触媒用炭素粉末、ならびに当該触媒用炭素粉末を用いる触媒、電極触媒層、膜電極接合体および燃料電池に関するものである。
プロトン伝導性固体高分子膜を用いた固体高分子形燃料電池(PEFC)は、例えば、固体酸化物形燃料電池や溶融炭酸塩形燃料電池など、他のタイプの燃料電池と比較して低温で作動する。このため、固体高分子形燃料電池は、定置用電源や、自動車などの移動体用動力源として期待されており、その実用も開始されている。
このような固体高分子形燃料電池には、一般的に、Pt(白金)やPt合金に代表される高価な金属触媒が用いられている。また、金属触媒を担持する担体としては、撥水性及び耐食性の観点から、黒鉛化カーボンが使用されている。例えば、特許文献1には、[002]面の平均格子面間隔d002が0.338〜0.355nmであり、比表面積が80〜250m/gであり、かさ密度が0.30〜0.45g/mlである担体を用いることが記載される。特許文献1には、当該黒鉛化担体を使用することによって、耐久性に優れることが記載される。
特開2005−26174号公報
しかしながら、特許文献1に記載の担体では、担体の耐久性には優れるものの、比表面積が小さいため、経時的に活性が低下するという問題があった。
したがって、本発明は、上記事情を鑑みてなされたものであり、担体の耐久性を維持しつつ、触媒活性の低下を抑制できる触媒用炭素粉末を提供することを目的とする。
本発明の他の目的は、耐久性および発電性能に優れる触媒、電極触媒層、膜電極接合体及び燃料電池を提供することである。
本発明者らは、上記の問題を解決すべく、鋭意研究を行った結果、特定の比表面積およびD’/G強度比を有する触媒用炭素粉末を担体として使用することによって、上記課題を解決することを見出し、本発明を完成するに至った。
本発明の一実施形態に係る固体高分子形燃料電池の基本構成を示す概略断面図である。図1中、1は固体高分子形燃料電池(PEFC)を;2は固体高分子電解質膜を;3aはアノード触媒層を;3cはカソード触媒層を;4aはアノードガス拡散層を;4cはカソードガス拡散層を;5aはアノードセパレータを;5cはカソードセパレータを;6aはアノードガス流路を;6cはカソードガス流路を;7は冷媒流路を;および10は膜電極接合体(MEA)を、それぞれ、示す。 本発明の一実施形態に係る触媒の形状・構造を示す概略断面説明図である。図2中、20は触媒を;22は触媒金属を;23は担体を;24はメソ孔を;および25はミクロ孔を、それぞれ、示す。 炭素粉末が図2に記載されるものである場合の触媒層における触媒および電解質の関係を一例として示す模式図である。図3中、22は触媒金属を;23は担体を;24はメソ孔を;25はミクロ孔を;および26は電解質を、それぞれ、示す。 実験1において、実施例1及び2で製造された担体A及びBならびに比較例3で製造された担体Eの白金被覆評価結果を示すグラフである。 実験3において、実施例6で製造されたMEA(1)および比較例7で製造されたMEA(2)の発電性能評価結果を示すグラフである。
本発明の触媒用炭素粉末(本明細書中では、単に「炭素粉末」とも称する)は、炭素を主成分とする。ここで、「炭素を主成分とする」とは、炭素のみからなる、実質的に炭素からなる、の双方を含む概念であり、炭素以外の元素が含まれていてもよい。「実質的に炭素からなる」とは、全体の80重量%以上、好ましくは全体の95重量%以上(上限:100重量%未満)が炭素から構成されることを意味する。
また、本発明の触媒用炭素粉末は、下記構成(a)および(b)を満たす:
(a)重量あたりのBET比表面積が900m/g以上である;および
(b)ラマン分光法によって1580cm−1付近で計測されるGバンドのピーク強度(G強度)に対する、1620cm−1付近で計測されるD’バンドのピーク強度(D’強度)の比R’(D’/G強度比)が0.6以下である。なお、本明細書では、ラマン分光法によって1580cm−1付近で計測されるGバンドを、単に「Gバンド」とも称する。本明細書では、ラマン分光法によって1620cm−1付近で計測されるD’バンドを、単に「D’バンド」とも称する。また、GバンドおよびD’バンドのピーク強度を、それぞれ、「G強度」および「D’強度」とも称する。さらに、G強度に対するD’強度の比を、単に「R’値」または「D’/G強度比」とも称する。上記構成を有する触媒用炭素粉末は、比表面積が大きくかつ電気化学的腐食の起点となるエッジ量が少ない。このため、本発明の触媒用炭素粉末を担体として使用することによって、耐久性に優れかつ触媒活性を維持できる触媒が提供できる。
上記特許文献1に記載の担体は、カーボン粒子を2000〜3000℃で熱処理による黒鉛化を行うことによって得られる(段落「0016」)。特許文献1に記載の担体は、黒鉛化処理により担体の耐久性を向上できる。しかしながら、担体の比表面積が250m/g以下と小さいため、電極触媒層形成時の電解質による触媒金属(例えば、白金)被覆率が高い。このため、電極触媒層のガス輸送性が低下し、活性が低下してしまう。
これに対して、本発明に係る炭素粉末は、上記(a)を満たす。上記(a)により、炭素粉末は十分な比表面積を有するため、電気二重層容量が大きい。また、本発明に係る炭素粉末は、上記(b)を満たす。ここで、Gバンドは、ラマン散乱分析で1580cm−1付近に観測されるグラファイト(炭素原子の六角格子内振動)に起因するピークである。また、D’バンドは、ラマン散乱分析で1620cm−1付近にGバンドの肩として観察される。このD’バンドは、グラファイト構造の乱れ(disorder)や欠陥に起因し、グラファイトの結晶サイズが小さい場合やグラフェンシートのエッジが多く存在する場合に現れる。グラフェン分子のエッジ(端部)の電子状態は、グラフェン分子中央部(六員環)と異なり、カーボン腐食の起点となりやすい。すなわち、R’値が小さいとは、グラファイト構造中に存在する電気化学的腐食の起点となるカーボン(グラフェン)のエッジ量が少ないことを意味する。ゆえに、上記(b)により、耐久性を向上でき、触媒活性の低下を効果的に抑制・防止できる。
上記に加えて、本発明に係る炭素粉末は、(c)G強度に対する、1360cm−1付近で計測されるDバンドのピーク強度(D強度)の比R(D/G強度比)が1.7以上であることが好ましい。なお、本明細書では、ラマン分光法によって1360cm−1付近で計測されるDバンドを、単に「Dバンド」とも称する。また、Dバンドのピーク強度を、「D強度」とも称する。さらに、G強度に対するD強度の比を、単に「R値」または「D/G強度比」とも称する。ここで、Dバンドは、ラマン散乱分析で1360cm−1付近に観測され、グラファイト構造の乱れ(disorder)や欠陥に起因し、グラフェン分子の配向性が高い場合やグラファイト化度(黒鉛化度)が高い場合に現れる。すなわち、R値が大きいとは、炭素粉末(担体)のグラファイト化度(黒鉛化度)が低いことを意味する。ゆえに、上記(c)により、炭素粉末表面積当たりの電気二重層容量がより大きくなり、触媒活性をより効果的に向上できる。
なお、Gバンド、D’バンドおよびDバンド、ならびにこれらのピーク強度は、当該分野においてよく知られている。例えば、R. Vidano and D. B Fischbach, J. Am. Ceram. Soc. 61 (1978) 13-17やG. Katagiri, H. Ishida and A. Ishitani, Carbon 26 (1988) 565-571を参照することができる。
したがって、本発明の触媒用炭素粉末は、耐久性に優れ、さらに触媒金属を担持した場合には高い触媒活性を発揮でき、かつ当該活性を維持できる。このため、本発明の触媒用炭素粉末は、触媒、特に燃料電池用触媒の担体として好適に使用できる。すなわち、本発明は、本発明の触媒用炭素粉末に触媒金属が担持されてなる触媒を包含する。本発明の触媒用炭素粉末(担体)は比表面積が高い。このため、本発明の触媒によれば、触媒の分散性を向上して、電気化学反応面積を増加できる、即ち、発電性能を向上できる。また、本発明の触媒用炭素粉末(担体)はカーボンエッジ量が少ない。このため、本発明の触媒によれば、カーボン腐食による性能低下を抑制・防止できる、即ち、耐久性を向上できる。本発明の触媒用炭素粉末に触媒金属が担持されてなる触媒は、耐久性に優れ、高い触媒活性を発揮でき(触媒反応を促進でき)、かつ当該活性を維持できる。このため、このような触媒を用いた触媒層を有する膜電極接合体および燃料電池は、発電性能及び耐久性に優れる。したがって、本発明は、上記触媒および電解質を含む、燃料電池用電極触媒層、当該燃料電池用電極触媒層を含む、燃料電池用膜電極接合体、当該燃料電池用膜電極接合体を含む燃料電池を提供する。
以下、適宜図面を参照しながら、本発明の触媒の一実施形態、並びにこれを使用した触媒層、膜電極接合体(MEA)および燃料電池の一実施形態を詳細に説明する。しかし、本発明は、以下の実施形態のみには制限されない。なお、各図面は説明の便宜上誇張されて表現されており、各図面における各構成要素の寸法比率が実際とは異なる場合がある。また、本発明の実施の形態を図面を参照しながら説明した場合では、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
また、本明細書において、範囲を示す「X〜Y」は「X以上Y以下」を意味する。また、特記しない限り、操作および物性等の測定は室温(20〜25℃)/相対湿度40〜50%の条件で測定する。
[燃料電池]
燃料電池は、膜電極接合体(MEA)と、燃料ガスが流れる燃料ガス流路を有するアノード側セパレータと酸化剤ガスが流れる酸化剤ガス流路を有するカソード側セパレータとからなる一対のセパレータとを有する。本形態の燃料電池は、耐久性に優れ、かつ高い発電性能を発揮できる。
図1は、本発明の一実施形態に係る固体高分子形燃料電池(PEFC)1の基本構成を示す概略図である。PEFC 1は、まず、固体高分子電解質膜2と、これを挟持する一対の触媒層(アノード触媒層3aおよびカソード触媒層3c)とを有する。そして、固体高分子電解質膜2と触媒層(3a、3c)との積層体はさらに、一対のガス拡散層(GDL)(アノードガス拡散層4aおよびカソードガス拡散層4c)により挟持されている。このように、固体高分子電解質膜2、一対の触媒層(3a、3c)および一対のガス拡散層(4a、4c)は、積層された状態で膜電極接合体(MEA)10を構成する。
PEFC1において、MEA 10はさらに、一対のセパレータ(アノードセパレータ5aおよびカソードセパレータ5c)により挟持されている。図1において、セパレータ(5a、5c)は、図示したMEA 10の両端に位置するように図示されている。ただし、複数のMEAが積層されてなる燃料電池スタックでは、セパレータは、隣接するPEFC(図示せず)のためのセパレータとしても用いられるのが一般的である。換言すれば、燃料電池スタックにおいてMEAは、セパレータを介して順次積層されることにより、スタックを構成することとなる。なお、実際の燃料電池スタックにおいては、セパレータ(5a、5c)と固体高分子電解質膜2との間や、PEFC 1とこれと隣接する他のPEFCとの間にガスシール部が配置されるが、図1ではこれらの記載を省略する。
セパレータ(5a、5c)は、例えば、厚さ0.5mm以下の薄板にプレス処理を施すことで図1に示すような凹凸状の形状に成形することにより得られる。セパレータ(5a、5c)のMEA側から見た凸部はMEA 10と接触している。これにより、MEA 10との電気的な接続が確保される。また、セパレータ(5a、5c)のMEA側から見た凹部(セパレータの有する凹凸状の形状に起因して生じるセパレータとMEAとの間の空間)は、PEFC 1の運転時にガスを流通させるためのガス流路として機能する。具体的には、アノードセパレータ5aのガス流路6aには燃料ガス(例えば、水素など)を流通させ、カソードセパレータ5cのガス流路6cには酸化剤ガス(例えば、空気など)を流通させる。
一方、セパレータ(5a、5c)のMEA側とは反対の側から見た凹部は、PEFC 1の運転時にPEFCを冷却するための冷媒(例えば、水)を流通させるための冷媒流路7とされる。さらに、セパレータには通常、マニホールド(図示せず)が設けられる。このマニホールドは、スタックを構成した際に各セルを連結するための連結手段として機能する。かような構成とすることで、燃料電池スタックの機械的強度が確保されうる。
なお、図1に示す実施形態においては、セパレータ(5a、5c)は凹凸状の形状に成形されている。ただし、セパレータは、かような凹凸状の形態のみに限定されるわけではなく、ガス流路および冷媒流路の機能を発揮できる限り、平板状、一部凹凸状などの任意の形態であってもよい。
上記のような、本発明のMEAを有する燃料電池は、優れた発電性能および耐久性を発揮する。ここで、燃料電池の種類としては、特に限定されず、上記した説明中では高分子電解質形燃料電池を例に挙げて説明したが、この他にも、アルカリ型燃料電池、ダイレクトメタノール型燃料電池、マイクロ燃料電池などが挙げられる。なかでも小型かつ高密度・高出力化が可能であるから、高分子電解質形燃料電池(PEFC)が好ましく挙げられる。また、前記燃料電池は、搭載スペースが限定される車両などの移動体用電源の他、定置用電源などとして有用である。なかでも、比較的長時間の運転停止後に高い出力電圧が要求される自動車などの移動体用電源として用いられることが特に好ましい。
燃料電池を運転する際に用いられる燃料は特に限定されない。例えば、水素、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、第2級ブタノール、第3級ブタノール、ジメチルエーテル、ジエチルエーテル、エチレングリコール、ジエチレングリコールなどが用いられうる。なかでも、高出力化が可能である点で、水素やメタノールが好ましく用いられる。
また、燃料電池の適用用途は特に限定されるものではないが、車両に適用することが好ましい。本発明の電解質膜−電極接合体は、発電性能および耐久性に優れ、小型化が実現可能である。このため、本発明の燃料電池は、車載性の点から、車両に該燃料電池を適用した場合、特に有利である。
