JPWO2014102881A1 - 多層配線基板 - Google Patents

多層配線基板 Download PDF

Info

Publication number
JPWO2014102881A1
JPWO2014102881A1 JP2014553897A JP2014553897A JPWO2014102881A1 JP WO2014102881 A1 JPWO2014102881 A1 JP WO2014102881A1 JP 2014553897 A JP2014553897 A JP 2014553897A JP 2014553897 A JP2014553897 A JP 2014553897A JP WO2014102881 A1 JPWO2014102881 A1 JP WO2014102881A1
Authority
JP
Japan
Prior art keywords
film
insulating film
present
electrode
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014553897A
Other languages
English (en)
Inventor
大見 忠弘
忠弘 大見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Publication of JPWO2014102881A1 publication Critical patent/JPWO2014102881A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02244Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of a metallic layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02258Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by anodic treatment, e.g. anodic oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本発明の課題は、高効率で生産管理出来且つコストセーブできる高耐久性の電気絶縁膜を簡便に提供することである。本発明は、マグネシウム、ジルコニウム及びセリウムが添加されているアルミニウム合金の陽極酸化膜で電気絶縁膜を構成する。

Description

本発明は、半導体装置、MIS型トランジスタ及び多層配線基板に関するものである。
パーソナルコンピュータ(PC)やスマートフォン、タブレットなどの情報端末機器の小型・軽量・薄型化、高速データ処理化、高機能化に伴い、それらに使用される半導体装置や、液晶表示装置(Liquid Crystal Display Device:LCDD)や有機EL表示装置(Organic Electroluminescence Display Device:OELDD)などの表示装置用の駆動用半導体装置は、より一層の高集積化・高密度化が求められている。
半導体装置の高集積化・高密度化は、トランジスタスイッチング素子などの電子機能素子の微細化に依存する。電子機能素子は微細に成る程、その素子を構成する各構成要素の電気的特性と動作信頼性のより一層の向上と半導体装置を構成する多数の電子素子の間での電気的特性と動作特性のバラツキレスのより一層の向上が求められる。
半導体装置の中で多数使用される電子機能素子の一つである、例えば、MIS(Metal-Insulator-semiconductor)型トランジスタ(MISTr)、非線形抵抗素子であるMIM(metal-insulator-Metal)型スイッチング素子(MIMSWE)の動作性能と信頼性の向上への要求は一層厳しいものになってきている。MISTrの動作性能と信頼性は、ゲート絶縁膜の電気的品質と信頼性に、また、MIMSWEは両電極に挟持される絶縁膜の電気的品質と信頼性に、敏感である。その他、半導体装置の電気回路に多数使用されるコンデンサーや、MIM型の配線構造を少なくともその一部に有する多層配線基板における電気絶縁膜の電気的品質と信頼性に対してもMISTrやMIMSWEの絶縁膜への要求と同等以上の要求がなされている。
上記の要求に加え、電子機能素子、コンデンサー及びMIM型配線構造における電気絶縁膜の生産工程のシンプル化と生産設備の簡便化、低生産コスト化の要求は、完成電気・電子機器の販売競争力を高めるために年々強くなってきている。
その様な状況を鑑みると、陽極酸化法による前記絶縁膜の形成法は、有力な絶縁膜形成法になる可能性を秘めている。その中で、MIM型配線構造の絶縁膜を形成する例が、特許文献1に、MISTrのゲート絶縁膜を形成する例が特許文献2に記載されている。特許文献1の例、特許文献2の例、何れも陽極酸化用の電解溶液は、その液組成がエチレングリコール、酒石酸アンモニウム、水からなり、エチレングリコールの濃度が高いものとなっている。
特開平6−308539号公報 特開平8−120489号公報
しかしながら、電解液温を、特許文献1の場合は、約25℃で、特許文献2の場合は、40℃以下で、陽極酸化しているが、その液温でないと、形成する陽極酸化膜が、陽極酸化中に溶解して仕舞う、陽極酸化スピードに膜表面依存性があり、半導体分野では重要な膜因子である表面平滑性に優れた酸化膜の形成が難しくなるという生産管理上の不都合がある。又、陽極酸化時の電解液温が低いために量産効率が上がらない。
本発明は、上記点に鑑み鋭意なされたものであって、その目的の一つは、高効率で生産管理出来且つコストセーブできる高耐久性の電気絶縁膜を備えた半導体装置を提供することである。
もう一つの目的は、高効率で生産管理出来且つコストセーブできる高耐久性の層間絶縁膜を備えた半導体装置用多層配線基板を提供することである。
本発明の一つの側面は、電気的絶縁膜を備えた半導体装置に於いて、前記絶縁膜がマグネシウム、ジルコニウム及びセリウムが添加されているアルミニウム合金の陽極酸化膜であることを特徴とする半導体装置にある。
本発明の別の側面は、層間絶縁膜を備えた半導体装置用多層配線基板に於いて、前記層間絶縁膜がマグネシウム、ジルコニウム及びセリウムが添加されているアルミニウム合金の陽極酸化膜であることを特徴とする半導体装置用多層配線基板にある。
本発明のもう一つ別の側面は、ゲート電極、ゲート絶縁膜、半導体層、ソース電極及びドレイン電極を其体上に有するMIS型トランジスタにおいて、前記ゲート絶縁膜が、マグネシウム、ジルコニウム及びセリウムが添加されているアルミニウム合金の陽極酸化膜であることを特徴とするMIS型トランジスタにある。
本発明の更にもう一つ別の側面は、MIM型構造を有する半導体装置に於いて、前記MIM型構造の絶縁膜が、マグネシウム、ジルコニウム及びセリウムが添加されているアルミニウム合金の陽極酸化膜であることを特徴とする半導体装置にある。
