JPWO2014024473A1 - リチウムイオン二次電池用負極材料 - Google Patents

リチウムイオン二次電池用負極材料 Download PDF

Info

Publication number
JPWO2014024473A1
JPWO2014024473A1 JP2014529308A JP2014529308A JPWO2014024473A1 JP WO2014024473 A1 JPWO2014024473 A1 JP WO2014024473A1 JP 2014529308 A JP2014529308 A JP 2014529308A JP 2014529308 A JP2014529308 A JP 2014529308A JP WO2014024473 A1 JPWO2014024473 A1 JP WO2014024473A1
Authority
JP
Japan
Prior art keywords
graphite
negative electrode
ion secondary
lithium ion
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014529308A
Other languages
English (en)
Other versions
JP6154380B2 (ja
Inventor
耐 猪瀬
耐 猪瀬
大輔 原田
大輔 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Publication of JPWO2014024473A1 publication Critical patent/JPWO2014024473A1/ja
Application granted granted Critical
Publication of JP6154380B2 publication Critical patent/JP6154380B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

本発明の目的は、高い出力と優れたサイクル特性とを維持したまま、高エネルギー密度を有し且つ大電流負荷特性に優れたリチウムイオン二次負極を作製するための負極材料を提供することである。本発明は、人造黒鉛からなる黒鉛(A)と、天然黒鉛を球塊状に加工してなる黒鉛(B)とを含有する混合黒鉛材からなるものであって、該混合黒鉛材とバインダーとを含んでなる合剤を銅箔上に塗布し、乾燥させ、次いで1t/cm3で加圧してなる合剤層の空隙率が25〜36%の範囲のいずれかになる、リチウムイオン二次電池用負極材料に係るものである。

Description

本発明は、リチウムイオン二次電池用負極材料に関する。さらに詳細に、本発明は、高い出力と優れたサイクル特性とを維持したまま、高エネルギー密度を有し且つ大電流負荷特性に優れたリチウムイオン二次電池用負極を作製するための負極材料に関する。
リチウムイオン二次電池は携帯電子機器の電源として使用されている。ところが、携帯電子機器はその機能が多様化し消費電力が大きくなっている。そのため、リチウムイオン二次電池の容量をさらに大きくすることが要求されている。また、リチウムイオン二次電池は、電動工具や電気自動車などの電源としても使用されている。バッテリー電気自動車(BEV)、ハイブリッド電気自動車(HEV)などの電気自動車においては、10年間以上に亘って高い充放電サイクル特性を維持すること、ハイパワーモーターを駆動させるために十分な大電流負荷特性を有すること、および航続距離を伸ばすために高い体積エネルギー密度を有することが要求される。
特許第3534391号公報(US 6632569) 特開平4−190555号公報 特許第3361510号公報 特開平7−320740号公報(US 5587255)
リチウムイオン二次電池の負極には一般的に黒鉛が用いられている。黒鉛には、天然黒鉛と人造黒鉛とがある。
天然黒鉛は比較的に安価に入手できる。天然黒鉛そのものは鱗片状を成している。天然黒鉛とバインダーとを混合してペーストを得、それを集電体に塗布すると一つの方向に天然黒鉛が配向する(図1参照)。そのような電極を有する電池に充電すると電極が一方向にのみ膨張し、電池性能が低下する。また、天然黒鉛の表面は高活性であるので、初回充電時に電解液との反応などによってガスが多量に発生して初期効率を低下させる。さらに、サイクル特性もそれほど良くない。