以下、本形態の燃料電池を構成する部材について簡単に説明するが、本発明の技術的範囲は下記の形態のみに制限されない。
[触媒(電極触媒)]
触媒(電極触媒)は、炭素粉末(担体)および上記炭素粉末に担持される触媒金属から構成される。このうち、炭素粉末(担体)は、下記(a)及び(b)を満たす:
(a)重量あたりのBET比表面積が900m/g以上である;および
(b)G強度に対するD’強度の比R’(D’/G強度比)が0.6以下である。
上記(a)により、炭素粉末は十分な比表面積を有するため、大きな電気二重層容量を達成できる。このため、上記(a)を満たす炭素粉末に触媒金属を担持してなる触媒は高活性を発揮できる。一方、炭素粉末の重量あたりのBET比表面積が900m/g未満であると、比表面積が小さいため、このような炭素粉末に触媒金属を担持してなる触媒を用いて電極触媒層を形成する際には、電解質による触媒被覆率が高くなる。このため、電極触媒層のガス輸送性が低下し、活性が低下してしまう。電気二重層容量のより向上を考慮すると、炭素粉末のBET比表面積は、1000〜3000m/gであることが好ましく、1100〜1800m/gであることがより好ましい。
なお、本明細書において、「BET比表面積(m/g担体)」は、窒素吸着法により測定される。詳細には、サンプル(炭素粉末、触媒粉末) 約0.04〜0.07gを精秤し、試料管に封入する。この試料管を真空乾燥器で90℃×数時間予備乾燥し、測定用サンプルとする。秤量には、株式会社島津製作所製電子天秤(AW220)を用いる。なお、塗布シートの場合には、これの全重量から、同面積のテフロン(登録商標)(基材)重量を差し引いた塗布層の正味の重量約0.03〜0.04gを試料重量として用いる。次に、下記測定条件にて、BET比表面積を測定する。吸着・脱着等温線の吸着側において、相対圧(P/P0)約0.00〜0.45の範囲から、BETプロットを作成することで、その傾きと切片からBET比表面積を算出する。
また、上記(b)により、グラファイト構造中に存在する電気化学的腐食の起点となるカーボン(グラフェン)のエッジ量を十分少なくできる。このため、このような炭素粉末を触媒に用いることによって、耐久性を向上でき、触媒金属を担持した際の触媒活性の低下を効果的に抑制・防止できる。耐久性のより向上を考慮すると、炭素粉末のR’値(D’/G強度比)は、0〜0.6であることが好ましく、0〜0.51であることがより好ましい。
上記に加えて、本発明に係る炭素粉末は、(c)G強度に対するD強度の比R(D/G強度比)が1.7以上であることが好ましい。このような炭素粉末(担体)はグラファイト化度(黒鉛化度)が低いため、炭素粉末表面積当たりの電気二重層容量が大きくなり、触媒活性をより効果的に向上できる。電気二重層容量(触媒活性)のより向上を考慮すると、炭素粉末のR値(D/G強度比)は、1.75を超えて2.5以下であることが好ましく、1.8〜2.4であることがより好ましい。
なお、本明細書において、R’値は、顕微ラマン分光器にて、炭素材料のラマンスペクトルを計測し、D’バンドと呼ばれる1620cm−1付近のピーク強度(D’強度)と、Gバンドと呼ばれる1580cm−1付近のピーク強度(G強度)との相対的強度比、つまりピーク面積比(D’強度/G強度)を算出することにより求められる。同様にして、R値は、顕微ラマン分光器にて、炭素材料のラマンスペクトルを計測し、Dバンドと呼ばれる1360cm−1付近のピーク強度(D強度)と、Gバンドと呼ばれる1580cm−1付近のピーク強度(G強度)との相対的強度比、つまりピーク面積比(D強度/G強度)を算出することにより求められる。該ピーク面積は、下記に示されるラマン分光測定により求められたものを採用する。
(ラマン分光測定法)
ラマンスペクトルは、測定装置として、顕微レーザーラマンSENTERRA(ブルカー・オプティクス製)を使用し、室温(25℃)で、露光30秒×積算4回、以下の条件にて測定する。なお、Gバンド、D’バンド及びDバンドのピークは、ガウス分布によるピークフィッティングによって決定できる。
また、炭素粉末の大きさは、特に限定されない。担持の容易さ、触媒利用率、電極触媒層の厚みを適切な範囲で制御するなどの観点からは、炭素粉末の平均粒径(直径)が好ましくは5〜2000nm、より好ましくは10〜200nm、特に好ましくは20〜100nm程度とするのがよい。「炭素粉末の平均粒径」の値としては、特に言及のない限り、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数〜数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。また、「粒子径(直径)」とは、粒子の中心を通りかつ粒子の輪郭線上の任意の2点間の距離のうち、最大の距離を意味するものとする。
炭素粉末が上記(a)及び(b)、特に好ましくは(a)、(b)及び(c)を満たすものであれば、その構造は特に制限されない。好ましくは、炭素粉末は、下記構成(i)及び(ii)をさらに満たす:
(i)半径が1nm未満の空孔(一次空孔)および半径1nm以上の空孔(一次空孔)を有する;および
(ii)前記半径が1nm未満の空孔の空孔容積は0.3cc/g担体以上である。
または、炭素粉末は、下記構成(i)及び(iv)をさらに満たすことが好ましい:
(i)半径が1nm未満の空孔および半径1nm以上の空孔を有する;および
(iv)前記半径が1nm未満の空孔の空孔分布のモード半径が0.3nm以上1nm未満である。
なお、本明細書中では、半径が1nm未満の空孔を「ミクロ孔」とも称する。また、本明細書中では、半径1nm以上の空孔を「メソ孔」とも称する。
上記(ii)により、電解質や触媒金属がほとんどまたは全く進入できないミクロ孔の空孔容積を十分確保できる。また、上記(iv)により、ミクロ孔のモード径を大きく設定することができる。このため、このような炭素粉末に触媒金属を担持させてなる触媒では、ガスの輸送パスを十分確保できる。ゆえに、メソ孔内の触媒金属に酸素等のガスを効率よく輸送できる、すなわち、ガス輸送抵抗を低減できる。当該構成により、ガス(例えば、酸素)がミクロ孔内を通過して(ガス輸送性が向上して)、ガスを効率よく、触媒と接触させることができる。
または、炭素粉末は、上記構成(i)、(ii)及び(iv)をさらに満たすことが好ましい。
上記(ii)において、ガス輸送性の向上効果を考慮すると、より好ましくは、ミクロ孔の空孔容積は、0.3〜2cc/g担体であり、さらにより好ましくは0.4〜1.5cc/g担体であり、0.4〜1.0cc/g担体であることが特に好ましい。また、上記(iv)において、より好ましくは、ミクロ孔の空孔分布のモード半径は、0.4〜1nmであり、0.5〜0.8nmであることが特に好ましい。ミクロ孔の空孔容積および/またはモード径が上記したような範囲にあれば、ガス輸送を行うのに十分なミクロ孔が確保でき、ガス輸送抵抗が小さい。このため、当該ミクロ孔(パス)を介して十分量のガスをメソ孔に存在する触媒金属の表面に輸送できるため、本発明の炭素粉末を用いた触媒は、より高い触媒活性を発揮できる、即ち、触媒反応をより効率的に促進できる。また、ミクロ孔内には電解質(アイオノマ)や液体(例えば、水)が侵入できず、ガスのみを選択的に通す(ガス輸送抵抗を低減できる)。なお、本明細書では、半径1nm未満の空孔の空孔容積を単に「ミクロ孔の空孔容積」とも称する。同様にして、本明細書では、ミクロ孔の空孔分布のモード半径を単に「ミクロ孔のモード径」とも称する。
上記に加えて、炭素粉末半径1nm以上の空孔(メソ孔)の空孔容積は、特に制限されないが、0.4cc/g担体以上、より好ましくは0.4〜3cc/g担体であり、さらにより好ましくは0.4〜1.5cc/g担体であり、特に好ましくは0.5〜1.2cc/g担体であることが好ましい。空孔容積が上記したような範囲にあれば、炭素粉末のメソ孔により多くの触媒金属を格納(担持)でき、触媒層での電解質と触媒金属とを物理的に離す(触媒金属と電解質との接触をより有効に抑制・防止できる)。ゆえに、このような炭素粉末を用いる触媒は、触媒金属の活性をより有効に利用できる。また、多くのメソ孔の存在により、本発明による作用・効果をさらに顕著に発揮して、触媒反応をより効果的に促進できる。加えて、ミクロ孔がガスの輸送パスとして作用して、水により三相界面をより顕著な形成して、触媒活性をより向上できる。なお、本明細書では、半径1nm以上の空孔の空孔容積を単に「メソ孔の空孔容積」とも称する。
炭素粉末の半径1nm以上の空孔(メソ孔)の空孔分布のモード半径(最頻度径)は、特に制限されないが、1〜5nm、より好ましくは1〜4nmであり、特に好ましくは1〜3nmであることが好ましい。上記したようなメソ孔の空孔分布のモード径であれば、炭素粉末は、メソ孔により十分量の触媒金属を格納(担持)でき、触媒層での電解質と触媒金属とを物理的に離す(触媒金属と電解質との接触をより有効に抑制・防止できる)。ゆえに、このような炭素粉末を用いる触媒は、触媒金属の活性をより有効に利用できる。また、大容積のメソ孔の存在により、本発明による作用・効果をさらに顕著に発揮して、触媒反応をより効果的に促進できる。加えて、ミクロ孔がガスの輸送パスとして作用して、水により三相界面をより顕著な形成して、触媒活性をより向上できる。なお、本明細書では、メソ孔の空孔分布のモード半径を単に「メソ孔のモード径」とも称する。
「ミクロ孔の空孔の半径(nm)」は、窒素吸着法(MP法)により測定される空孔の半径を意味する。また、「ミクロ孔の空孔分布のモード半径(nm)」は、窒素吸着法(MP法)により得られる微分細孔分布曲線においてピーク値(最大頻度)をとる点の空孔半径を意味する。ここで、ミクロ孔の空孔半径の下限は、窒素吸着法により測定可能な下限値、すなわち、0.42nm以上である。同様にして、「メソ孔の空孔の半径(nm)」は、窒素吸着法(DH法)により測定される空孔の半径を意味する。また、「メソ孔の空孔分布のモード半径(nm)」は、窒素吸着法(DH法)により得られる微分細孔分布曲線においてピーク値(最大頻度)をとる点の空孔半径を意味する。ここで、メソ孔の空孔半径の上限は、特に制限されないが、5nm以下である。
「ミクロ孔の空孔容積」は、炭素粉末に存在する半径1nm未満のミクロ孔の総容積を意味し、担体1gあたりの容積(cc/g担体)で表される。「ミクロ孔の空孔容積(cc/g担体)」は、窒素吸着法(MP法)によって求めた微分細孔分布曲線の下部の面積(積分値)として算出される。同様にして、「メソ孔の空孔容積」は、炭素粉末に存在する半径1nm以上のメソ孔の総容積を意味し、担体1gあたりの容積(cc/g担体)で表される。「メソ孔の空孔容積(cc/g担体)」は、窒素吸着法(DH法)によって求めた微分細孔分布曲線の下部の面積(積分値)として算出される。
「微分細孔分布」とは、細孔径を横軸に、炭素粉末中のその細孔径に相当する細孔容積を縦軸にプロットした分布曲線である。すなわち、窒素吸着法(ミクロ孔の場合にはMP法;メソ孔の場合にはDH法)により得られる炭素粉末の空孔容積をVとし、空孔直径をDとした際の、差分空孔容積dVを空孔直径の対数差分d(logD)で割った値(dV/d(logD))を求める。そして、このdV/d(logD)を各区分の平均空孔直径に対してプロットすることにより微分細孔分布曲線が得られる。差分空孔容積dVとは、測定ポイント間の空孔容積の増加分をいう。
ここで、窒素吸着法(MP法)によるミクロ孔の半径及び空孔容積の測定方法は、特に制限されず、例えば、「吸着の科学」(第2版 近藤精一、石川達雄、安部郁夫 共著、丸善株式会社)、「燃料電池の解析手法」(高須芳雄、吉武優、石原達己 編、化学同人)、R. Sh. Mikhail, S. Brunauer, E. E. Bodor J.Colloid Interface Sci.,26, 45(1968)等の公知の文献に記載される方法が採用できる。本明細書では、窒素吸着法(MP法)によるミクロ孔の半径及び空孔容積は、R. Sh. Mikhail, S. Brunauer, E. E. Bodor J.Colloid Interface Sci.,26, 45(1968)に記載される方法によって、測定された値である。
また、窒素吸着法(DH法)によるメソ孔の半径及び空孔容積の測定方法もまた、特に制限されず、例えば、「吸着の科学」(第2版 近藤精一、石川達雄、安部郁夫 共著、丸善株式会社)や「燃料電池の解析手法」(高須芳雄、吉武優、石原達己 編、化学同人)、D. Dollion, G. R. Heal : J. Appl. Chem., 14, 109 (1964)等の公知の文献に記載される方法が採用できる。本明細書では、窒素吸着法(DH法)によるメソ孔の半径及び空孔容積は、D. Dollion, G. R. Heal : J. Appl. Chem., 14, 109 (1964) に記載される方法によって、測定された値である。
上記したような特定の空孔分布を有する炭素粉末の製造方法は、特に制限されない。具体的には、炭素材料を熱処理する方法が好ましく使用される。または、特開2010−208887号公報(US 2011/0318254 A1に該当)や国際公開第2009/75264号(US 2011/0058308 A1に該当)などの公報に記載される方法に従って、ミクロ孔及びメソ孔を有しかつミクロ孔の空孔容積が0.3cc/g担体以上である炭素材料を製造し、この炭素材料を熱処理する方法;および特開2010−208887号公報や国際公開第2009/75264号などの公報に記載される方法に従って、ミクロ孔及びメソ孔を有しかつミクロ孔の空孔分布のモード半径が0.3nm以上1nm未満である炭素材料を製造し、この炭素材料を熱処理する方法が好ましく使用される。