本発明によれば、高効率で生産管理出来且つコストセーブできる高耐久性の電気絶縁膜を簡便に提供できる。
本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。
添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
図1は、本発明の好適な実施態様の一つであるMISTrの構成を説明するための模式的構成説明図である。 図2は、本発明の好適な実施態様の別の例であるMISTrの構成を説明するための模式的構成説明図である。 図3は、本発明の好適な実施態様の更に別の例であるMISTrの構成を説明するための模式的構成説明図である。
図1に示されるMISTr100は、半導体用の基体101上に、ゲート電極102、ゲート絶縁膜103、半導体層104、ソース電極105、ドレイン電極106を備えている。
MISTr100は、半導体層104を設ける際に、段差をなくすために、ゲート絶縁膜103の上面にその表面を揃えるように、ゲート絶縁膜103の左右に平坦化層領域109a、109bが予め設けられる。
生産コストをセーブするために基体100を、例えば、青板ガラス等の安価なガラス基板とする場合は、該ガラス基板中に含まれるナトリウム(Na)が基板外部へ拡散するのを防止するためにNa拡散防止層107が必要に応じて設けられる。この場合、基体100の下部面に、Na拡散防止層107と同様にNa拡散防止機能に加え耐薬品機能、特に耐エッチング薬剤機能を備えた耐薬剤性Na拡散防止層108を設けると、ナトリウム(Na)の拡散防止だけでなく、MISTr100の作製過程で使用される薬品、例えば、バッファードフッ酸などによるガラス基体のエッチング防止にもなるので、好都合である。
Na拡散防止層107、耐薬剤性Na拡散防止層108はともに同じ材料で構成しても良いし各層に求められる特性に応じて異なる材料で構成しても良い。その様な材料としては、例えば、国際公開第2010/001793号に記載されている下記の有機組成物(A)が好ましい材料として挙げられる。
有機組成物(A):
一般式((CH)SiO3/2(SiO1−x(但し、0<x≦1.0)で示される組成物。
例えば、具体的には、メチルトリアルコキシシラン化合物とテトラアルコキシシラン化合物との混合物を、加水分解縮合反応することにより得られる縮合物、が好ましい例として挙げられる。
この縮合物を含む塗布液を塗布して塗布膜を形成し、該塗布膜を400℃以下の温度で熱処理することで、Na拡散防止層107又は耐薬剤性Na拡散防止層108が形成される。
膜厚としては、150〜300nm程度までに極薄化してもNaの拡散防止機能など優れた特性は維持される。絶縁特性も優れている。例えば、1MV/cmで電流密度1×10-10A/cm2、3MV/cmで電流密度1×10-9A/cm2という優れた値を示す。
その他、ガリウム(Ga)、アルミニウム(Al)、またはインジウム(In)がドープされている酸化亜鉛(ZnO)が挙げられる。
ゲート絶縁膜103は、ゲート容量とリーク電流防止(又は、抑制)を担保できる材料と製造プロセス・条件が選択されて形成される必要がある。
本発明においては、ゲート絶縁膜103は、マグネシウム(Mg)、ジルコニウム(Zr)及びセリウム(Ce)が添加されているアルミニウム(Al)合金(「Al(Mg,Zr,Ce)合金と記載することもある」)膜を後述する液組成の電解溶液を用いて陽極酸化することで形成される。ゲート絶縁膜103形成のために設けられるAl(Mg,Zr,Ce)合金膜は、ゲート電極102形成用に設けたもの自体でもよく、ゲート電極102上に設けたものでもよい。Al(Mg,Zr,Ce)合金膜をゲート電極102形成用に設けた合金膜自体とする場合は、Al(Mg,Zr,Ce)合金膜上部のみを陽極酸化してゲート絶縁膜103とし、下部はAl(Mg,Zr,Ce)合金のまま残してゲート電極102とする。詰り、ゲート電極102形成用に設けたAl(Mg,Zr,Ce)合金膜の上方の一部を陽極酸化してゲート絶縁膜103を形成し、陽極酸化しない残余下部はゲート電極102とする。
本発明に於いては、陽極酸化してゲート絶縁膜103を形成するためのAl(Mg,Zr,Ce)合金は、アルミニウム(Al)を主体として、マグネシウム(Mg)、ジルコニウム(Zr)及びセリウム(Ce)が添加されているAl合金であるが、該合金中に添加されるマグネシウム(Mg)、ジルコニウム(Zr)及びセリウム(Ce)の添加量は、形成されるゲート絶縁膜103の設計上の所望電気特性に応じて、適宜決められる。
又、ゲート電極102を、Al(Mg,Zr,Ce)合金膜で構成する場合は、ゲート絶縁膜103とすべくAl(Mg,Zr,Ce)合金膜を陽極酸化して形成した陽極酸化膜に対して、所定の温度で所定時間熱処理を施すので、この熱処理によって形成した陽極酸化膜中のAl2O3の結晶粒が成長して許容以上に大きくなるのを防止若しくは抑制するために、Zrの添加量が所望に応じて適宜選択される。本発明のおけるZrの添加量は、好ましくは0.01%〜0.15%以下とするのが望ましい。Zrの添加量をこの範囲にすることで、350℃程度の熱処理を施しても結晶粒の成長が確実に阻止若しくは抑制でき、陽極酸化膜の機械的強度及び電気絶縁性をより向上させることが出来る。ここで「%」は、「質量%」を示し、本願に於いて断りなく「%」で記載した場合は、本願明細書全般に亘って「質量%」を意味する。
本発明のおけるMgの好ましい添加量は、0.01%〜5.0%以下である。Mgの添加量をこの範囲にすることで、機械的強度の高い高膜質の陽極酸化膜が得られる。
Ceの添加も膜質の向上が目的である。本発明においてCeの添加量の好ましい範囲は、0.01%〜5.0%である。MgとCeの添加量が上記の範囲を逸脱すると、膜質の向上に対して導電率の向上が目立つようになり高絶縁性の緻密な膜が得られなくなる場合が生ずるので好ましくはない。
本発明におけるAl(Mg,Zr,Ce)合金は、上記の量の添加物を除いた残部がAl及び不可避不純物からなり、該不可避不純物の夫々が0.01%以下とするのが望ましい。該不可避不純物としては、例えば、シリコン(Si)、鉄(Fe)、銅(Cu)等である。
本発明においては、Al(Mg,Zr,Ce)合金膜の形成は、回転マグネトロンスパッタ装置を用いて形成される。回転マグネトロンスパッタ装置としては、例えば、国際公開第2007/043476号、国際公開第2008/114718号などに記載されている。
スパッター成膜条件としては、成膜用の基板の温度が、好ましくは室温〜200℃程度とされ、スパッタリング用のガスは、Kr/O2(O2:1〜5%)混合ガスを用いる。
形成される合金膜の膜厚は、膜全体を陽極酸化するか膜の一部を膜状に陽極酸化するかによって、所望に応じて適宜決められる。膜の一部をゲート電極とし残部を陽極酸化する場合は、好ましくは、1〜3μmとするのが望ましい。