天然黒鉛を球状に造粒して成るものが知られている。例えば、特許文献1には、球状に造粒して成る天然黒鉛の表面に人造カーボンをコーティングして成る黒鉛材料が記載されている。しかし、該黒鉛材料を用いて成るリチウムイオン二次電池は、携帯電子機器の電源として要求される性能をある程度有しているが、電気自動車や電動工具などの電源として要求される性能には十分に達していない。
一方、人造黒鉛として多種多様のものが開発されている。例えば、特許文献2にはメソカーボン小球体を黒鉛化して成る材料が開示されている。この材料を用いると、高容量で且つ大電流負荷特性に優れたリチウムイオン二次電池を作製することができる。しかしながら、10年以上の長期に亘ってサイクル特性を維持することができない。
石油、石炭ピッチ、コークスなどを原料とする人造黒鉛も比較的安価に入手できる。しかし、結晶性のよい針状コークスは鱗片状になり配向しやすい。この問題を解決するため、特許文献3に記載された方法が成果を上げている。この方法は、人造黒鉛原料の微粉の他、天然黒鉛などの微粉も使用可能であり、モバイル用負極材としては、非常に優れた性能を発揮する。しかし、この材料も、モバイル用途などが要求する高容量・低電流・中サイクル特性については対応可能であるが、上記のような大型電池の大電流、超長期サイクル特性といった要求を満たすには至っていない。
また、特許文献4に記載されている、いわゆるハードカーボンや、非晶質カーボンを用いた負極材料は、大電流に対する特性に優れ、また、サイクル特性も比較的良好である。しかし、体積エネルギー密度があまりにも低く、また、価格も非常に高価なため、一部の特殊な大型電池にしか使用されていない。
本発明の目的は、高い出力と優れたサイクル特性とを維持したまま、高エネルギー密度を有し且つ大電流負荷特性に優れたリチウムイオン二次電池用負極を作製するための負極材料を提供することである。
本発明者らは、上記目的を達成するために鋭意検討した。その結果、以下のような形態を包含する本発明を完成するに至った。
〔1〕 人造黒鉛からなる黒鉛(A)と、天然黒鉛を球塊状に加工してなる黒鉛(B)とを含有する混合黒鉛材からなるものであって、
混合黒鉛材100質量部、増粘剤としてのカルボキシメチルセルロース1.5質量部、バインダーとしてのスチレンブタジエンラバー(SBR)1.5質量部および水100質量部とを含んでなる合剤を銅箔上に乾燥塗膜厚150μmで塗布し、70℃で12時間乾燥させ、次いで1t/cm2で加圧してなる合剤層の空隙率が25〜36%の範囲のいずれかになる、リチウムイオン二次電池用負極材料。
〔2〕 合剤層は、X線回折において、004回折ピークの面積に対する110回折ピークの面積の比が、0.05〜0.17である。〔1〕に記載の負極材料。
〔3〕 黒鉛(A)は、体積基準累積粒度分布における50%粒子径が10〜30μm且つBET比表面積が0.5〜5.0m2/gであり、且つ
黒鉛(B)は、体積基準累積粒度分布における50%粒子径が12〜25μm且つBET比表面積が1.5〜7.0m2/gである、〔1〕または〔2〕に記載の負極材料。
〔4〕 黒鉛(A)は、非針状の石油系ピッチコークスを原料として合成された、等方性の結晶構造を持ち、且つ粒子表面にコーティング層を実質的に有しないもので、一次粒子のアスペクト比が1.00〜1.32で、レーザーラマンによるR値が0.01以上0.2以下で、且つ30℃〜100℃の熱膨張率が4.0×10-6-1以上5.0×10-6-1以下である、〔1〕〜〔3〕のいずれかひとつに記載の負極材料。
〔5〕 混合黒鉛材に含有する黒鉛(A)の量が30〜70質量%である、〔1〕〜〔4〕のいずれかひとつに記載の負極材料。
〔6〕 人造黒鉛からなる黒鉛(A)と、天然黒鉛を球塊状に加工してなる黒鉛(B)とを含有する混合黒鉛材からなるものであって、
黒鉛(A)は、非針状の石油系ピッチコークスを原料として合成された、等方性の結晶構造を有するもので、一次粒子のアスペクト比が1.00〜1.32で、レーザーラマンによるR値が0.01以上0.2以下であり、且つ 混合黒鉛材に含有する黒鉛(A)の量が20〜80質量%であるリチウムイオン二次電池用負極材料。
〔7〕 混合黒鉛材100質量部に対して0.1〜15質量部の繊維状炭素をさらに含有する、〔1〕〜〔6〕のいずれかひとつに記載の負極材料。
〔8〕 前記〔1〕〜〔7〕のいずれかひとつに記載の負極材料とバインダーとを含んでなる合剤を集電体上に塗布して得られる、リチウムイオン二次電池用負極。
〔9〕 前記〔8〕に記載の負極を有するリチウムイオン二次電池。
〔10〕 混合黒鉛材を含有するリチウムイオン二次電池用負極であって、
前記混合黒鉛材が人造黒鉛からなる黒鉛(A)と天然黒鉛を球塊状に加工してなる黒鉛(B)とを含有するものであり、