ここで、炭素材料の熱処理条件は、上記構成(a)及び(b)または上記構成(a)、(b)及び(c)を達成できる条件であれば特に制限されない。具体的には、熱処理温度は、1800℃未満であることが好ましく、より好ましくは1300℃を超えて1780℃、さらにより好ましくは1400〜1750℃、特に好ましくは1500〜1700℃である。熱処理における昇温速度は、100〜1000℃/時間であることが好ましく、300〜800℃/時間であることが特に好ましい。熱処理時間(所定の熱処理温度での保持時間)は、1〜10分であることが好ましく、2〜8分であることが特に好ましい。なお、熱処理は、空気雰囲気下でも、あるいはアルゴンガスや窒素ガス等の不活性ガス雰囲気下で行うことができる。このような条件であれば、上記構成(a)及び(b)または上記構成(a)、(b)及び(c)を満たす炭素粉末が簡便に得られる。なお、熱処理条件が上記下限を下回る(熱処理条件が緩やかすぎる)場合には、炭素(グラフェン)のエッジ量を十分低減できない可能性がある。逆に、熱処理条件が上記上限を超える(熱処理条件が厳しすぎる)場合には、黒鉛化が進みすぎて、炭素(グラフェン)のBET比表面積が小さくなりすぎる可能性がある。
炭素材料の材質は、主成分がカーボンであれば、特に制限されないが、上述したBET比表面積及びR’値または上述したBET比表面積、R’値及びR値を満たす炭素粉末を形成しやすいものが好ましい。また、空孔容積またはモード径を有する空孔(一次空孔)を担体の内部に形成することができ、かつ、触媒成分をメソ孔内部に分散状態で担持させるのに充分な比表面積と充分な電子伝導性とを有するものがより好ましい。後者の場合、炭素材料が上記(i)ならびに(ii)および/または(iv)を満たすことが特に好ましい。具体的には、カーボンブラック(ケッチェンブラック、オイルファーネスブラック、チャネルブラック、ランプブラック、サーマルブラック、アセチレンブラックなど)、活性炭などからなるカーボン粒子が挙げられる。なお、「主成分がカーボンである」とは、主成分として炭素原子を含むことをいい、炭素原子のみからなる、実質的に炭素原子からなる、の双方を含む概念であり、炭素原子以外の元素が含まれていてもよい。「実質的に炭素原子からなる」とは、2〜3重量%程度以下の不純物の混入が許容されうることを意味する。
炭素材料のBET比表面積は、特に制限されないが、実質的に炭素粉末のBET比表面積と同等である。炭素材料のBET比表面積は、900m/g以上、好ましくは1000〜3000m/g、より好ましくは1100〜1800m/g、特に好ましくは1200〜1800m/gである。上記したような比表面積であれば、十分なガス輸送性(より低いガス輸送抵抗)および性能(十分量の触媒金属担持)を達成できる。
炭素材料の平均粒径(平均2次粒子径)は、特に制限されないが、20〜100nmであることが好ましい。または、担持の容易さ、触媒利用率などの観点から、炭素材料の平均粒径(平均1次粒子径)が1〜10nm、好ましくは2〜5nmとするのがよい。かような範囲であれば、担体に上記空孔構造を設けた場合であっても機械的強度が維持され、かつ、触媒層を適切な範囲で制御することができる。「炭素材料の平均粒径」の値としては、特に言及のない限り、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数〜数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。また、「粒子径(直径)」とは、粒子の中心を通りかつ粒子の輪郭線上の任意の2点間の距離のうち、最大の距離を意味するものとする。
本発明で使用できる触媒金属は、電気的化学反応の触媒作用をする機能を有する。アノード触媒層に用いられる触媒金属は、水素の酸化反応に触媒作用を有するものであれば特に制限はなく公知の触媒が同様にして使用できる。また、カソード触媒層に用いられる触媒金属もまた、酸素の還元反応に触媒作用を有するものであれば特に制限はなく公知の触媒が同様にして使用できる。具体的には、白金、ルテニウム、イリジウム、ロジウム、パラジウム、オスミウム、タングステン、鉛、鉄、銅、銀、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウム等の金属およびこれらの合金などから選択されうる。
これらのうち、触媒活性、一酸化炭素等に対する耐被毒性、耐熱性などを向上させるために、少なくとも白金を含むものが好ましく用いられる。すなわち、触媒金属は、白金であるまたは白金と白金以外の金属成分を含むことが好ましく、白金または白金含有合金であることがより好ましい。このような触媒金属は、高い活性を発揮できる。特に触媒金属が白金である場合には、小粒径の白金を炭素粉末(担体)表面に分散できるため、白金使用量を低減しても重量あたりの白金表面積を維持できる。また、触媒金属が白金と白金以外の金属成分を含む場合には、高価な白金の使用量を低減できるため、コストの観点から好ましい。前記合金の組成は、合金化する金属の種類にもよるが、白金の含有量を30〜90原子%とし、白金と合金化する金属の含有量を10〜70原子%とするのがよい。なお、合金とは、一般に金属元素に1種以上の金属元素または非金属元素を加えたものであって、金属的性質をもっているものの総称である。合金の組織には、成分元素が別個の結晶となるいわば混合物である共晶合金、成分元素が完全に溶け合い固溶体となっているもの、成分元素が金属間化合物または金属と非金属との化合物を形成しているものなどがあり、本願ではいずれであってもよい。この際、アノード触媒層に用いられる触媒金属およびカソード触媒層に用いられる触媒金属は、上記の中から適宜選択されうる。本明細書では、特記しない限り、アノード触媒層用およびカソード触媒層用の触媒金属についての説明は、両者について同様の定義である。しかしながら、アノード触媒層およびカソード触媒層の触媒金属は同一である必要はなく、上記したような所望の作用を奏するように、適宜選択されうる。
触媒金属(触媒成分)の形状や大きさは、特に制限されず公知の触媒成分と同様の形状および大きさが採用されうる。形状としては、例えば、粒状、鱗片状、層状などのものが使用できるが、好ましくは粒状である。この際、触媒金属(触媒金属粒子)の平均粒径(直径)は、特に制限されないが、3nm以上、より好ましくは3nm超30nm以下、特に好ましくは3nm超10nm以下であることが好ましい。触媒金属の平均粒径が3nm以上であれば、触媒金属が炭素粉末(例えば、炭素粉末のメソ孔内)に比較的強固に担持され、触媒層内で電解質と接触するのをより有効に抑制・防止される。また、炭素粉末がミクロ孔を有する場合には、ミクロ孔が触媒金属で塞がれずに残存し、ガスの輸送パスがより良好に確保されて、ガス輸送抵抗をより低減できる。また、電位変化による溶出を防止し、経時的な性能低下をも抑制できる。このため、触媒活性をより向上できる、すなわち、触媒反応をより効率的に促進できる。一方、触媒金属粒子の平均粒径が30nm以下であれば、炭素粉末(例えば、炭素粉末のメソ孔内部)に触媒金属を簡便な方法で担持することができ、触媒金属の電解質被覆率を低減することができる。なお、本発明における「触媒金属粒子の平均粒径」は、X線回折における触媒金属成分の回折ピークの半値幅より求められる結晶子径や、透過型電子顕微鏡(TEM)より調べられる触媒金属粒子の粒子径の平均値として測定されうる。
本形態において、単位触媒塗布面積当たりの触媒金属の含有量(mg/cm)は、十分な触媒の担体上での分散度、発電性能が得られる限り特に制限されず、例えば、0.01〜1mg/cmである。ただし、触媒が白金または白金含有合金を含む場合、単位触媒塗布面積当たりの白金含有量が0.5mg/cm以下であることが好ましい。白金(Pt)や白金合金に代表される高価な貴金属触媒の使用は燃料電池の高価格要因となっている。したがって、高価な白金の使用量(白金含有量)を上記範囲まで低減し、コストを削減することが好ましい。下限値は発電性能が得られる限り特に制限されず、例えば、0.01mg/cm以上である。より好ましくは、当該白金含有量は0.02〜0.4mg/cmである。本形態では、担体の空孔構造を制御することにより、触媒重量あたりの活性を向上させることができるため、高価な触媒の使用量を低減することが可能となる。
なお、本明細書において、「単位触媒塗布面積当たりの触媒(白金)含有量(mg/cm)」の測定(確認)には、誘導結合プラズマ発光分光法(ICP)を用いる。所望の「単位触媒塗布面積当たりの触媒(白金)含有量(mg/cm)」にせしめる方法も当業者であれば容易に行うことができ、スラリーの組成(触媒濃度)と塗布量を制御することで量を調整することができる。
また、担体における触媒の担持量(担持率とも称する場合がある)は、触媒担持体(つまり、担体および触媒)の全量に対して、好ましくは10〜80重量%、より好ましくは20〜70重量%とするのがよい。担持量が前記範囲であれば、十分な触媒成分の担体上での分散度、発電性能の向上、経済上での利点、単位重量あたりの触媒活性が達成できるため好ましい。
なお、炭素粉末が上記(a)及び(b)、特に好ましくは(a)、(b)及び(c)を満たすものであれば触媒の構造は特に制限されないが、上述したように、炭素粉末は、さらに上記(i)ならびに(ii)および/または(iv)を満たすことが特に好ましい。この場合には、触媒(本明細書中では、「電極触媒」とも称する)は、本発明の炭素粉末(触媒担体)および前記炭素粉末に担持される触媒金属からなり、下記構成(i)〜(iii)を満たすことが好ましい:
(i)半径が1nm未満の空孔(一次空孔)および半径1nm以上の空孔(一次空孔)を有する;
(ii)前記半径が1nm未満の空孔の空孔容積は0.3cc/g担体以上である;および
(iii)前記触媒金属の少なくとも一部は前記半径1nm以上の空孔の内部に担持されている。
同様にして、触媒(本明細書中では、「電極触媒」とも称する)は、本発明の炭素粉末(触媒担体)および前記炭素粉末に担持される触媒金属からなり、下記構成(i)、(iv)および(iii)を満たすことが好ましい:
(i)前記触媒は半径が1nm未満の空孔および半径1nm以上の空孔を有する;
(iv)前記半径が1nm未満の空孔の空孔分布のモード半径が0.3nm以上1nm未満である;および
(iii)前記触媒金属の少なくとも一部は前記半径1nm以上の空孔の内部に担持されている。
本発明者らは、触媒が電解質と接触しない場合であっても、水により三相界面を形成することによって、触媒を有効に利用できることを見出した。このため、上記(iii)触媒金属を電解質が進入できないメソ孔内部に担持する構成をとることによって、触媒活性を向上できる。
一方、触媒金属を電解質が進入できないメソ孔内部に担持する場合には、酸素等のガスの輸送距離が増大してガス輸送性が低下するため、十分な触媒活性を引き出せずに、高負荷条件では触媒性能が低下してしまう。これに対して、上記(ii)電解質や触媒金属がほとんどまたは全く進入できないミクロ孔の空孔容積を十分確保するまたは上記(iv)ミクロ孔のモード径を大きく設定することによって、ガスの輸送パスを十分確保できる。ゆえに、メソ孔内の触媒金属に酸素等のガスを効率よく輸送できる、すなわち、ガス輸送抵抗を低減できる。当該構成により、ガス(例えば、酸素)がミクロ孔内を通過して(ガス輸送性が向上して)、ガスを効率よく、触媒と接触させることができる。
したがって、上記構成(i)〜(iii)または上記構成(i)、(iv)および(iii)を満たす場合には、ミクロ孔が大容積で存在するため、メソ孔に存在する触媒金属の表面に当該ミクロ孔(パス)を介して反応ガスを輸送できる、ガス輸送抵抗が小さい。ゆえに、触媒は、高い触媒活性を発揮できる、すなわち、触媒反応を促進できる。このため、本発明の触媒を用いた触媒層を有する膜電極接合体および燃料電池は、発電性能に優れる。
以下、上記構成(i)〜(iii)または上記構成(i)、(iv)および(iii)を満たす形態について詳述する。しかし、下記は本発明の好ましい形態であり、本発明は下記形態に限定されない。
図2は、上記構成(i)〜(iii)または上記構成(i)、(iv)および(iii)を満たす触媒の形状・構造を示す概略断面説明図である。図2に示される触媒20は、触媒金属22および触媒担体(本発明の炭素粉末)23からなる。また、触媒20は、半径が1nm未満の空孔(ミクロ孔)25および半径1nm以上の空孔(メソ孔)24を有する。ここで、触媒金属22は、メソ孔24の内部に担持される。また、触媒金属22は、少なくとも一部がメソ孔24の内部に担持されていればよく、一部が触媒担体23表面にされていてもよい。しかし、触媒層での電解質と触媒金属の接触を防ぐという観点からは、実質的にすべての触媒金属22がメソ孔24の内部に担持されることが好ましい。ここで、「実質的にすべての触媒金属」とは、十分な触媒活性を向上できる量であれば特に制限されない。「実質的にすべての触媒金属」は、全触媒金属において、好ましくは50重量%以上(上限:100重量%)、より好ましくは80重量%以上(上限:100重量%)の量で存在する。
本明細書において、「触媒金属がメソ孔の内部に担持される」ことは、触媒担体への触媒金属の担持前後のメソ孔の容積の減少によって確認できる。詳細には、触媒担体(以下、単に「担体」とも称する)は、ミクロ孔およびメソ孔を有し、各空孔はそれぞれ一定の容積を有しているが、触媒金属がこれらの空孔に担持されると、各空孔の容積は減少する。したがって、触媒金属担持前の触媒(担体)のメソ孔の容積と触媒金属担持後の触媒(担体)のメソ孔の容積の差[=(担持前の容積)−(担持後の容積)]が0を超える場合には、「触媒金属がメソ孔の内部に担持される」こととなる。同様にして、触媒金属担持前の触媒(担体)のミクロ孔の容積と触媒金属担持後の触媒(担体)のミクロ孔の容積の差[=(担持前の容積)−(担持後の容積)]が0を超える場合には、「触媒金属がミクロ孔の内部に担持される」こととなる。好ましくは、触媒金属が、ミクロ孔よりメソ孔に多く担持される(即ち、担持前後のメソ孔の容積の減少値>担持前後のミクロ孔の容積の減少値)。これにより、ガス輸送抵抗を低減し、ガス輸送のためのパスを十分確保できるからである。ガス輸送抵抗の低減、ガス輸送のためのパスの確保などを考慮すると、上記触媒金属担持前後のメソ孔の空孔容積の減少値が0.02cc/g以上であることが好ましく、0.02〜0.4cc/gであることがより好ましい。