本発明において、Al(Mg,Zr,Ce)合金膜の陽極酸化は、以下の様にして実施されるが、これに限定される訳ではなく、本発明の目的に沿う範囲の作製プロセスや作製条件であれば、本発明の範疇である。
本発明における陽極酸化で使用される好ましい電解溶液は、以下に記す非水溶液系の陽極酸化用電解溶液(A)である。
非水溶液系の陽極酸化用電解溶液(A)
溶液(1) :エチレングリコール(79%)
アジピン酸アンモニウム(1%)
水(20%)
溶液(2) :ジエチレングリコール(79.5%)
アジピン酸アンモニウム(0.5%)
水(20%)
これらの電解溶液(A)が所定量満たされた陽極酸化用の浴槽中に、所望の基板上に準備されたAl(Mg,Zr,Ce)合金膜(試料A)を浸漬し、Pt(白金)製対向電極(Pt)との間に電圧印加して陽極酸化を行う。この際に、電流密度0.1〜0.2mA/cm2の範囲の大きさの電流を一定に流し(定電流モード)て陽極酸化を行う。陽極酸化膜の成長に従って試料(1)の陽極酸化面と対向電極(Pt)との間の電圧(V)が次第に上昇する。電圧(V)が25〜50Vの範囲の電圧まで上昇したら定電圧モードに切り替える。試料(1)と対向電極(Pt)の間に流れる電流(A)が1μA/cm2を十分下回った値になったら、陽極酸化を終了する。その後、試料(1)を超純水で十分に洗浄する。
洗浄後、次の様な熱処理を行う。減圧(1〜10Torr)N2ガス雰囲気中で、300℃まで徐々に昇温し、その状態を1〜10時間、好ましくは、3〜7時間維持する。次いで、N2ガスに代えて、100%O2ガスを流しながら、常圧で、300℃で、1〜3時間維持する。
本発明に関わる非水系電解溶液(A)を使用すると、極薄い膜から厚膜まで、全面的に無孔質で緻密で均一な高絶縁性の陽極酸化膜(バリア型)を大きな面積に亘っても確実に効率よく形成することが出来る。その理由の一つが、以下に記される。水系の電解溶液の陽極酸化のように水主体の溶液だと、水の比誘電率が80と極めて大きいため、水分子が低い電圧でH+とOH-に解離して仕舞う。Al(Mg,Zr,Ce)合金膜表面にある程度の厚みで陽極酸化膜を形成するためには、対向電極のPt(白金)電極との間に少なくとも200V以上の電圧を印加しなければならないが、形成される陽極酸化膜の電気的耐性にそこまでの耐性がなく、ある程度の厚みまで膜形成するのは一般的に難しい。そのため、本発明においては、比誘電率の小さなエチレングリコールやジエチレングリコールを添加して非水溶液とし、好ましくは、その比誘電率を51〜44位まで下げて使用することが望ましい。
本発明に係る非水系電解液中にて形成したAl(Mg,Zr,Ce)合金のバリア型陽極酸化膜は不動態膜として優れた特徴を有している。又、酸化膜表面のマイクロラフネスは、水溶液系電解液による酸化膜に比べて非常に小さい。更に、高い温度においても、本発明に係るバリア型陽極酸化膜は熱クラック等を生成せず、膜からのアウトガスとしての放出水分量も非常に少ない。顕著な耐蝕性を示す。
本発明に係る陽極酸化膜は、電解溶液の比誘電率と陽極酸化の際の印加電圧を調整することで所定の膜厚のものを得ることが出来る。本発明に於いては、陽極酸化膜の膜厚は、形成される電子素子を構成する絶縁膜や多層配線基板の層間絶縁膜に要求される特性に応じて適宜決められる。陽極酸化膜の膜厚として、好ましくは、5〜100nm、より好ましくは、10〜70nm、更に好ましくは、30〜60nmとするのが望ましい。
本発明における、陽極酸化法によって形成されるAl(Mg,Zr,Ce)合金由来の陽極酸化膜は、実質的も含めてその膜全体若しくは殆ど膜全体が、酸化アルミニウム(Al2O3)で構成されているが、不可避不純元素も含めてAl(Mg,Zr,Ce)合金由来の元素の混入は、本発明の目的が達成される範囲において許容されるものである。絶縁膜に要求される特性を満たすために、場合によっては、Al(Mg,Zr,Ce)合金由来の金属(Mg,Zr,Ce)の酸化物を陽極酸化膜中に意図的に混入させることもある。
本発明に於いて使用される非水系の電解溶液は、前述の通りの成分を含み、所定の誘電率とpHになるように調整されている。本発明に於いて使用され得る非水系の電解溶液においては、他に、本発明の目的が損なわれない範囲であれば、必要な化学成分を含ませることは否定されるものではない。
本発明に於いて基体101としては、様々な材料を用いることが可能であるが、好ましく採用されるのは、耐熱プラスチック、ガラス、金属、セラミックスなどである。その様な材料としては、例えば、石英、青板ガラス、アルカリ金属レスガラス、シリコン(ケイ素)基板、アルミニウム、ステンレス等の金属基板、ガリウムヒ素(GaAs)等の半導体基板、及び熱可塑性又は熱硬化性のプラスチック基板等が用いられる。また、上記材料のうちの2種以上を積層した複合積層体とした基体も用いることができる。
本発明において、ゲート電極102は、通常、半導体分野で用いられる電極用又は電気配線用の導電性材料の大概のものが使用できる。その様な導電性材料としては、例えば、Cr、Al、Ta、Mo、Nb、Cu、Ag、Au(4.9eV)、Pt、Pd、In、Ni、Nd、Ca、Ti、Ta、Ir、Ru、W、Mo、Ru-Mo合金などの金属及びこれら金属の合金(以後「金属(M)」と記すこともある。但し、「M≠(Mg,Zr,Ce)」)、或いは、Al(Zr)合金、Al(Mg,Zr,Ce)合金で構成される。その他、InO2、Sn2、ITO等の導電性の酸化物、TiN、TaNなどの導電性窒化物、ポリアニリン、ポリピロール、ポリチオフェン、またはポリアセチレン等の導電性高分子、グラフェン、カーボンナノチューブ、電荷移動錯体などの分子性導体、それらの積層構造部材が挙げられる。更に、カーボンブラックまたは金属粒子を分散した導電性の複合材料を用いてもよい。
ゲート電極102は、その上に形成される層(又は膜)の平坦性を考慮して、電極機能が発揮され、ピンホールが発生しない範囲に於いて出来る限り薄く形成されるのが望ましい。具体的には、通常は100nm以下、好ましくは、50nm以下、より好ましくは、10nm以下の厚さで形成されるのが望ましい。
本発明に於いて、ゲート電極102は、上記の材料の中から選択される単一材料からなる単層構成に限られるものではない。例えば、好ましくは、InO2、SnO2、ITO等の導電性の酸化物、TiN、TaNなどの導電性窒化物、金属(M)、Al(Zr)合金、Al(Mg,Zr,Ce)合金から選択される異なる材料を使用して複合膜構成にしても良い。その様な複合膜は、例えば、基体101側から順次積層された構成で示せば、以下の通りのものが好ましい電極構成として挙げられる。
D(1) 金属(M)膜/Al(Zr)合金膜
D(2) 金属(M)膜/Al(Mg,Zr,Ce)合金膜
D(3) Al(Zr)合金膜/Al(Mg,Zr,Ce)合金膜
D(4) Al(Mg,Zr,Ce)合金膜/Al(Zr)合金膜
D(5) Al(Zr)合金膜/金属(M)膜
D(6) Al(Mg,Zr,Ce)合金膜/金属(M)膜