黒鉛(A)は、非針状の石油系ピッチコークスを原料として合成された、等方性の結晶構造を有するもので、一次粒子のアスペクト比が1.00〜1.32、レーザーラマンによるR値が0.01以上0.2以下であり、且つ混合黒鉛材中の黒鉛(A)の混合比率が20〜80質量%である、リチウムイオン二次電池用負極。
〔11〕 混合黒鉛材を含有するリチウムイオン二次電池用負極であって、
前記リチウムイオン二次電池用負極を1t/cm2で加圧した場合の負極の空隙率が25〜36%の範囲のいずれかである、リチウムイオン二次電池用負極。
本発明に係る負極材料を用いると、高い出力と優れたサイクル特性とを維持したまま、高エネルギー密度を有し且つ大電流負荷特性に優れたリチウムイオン二次電池を得ることができる。
本発明に係る負極材料は、経済性および量産性に優れ、且つ安全性の改善された方法により製造することができる。
天然黒鉛を含む合剤を集電体に塗布し加圧している際の合剤層の構造(a)および加圧後の合剤層の構造(b)を示す概念図である。 本発明の一実施形態の負極材料を含む合剤を集電体に塗布し加圧している際の合剤層の構造(a)および加圧後の合剤層の構造(b)を示す概念図である。
〔リチウムイオン二次電池用負極材料〕
本発明の一実施形態のリチウムイオン二次電池用負極材料は、黒鉛(A)と黒鉛(B)とを含有する混合黒鉛材からなるものである。
(黒鉛(A))
本発明に用いられる黒鉛(A)は、人造黒鉛からなるものである。人造黒鉛は、例えば、コークスなどの炭素原料を所定の大きさに粉砕し、該粉砕品を温度2000℃以上にて熱処理することによって製造される。黒鉛(A)としては、人造黒鉛の最外層に非晶質炭素が被覆されたもの、該最外層に黒鉛層が被覆されたものなどを用いることもできる。
炭素原料は、不活性雰囲気下で300℃から1200℃まで加熱した際の加熱減量分(例えば、炭化に伴う炭化水素の揮発分)が5〜20質量%のものであることが好ましい。この加熱減量分が少ないと粉砕後に粒子形状が板状になる傾向があり、また、粉砕面(エッジ部分)が露出しており比表面積が大きくなり副反応が多くなる傾向がある。逆に当該加熱減量分が多いと黒鉛化の過程で粒子同士が多く結着し、収率に影響する傾向がある。
次に炭素原料を粉砕する。炭素原料の粉砕には公知のジェットミル、ハンマーミル、ローラーミル、ピンミル、振動ミルなどが用いられる。炭素原料の粉砕はできるだけ低い熱履歴で行うことが好ましい。低い熱履歴で粉砕を行うと、炭素原料の粉砕が容易である上、破砕時の亀裂方向がほぼランダムになり、アスペクト比が小さくなる傾向がある。また、後の加熱プロセスで粉砕面に露出したエッジ部分が修復される確率が高まり、充放電時の副反応を低減できる効果がある。
粉砕された炭素原料は、黒鉛化処理を施す前に、非酸化性雰囲気下で500〜1200℃程度で低温焼成してもよい。この低温焼成によって、次に行う黒鉛化処理でのガス発生を低減することができ、また嵩密度が下がることから黒鉛化処理コストを低減することができる。
粉砕された炭素原料の黒鉛化処理は、炭素原料が酸化しにくい雰囲気で行うことが望ましい。例えば、アルゴンガスなどの雰囲気で熱処理する方法、アチソン炉で熱処理する方法(非酸化黒鉛化プロセス)などが挙げられる。これらのうち非酸化黒鉛化プロセスがコストの観点から好ましい。
黒鉛化処理における温度の下限は、通常2000℃、好ましくは2500℃、さらに好ましくは2900℃、最も好ましくは3000℃である。黒鉛化処理における温度の上限は特に限定されないが、高い放電容量が得られやすいという観点から、好ましくは3300℃である。
黒鉛化処理の後、得られた人造黒鉛を解砕または粉砕しないことが好ましい。黒鉛化処理後に解砕または粉砕すると、滑らかになった表面が傷つき、性能が低下するおそれがある。
本発明に用いられる黒鉛(A)は、その体積基準累積粒度分布における50%粒子径が、好ましくは10〜30μm、より好ましくは10〜25μm、さらに好ましくは12〜20μmである。50%粒子径が小さすぎるとリチウムイオンと電気化学的な反応に効率よく関与できない粒子が増え、容量およびサイクル特性が低下する傾向がある。逆に50%粒子径が大きすぎると電解液との接触面積が小さくなることから、出力特性が低下する傾向がある。
粒度分布は、炭素原料の粉砕と分級によって調整することができる。粉砕装置としては、例えば、ハンマーミル、ジョークラッシャー、衝突式粉砕器などが挙げられる。また、分級は、気流分級法、篩分級法にて行うことができる。気流分級装置としては、例えば、ターボクラシファイヤー、ターボプレックスなどが挙げられる。