また、触媒(触媒金属担持後)の半径1nm未満の空孔(ミクロ孔)の空孔容積は0.3cc/g担体以上であるおよび/または(触媒金属担持後の触媒の)ミクロ孔の空孔分布のモード半径(最頻度径)が0.3nm以上1nm未満である。好ましくは、ミクロ孔の空孔容積は0.3cc/g担体以上でありかつミクロ孔の空孔分布のモード半径が0.3nm以上1nm未満である。ミクロ孔の空孔容積および/またはモード径が上記したような範囲にあれば、ガス輸送を行うのに十分なミクロ孔が確保でき、ガス輸送抵抗が小さい。このため、当該ミクロ孔(パス)を介して十分量のガスをメソ孔に存在する触媒金属の表面に輸送できるため、本発明の触媒は、高い触媒活性を発揮できる、即ち、触媒反応を促進できる。また、ミクロ孔内には電解質(アイオノマ)や液体(例えば、水)が侵入できず、ガスのみを選択的に通す(ガス輸送抵抗を低減できる)。ガス輸送性の向上効果を考慮すると、より好ましくは、ミクロ孔の空孔容積は、0.3〜2cc/g担体であり、0.4〜1.5cc/g担体であることが特に好ましい。また、より好ましくは、ミクロ孔の空孔分布のモード半径は、0.4〜1nm未満であり、0.4〜0.8nmであることが特に好ましい。
触媒(触媒金属担持後)の半径1nm以上の空孔(メソ孔)の空孔容積は、特に制限されないが、0.4cc/g担体以上、より好ましくは0.4〜3cc/g担体であり、特に好ましくは0.4〜1.5cc/g担体であることが好ましい。空孔容積が上記したような範囲にあれば、メソ孔により多くの触媒金属を格納(担持)でき、触媒層での電解質と触媒金属とを物理的に離す(触媒金属と電解質との接触をより有効に抑制・防止できる)。ゆえに、触媒金属の活性をより有効に利用できる。また、多くのメソ孔の存在により、本発明による作用・効果をさらに顕著に発揮して、触媒反応をより効果的に促進できる。加えて、ミクロ孔がガスの輸送パスとして作用して、水により三相界面をより顕著な形成して、触媒活性をより向上できる。
触媒(触媒金属担持後)の半径1nm以上の空孔(メソ孔)の空孔分布のモード半径(最頻度径)は、特に制限されないが、1〜5nm、より好ましくは1〜4nmであり、特に好ましくは1〜3nmであることが好ましい。上記したようなメソ孔の空孔分布のモード径であれば、メソ孔により十分量の触媒金属を格納(担持)でき、触媒層での電解質と触媒金属とを物理的に離す(触媒金属と電解質との接触をより有効に抑制・防止できる)。ゆえに、触媒金属の活性をより有効に利用できる。また、大容積のメソ孔の存在により、本発明による作用・効果をさらに顕著に発揮して、触媒反応をより効果的に促進できる。加えて、ミクロ孔がガスの輸送パスとして作用して、水により三相界面をより顕著な形成して、触媒活性をより向上できる。
触媒(触媒金属担持後)のBET比表面積[担体1gあたりの触媒のBET比表面積(m/g担体)]は、特に制限されないが、900m/g担体以上、より好ましくは1000〜3000m/g担体であり、特に好ましくは1100〜1800m/g担体であることが好ましい。上記したような比表面積であれば、十分なメソ孔及びミクロ孔を確保できるため、ガス輸送を行うのに十分なミクロ孔(より低いガス輸送抵抗)を確保しつつ、メソ孔により多くの触媒金属を格納(担持)できる。また、触媒層での電解質と触媒金属とを物理的に離す(触媒金属と電解質との接触をより有効に抑制・防止できる)。ゆえに、触媒金属の活性をより有効に利用できる。また、多くのミクロ孔及びメソ孔の存在により、本発明による作用・効果をさらに顕著に発揮して、触媒反応をより効果的に促進できる。加えて、ミクロ孔がガスの輸送パスとして作用して、水により三相界面をより顕著な形成して、触媒活性をより向上できる。
触媒の製造方法(炭素粉末への触媒金属の担持方法)は、特に制限されない。好ましくは、触媒担体の表面に触媒金属を析出させた後、熱処理を行い、触媒金属の粒径を増大させる方法が好ましい。上記方法は、析出後に熱処理を施して触媒金属の粒形を増大させる。このため、触媒担体の空孔(特にメソ孔)内部に粒子径の大きな触媒金属を担持することができる。すなわち、本発明は、(i)触媒担体の表面に触媒金属を析出させる工程(析出工程)、および(ii)前記析出工程後に、熱処理を行い、前記触媒金属の粒径を増大させる工程(熱処理工程)を含む本発明の触媒の製造方法をも提供する。以下、上記方法を説明するが、本発明は、下記形態に限定されない。
以下、上記触媒の製造方法の好ましい形態を説明するが、本発明は下記形態に限定されない。
(i)析出工程
本工程では、触媒担体の表面に触媒金属を析出させる。本工程は、既知の方法であり、例えば、触媒金属の前駆体溶液に、触媒担体を浸漬した後、還元する方法が好ましく使用される。
ここで、触媒金属の前駆体としては、特に制限されず、使用される触媒金属の種類によって適宜選択される。具体的には、上記白金等の触媒金属の塩化物、硝酸塩、硫酸塩、塩化物、酢酸塩およびアミン化合物などが例示できる。より具体的には、塩化白金(ヘキサクロロ白金酸六水和物)、塩化パラジウム、塩化ロジウム、塩化ルテニウム、塩化コバルトなどの塩化物、硝酸パラジウム、硝酸ロジウム、硝酸イリジウムなどの硝酸塩、硫酸パラジウム、硫酸ロジウムなどの硫酸塩、酢酸ロジウムなどの酢酸塩、ジニトロジアンミン白金硝酸、ジニトロジアンミンパラジウムなどのアンミン化合物などが好ましく、例示される。また、触媒金属の前駆体溶液の調製に使用される溶媒は、触媒金属の前駆体を溶解できるものであれば特に制限されず、使用される触媒金属の前駆体の種類によって適宜選択される。具体的には、水、酸、アルカリ、有機溶媒などが挙げられる。触媒金属の前駆体溶液中の触媒金属の前駆体の濃度は、特に制限されないが、金属換算で0.1〜50重量%であることが好ましく、より好ましくは0.5〜20重量%である。
還元剤としては、水素、ヒドラジン、ホウ素化水素ナトリウム、チオ硫酸ナトリウム、クエン酸、クエン酸ナトリウム、L−アスコルビン酸、水素化ホウ素ナトリウム、ホルムアルデヒド、メタノール、エタノール、エチレン、一酸化炭素等が挙げられる。なお、水素などの常温でガス状の物質は、バブリングで供給することもできる。還元剤の量は、上記触媒金属の前駆体を触媒金属に還元できる量であれば特に制限されず、公知の量を同様にして適用できる。
析出条件は、触媒金属が触媒担体に析出できる条件であれば特に制限されない。例えば、析出温度は、溶媒の沸点付近の温度、より好ましくは室温〜100℃であることが好ましい。また、析出時間は、1〜10時間、より好ましくは2〜8時間であることが好ましい。なお、上記析出工程は、必要であれば、撹拌・混合しながら行ってもよい。
これにより、触媒金属の前駆体が触媒金属に還元されて、触媒金属が触媒担体に析出(担持)する。
(ii)熱処理工程
本工程では、上記(i)析出工程後に、熱処理を行い、前記触媒金属の粒径を増大させる。
熱処理条件は、触媒金属の粒径が増大できる条件であれば特に制限されない。例えば、熱処理温度は、300〜1200℃、より好ましくは500〜1150℃、特に好ましくは700〜1000℃であることが好ましい。また、熱処理時間は、0.02〜3時間、より好ましくは0.1〜2時間、特に好ましくは0.2〜1.5時間であることが好ましい。なお、熱処理工程は、水素雰囲気で行われてもよい。
これにより、触媒金属は、触媒担体で(特に触媒担体のメソ孔内で)粒径を増大させる。このため、触媒金属粒子は、系外に(触媒担体から)脱離しにくくなる。また、触媒金属より触媒担体表面付近に存在するミクロ孔が存在することにより、機械的ストレス下であってもより大きな触媒金属粒子が触媒担体から脱離することをより効果的に抑制・防止する。ゆえに、触媒をより有効に利用できる。
[触媒層]
上述したように、本発明の触媒は、ガス輸送抵抗を低減し、高い触媒活性を発揮できる、即ち、触媒反応を促進できる。したがって、本発明の触媒は、燃料電池用の電極触媒層に好適に使用できる。すなわち、本発明は、本発明の電極触媒および電解質を含む、燃料電池用電極触媒層をも提供する。本発明の燃料電池用電極触媒層は、高い性能および耐久性を発揮できる。
なお、本発明の燃料電池用電極触媒層は、担体として本発明の炭素粉末を使用すること以外は従来と同様にしてあるいは適宜修飾して使用できる。このため、以下には触媒層の好ましい形態を説明するが、本発明は下記形態に限定されない。
図3は、炭素粉末が図2に記載されるものである場合の触媒層における触媒および電解質の関係を一例として示す模式図である。図3に示されるように、触媒層内では、触媒は電解質26で被覆されているが、電解質26は、触媒(担体23)のメソ孔24(さらにはミクロ孔25)内には侵入しない。このため、担体23表面の触媒金属22は電解質26と接触するが、メソ孔24内部に担持された触媒金属22は電解質26と非接触状態である。メソ孔内の触媒金属が、電解質と非接触状態で酸素ガスと水との三相界面を形成することにより、触媒金属の反応活性面積を確保できる。
本発明の触媒は、カソード触媒層またはアノード触媒層のいずれに存在してもいてもよいが、カソード触媒層で使用されることが好ましい。上述したように、本発明の触媒は、電解質と接触しなくても、水との三相界面を形成することによって、触媒を有効に利用できるが、カソード触媒層で水が形成するからである。
電解質は、特に制限されないが、イオン伝導性の高分子電解質であることが好ましい。上記高分子電解質は、燃料極側の触媒活物質周辺で発生したプロトンを伝達する役割を果たすことから、プロトン伝導性高分子とも呼ばれる。
当該高分子電解質は、特に限定されず従来公知の知見が適宜参照されうる。高分子電解質は、構成材料であるイオン交換樹脂の種類によって、フッ素系高分子電解質と炭化水素系高分子電解質とに大別される。
フッ素系高分子電解質を構成するイオン交換樹脂としては、例えば、ナフィオン(登録商標、デュポン社製)、アシプレックス(登録商標、旭化成株式会社製)、フレミオン(登録商標、旭硝子株式会社製)等のパーフルオロカーボンスルホン酸系ポリマー、パーフルオロカーボンホスホン酸系ポリマー、トリフルオロスチレンスルホン酸系ポリマー、エチレンテトラフルオロエチレン−g−スチレンスルホン酸系ポリマー、エチレン−テトラフルオロエチレン共重合体、ポリビニリデンフルオリド−パーフルオロカーボンスルホン酸系ポリマーなどが挙げられる。耐熱性、化学的安定性、耐久性、機械強度に優れるという観点からは、これらのフッ素系高分子電解質が好ましく用いられ、特に好ましくはパーフルオロカーボンスルホン酸系ポリマーから構成されるフッ素系高分子電解質が用いられる。
炭化水素系電解質として、具体的には、スルホン化ポリエーテルスルホン(S−PES)、スルホン化ポリアリールエーテルケトン、スルホン化ポリベンズイミダゾールアルキル、ホスホン化ポリベンズイミダゾールアルキル、スルホン化ポリスチレン、スルホン化ポリエーテルエーテルケトン(S−PEEK)、スルホン化ポリフェニレン(S−PPP)などが挙げられる。原料が安価で製造工程が簡便であり、かつ材料の選択性が高いといった製造上の観点からは、これらの炭化水素系高分子電解質が好ましく用いられる。なお、上述したイオン交換樹脂は、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。また、上述した材料のみに制限されず、その他の材料が用いられてもよい。
プロトンの伝達を担う高分子電解質においては、プロトンの伝導度が重要となる。ここで、高分子電解質のEWが大きすぎる場合には触媒層全体でのイオン伝導性が低下する。したがって、本形態の触媒層は、EWの小さい高分子電解質を含むことが好ましい。具体的には、本形態の触媒層は、好ましくはEWが1500g/eq.以下の高分子電解質を含み、より好ましくは1200g/eq.以下の高分子電解質を含み、特に好ましくは1000g/eq.以下の高分子電解質を含む。
一方、EWが小さすぎる場合には、親水性が高すぎて、水の円滑な移動が困難となる。かような観点から、高分子電解質のEWは600以上であることが好ましい。なお、EW(Equivalent Weight)は、プロトン伝導性を有する交換基の当量重量を表している。当量重量は、イオン交換基1当量あたりのイオン交換膜の乾燥重量であり、「g/eq」の単位で表される。
また、触媒層は、EWが異なる2種類以上の高分子電解質を発電面内に含み、この際、高分子電解質のうち最もEWが低い高分子電解質が流路内ガスの相対湿度が90%以下の領域に用いることが好ましい。このような材料配置を採用することにより、電流密度領域によらず、抵抗値が小さくなって、電池性能の向上を図ることができる。流路内ガスの相対湿度が90%以下の領域に用いる高分子電解質、すなわちEWが最も低い高分子電解質のEWとしては、900g/eq.以下であることが望ましい。これにより、上述の効果がより確実、顕著なものとなる。
さらに、EWが最も低い高分子電解質を冷却水の入口と出口の平均温度よりも高い領域に用いることが望ましい。これによって、電流密度領域によらず、抵抗値が小さくなって、電池性能のさらなる向上を図ることができる。
さらには、燃料電池システムの抵抗値を小さくするとする観点から、EWが最も低い高分子電解質は、流路長に対して燃料ガス及び酸化剤ガスの少なくとも一方のガス供給口から3/5以内の範囲の領域に用いることが望ましい。
本形態の触媒層は、触媒と高分子電解質との間に、触媒と高分子電解質とをプロトン伝導可能な状態に連結しうる液体プロトン伝導材を含んでもよい。液体プロトン伝導材が導入されることによって、触媒と高分子電解質との間に、液体プロトン伝導材を介したプロトン輸送経路が確保され、発電に必要なプロトンを効率的に触媒表面へ輸送することが可能となる。これにより、触媒の利用効率が向上するため、発電性能を維持しながら触媒の使用量を低減することが可能となる。この液体プロトン伝導材は触媒と高分子電解質との間に介在していればよく、触媒層内の多孔質担体間の空孔(二次空孔)や多孔質担体内の空孔(ミクロ孔またはメソ孔:一次空孔)内に配置されうる。