D(7) 金属(M1)膜/金属(M2)膜(但し、M1 ≠ M2)
D(8) 導電性酸化物膜/Al(Zr)合金膜
D(9) 導電性酸化物膜/Al(Mg,Zr,Ce)合金膜
ゲート電極長は、素子設計に応じて適宜決められるが、好ましくは、2〜10μmとするのが望ましい。
ソース電極、ドレイン電極は、単一材料の膜単体で構成しても良いし、異なる金属(M)材料で構成した複合膜(積層構造膜/複膜構成膜)で構成しても良い。複合膜としては、例えば、半導体層104側からの積層順で示せば、以下の通りのものが好ましい電極構成として挙げられる。
SD(1) Mo膜/Al膜、
SD(2) Mo膜/Cu膜
SD(3) Ti膜/Al膜、
SD(4) Ti膜/Cu膜
SD(5) Cu膜/Al膜
本発明に於ける半導体層104は、有機半導体材料又は無機半導体材料で構成される。その様な半導体材料は、結晶質でも非結晶質でもよいが、結晶質の場合は、単結晶でも良いが、大面積のデバイスが容易に作製できる点で、多結晶質或いは微結晶質のものが好ましい。
有機半導体材料としては、ペンタセンやアントラセン、ルブレンなどの多環芳香族炭化水素や、テトラシアノキノジメタン(TCNQ)などの低分子化合物をはじめ、ポリアセチレンやポリ−3−ヘキシルチオフェン(P3HT)、ポリパラフェニレンビニレン(PPV)などのポリマーが挙げられる。
無機半導体材料としては、アモルファスシリコン(a-Si)、微結晶性(マイクロ及びナノ)または多結晶性シリコン(poly-Si)、酸化亜鉛や二酸化スズ、酸化インジウムやITO(通常In2O3:SnO2 = 90:10 [wt%])等の酸化物半導体がある。
アモルファスシリコンは、正孔を電荷担体とするp型も電子を電荷担体とするn型もある両性であるが、その多くはn型である。しかし、p型としても、酸化銅や酸化銀、また一酸化スズなどが報告されている。
しかし、有望であり本発明がより適切に実施される無機半導体材料は、所謂「透明アモルファス酸化物半導体(TAOS:Transparent Amorphous Oxide Semiconductors)」である。TAOS系の無機半導体材料を使用して形成される薄膜トランジスタ(TFT:Thin Film Transistor)は、キャリア移動度が10cm2/Vs以上と高く、特性バラつきも小さいので、有機ELパネルで問題となる、TFTの特性バラつきによる表示ムラを抑えられるメリットがある。TAOS膜はスパッター法で形成できるため、製造コストも下げることができる。又、製造プロセス温度を室温近くまで下げられるので、耐熱性に乏しい樹脂基板を利用でき、折り曲げられる電子ペーパーなど、フレキシブルなディスプレイを、更には、その透明性を活かした透明ディスプレイを容易に実現できる。
本発明においては、TAOS系の無機半導体材料の中でも、(1)移動度が高い、(2)オフ性能が高い、(3)生産性が高いといった特徴を持つアモルファスIn-Ga-Zn-O(以後「IGZO」と記することもある)がより好ましい材料である。IGZOは、電子移動度が、テレビ(TV)やモニタ向けに採用されているa-Siの20〜50倍あるため、TFTの小型化と配線の細線化が十分可能で、IGZO-LCDでは同等の透過率で優に2倍の高精細化を図ることができる。また、高いオフ性能により、より一層の低消費電力化も実現可能である。例えば、従来の液晶駆動方式では、60フレーム/sで書き換えているのに対して、静止画の表示時など絵を書き換える必要がない場合は、休止期間を設けることができ、消費電力を従来の1/5〜1/10まで削減できる。この休止期間をa-Si表示パネルに設けると、フリッカが発生してしまうが、IGZOを採用するとフリッカなしで実現できる。このオフ性能の高さにより、タッチパネルの高性能化を図ることができる。例えば、休止駆動を用いることにより、SN比が5倍向上しタッチの検出性能も格段に上げることができる。
このような利点を有するIGZOで半導体層を構成するMISTrは、そのゲート絶縁膜を本発明の陽極酸化膜とすることで、その利点をより一層効果的に発揮されるので、本発明に於いてはより好ましい組み合わせになる。
ソース電極105とドレイン電極106は、半導体層104との電気的コンタクトがスムースになるように半導体層104を構成する材料との関係において適宜選択される材料で構成されるのが望ましい。例えば、活性層領域(チャネル領域)が形成される半導体層104をn型動作特性としてMISTr100をnMiSTrとするには、ソース電極105は、仕事関数の小さな材料で構成される。半導体層104をペンタセンの様な有機半導体材料で構成しn型動作特性とするには、該有機半導体材料のLUMO(Lowest Unoccupied Molecular Orbital)(ペンタセンの場合は、3.2eV)とできる限り整合性が取れるように材料の選択が適宜される。その結果、ソース電極105から半導体層104を構成する材料のLUMOへの電子の注入をし易くする。
ドレイン電極106の材料の選択基準も接触界面でのキャリアのスムースな移動という意味ではソース電極105の材料の選択基準と同様である。即ち、ドレイン電極106の場合は、半導体層104を構成する材料のHOMO(Highest Occupied Molecular Orbital)からドレイン電極106への電子の放出をしやすくする様な材料が選択される。即ち、活性層領域104を有機半導体材料で構成しp型動作特性とする場合は、該有機半導体材料のHOMO(Highest Occupied Molecular Orbital)(ペンタセンの場合は、5.0eV)とできる限りエネルギーレベルの整合性が取れるように材料の選択が適宜される。
平坦化層領域109を構成する材料は、平坦化層領域109を形成した際に、その表面平滑性が優れているものであれば、半導体分野の大概の材料を採用することができる。その中でも、製造プロセスにおいて、高温を必要とする工程や熱処理工程を採用する場合は、耐熱温度が150℃以上もある、例えば、ポリアリレート(PAR)、ポリスルホン(PSF)、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリイミド樹脂、フッ素樹脂などを採用するのが好ましい。ポリアミドイミド(PAI)、ポリエーテルエーテルケトン(PEEK)などは、250℃以上の耐熱性があり、しかも長時間の使用も可能であるので、上記の様な製造プロセスを採用する場合は、特に好ましい材料である。これらの樹脂の他、ピンホールなく超極薄化膜の形成ができるポリビニールフェノール(PVPh)も、本発明に於いて特に好ましい材料である。
平坦化領域110は樹脂で構成される他、酸化シリコン(SiO2)、窒化シリコン(Si3N4)、酸窒化シリコン(SiNO)、炭窒化シリコン(SiCN)などの無機絶縁材料で構成しても良い。