本発明に用いられる黒鉛(A)は、そのBET比表面積が、好ましくは0.5〜5.0m2/g、より好ましくは1〜6m2/g、さらに好ましくは1〜4m2/gである。BET比表面積が大きすぎると粒子の表面活性が高くなり、電解液の分解などによってクーロン効率が低下し、またサイクル特性が低下する傾向がある。また、BET比表面積が小さすぎると電解液との接触面積が少なくなり、出力特性が低下する傾向がある。
さらに、黒鉛(A)は、非針状の石油系ピッチコークスを原料として合成された、等方性の結晶構造を持ち、且つ粒子表面にコーティング層を実質的に有しないもので、一次粒子のアスペクト比が1.00〜1.32で、レーザーラマンによるR値が0.01以上0.2以下で、且つ30℃〜100℃の熱膨張率が4.0×10-6-1以上5.0×10-6-1以下であるものが好ましい。
また、本発明に好適に用いられる黒鉛(A)は、X線回折により算出されるd002が、好ましくは0.335〜0.340nm、より好ましくは0.335〜0.337nmである。
(黒鉛(B))
本発明に用いられる黒鉛(B)は、天然黒鉛を球塊状に加工してなるものである。 天然黒鉛は鱗片状を成していて、そのエッジ面が露出している。該エッジ面は電解液と反応しやすく、初回容量効率を低下させる要因となっている。
天然黒鉛は通常、高い結晶性を有する。本発明に好適に用いられる天然黒鉛は、X線回折により算出されるd002が、好ましくは0.335〜0.340nm、より好ましくは0.335〜0.337nmである。
黒鉛(B)は、天然黒鉛に機械的外力を加え、造粒球状化処理を施すことによって得ることができる。天然黒鉛を球状化するための装置としては、例えば、奈良機械社製のハイブリダイザー、ホソカワミクロン社製のメカノフュージョン、高速チョッパーとライナーを組み合わせてなるシステムなどが挙げられる。
本発明に用いられる黒鉛(B)は、そのアスペクト比(長軸の長さ/短軸の長さ)が好ましくは6以下、より好ましくは1〜5である。アスペクト比は光学顕微鏡画像から求める事が出来る。簡易的には、シスメックス製のFPIA3000を用い、画像解析で測定しても良い。熱処理により黒鉛質となった材料を粉砕すると、粒子が鱗片状になりやすいため、アスペクト比が高くなる。アスペクト比が高い場合には、電極の電気伝導性を高めることができる一方で、黒鉛が一方向に配向しやすくなるため、充電によってリチウムイオンが黒鉛結晶内にインターカレートした際に電極が一方向に膨張しやすくなり、その大きな膨張収縮のために粒子間接点が失われ、サイクル特性が低下する場合がある。
本発明に用いられる黒鉛(B)は、体積基準累積粒度分布における50%粒子径が、好ましくは12〜25μmである。さらに、黒鉛(B)は前述の黒鉛(A)に比較して50%粒子径が同程度、具体的には両者の50%粒子径の差が10μm未満であることが好ましい。黒鉛(A)と黒鉛(B)の50%粒子径の差が大きすぎると、小さい方の黒鉛が大きい方の黒鉛の粒子間隙を埋めてしまい吸液特性が低下する傾向がある。
本発明に用いられる黒鉛(B)は、BET比表面積の上限値が好ましくは7m2/g、より好ましくは6m2/gである。BET比表面積の下限値は、好ましくは1m2/g、より好ましくは1.5m2/gである。BET比表面積が大きすぎると電解液との接触頻度が増えるのでサイクル特性が低下する傾向がある。また比表面積が大きい黒鉛(B)を含む合剤(スラリー)は、粘度が高く、塗布性が低下する傾向がある。
なお、黒鉛(B)の最外層に、非晶質炭素もしくは非晶質炭素の焼成品(黒鉛)の被覆があっても構わない。
混合黒鉛材に含有する黒鉛(A)の量は、好ましくは20〜90質量%、より好ましくは20〜80質量%、さらに好ましくは30〜70質量%、最も好ましくは50〜70質量%である。混合黒鉛材に含有する黒鉛(A)に対する黒鉛(B)の質量比は、好ましくは1/9〜8/2、より好ましくは3/7〜7/3、さらに好ましくは5/5〜7/3である。黒鉛(A)の割合が少なすぎると、電極の空隙確保及び配向抑制が難しく、サイクル特性が低下する傾向がある。逆に黒鉛(A)の割合が多すぎると、電極の導電性が低下傾向になる。
混合黒鉛材は、上記の黒鉛(A)と黒鉛(B)とを混ぜ合わせることによって得ることができる。混合方法は、特に限定されない。例えば、ヘンシェルミキサーやスパルタンリューザーのような高速チョッパーを有するものや、ナウターミキサー、リボンミキサーなどを用いて、高速に均一に混合することができる。