液体プロトン伝導材としては、イオン伝導性を有し、触媒と高分子電解質と間のプロトン輸送経路を形成する機能を発揮しうる限り、特に限定されることはない。具体的には水、プロトン性イオン液体、過塩素酸水溶液、硝酸水溶液、ギ酸水溶液、酢酸水溶液などを挙げることができる。
液体プロトン伝導材として水を使用する場合には、発電を開始する前に少量の液水か加湿ガスにより触媒層を湿らせることによって、触媒層内に液体プロトン伝導材としての水を導入することができる。また、燃料電池の作動時における電気化学反応によって生じた生成水を液体プロトン伝導材として利用することもできる。したがって、燃料電池の運転開始の状態においては、必ずしも液体プロトン伝導材が保持されている必要はない。例えば、触媒と電解質との表面距離を水分子を構成する酸素イオン径である0.28nm以上とすることが望ましい。このような距離を保持することによって、触媒と高分子電解質との非接触状態を保持しながら、触媒と高分子電解質の間(液体伝導材保持部)に水(液体プロトン伝導材)を介入させることができ、両者間の水によるプロトン輸送経路が確保されることになる。
イオン性液体など、水以外のものを液体プロトン伝導材として使用する場合には、触媒インク作製時に、イオン性液体と高分子電解質と触媒とを溶液中に分散させることが望ましいが、触媒を触媒層基材に塗布する際にイオン性液体を添加してもよい。
本発明の触媒では、触媒の高分子電解質と接触している総面積が、この触媒が液体伝導材保持部に露出している総面積よりも小さいものとなっている。
これら面積の比較は、例えば、上記液体伝導材保持部に液体プロトン伝導材を満たした状態で、触媒−高分子電解質界面と触媒−液体プロトン伝導材界面に形成される電気二重層の容量の大小関係を求めることによって行うことができる。すなわち、電気二重層容量は、電気化学的に有効な界面の面積に比例するため、触媒−電解質界面に形成される電気二重層容量が触媒−液体プロトン伝導材界面に形成される電気二重層容量より小さければ、触媒の電解質との接触面積が液体伝導材保持部への露出面積よりも小さいことになる。
ここで、触媒−電解質界面、触媒−液体プロトン伝導材界面にそれぞれ形成される電気二重層容量の測定方法、言い換えると、触媒−電解質間及び触媒−液体プロトン伝導材間の接触面積の大小関係(触媒の電解質との接触面積と液体伝導材保持部への露出面積の大小関係の判定方法)について説明する。
すなわち、本形態の触媒層においては、
(1)触媒−高分子電解質(C−S)
(2)触媒−液体プロトン伝導材(C−L)
(3)多孔質担体−高分子電解質(Cr−S)
(4)多孔質担体−液体プロトン伝導材(Cr−L)
の4種の界面が電気二重層容量(Cdl)として寄与し得る。
電気二重層容量は、上記したように、電気化学的に有効な界面の面積に正比例するため、CdlC−S(触媒−高分子電解質界面の電気二重層容量)及びCdlC−L(触媒−液体プロトン伝導材界面の電気二重層容量)を求めればよい。そして、電気二重層容量(Cdl)に対する上記4種の界面の寄与については、以下のようにして分離することができる。
まず、例えば100%RHのような高加湿条件、及び10%RH以下のような低加湿条件下において、電気二重層容量をそれぞれ計測する。なお、電気二重層容量の計測手法としては、サイクリックボルタムメトリや電気化学インピーダンス分光法などを挙げることができる。これらの比較から、液体プロトン伝導材(この場合は「水」)の寄与、すなわち上記(2)及び(4)を分離することができる。
さらに触媒を失活させること、例えば、Ptを触媒として用いた場合には、測定対象の電極にCOガスを供給してCOをPt表面上に吸着させることによる触媒の失活によって、その電気二重層容量への寄与を分離することができる。このような状態で、前述のように高加湿及び低加湿条件における電気二重層容量を同様の手法で計測し、これらの比較から、触媒の寄与、つまり上記(1)及び(2)を分離することができる。
以上により、上記(1)〜(4)全ての寄与を分離することができ、触媒と高分子電解質及び液体プロトン伝導材両界面に形成される電気二重層容量を求めることができる。
すなわち、高加湿状態における測定値(i)が上記(1)〜(4)の全界面に形成される電気二重層容量、低加湿状態における測定値(ii)が上記(1)及び(3)の界面に形成される電気二重層容量になる。また、触媒失活・高加湿状態における測定値(iii)が上記(3)及び(4)の界面に形成される電気二重層容量、触媒失活・低加湿状態における測定値(iv)が上記(3)の界面に形成される電気二重層容量になる。
したがって、AとCの差が(1)及び(2)の界面に形成される電気二重層容量、BとDの差が(1)の界面に形成される電気二重層容量ということになる。そして、これら値の差、(A−C)−(B−D)を算出すれば、(2)の界面に形成される電気二重層容量を求めることができる。なお、触媒の高分子電解質との接触面積や、伝導材保持部への露出面積については、上記の他には、例えば、TEM(透過型電子顕微鏡)トモグラフィなどによっても求めることができる。
触媒層には、必要に応じて、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体などの撥水剤、界面活性剤などの分散剤、グリセリン、エチレングリコール(EG)、ポリビニルアルコール(PVA)、プロピレングリコール(PG)などの増粘剤、造孔剤等の添加剤が含まれていても構わない。
触媒層の(乾燥膜厚)は、好ましくは0.05〜30μm、より好ましくは1〜20μm、さらに好ましくは2〜15μmである。なお、上記は、カソード触媒層およびアノード触媒層双方に適用される。しかし、カソード触媒層及びアノード触媒層のは、同じであってもあるいは異なってもよい。
(触媒層の製造方法)
以下、触媒層を製造するための好ましい実施形態を記載するが、本発明の技術的範囲は下記の形態のみには限定されない。また、触媒層の各構成要素の材質などの諸条件については、上述した通りであるため、ここでは説明を省略する。
まず、担体としての炭素粉末(本明細書では、「多孔質担体」または「導電性多孔質担体」とも称する)を準備する。具体的には、上記炭素粉末の製造方法で説明したように、作製すればよい。
次いで、多孔質担体に触媒を担持させて、触媒粉末とする。多孔質担体への触媒の担持は公知の方法で行うことができる。例えば、含浸法、液相還元担持法、蒸発乾固法、コロイド吸着法、噴霧熱分解法、逆ミセル(マイクロエマルジョン法)などの公知の方法が使用できる。
続いて、触媒粉末、高分子電解質、および溶剤を含む触媒インクを作製する。溶剤としては、特に制限されず、触媒層を形成するのに使用される通常の溶媒が同様にして使用できる。具体的には、水道水、純水、イオン交換水、蒸留水等の水、シクロヘキサノール、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、sec−ブタノール、イソブタノール、及びtert−ブタノール等の炭素数1〜4の低級アルコール、プロピレングリコール、ベンゼン、トルエン、キシレンなどが挙げられる。これらの他にも、酢酸ブチルアルコール、ジメチルエーテル、エチレングリコール、などが溶媒として用いられてもよい。これらの溶剤は、1種を単独で使用してもあるいは2種以上の混合液の状態で使用してもよい。
触媒インクを構成する溶剤の量は、電解質を完全に溶解できる量であれば特に制限されない。具体的には、触媒粉末および高分子電解質などを合わせた固形分の濃度が、電極触媒インク中、1〜50重量%、より好ましくは5〜30重量%程度とするのが好ましい。
なお、撥水剤、分散剤、増粘剤、造孔剤等の添加剤を使用する場合には、触媒インクにこれらの添加剤を添加すればよい。この際、添加剤の添加量は、本発明の上記効果を妨げない程度の量であれば特に制限されない。例えば、添加剤の添加量は、それぞれ、電極触媒インクの全重量に対して、好ましくは5〜20重量%である。
次に、基材の表面に触媒インクを塗布する。基材への塗布方法は、特に制限されず、公知の方法を使用できる。具体的には、スプレー(スプレー塗布)法、ガリバー印刷法、ダイコーター法、スクリーン印刷法、ドクターブレード法など、公知の方法を用いて行うことができる。
この際、触媒インクを塗布する基材としては、固体高分子電解質膜(電解質層)やガス拡散基材(ガス拡散層)を使用することができる。かような場合には、固体高分子電解質膜(電解質層)またはガス拡散基材(ガス拡散層)の表面に触媒層を形成した後、得られた積層体をそのまま膜電極接合体の製造に利用することができる。あるいは、基材としてポリテトラフルオロエチレン(PTFE)[テフロン(登録商標)]シート等の剥離可能な基材を使用し、基材上に触媒層を形成した後に基材から触媒層部分を剥離することにより、触媒層を得てもよい。
最後に、触媒インクの塗布層(膜)を、空気雰囲気下あるいは不活性ガス雰囲気下、室温〜150℃で、1〜60分間、乾燥する。これにより、触媒層が形成される。
(膜電極接合体/燃料電池)
本発明のさらなる実施形態によれば、上記燃料電池用電極触媒層を含む、燃料電池用膜電極接合体および当該燃料電池用膜電極接合体を含む燃料電池が提供される。すなわち、固体高分子電解質膜2、前記電解質膜の一方の側に配置されたカソード触媒層と、前記電解質膜の他方の側に配置されたアノード触媒層と、前記電解質膜2並びに前記アノード触媒層3a及び前記カソード触媒層3cを挟持する一対のガス拡散層(4a,4c)とを有する燃料電池用膜電極接合体が提供される。そしてこの膜電極接合体において、前記カソード触媒層およびアノード触媒層の少なくとも一方が上記に記載した実施形態の触媒層である。
ただし、プロトン伝導性の向上および反応ガス(特にO)の輸送特性(ガス拡散性)の向上の必要性を考慮すると、少なくともカソード触媒層が上記に記載した実施形態の触媒層であることが好ましい。ただし、上記形態に係る触媒層は、アノード触媒層として用いてもよいし、カソード触媒層およびアノード触媒層双方として用いてもよいなど、特に制限されるものではない。
本発明のさらなる実施形態によれば、上記形態の膜電極接合体を有する燃料電池が提供される。すなわち、本発明の一実施形態は、上記形態の膜電極接合体を挟持する一対のアノードセパレータおよびカソードセパレータを有する燃料電池である。
以下、図1を参照しつつ、上記実施形態の触媒層を用いたPEFC 1の構成要素について説明する。ただし、本発明は触媒層に特徴を有するものである。よって、燃料電池を構成する触媒層以外の部材の具体的な形態については、従来公知の知見を参照しつつ、適宜、改変が施されうる。
(電解質膜)
電解質膜は、例えば、図1に示す形態のように固体高分子電解質膜2から構成される。この固体高分子電解質膜2は、PEFC 1の運転時にアノード触媒層3aで生成したプロトンを膜厚方向に沿ってカソード触媒層3cへと選択的に透過させる機能を有する。また、固体高分子電解質膜2は、アノード側に供給される燃料ガスとカソード側に供給される酸化剤ガスとを混合させないための隔壁としての機能をも有する。
固体高分子電解質膜2を構成する電解質材料としては特に限定されず従来公知の知見が適宜参照されうる。例えば、先に高分子電解質として説明したフッ素系高分子電解質や炭化水素系高分子電解質を用いることができる。この際、触媒層に用いた高分子電解質と必ずしも同じものを用いる必要はない。
電解質層の厚さは、得られる燃料電池の特性を考慮して適宜決定すればよく、特に制限されない。電解質層の厚さは、通常は5〜300μm程度である。電解質層の厚さがかような範囲内の値であると、製膜時の強度や使用時の耐久性及び使用時の出力特性のバランスが適切に制御されうる。
(ガス拡散層)
ガス拡散層(アノードガス拡散層4a、カソードガス拡散層4c)は、セパレータのガス流路(6a、6c)を介して供給されたガス(燃料ガスまたは酸化剤ガス)の触媒層(3a、3c)への拡散を促進する機能、および電子伝導パスとしての機能を有する。
ガス拡散層(4a、4c)の基材を構成する材料は特に限定されず、従来公知の知見が適宜参照されうる。例えば、炭素製の織物、紙状抄紙体、フェルト、不織布といった導電性および多孔質性を有するシート状材料が挙げられる。基材の厚さは、得られるガス拡散層の特性を考慮して適宜決定すればよいが、30〜500μm程度とすればよい。基材の厚さがかような範囲内の値であれば、機械的強度とガスおよび水などの拡散性とのバランスが適切に制御されうる。
ガス拡散層は、撥水性をより高めてフラッディング現象などを防止することを目的として、撥水剤を含むことが好ましい。撥水剤としては、特に限定されないが、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、ポリヘキサフルオロプロピレン、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)などのフッ素系の高分子材料、ポリプロピレン、ポリエチレンなどが挙げられる。
また、撥水性をより向上させるために、ガス拡散層は、撥水剤を含むカーボン粒子の集合体からなるカーボン粒子層(マイクロポーラス層;MPL、図示せず)を基材の触媒層側に有するものであってもよい。
カーボン粒子層に含まれるカーボン粒子は特に限定されず、カーボンブラック、グラファイト、膨張黒鉛などの従来公知の材料が適宜採用されうる。なかでも、電子伝導性に優れ、比表面積が大きいことから、オイルファーネスブラック、チャネルブラック、ランプブラック、サーマルブラック、アセチレンブラックなどのカーボンブラックが好ましく用いられうる。カーボン粒子の平均粒径は、10〜100nm程度とするのがよい。これにより、毛細管力による高い排水性が得られるとともに、触媒層との接触性も向上させることが可能となる。
カーボン粒子層に用いられる撥水剤としては、上述した撥水剤と同様のものが挙げられる。なかでも、撥水性、電極反応時の耐食性などに優れることから、フッ素系の高分子材料が好ましく用いられうる。