図2に示されるMISTr200は、図1に示したMISTr100と同様に、半導体用の基体201上に、ゲート電極202、ゲート絶縁膜203、半導体層204、ソース電極205、ドレイン電極206、平坦化層領域209を備えている。ここで、基体201は、基体101に、ゲート電極202は、ゲート電極102に、ゲート絶縁膜203は、ゲート絶縁膜103に、半導体層204は、半導体層104に、ソース電極205は、ソース電極105に、ドレイン電極206は、ドレイン電極106に、平坦化層領域209は、平坦化層領域109に、夫々相当し、それぞれがMISTr100の場合と同様の材料と作成条件が適用される。
無歪性Na拡散防止層207、無歪・耐薬剤性Na拡散防止層208は、必要に応じて設けられる。層207、層208の特長は、層自体に歪がないことである。この無歪性は、MISTr200が100℃程度までの高温に晒されて変ることは殆どない。層207、層208を構成するそのような材料は、例えば、窒化シリコン(Si3N4)に、10%程度炭素(C)が添加されたSiCNが好ましい材料として挙げられる。
ソース電極とドレイン電極は、半導体層との電気的コンタクトがスムースになるように半導体層を構成する材料との関係において適宜選択される材料で構成されるのが望ましい。その様な例が図3に示される。
図3に示すMISTr300は、図1に示すMISTr100とは、ソース電極部305とドレイン電極部306がソース電極105とドレイン電極106と夫々異なっているだけで、その他は同様であるので、共通部分については図1と共通の符号が用いられている。
図3に示す例は、ソース電極部305の下部電極膜305aを低仕事関数の材料で構成し、ドレイン電極部306の下部電極膜306aを高仕事関数の材料で構成することで、MISTr300の電流駆動能力を向上させるものである。
半導体層104をペンタセンの様な真性若しくは実質的に真性な半導体材料で構成する場合は、半導体層104内部には伝導に寄与するキャリアが存在しない若しくは実質或いは殆ど存在しないので、半導体層104外部からキャリア注入することで電流駆動能力を向上させる必要がある。その為に、半導体層104の仕事関数との関係に於いて、半導体層104にキャリアが注入され易くするために、相対的に低仕事関数の下部電極膜305aと高仕事関数の下部電極膜306aを夫々設ける。例えば、安価で取扱い易い材料で構成した上部電極領域305bと仕事関数の小さな材料で構成した下部電極領域305aとの積層構造としても良い。具体的には、例えば、上部電極領域305bは、Al、Cuなどの金属で、下部電極領域305aは、硼化ランタンなどで構成される。特に、下部電極領域305aは、好ましくは、後述する特性のLaB6(N)で構成するのが望ましい。ドレイン電極部306は、例えば、上部電極領域306bをAlで、下部電極領域306aをNiで構成される。この様に電極部305,306を複合層構造とすることにより、電極材料の選択範囲を広げられるので電極部305,306の複合層構造は好ましい。
本発明に於いて、有機材料で製膜する場合の製膜法には、形成する電子素子の特性や用途、採用する成膜材料に応じて種々の製膜法が採用される。本発明に於いて採用され得る製膜法には、塗布法、真空蒸着法、CVD(Chemical Vapor Deposition)、PCVD(Plasma Chemical Vapor Deposition)などが挙げられる。塗布法としては、スピンコート法、キャスト法、印刷法などが挙げられる。印刷法としては、オフセット印刷、凸版印刷、凹版印刷、グラビア印刷、スクリーン印刷、インクジェットプリント、マイクロコンタクトプリントなどが挙げられる。精細度において、10μm以下の場合は、インクジェットプリント、マイクロコンタクトプリントを採用するのが好ましい。特に、有機TFTにおいては、ソース電極とドレイン電極の間隔(チャネル長:L)を小さくすることで、素子のスイッチング特性が良くなることが知られているので、好ましくは、サブμmオーダーでの大面積パターニングも可能なマイクロコンタクトプリントの採用が望ましい。
本発明において、半導体層(104,204)を易動度の小さな半導体材料で構成しn型動作させる場合は、半導体層(104,204)とゲート絶縁膜(103,203)の間若しくは半導体層(104,204)内に形成されるチャネル領域に隣接若しくは近接して半導体層(104,204)内のゲート絶縁膜(103,203)側寄りに電子供給層領域(X)を設けるのが望ましい。
電子供給層領域(X)は、電子を放出しやすい低仕事関数の材料で構成される。そのような材料としては、例えば、硼化ランタン(LaB6:六硼化ランタン)が挙げられる。好ましくは、窒素含有硼化ランタン(「LaB6(N)」)で構成するのが望ましい。
本発明において、層領域(X)はより好ましくは以下に説明するLaB6(N)膜で構成するのが望ましい。より好ましいLaB6(N)膜は、結晶構造を有すると共に窒素原子を0.3〜0.5原子%含み、且つ、該膜中における全結晶中の10〜250nmの粒径範囲にある結晶の割合が20〜90%であって、該膜の結晶化度が20%以上である膜である。更に好ましいのは、粒径が10〜250nmの範囲における結晶粒径分布のピークの最大が、15〜150nmの範囲にある膜である。
本発明者等が推測するには、上記の数値範囲とすることで、2.4eVという低仕事関数のLaB6膜とすることだけでなく、半導体層(104,204)との界面親和性に優れるため界面特性が良好で、且つ密着性も良い膜になるものと思われる。そのため、デバイスの累積使用時間がかなり長時間になっても所期の密着性が維持され、膜の浮きや膜剥がれを起こさず経時変化対抗特性に優れた膜LaB6(N)膜になるものと思われる。
膜中における全結晶中の10〜250nmの粒径範囲にある結晶の割合は、好ましくは、上記の数値範囲であるのが望ましいが、より好ましくは、50〜90%、更により好ましくは、80〜90%であるのが望ましい。より一層好ましくは、30〜200nmの粒径範囲にある結晶の割合が50〜90%であるのが望ましい。更には、50〜150nmの粒径範囲にある結晶の割合が50〜90%であるのが格段に望ましいものである。
本発明において、より良好な窒素含有六硼化ランタン(「LaB6(N)」)膜を得るには、膜の結晶化度も重要である。結晶化度としては、好ましくは、上記した様に20%以上であるのが望ましいが、より好ましくは30%以上、更により好ましくは、50%以上であるのが望ましい。
結晶粒径分布のピーク位置も本発明のより好適なLaB6(N)膜を得るには重要なパラメーターである。本発明に於いては、粒径が10〜250nmの範囲における結晶粒径分布のピークの最大が、15〜150nm内にあるのが望ましく、より好ましくは、15〜120nm、より一層好ましくは、20〜100nmの範囲にあるのが望ましい。
[実験1]リーク電流の測定と膜均一・緻密性の測定
「試料A」の準備
その表面を半導体分野で通常実施されている洗浄法に従って洗浄した10(cm)×10(cm)の大きさの石英ガラス板を用意した。この石英ガラス板上に、半導体分野で通常実施されているスパッター技術、フォトリソグラフィ技術、本発明に係るAlMg(4.5%)Zr(0.1%)Ce(5%)合金膜の陽極酸化法を用いて、MIM型電極構造部を形成した。