本発明の一実施形態のリチウムイオン二次電池用負極材料は、繊維状炭素をさらに含有することが好ましい。繊維状炭素を含有させると、電解液の保液性が大きくなり、低温環境時でもスムーズにリチウムイオンのドープ・脱ドープが行われやすくなる。
繊維状炭素の含有量は、混合黒鉛材100質量部に対して、好ましくは0.01〜20質量部、より好ましくは0.1〜15質量部、さらに好ましくは0.5〜10質量部である。繊維状炭素が多すぎると電気容量が小さくなる傾向がある。繊維状炭素が少ないと低温(例えば、−40℃)における内部抵抗の値が大きくなる傾向がある。
繊維状炭素としては、導電性が高く、繊維径が細く、アスペクト比が大きいという理由から、気相成長法で製造される炭素繊維、いわゆる気相法炭素繊維が好ましい。また気相法炭素繊維の中でも、導電性がより高い方が好ましく、結晶化度の高いものが望ましい。また、負極全体に素早く電流を流すことが必要であるので、気相法炭素繊維はその結晶成長方向が繊維軸に平行であり、繊維が枝分かれしたもの(分岐状炭素繊維)が含まれていることが好ましい。分岐状炭素繊維が含まれていると黒鉛粒子の間にネットワークを形成し易くなり、負極の強度を高め且つ導電性または熱伝導性が向上する。
気相法炭素繊維は、例えば、高温雰囲気下に、触媒となる鉄と共にガス化された有機化合物を吹き込むことにより製造することができる。
気相法炭素繊維は、製造した状態のままのものであってもよいし、例えば800〜1500℃で熱処理したものであってもよいし、例えば2000〜3000℃で黒鉛化処理したものであってもよい。好ましくは1500℃以上、より好ましくは2000℃以上で熱処理または黒鉛化処理を行うことで結晶化度が上がり、導電性を増加させることができる。また、黒鉛化度を促進させる働きのあるホウ素などを熱処理または黒鉛化処理の前に添加しておくことが有効である。
また、好ましい形態の気相法炭素繊維は、繊維軸方向に連通する中空を有するものが含まれていてもよい。中空構造の炭素繊維は、炭素層が筒状に巻いている構造を有するものである。なお、炭素層は、完全な筒状になっていない部分、筒の一部が断絶した部分があってもよい。また、炭素層は2層以上が積層した部分、1層のみになった部分などが有ってもよい。筒の断面は完全な円に限らず楕円や多角形のものを含む。なお、炭素層は、結晶性、具体的にはd002の値によって限定されない。好適な炭素層は、d002が、好ましくは0.344nm以下、より好ましくは0.339nm以下、さらに好ましくは0.338nm以下である。またLcが40nm以下であることが好ましい。なお、d002およびLcはX線回折法によって測定される002結晶面の平均間隔および結晶c軸の平均長さである。
本発明に用いられる好ましい繊維状炭素は、繊維外径が2〜1000nmで且つアスペクト比が10〜15000である。また、本発明に用いられるより好ましい繊維状炭素は、繊維外径が10〜500nmで且つ繊維長が1〜100μm(アスペクト比2〜2000に相当)であるか、または繊維外径が2〜50nmで且つ繊維長0.5〜50μm(アスペクト比10〜25000に相当)である。
本発明の一実施形態に係るリチウムイオン二次電池用負極材料は、上記の黒鉛混合剤および繊維状炭素以外に、負極活物質として知られるリチウムイオンを吸蔵・放出可能な材料をさらに含有してもよい。該材料としては、Si単体、Sn単体、Si合金、Sn合金、Si−Sn合金、Si酸化物、Sn酸化物、Si−Sn複合酸化物などが挙げられる。該材料の含有量は、混合黒鉛材100質量部に対して、好ましくは1〜1000質量部、より好ましくは1〜100質量部、さらに好ましくは1〜50質量部である。
本発明の一実施形態に係るリチウムイオン二次電池用負極材料は、前記混合黒鉛材とバインダーとを含んでなる合剤を銅箔上に塗布し、乾燥させ、次いで1t/cm2で加圧してなる合剤層の空隙率が25〜36%、好ましくは28〜34%の範囲のいずれかになるものである。このような空隙率を有することによって、高い出力と優れたサイクル特性とを維持したまま、高エネルギー密度を有し且つ大電流負荷特性に優れたリチウムイオン二次電池用負極を作製することができる。空隙率を決定する際に用いる合剤は、混合黒鉛材100質量部、増粘剤(CMC)1.5質量部、バインダー(SBR)1.5質量部、および溶剤(水)100質量部を混ぜ合わせて成るスラリーである。銅箔はリチウムイオン二次電池の負極の集電体として通常に用いられているものである。合剤の乾燥塗膜厚は150μmであり、乾燥は70℃で12時間行う。