カーボン粒子層におけるカーボン粒子と撥水剤との混合比は、撥水性および電子伝導性のバランスを考慮して、重量比で90:10〜40:60(カーボン粒子:撥水剤)程度とするのがよい。なお、カーボン粒子層の厚さについても特に制限はなく、得られるガス拡散層の撥水性を考慮して適宜決定すればよい。
(膜電極接合体の製造方法)
膜電極接合体の作製方法としては、特に制限されず、従来公知の方法を使用できる。例えば、固体高分子電解質膜に触媒層をホットプレスで転写または塗布し、これを乾燥したものに、ガス拡散層を接合する方法や、ガス拡散層の微多孔質層側(微多孔質層を含まない場合には、基材層の片面に触媒層を予め塗布して乾燥することによりガス拡散電極(GDE)を2枚作製し、固体高分子電解質膜の両面にこのガス拡散電極をホットプレスで接合する方法を使用することができる。ホットプレス等の塗布、接合条件は、固体高分子電解質膜や触媒層内の高分子電解質の種類(パ−フルオロスルホン酸系や炭化水素系)によって適宜調整すればよい。
(セパレータ)
セパレータは、固体高分子形燃料電池などの燃料電池の単セルを複数個直列に接続して燃料電池スタックを構成する際に、各セルを電気的に直列に接続する機能を有する。また、セパレータは、燃料ガス、酸化剤ガス、および冷却剤を互に分離する隔壁としての機能も有する。これらの流路を確保するため、上述したように、セパレータのそれぞれにはガス流路および冷却流路が設けられていることが好ましい。セパレータを構成する材料としては、緻密カーボングラファイト、炭素板などのカーボンや、ステンレスなどの金属など、従来公知の材料が適宜制限なく採用できる。セパレータの厚さやサイズ、設けられる各流路の形状やサイズなどは特に限定されず、得られる燃料電池の所望の出力特性などを考慮して適宜決定できる。
燃料電池の製造方法は、特に制限されることなく、燃料電池の分野において従来公知の知見が適宜参照されうる。
さらに、燃料電池が所望する電圧を発揮できるように、セパレータを介して膜電極接合体を複数積層して直列に繋いだ構造の燃料電池スタックを形成してもよい。燃料電池の形状などは、特に限定されず、所望する電圧などの電池特性が得られるように適宜決定すればよい。
上述したPEFCや膜電極接合体は、発電性能および耐久性に優れる触媒層を用いている。したがって、当該PEFCや膜電極接合体は発電性能および耐久性に優れる。
本実施形態のPEFCやこれを用いた燃料電池スタックは、例えば、車両に駆動用電源として搭載されうる。
本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。
実施例1
以下により、ミクロ孔の空孔容積が1.04cc/g;メソ孔の空孔容積が0.92cc/g;ミクロ孔のモード径が0.65nm;メソ孔のモード径が1.2nm;およびBET比表面積が1770m/gである、炭素材料Aを調製した。具体的には、国際公開第2009/75264号などに記載の方法により炭素材料Aを作製した。
次に、この炭素材料Aを、アルゴン雰囲気下で、500℃/時間の昇温速度で、1700℃にまで加熱した後、この温度で5分間保持して、BET比表面積が1378m/gである担体Aを作製した。この担体AのR値およびR’値を測定したところ、それぞれ、1.99および0.42であった。また、このようにして得られた担体Aについて、平均粒径(直径)、ミクロ孔及びメソ孔の空孔容積、ミクロ孔及びメソ孔のモード径ならびにBET比表面積を測定した。その結果、担体Aの、平均粒径(直径)は91.5nm、ミクロ孔の空孔容積は0.43cc/g担体、メソ孔の空孔容積は0.69cc/g担体、ミクロ孔のモード径は0.66nm、メソ孔のモード径は2.8nm、BET比表面積が1378m/gであった。
実施例2
合成例1に記載の方法と同様にして、炭素材料Aを作製した。
次に、この炭素材料Aを、アルゴン雰囲気下で、500℃/時間の昇温速度で、1600℃にまで加熱した後、この温度で5分間保持して、BET比表面積が1522m/gである担体Bを作製した。この担体BのR値およびR’値を測定したところ、それぞれ、1.81および0.50であった。また、このようにして得られた担体Bについて、平均粒径(直径)、ミクロ孔及びメソ孔の空孔容積、ミクロ孔及びメソ孔のモード径ならびにBET比表面積を測定した。その結果、担体Bの、平均粒径(直径)は89nm、ミクロ孔の空孔容積は0.73cc/g担体、メソ孔の空孔容積は1.17cc/g担体、ミクロ孔のモード径は0.73nm、メソ孔のモード径は2.4nm、BET比表面積が1522m/gであった。
比較例1
合成例1に記載の方法と同様にして、炭素材料Aを作製した。
次に、この炭素材料Aを用いた担体CのR値およびR’値を測定したところ、それぞれ、1.64および0.61であった。また、このようにして得られた担体Cについて、平均粒径(直径)、ミクロ孔及びメソ孔の空孔容積、ミクロ孔及びメソ孔のモード径ならびにBET比表面積を測定した。その結果、担体Cの、平均粒径(直径)は91.5nm、ミクロ孔の空孔容積は1.04cc/g担体、メソ孔の空孔容積は1.23cc/g担体、ミクロ孔のモード径は0.65nm、メソ孔のモード径は2.1nm、BET比表面積が1768m/gであった。
比較例2
合成例1に記載の方法と同様にして、炭素材料Aを作製した。
次に、この炭素材料Aを、アルゴン雰囲気下で、500℃/時間の昇温速度で、1300℃にまで加熱した後、この温度で5分間保持して、担体Dを作製した。この担体DのR値およびR’値を測定したところ、それぞれ、1.75および0.66であった。また、このようにして得られた担体Dについて、平均粒径(直径)、ミクロ孔及びメソ孔の空孔容積、ミクロ孔及びメソ孔のモード径ならびにBET比表面積を測定した。その結果、担体Dの、平均粒径(直径)は91.5nm、ミクロ孔の空孔容積は1.06cc/g担体、メソ孔の空孔容積は1.21cc/g担体、ミクロ孔のモード径は0.66nm、メソ孔のモード径は2.1nm、BET比表面積が1768m/gであった。
比較例3
ケッチェンブラック(EC300J)(BET比表面積が715m/g)を担体Eとして使用した。この担体EのR値およびR’値を測定したところ、それぞれ、1.78および0.74であった。また、このようにして得られた担体Eについて、平均粒径(直径)、ミクロ孔及びメソ孔の空孔容積、ミクロ孔及びメソ孔のモード径ならびにBET比表面積を測定した。その結果、担体Eの、平均粒径(直径)は53nm、ミクロ孔の空孔容積は0.35cc/g担体、メソ孔の空孔容積は0.49cc/g担体、ミクロ孔のモード径は0.45nm、メソ孔のモード径は2.2nm、BET比表面積が715m/gであった。
実験1:白金被覆の評価
上記に実施例1及び2で製造された本発明の担体A及びBならびに比較例3で製造された担体Eについて、担体重量に対して50重量%の白金を担持した場合の、白金比表面積(COMSA)をCO吸着法により測定した。結果を図4に示す。
図4から、BET比表面積が900m/g以上である担体(炭素粉末)A及びBは、BET比表面積が本発明の範囲から外れる担体Eに比べて、白金比表面積が有意に大きいことが分かる。これから、本発明の炭素粉末を担体として使用することによって、触媒の電気二重層容量を有意に向上できると、考察される。
実施例3
上記実施例1で作製した担体Aを用い、これに触媒金属として平均粒径3nm超5nm以下の白金(Pt)を担持率が30重量%となるように担持させて、触媒粉末Aを得た。すなわち、白金濃度4.6重量%のジニトロジアンミン白金硝酸溶液を1000g(白金含有量:46g)に担体Aを46g浸漬させ攪拌後、還元剤として100%エタノールを100ml添加した。この溶液を沸点で7時間、攪拌、混合し、白金を担体Aに担持させた。そして、濾過、乾燥することにより、担持率が30重量%の触媒粉末を得た。その後、水素雰囲気において、温度900℃に1時間保持し、触媒粉末Aを得た。
実施例4
実施例3において、担体Aの代わりに、上記実施例2で作製した担体Bを使用した以外は、実施例3と同様の操作を行い、触媒粉末Bを得た。
比較例4
実施例3において、担体Aの代わりに、上記比較例1で作製した担体Cを使用した以外は、実施例3と同様の操作を行い、触媒粉末Cを得た。
比較例5
実施例3において、担体Aの代わりに、上記比較例2で作製した担体Dを使用した以外は、実施例3と同様の操作を行い、触媒粉末Dを得た。
実験2:耐久性の評価
上記に実施例3及び4で製造された触媒粉末A及びBならびに比較例4及び5で製造された触媒粉末C及びDについて、下記方法に従って、耐久性を評価した。結果を下記表1に示す。
すなわち、三電極式の電気化学セルを用い、ポテンショスタットとして、北斗電工社製電気化学システムHZ−5000+HR301を用いた。作用極として、グラッシーカーボン回転電極(GC−RDE)(φ(直径)=5mm)を用い、実施例および比較例で作製した各触媒粉末を分散媒としての水と1−プロパノール混合溶媒に分散させたインクを乾燥膜厚が1μmとなるようにコーティングして乾燥させた電極を用いた。対極にカーボン、参照電極には可逆水素電極(RHE)を使用した。電解液は、0.1M 過塩素酸を用い、Oで飽和させた。測定は60℃で行なった。
触媒有効表面積(ECA)の算出は、サイクリックボルタムメトリ(CV)により実施した。測定実施前に、1.0Vの電位で30秒間、電位走査を実施した。その後、1.0〜1.5Vの電位範囲を0.5V/sの電位掃引速度で上昇(1秒)下降(1秒)し、これを1サイクル(2秒/サイクル)とした。この電位サイクルを繰り返すと、電位サイクルの増加とともに、サイクリックボルタムメトリ法で計測される0.6V付近のキノン−ハイドロキノン還元電流のピーク電位が低電位側にシフトする。この還元電流の変化からカーボンの状態及び電気二重層容量の変化を見積もった。具体的には、還元電流の電位が0.5V以下となるまでに繰り返すことができたサイクル数を耐久性の指標とした。
表1の結果から、実施例3及び4の触媒粉末A及びBは、比較例4及び5の触媒粉末C及びDに比べて、還元電流の低下するサイクル数が大きいことが示される。これから、本発明の炭素粉末を用いた触媒は、電気二重層容量の低下が小さく、有意に高い活性を維持できる(耐久性に優れる)と、考察される。
実施例5
実施例3において、白金(Pt)を担持率が50重量%となるように担体Aに担持させた以外は、実施例3と同様の操作を行い、触媒粉末Eを得た。
比較例6
実施例5において、担体Aの代わりに、上記比較例1で作製した担体Cを使用した以外は、実施例5と同様の操作を行い、触媒粉末Fを得た。
実施例6
実施例5で作製した触媒粉末Eと、高分子電解質としてのアイオノマ分散液(Nafion(登録商標)D2020,EW=1100g/mol、DuPont社製)とをカーボン担体とアイオノマの重量比が0.9となるよう混合した。さらに、溶媒としてノルマルプロピルアルコール溶液(50%)を固形分率(Pt+カーボン担体+アイオノマ)が7重量%となるよう添加して、カソード触媒インクを調製した。
担体として、ケッチェンブラック(粒径:30〜60nm)を用い、これに触媒金属として平均粒径2.5nmの白金(Pt)を担持率が50重量%となるように担持させて、触媒粉末を得た。この触媒粉末と、高分子電解質としてのアイオノマ分散液(Nafion(登録商標)D2020,EW=1100g/mol、DuPont社製)とをカーボン担体とアイオノマの重量比が0.9となるよう混合した。さらに、溶媒としてノルマルプロピルアルコール溶液(50%)を固形分率(Pt+カーボン担体+アイオノマ)が7重量%となるよう添加して、アノード触媒インクを調製した。
次に、高分子電解質膜(Dupont社製、NAFION NR211、:25μm)の両面の周囲にガスケット(帝人Dupont社製、テオネックス、:25μm(接着層:10μm))を配置した。次いで、高分子電解質膜の片面の露出部にカソード触媒インクをスプレー塗布法により、5cm×2cmのサイズに塗布した。スプレー塗布を行うステージを60℃に1分間保つことで触媒インクを乾燥し、カソード触媒層を得た。このときの白金担持量は0.15mg/cmである。次に、カソード触媒層と同様に電解質膜上にスプレー塗布および熱処理を行うことでアノード触媒層を形成した。
得られた積層体の両面をガス拡散層(24BC,SGLカーボン社製)で挟持し、膜電極接合体(1)(MEA(1))を得た。
比較例7
実施例6において、触媒粉末Eの代わりに、比較例6で得た触媒粉末Fを使用する以外は、実施例6と同様の操作を行い、膜電極接合体(2)(MEA(2))を作製した。
実験3:発電性能の評価
上記に実施例6で製造されたMEA(1)および比較例7で製造されたMEA(2)を用いて燃料電池単セルを構成し、下記方法に従って、発電性能(耐久性)を評価した。結果を図5に示す。
まず、燃料電池単セルを80℃に温調し、燃料電池のアノード側に水素ガスを、カソード側に窒素を、それぞれ、供給し、燃料電池の排気側圧力は大気圧とした。
この状態で単セルの運転電圧が0.6ボルトとなるように外部負荷を3秒間制御し、次に単セルの運転電圧が0.9ボルトとなるように外部負荷を3秒間制御した。
以下、同様の単セルの運転温度および運転電圧の制御を1000サイクル繰り返して運転を行った。
この燃料電池の負荷サイクル運転前後において、サイクリックボルタンメトリ法によって計測される水素生成に相当する還元電流の面積から、カソード触媒層の電気化学的有効表面積(ECA:Electrochemical surface area)を算出する。初期の電気化学的有効表面積を1とし、電位サイクルによる電気化学的有効表面積の低下を求め、有効表面積の変化量により燃料電池の耐久性を評価する。
図5の結果から、実施例6のMEA(1)は、比較例7のMEA(2)に比べて、電気化学的有効表面積の低下が小さいことが示される。これから、本発明の炭素粉末を用いた触媒を用いた膜電極接合体は、高い発電性能を発揮・維持できると、考察される。
さらに、本出願は、2013年9月30日に出願された日本特許出願番号2013−204163号に基づいており、その開示内容は、参照され、全体として、組み入れられている。