前記電極構造部の下部電極部は、幅5(mm)×長さ8(cm)のストライブ形状のアルミニウム(Al)電極10本が前記石英ガラス板上に2(mm)ピッチで配列した構成とした。10本のAl電極上には、幅5(mm)×長さ5(mm)の陽極酸化膜とその上に陽極酸化膜と同サイズのアルミニウム(Al)個別電極を設けた積層体が、10×10マトリックスに配列されている(100個の積層体)。
(1)基体洗浄:オゾン水洗浄→水素水使用超音波洗浄→リンス
(2)陽極酸化条件:
・電解液(溶液(1)):エチレングリコール(79%)
アジピン酸アンモニウム(1%)
水(20%)
・定電圧モード:50V、0/5mA/cm2、23℃、2時間
(3)陽極酸化膜の熱処理条件:
1stステップ・・・N2ガス、
流量1000cc/min、圧力5Torr、300℃、5時間
2ndステップ・・・100%O2ガス、
流量1000cc/min、常圧、300℃、1時間
「試料B」の準備
AlMg(4.5%)Zr(0.1%)Ce(5%)合金膜に代えて、AlZr(2%)合金膜を使用し、陽極酸化条件は、特許文献1の実施例に記載された条件とした以外は、試料Aと同様にして試料Bを作成した。
(1)陽極酸化条件:
・電解液:酒石酸アンモニウム水溶液:エチレングリコール=3:7
・電解時の電解液の温度・・・25℃(恒温槽で調整)
・陽極酸化開始時の電流密度・・・・5mA/cm2
・電圧が140Vになった段階で140Vの定電圧モードに切り替え
・電流密度が0.05mA/cm2になった段階で陽極酸化停止
(2)熱処理なし
「試料A」の評価結果
試料Aをリーク電流測定装置にセットし、100個の積層体のそれぞれに印加電圧を徐々に上昇させて各積層体のリーク電流を測定した。何れの積層体も、5MV/cmの印加電圧でも、リーク電流は、電流密度で、1×10-10A/cm2以下であった。優れた絶縁性が示された。
「試料B」の評価結果
試料Bも試料Aと同様にリーク電流測定装置にセットし、100個の積層体のリーク電流を測定した。試料Bの場合、電圧印加当初から、100個の積層体の中、70個がショートした。印加電圧を徐々に上げて行くと、0.1MV/cmで、全部の積層体がショートした。
試料A及び試料Bの同じマトリックス交差位置の積層体を夫々10個選択し、各積層体のSEM写真を撮って、その断面を観察した。その結果、試料Aの場合は、積層体の下部電極と絶縁膜との界面(1A)、上部電極と絶縁膜との界面(2A)ともに、何れの積層体の場合も平滑性に富みスムースであったのに対して、試料Bの場合は、積層体の下部電極と絶縁膜との界面(1B)、上部電極と絶縁膜との界面(2B)ともに、何れの積層体の場合も平滑性に乏しく、特に界面(2B)に於いては、大きな凹凸が観察された。上記の様な相違が観察された要因は、使用した合金の組成及び組成比の相違及び本発明における陽極酸化膜の熱処理の有無によるものと推察する。
次の製造プロセスと条件に従って、図1に示すトランジスタを回路構成の一部とする駆動用半導体装置を作製し市販のLCDパネルに組み込んで駆動させたところ本発明の目的が達成された優れた半導体装置であることが確認された。
半導体装置の作製に際しては、以下に示す材料、プロセス条件を用い、通常の半導体分野で用いている成膜技術、フォトリソグラフィ技術、エッチング技術、洗浄技術等を駆使した。使用した装置は、市販の装置に一部改良を加えた装置及び自主作製装置。
(1)基体:市販の青板ガラス
・基体洗浄:オゾン水洗浄→水素水使用超音波洗浄、
(2)ゲート電極の形成:
・使用装置・・・回転マグネットスパッタ装置(「RMSP装置」と略記する)
・ターゲット・・・AlMg(4.5%)Ce(5%)Zr(0.1%)合金
・RMSP装置で基体上に成膜後、リアクティブイオンエッチング(「RIE」と略記する)装置でパターニングした(ゲート電極長:5μm)。
(3)パターニングしたAlMg(4.5%)Ce(5%)Zr(0.1%)合金の表面陽極酸化
・電解溶液・・・溶液(1)
・電解条件・・・対向電極Pt(白金)製
定電流モード時の電流密度0.2mA/cm2
・Pt(白金)製対向電極(Pt)との間の電圧が45Vになった段階で、
定電圧モードに切り替えた。
・電流密度が、0.1μA/cm2になった段階で陽極酸化を終了した。
(4)陽極酸化処理をした基体を超純水で十分洗浄した。
(5)洗浄した基体を圧力5TorrのN2雰囲気中で熱処理した。熱処理は、室温から300℃までゆっくり温度を上げ、その後、300℃を2時間維持した。
(6)以上の工程で、基体上にゲート電極とゲート絶縁膜のゲート積層体を形成した。
(7)ゲート積層体による段差をなくすために、ポリイミド系の耐熱性樹脂をスピン塗布法で塗布し固化させた。
・RIE法で、ゲート絶縁膜上の樹脂膜を除去した。
(8)半導体層の形成:
IGZOのターゲット(In2O3粉とGa2O3粉とZnO粉とを混合し高圧成形したもの)を用いRMSP装置で前記ゲート積層体上にIGZO半導体層を形成した。
・基体温度・・・200℃
・スパッター用のガス・・・・Kr/O2(3%)
・膜厚・・・40nm
(9)ソース電極・ドレイン電極の形成
・ソース電極・・・半導体層側からの順で、
LaB6(N:0.4%)膜(膜厚:50nm)/Al膜(膜厚:1μm)
・ドレイン電極・・・半導体層側からの順で、
Pt膜(膜厚:50nm)/Al膜(膜厚:1μm)
以上、図1乃至図3を用いて説明した本発明の実施態様の好適な例のいくつかとそれらの変形例は、何れもMISTrの例であるが、本発明は、これらの例に限定されるものではなく、これらの他、MIMSWE、半導体基板に作り込まれるコンデンサー及び配線基板上に形成されるコンデンサー、MIM型の配線構造を有する多層配線基板等、電気絶縁膜をその構成の一部に有する電子素子や多層配線基板、マトリックス配線構造を有する表示装置用基板などにも適用される。
本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。
100,200,300 MISTr
101,205 基体
102,202 ゲート電極
103,203 ゲート絶縁膜
104,204 半導体層
105,205,305 ソース電極(部)
106,206,306 ドレイン電極(部)
107 Na拡散防止層
108 耐薬剤性Na拡散防止層
109,209 平坦化層領域
207 無歪性Na拡散防止層
208 無歪・耐薬剤性Na拡散防止層
305a,306a 下部電極膜
305b,306b 上部電極膜
本発明は、多層配線基板に関するものである。
本発明の一つの側面は、層間絶縁膜を備えた半導体装置用多層配線基板に於いて、前記層間絶縁膜がマグネシウム、ジルコニウム及びセリウムが添加されているアルミニウム合金の陽極酸化膜であることを特徴とする半導体装置用多層配線基板にある。