また、本発明の一実施形態に係るリチウムイオン二次電池用負極材料は、前記混合黒鉛材とバインダーとを含んでなる合剤を銅箔上に塗布し、乾燥させ、次いで1t/cm2で加圧してなる合剤層のX線回折における004回折ピークの面積に対する110回折ピークの面積の比が、好ましくは0.05〜0.17である。該面積比が小さいほど、黒鉛の配向が大きいことを意味する。なお、当該面積比を決定する際に用いる合剤は、混合黒鉛材100質量部、増粘剤(CMC)1.5質量部、バインダー(SBR)1.5質量部、および溶剤(水)100質量部を混ぜ合わせて成るスラリーである。銅箔はリチウムイオン二次電池の負極の集電体として通常に用いられているものである。合剤の乾燥塗膜厚は150μmであり、乾燥は70℃で12時間行う。
本発明の一実施形態に係るリチウムイオン二次電池用負極材料は、人造黒鉛からなる黒鉛(A)と、天然黒鉛を球塊状に加工してなる黒鉛(B)とを含有する混合黒鉛材からなるものであって、黒鉛(A)は、非針状の石油系ピッチコークスを原料として合成された、等方性の結晶構造を有するもので、一次粒子のアスペクト比が1.00〜1.32で、レーザーラマンによるR値が0.01以上0.2以下であり、且つ 混合黒鉛材に含有する黒鉛(A)の量が20〜80質量%であるものが好ましい。
本発明の一実施形態に係る負極材料を使用した合剤層では、図2に示すように、加圧によりつぶれにくい黒鉛Aによって合剤層内部の空隙が保持される。黒鉛Bのみを使用した合剤層の場合、加圧によって黒鉛が容易につぶれて配向してしまい、合剤層の空隙が保持できなくなる。
〔リチウムイオン二次電池用負極〔1〕〕
本発明の一実施形態のリチウムイオン二次電池用負極は、本発明に係る負極材料とバインダーとを含んでなる合剤を集電体上に塗布することによって得られる。
合剤は、例えば、バインダーを溶媒で希釈して本発明に係る負極材料と混練することによって得られるスラリー状のものである。
バインダーとしては、ポリフッ化ビニリデンやポリテトラフルオロエチレンなどのフッ素系ポリマー;SBR(スチレンブタジエンラバー)などのゴム系などが挙げられる。バインダーの使用量は、負極材料100質量部に対して、好ましくは0.5〜20質量部、より好ましくは1〜10質量部である。
溶媒は、各々のバインダーに適したものが使用できる。例えば、フッ素系ポリマーに適した溶媒としてはトルエン、N−メチルピロリドンなどが挙げられる。SBRに適した溶媒としては水などが挙げられる。溶媒は合剤を塗布するのに適した粘度に調整するのに十分な量を使用すればよい。
本発明に係る負極材料とバインダーとの混錬には、リボンミキサー、スクリュー型ニーダー、スパルタンリューザー、レディゲミキサー、プラネタリーミキサー、万能ミキサーなど公知の装置が使用できる。
集電体としては、銅、アルミニウム、ステンレス、ニッケル及びそれらの合金などが挙げられる。リチウムイオン二次電池の負極用の集電体としては銅箔が好ましい。
合剤を集電体に塗布する方法は、特に制限されない。例えば、ドクターブレードやバーコーターなどで塗布することができる。塗布した後、得られた合剤層を乾燥させ、ロールプレスなどで加圧成形することができる。
本発明に係るリチウムイオン二次電池用負極は、空隙率が、好ましくは15〜40%、より好ましいは20〜36%、さらに好ましくは25〜34%、特に好ましくは30〜33%である。負極空隙率は、集電体上に形成した合剤層の厚さ、塗布量、比重などから算出する。負極空隙率は電解液の浸透性に関わるため、電池性能に影響を及ぼすことがある。負極空隙率は合剤に含有する黒鉛の種類や量、塗工条件や加圧成形条件によって調整することができる。負極空隙率が小さい場合には液の浸透性が低下してリチウムイオンの移動及び拡散が阻害される傾向があるためハイレート時のサイクル特性が低下傾向になる。空隙率が大きい場合にはエネルギー密度が低くなる傾向がある。
〔リチウムイオン二次電池用負極〔2〕〕
本発明の別の一実施形態に係るリチウムイオン二次電池用負極は、1t/cm2で加圧した場合における負極空隙率が好ましくは25〜36%、より好ましくは25〜34%、さらに好ましくは30〜33%の範囲のいずれかである。また、本発明の好ましい実施形態におけるリチウムイオン二次電池用負極は、充放電後に1t/cm2で加圧した場合における負極空隙率が好ましくは25〜36%、より好ましくは25〜34%、さらに好ましくは30〜33%の範囲のいずれかである。負極空隙率は集電体上に形成した合剤層の厚さ、塗布量、比重などから算出する。本発明の好ましい実施形態におけるリチウムイオン二次電池用負極は、混合黒鉛材を含有するものである。ここでの混合黒鉛材は黒鉛と加圧によってつぶれにくい物質とを含有するものである。