Claims (7)

  1. 炭素を主成分とする炭素粉末であって、
    重量あたりのBET比表面積が900m/g以上であり、かつ
    ラマン分光法によって1580cm−1付近で計測されるGバンドのピーク強度(G強度)に対する、1620cm−1付近で計測されるD’バンドのピーク強度(D’強度)の比R’(D’/G強度比)が0.6以下である、触媒用炭素粉末。
  2. ラマン分光法によって1580cm−1付近で計測されるGバンドのピーク強度(G強度)に対する、1360cm−1付近で計測されるDバンドのピーク強度(D強度)の比R(D/G強度比)が1.7以上である、請求項1に記載の触媒用炭素粉末。
  3. 請求項1または2に記載の触媒用炭素粉末に触媒金属が担持されてなる触媒。
  4. 前記触媒金属は、白金であるまたは白金と白金以外の金属成分を含む、請求項3に記載の触媒。
  5. 請求項3または4に記載の触媒および電解質を含む、燃料電池用電極触媒層。
  6. 請求項5に記載の燃料電池用電極触媒層を含む、燃料電池用膜電極接合体。
  7. 請求項6に記載の燃料電池用膜電極接合体を含む燃料電池。
JP2015539083A 2013-09-30 2014-09-09 触媒用炭素粉末ならびに当該触媒用炭素粉末を用いる触媒、電極触媒層、膜電極接合体および燃料電池 Active JP6461805B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013204163 2013-09-30
JP2013204163 2013-09-30
PCT/JP2014/073813 WO2015045852A1 (ja) 2013-09-30 2014-09-09 触媒用炭素粉末ならびに当該触媒用炭素粉末を用いる触媒、電極触媒層、膜電極接合体および燃料電池