Claims (4)

  1. 電気的絶縁膜を備えた半導体装置に於いて、前記絶縁膜がマグネシウム、ジルコニウム及びセリウムが添加されているアルミニウム合金の陽極酸化膜であることを特徴とする半導体装置。
  2. 層間絶縁膜を備えた半導体装置用多層配線基板に於いて、前記層間絶縁膜がマグネシウム、ジルコニウム及びセリウムが添加されているアルミニウム合金の陽極酸化膜であることを特徴とする半導体装置用多層配線基板
  3. ゲート電極、ゲート絶縁膜、半導体層、ソース電極及びドレイン電極を其体上に有するMIS型トランジスタにおいて、前記ゲート絶縁膜が、マグネシウム、ジルコニウム及びセリウムが添加されているアルミニウム合金の陽極酸化膜であることを特徴とするMIS型トランジスタ。
  4. MIM型構造を有する半導体装置に於いて、前記MIM型構造の絶縁膜が、マグネシウム、ジルコニウム及びセリウムが添加されているアルミニウム合金の陽極酸化膜であることを特徴とする半導体装置
JP2014553897A 2012-12-28 2012-12-28 多層配線基板 Pending JPWO2014102881A1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/008436 WO2014102881A1 (ja) 2012-12-28 2012-12-28 半導体装置、mis型トランジスタ及び多層配線基板