混合黒鉛材としては、天然黒鉛または人造黒鉛と加圧によってつぶれにくい物質とを含有するものや、上記のような黒鉛(A)と黒鉛(B)とを含有するもの(本発明に係る負極材料)などが挙げられる。加圧によってつぶれにくい物質としては、黒鉛(A)が好ましいものとして挙げられる。当該混合黒鉛材にバインダーを添加して合剤を得、これによって負極を形成する。合剤に含有されるバインダーの量は混合黒鉛材に対して好ましくは10質量%以下である。バインダーの種類は特に限定されない。一般に、電極は充放電を行うことで若干膨らむが、本発明の好ましい実施形態におけるリチウムイオン二次電池用負極は、充放電後の電極を再び1t/cm2で加圧した場合においても、空隙率25〜36%が確保される。
〔リチウムイオン二次電池〕
本発明の一実施形態に係るリチウムイオン二次電池は、前記の負極を有するものである。リチウムイオン二次電池には、負極以外に、通常、正極、セパレータおよび電解液(または電解質)が含まれている。
リチウムイオン二次電池の正極は、正極活物質を少なくとも含有する。正極活物質として、通常、リチウム含有遷移金属酸化物が用いられる。リチウム含有遷移金属酸化物は、遷移金属元素とリチウム元素とを少なくとも含有する酸化物である。
遷移金属元素としては、Ti、V、Cr、Mn、Fe、Co、Ni、Mo及びWから選ばれる少なくとも1つが好ましく、V、Cr、Mn、Fe、Co及びNiから選ばれる少なくとも1つがさらに好ましい。
リチウム元素/遷移金属元素とのモル比は、好ましくは0.3〜2.2である。
リチウム含有遷移金属酸化物は、遷移金属元素の30モルパーセント未満の範囲でAl、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P、B、Mgなどを含有していてもよい。
好ましい正極活物質として、LixMO2(MはCo、Ni、FeまたはMn、x=0〜1.2。)、またはLiy24(Nは少なくともMnを含む。y=0〜2。)で表されるスピネル構造を有する物質が挙げられる。より好ましい正極活物質として、Liya1-a2(MはCo、Ni、Fe、Mnの少なくとも1種、DはCo、Ni、Fe、Mn、Al、Zn、Cu、Mo、Ag、W、Ga、In、Sn、Pb、Sb、Sr、B、Pの中のM以外の少なくとも1種、y=0〜1.2、a=0.5〜1。)で表される物質;Liz(Nb1-b24(NはMn、EはCo、Ni、Fe、Mn、Al、Zn、Cu、Mo、Ag、W、Ga、In、Sn、Pb、Sb、Sr、B、Pの少なくとも1種、b=1〜0.2、z=0〜2。)で表されるスピネル構造を有する物質が挙げられる。
正極活物質の具体例としては、LixCoO2、LixNiO2、LixMnO2、LixCoaNi1-a2、LixCob1-bZ、LixCobFe1-b2、LixMn24、LixMncCo2-c4、LixMncNi2-c4、LixMnc2-c4、LixMncFe2-c4(ここでx=0.02〜1.2、a=0.1〜0.9、b=0.8〜0.98、c=1.6〜1.96、z=2.01〜2.3。)が挙げられる。最も好ましいリチウム含有遷移金属酸化物としては、LixCoO2、LixNiO2、LixMnO2、LixCoaNi1-a2、LixMn24、LixCob1-bz(x=0.02〜1.2、a=0.1〜0.9、b=0.9〜0.98、z=2.01〜2.3。)が挙げられる。なお、xの値は充放電開始前の値であり、充放電により増減する。
正極活物質は、体積基準累積粒度分布における50%粒子径が、好ましくは0.1〜50μmである。また、正極活物質は、体積基準粒度分布において、0.5μm以上30μm以下の範囲に入る粒子の合計体積が全体積の95%以上であることが好ましい。さらに、正極活物質は、体積基準粒度分布において、3μm以下の範囲に入る粒子の合計体積が全体積の18%以下であり且つ15μm以上25μm以下の範囲に入る粒子の合計体積が全体積の18%以下であることが好ましい。
正極活物質は、BET比表面積が、好ましくは0.01〜50m2/g、より好ましくは0.2〜1m2/gである。
また、正極活物質は、pHが、好ましくは7以上12以下である。なお、ここでのpHは、正極活物質5gに蒸留水を添加し全体で100mlとなるように調整し、それを煮沸し、次いで室温に戻し、蒸発した分の水を蒸留水の添加で補って100mlに戻し、次いで上澄み液をpH計で測定したものである。
正極は、さらに導電助剤やバインダーを含有していてもよい。これらは従来のリチウムイオン二次電池の正極において使用されているものであってもよい。