Publications (2)

Publication Number Publication Date
JPWO2015045852A1 true JPWO2015045852A1 (ja) 2017-03-09
JP6461805B2 JP6461805B2 (ja) 2019-01-30

Family

ID=52742998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015539083A Active JP6461805B2 (ja) 2013-09-30 2014-09-09 触媒用炭素粉末ならびに当該触媒用炭素粉末を用いる触媒、電極触媒層、膜電極接合体および燃料電池

Country Status (6)

Country Link
US (1) US10135074B2 (ja)
EP (1) EP3053648B1 (ja)
JP (1) JP6461805B2 (ja)
CN (1) CN105594033B (ja)
CA (1) CA2925618C (ja)
WO (1) WO2015045852A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10333153B2 (en) * 2015-10-09 2019-06-25 Toyota Jidosha Kabushiki Kaisha Fuel cell catalyst layer, and fuel cell

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015141810A1 (ja) * 2014-03-19 2015-09-24 新日鐵住金株式会社 固体高分子形燃料電池用の担体炭素材料及び触媒金属粒子担持炭素材料
US10333166B2 (en) 2014-10-29 2019-06-25 Nissan Motor Co., Ltd. Electrode catalyst for fuel cell, method for producing the same, electrode catalyst layer for fuel cell comprising the catalyst, and membrane electrode assembly for fuel cell and fuel cell using the catalyst or the catalyst layer
EP3214680B1 (en) * 2014-10-29 2020-06-17 Nissan Motor Co., Ltd Electrode catalyst for fuel cell, electrode catalyst layer for fuel cell, method for producing same, and membrane electrode assembly and fuel cell using catalyst layer
EP3214681B1 (en) * 2014-10-29 2019-08-14 Nissan Motor Co., Ltd Electrode catalyst layer for fuel cell, and fuel cell membrane electrode assembly and fuel cell using said catalyst layer
JP6222530B2 (ja) * 2015-10-09 2017-11-01 トヨタ自動車株式会社 燃料電池用触媒層及び燃料電池
JP6827699B2 (ja) * 2016-02-17 2021-02-10 株式会社キャタラー キャパシタ用炭素材料及びキャパシタ
CN108780900B (zh) * 2016-03-11 2020-07-07 日产自动车株式会社 燃料电池用碳粉末以及使用该燃料电池用碳粉末的催化剂、电极催化剂层、膜电极接合体及燃料电池
KR102244058B1 (ko) 2016-08-24 2021-04-22 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지
KR20180073133A (ko) * 2016-12-22 2018-07-02 현대자동차주식회사 연료전지용 하이브리드 촉매 및 그 제조 방법
WO2018182048A1 (ja) 2017-03-31 2018-10-04 新日鐵住金株式会社 固体高分子形燃料電池の触媒担体用炭素材料及びその製造方法
JP6802362B2 (ja) * 2017-03-31 2020-12-16 日本製鉄株式会社 固体高分子形燃料電池の触媒担体用炭素材料およびその製造方法
US11145874B2 (en) * 2017-04-18 2021-10-12 Tanaka Kikinzoku Kogyo K.K. Catalyst for solid polymer fuel cells and method for producing same
JP6923371B2 (ja) 2017-06-23 2021-08-18 トヨタ自動車株式会社 燃料電池用電極触媒
KR20200029517A (ko) 2017-07-13 2020-03-18 닛신보 홀딩스 가부시키 가이샤 탄소 촉매, 전지 전극 및 전지
JP7151524B2 (ja) * 2019-02-06 2022-10-12 トヨタ自動車株式会社 燃料電池用触媒
KR102223601B1 (ko) * 2019-09-11 2021-03-05 한국화학연구원 메탄-염소화 반응용 촉매 및 이를 이용한 메탄의 염소화 방법
US11791476B2 (en) * 2020-10-22 2023-10-17 City University Of Hong Kong Method of fabricating a material for use in catalytic reactions
KR20220091753A (ko) * 2020-12-24 2022-07-01 현대자동차주식회사 연료 전지용 촉매 및 이의 제조 방법
KR20220091754A (ko) * 2020-12-24 2022-07-01 현대자동차주식회사 인터메탈릭 촉매 및 이의 제조 방법
KR20220103288A (ko) * 2021-01-15 2022-07-22 현대자동차주식회사 인터메탈릭 촉매 및 이의 제조 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109614A (ja) * 2001-09-27 2003-04-11 Nippon Steel Corp 高分子固体電解質型燃料電池酸素極用触媒及びその製造方法
WO2007055411A1 (ja) * 2005-11-14 2007-05-18 Cataler Corporation 燃料電池用触媒、燃料電池用電極、及びこれを備えた固体高分子型燃料電池
JP2010535148A (ja) * 2007-08-01 2010-11-18 ダウ グローバル テクノロジーズ インコーポレイティド 剥離グラフェンを製造するための高効率の方法
JP2012502427A (ja) * 2008-09-08 2012-01-26 ナンヤン テクノロジカル ユニヴァーシティー 金属空気電池、燃料電池および超コンデンサー用の電極材料
WO2012073998A1 (ja) * 2010-12-02 2012-06-07 独立行政法人物質・材料研究機構 カーボンナノチューブ連結のグラフェンシートフィルムとその製造方法及びそれを用いたグラフェンシートキャパシター
JP2012524016A (ja) * 2009-04-15 2012-10-11 ダウ グローバル テクノロジーズ エルエルシー 連続供給炉アセンブリ並びに酸化グラファイトの製造及び連続熱剥離方法
JP2013140770A (ja) * 2011-12-28 2013-07-18 Qinghua Univ 集電体、それを利用した電気化学電池用電極及び電気化学電池

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5869922A (en) * 1997-08-13 1999-02-09 Si Diamond Technology, Inc. Carbon film for field emission devices
CA2453968A1 (en) 2001-09-11 2003-03-27 Showa Denko K.K. Activated carbon material, and production method and use thereof
JP4941952B2 (ja) * 2002-04-11 2012-05-30 昭和電工株式会社 活性炭及びその製造方法並びにその用途
JP4266624B2 (ja) * 2002-12-02 2009-05-20 三洋電機株式会社 燃料電池用電極および燃料電池
JP4133654B2 (ja) 2003-07-01 2008-08-13 本田技研工業株式会社 固体高分子形燃料電池
JP3791797B2 (ja) * 2003-08-21 2006-06-28 ソニー株式会社 電池
JP5136123B2 (ja) * 2006-01-11 2013-02-06 日立化成工業株式会社 電気二重層キャパシタ用電極材、その製造方法及び電気二重層キャパシタ
RU2006137605A (ru) * 2006-10-24 2008-04-27 Самсунг Сди Ко., Лтд. (Kr) Углерод, полученный из карбида, эмиттер для холодного катода, включающий этот углерод, и электронное эмиссионное устройство, включающее эмиттер
JP2008105922A (ja) * 2006-10-24 2008-05-08 Samsung Sdi Co Ltd カーバイド誘導炭素、冷陰極用電子放出源及び電子放出素子
US8202817B2 (en) * 2007-01-31 2012-06-19 Nec Corporation Nanocarbon aggregate and method for manufacturing the same
KR101543486B1 (ko) 2007-12-12 2015-08-10 신닛테츠 수미킨 가가쿠 가부시키가이샤 금속 내포 수상 탄소 나노 구조물, 탄소 나노 구조체, 금속 내포 수상 탄소 나노 구조물의 제작방법, 탄소 나노 구조체의 제작방법, 및 캐패시터
CA2750783C (en) * 2008-11-25 2015-10-13 Nissan Motor Co., Ltd. Electrical conductive member and polymer electrolyte fuel cell using the same
JP2010208887A (ja) * 2009-03-10 2010-09-24 Toyo Tanso Kk 多孔質炭素及びその製造方法
US8835046B2 (en) * 2009-08-10 2014-09-16 Battelle Memorial Institute Self assembled multi-layer nanocomposite of graphene and metal oxide materials
WO2013021688A1 (ja) * 2011-08-09 2013-02-14 昭和電工株式会社 燃料電池用電極触媒の製造方法、燃料電池用電極触媒およびその用途
US20140255803A1 (en) * 2011-10-14 2014-09-11 Wayne State University Graphene supported bifunctional catalysts
JP5839107B2 (ja) * 2012-02-28 2016-01-06 日産自動車株式会社 燃料電池用カソード電極
US20130288155A1 (en) * 2012-04-30 2013-10-31 Samsung Sdi Co., Ltd. Support for electrode catalyst and method of manufacturing the same, electrode catalyst and fuel cell
CN104981928A (zh) * 2013-02-07 2015-10-14 株式会社Ihi 氧还原催化剂、氧还原电极以及燃料电池
US9567225B2 (en) * 2013-10-11 2017-02-14 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Single-step, solvent-free, catalyst-free preparation of holey carbon allotropes
US9732669B2 (en) 2014-02-25 2017-08-15 Ford Global Technologies, Llc Wastegate valve seat position determination

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109614A (ja) * 2001-09-27 2003-04-11 Nippon Steel Corp 高分子固体電解質型燃料電池酸素極用触媒及びその製造方法
WO2007055411A1 (ja) * 2005-11-14 2007-05-18 Cataler Corporation 燃料電池用触媒、燃料電池用電極、及びこれを備えた固体高分子型燃料電池
JP2010535148A (ja) * 2007-08-01 2010-11-18 ダウ グローバル テクノロジーズ インコーポレイティド 剥離グラフェンを製造するための高効率の方法
US20110014111A1 (en) * 2007-08-01 2011-01-20 Mary Anne Leugers Highly efficient process for manufacture of exfoliated graphene
JP2012502427A (ja) * 2008-09-08 2012-01-26 ナンヤン テクノロジカル ユニヴァーシティー 金属空気電池、燃料電池および超コンデンサー用の電極材料
JP2012524016A (ja) * 2009-04-15 2012-10-11 ダウ グローバル テクノロジーズ エルエルシー 連続供給炉アセンブリ並びに酸化グラファイトの製造及び連続熱剥離方法
WO2012073998A1 (ja) * 2010-12-02 2012-06-07 独立行政法人物質・材料研究機構 カーボンナノチューブ連結のグラフェンシートフィルムとその製造方法及びそれを用いたグラフェンシートキャパシター
JP2013140770A (ja) * 2011-12-28 2013-07-18 Qinghua Univ 集電体、それを利用した電気化学電池用電極及び電気化学電池

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
AMINI, S. ET AL.: "Growth of large-area graphene films from metal-carbon melts", J. APPL. PHYS., vol. 108, no. 9, JPN7018002174, 10 November 2010 (2010-11-10), US, pages 094321 - 1, ISSN: 0003930248 *
CHILDRES, I. ET AL.: "Raman Spectroscopy of Graphene and Related Materials", NEW DEVELOPMENTS IN PHOTON AND MATERIALS RESEARCH, JPN6018006824, 8 July 2013 (2013-07-08), US, pages 19 - 1, ISSN: 0003930251 *
DENG, D. ET AL.: "Toward N-Doped Graphene via Solvothermal Synthesis", CHEM. MATER., vol. 23, JPN6018024272, 26 January 2011 (2011-01-26), US, pages 1188 - 1193, ISSN: 0003930249 *
MURAOKA, MITSUYOSHI ET AL.: "Iron addition to Vietnam anthracite coal and its nitrogen doping as a PEFC non-platinum cathode cata", FUEL, vol. 102, JPN6018024271, 29 May 2012 (2012-05-29), GB, pages 359 - 365, ISSN: 0003826788 *
SADEZKY, A. ET AL.: "Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural", CARBON, vol. 43, JPN6017025066, 23 March 2005 (2005-03-23), pages 1731 - 1742, ISSN: 0003826789 *
SANER, B. ET AL.: "Utilization of multiple graphene layers in fuel cells. 1. An improved technique for the exfoliation", FUEL, vol. 89, JPN6018024273, 1 April 2010 (2010-04-01), GB, pages 1903 - 1910, ISSN: 0003930250 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10333153B2 (en) * 2015-10-09 2019-06-25 Toyota Jidosha Kabushiki Kaisha Fuel cell catalyst layer, and fuel cell

Also Published As

Publication number Publication date
CN105594033B (zh) 2017-08-08
US10135074B2 (en) 2018-11-20
CA2925618A1 (en) 2015-04-02
CA2925618C (en) 2018-11-06
CN105594033A (zh) 2016-05-18
EP3053648B1 (en) 2019-02-06
WO2015045852A1 (ja) 2015-04-02
US20160233520A1 (en) 2016-08-11
JP6461805B2 (ja) 2019-01-30
EP3053648A1 (en) 2016-08-10
EP3053648A4 (en) 2016-09-28

Similar Documents

Publication Publication Date Title
JP6461805B2 (ja) 触媒用炭素粉末ならびに当該触媒用炭素粉末を用いる触媒、電極触媒層、膜電極接合体および燃料電池
JP5998277B2 (ja) 燃料電池用触媒、およびこれを含む燃料電池用電極触媒層
JP6156490B2 (ja) 燃料電池用電極触媒ならびに当該触媒を用いる電極触媒層、膜電極接合体および燃料電池
JP5998275B2 (ja) 燃料電池用触媒ならびに当該燃料電池用触媒を用いる電極触媒層、膜電極接合体および燃料電池
CA2910237C (en) Catalyst and manufacturing method thereof, and electrode catalyst layer using the catalyst
JP6113837B2 (ja) 触媒ならびに当該触媒を用いる電極触媒層、膜電極接合体および燃料電池
JP6113836B2 (ja) 触媒ならびに当該触媒を用いる電極触媒層、膜電極接合体および燃料電池
JP6327681B2 (ja) 燃料電池用電極触媒、その製造方法、当該触媒を含む燃料電池用電極触媒層ならびに当該触媒または触媒層を用いる燃料電池用膜電極接合体および燃料電池
JP6008044B2 (ja) 燃料電池用触媒ならびに当該燃料電池用触媒を用いる電極触媒層、膜電極接合体および燃料電池
JP6276870B2 (ja) 燃料電池用電極触媒層、ならびに当該触媒層を用いる燃料電池用膜電極接合体および燃料電池
JP5998276B2 (ja) 触媒の製造方法ならびに当該触媒を用いる電極触媒層、膜電極接合体および燃料電池
JP6323818B2 (ja) 燃料電池用電極触媒、燃料電池用電極触媒層、その製造方法ならびに当該触媒層を用いる膜電極接合体および燃料電池
JP6672622B2 (ja) 燃料電池用電極触媒層およびその製造方法、ならびに当該触媒層を用いる膜電極接合体、燃料電池および車両
JP6183120B2 (ja) 燃料電池用膜電極接合体および燃料電池
JP6191368B2 (ja) 燃料電池用膜電極接合体および燃料電池

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170911

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181226

R150 Certificate of patent or registration of utility model

Ref document number: 6461805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350