Publications (1)

Publication Number Publication Date
JPWO2014102881A1 true JPWO2014102881A1 (ja) 2017-01-12

Family

ID=51020044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014553897A Pending JPWO2014102881A1 (ja) 2012-12-28 2012-12-28 多層配線基板

Country Status (3)

Country Link
JP (1) JPWO2014102881A1 (ja)
TW (1) TW201428973A (ja)
WO (1) WO2014102881A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53116087A (en) * 1977-03-22 1978-10-11 Hitachi Ltd Manufacture for multilayer wiring
JPH07176694A (ja) * 1993-12-20 1995-07-14 Nec Corp キャパシタの製造方法
JPH10133231A (ja) * 1996-11-01 1998-05-22 Matsushita Electric Ind Co Ltd 多層配線構造およびその製造方法と薄膜トランジスタアレイおよびその製造方法と液晶表示装置
WO2011013600A1 (ja) * 2009-07-31 2011-02-03 国立大学法人東北大学 半導体装置、半導体装置の製造方法、及び表示装置
JP2011151395A (ja) * 2009-12-25 2011-08-04 Showa Denko Kk 発光素子用実装基板、発光素子用実装基板の製造方法、発光装置及び発光装置の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53116087A (en) * 1977-03-22 1978-10-11 Hitachi Ltd Manufacture for multilayer wiring
JPH07176694A (ja) * 1993-12-20 1995-07-14 Nec Corp キャパシタの製造方法
JPH10133231A (ja) * 1996-11-01 1998-05-22 Matsushita Electric Ind Co Ltd 多層配線構造およびその製造方法と薄膜トランジスタアレイおよびその製造方法と液晶表示装置
WO2011013600A1 (ja) * 2009-07-31 2011-02-03 国立大学法人東北大学 半導体装置、半導体装置の製造方法、及び表示装置
JP2011151395A (ja) * 2009-12-25 2011-08-04 Showa Denko Kk 発光素子用実装基板、発光素子用実装基板の製造方法、発光装置及び発光装置の製造方法

Also Published As

Publication number Publication date
WO2014102881A1 (ja) 2014-07-03
TW201428973A (zh) 2014-07-16

Similar Documents

Publication Publication Date Title
TW200838005A (en) Two-terminal switching devices and their methods of fabrication
KR102069158B1 (ko) 배선의 형성 방법, 반도체 장치, 및 반도체 장치의 제작 방법
JP5063832B2 (ja) 電界効果トランジスタおよびその製造方法
JP5557304B1 (ja) 有機半導体素子及びそれを備えたcmis半導体装置
CN101740636A (zh) 薄膜晶体管和显示装置
WO1997034447A1 (fr) Element electroluminescent organique et affichage electroluminescent organique
KR102142038B1 (ko) 전계 효과 트랜지스터, 그 제조 방법, 디스플레이 소자, 디스플레이 디바이스, 및 시스템
TWI390727B (zh) A bipolar organic thin film transistor and its manufacturing method
JP6520489B2 (ja) 電子回路装置、及び表示素子
CN109478560A (zh) 场效应晶体管及其制作方法,显示元件,图像显示装置和系统
EP3599646A2 (en) Metal oxide, field-effect transistor, and method for producing the same
WO2014102881A1 (ja) 半導体装置、mis型トランジスタ及び多層配線基板
WO2014102880A1 (ja) 半導体装置、mis型トランジスタ及び多層配線基板
JP2015076540A (ja) 半導体素子およびダイオード
JP4877869B2 (ja) 有機半導体素子の作製方法
JP2013175648A (ja) 電界効果トランジスタおよびその製造方法
WO2014091740A1 (ja) 有機半導体素子及びそれを備えたcmis半導体装置
JP2019161182A (ja) 電界効果型トランジスタ及びその製造方法、表示素子、表示装置、システム
TWI673874B (zh) 場效電晶體及其製造方法、顯示元件、顯示裝置及系統
JP2013038194A (ja) 有機トランジスタ及びその製造方法
JP2018110151A (ja) 電界効果型トランジスタの製造方法
PEREIRA Influence of annealing conditions on printed alumina thin film capacitors
JP2022145974A (ja) 電界効果型トランジスタ、表示素子、画像表示装置、及びシステム
JP2015176919A (ja) 有機薄膜トランジスタおよびその製造方法
JP2008270240A (ja) 半導体装置

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170306