正極に用いられる導電助剤としては、例えば、アセチレンブラック、ファーネスブラック、ケッチェンブラックなどの導電性カーボン;気相法炭素繊維、カーボンナノチューブ、カーボンナノファイバなどを挙げることができる。
正極に用いられるバインダーとしては、例えば、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、フッ化ビニリデン−テトラフルオロエチレン共重合体などのフッ素含有高分子重合体、スチレンブタジエンラバー(SBR)などのゴムを挙げることができる。
リチウムイオン二次電池では正極と負極との間にセパレータを設けることがある。セパレータとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィンを主成分とした不織布、クロス、微孔フィルム又はそれらを組み合わせたものなどを挙げることができる。
本発明の一実施形態に係るリチウムイオン二次電池には、公知の電解液または電解質を用いることができる。係る電解液または電解質としては、有機電解液、無機固体電解質、高分子固体電解質が挙げられる。これらのうち、電気伝導性の観点から有機電解液が好ましい。
有機電解液は、有機溶媒に電解質を溶解してなるものである。有機溶媒としては、ジエチルエーテル、ジブチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、エチレングリコールフェニルエーテルなどのエーテル; ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、N−エチルホルムアミド、N,N−ジエチルホルムアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−エチルアセトアミド、N,N−ジエチルアセトアミド、N,N−ジメチルプロピオンアミド、ヘキサメチルホスホリルアミドなどのアミド; ジメチルスルホキシド、スルホランなどの含硫黄化合物; メチルエチルケトン、メチルイソブチルケトンなどのジアルキルケトン; エチレンオキシド、プロピレンオキシド、テトラヒドロフラン、2−メトキシテトラヒドロフラン、1,2−ジメトキシエタン、1,3−ジオキソランなどの環状エーテル; エチレンカーボネート、プロピレンカーボネートなどのカーボネート; γ−ブチロラクトン; N−メチルピロリドン; アセトニトリル、ニトロメタンなどが挙げられる。これらのうち、エチレンカーボネート、ブチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、プロピレンカーボネート、ビニレンカーボネート、γ−ブチロラクトンなどのエステル類、ジオキソラン、ジエチルエーテル、ジエトキシエタンなどのエーテル類、ジメチルスルホキシド、アセトニトリル、テトラヒドロフランが好ましく、エチレンカーボネート、プロピレンカーボネートなどのカーボネート系非水溶媒がより好ましい。これらの溶媒は、1種単独でまたは2種以上を組み合わせて使用することができる。
有機電解液に用いる電解質として、通常、リチウム塩が使用される。リチウム塩としては、LiClO4、LiBF4、LiPF6、LiAlCl4、LiSbF6、LiSCN、LiCl、LiCF3SO3、LiCF3CO2、LiN(CF3SO22などが挙げられる。
高分子固体電解質としては、ポリエチレンオキサイド誘導体及び該誘導体を含む重合体、ポリプロピレンオキサイド誘導体及び該誘導体を含む重合体、リン酸エステル重合体、ポリカーボネート誘導体及び該誘導体を含む重合体などが挙げられる。
なお、リチウムイオン二次電池には、上記以外の電池構成上必要な部材が含まれていてもよく、それらの選択についてはなんら制約を受けるものではない。
以下に本発明の実施例を示し、本発明をより具体的に説明する。なお、これらは説明のための単なる例示であって、本発明はこれらによって何ら制限されるものではない。
特性などは以下のようにして測定した。
<黒鉛の評価>
(比表面積)
比表面積測定器(ユアサアイオニクス社製NOVA1200)を用いて液体窒素温度下(77K)における窒素ガス吸着量を求め、BET法で算出した。
(X線回折)
試料水平型多目的X線回折装置(UltimaIV、リガク社製)を用いて回折ピーク波形を測定した。d002、Lc、および004回折ピークの面積に対する110回折ピークの面積の比を算出した。
(熱分析)
熱分析にはTG/DTA分析器(エスアイアイ・ナノテクノロジー社製、EXSTAR6000 TG/DTA)を用いた。白金パンの上に試料を10mg載せ、空気100ml/分流通下、10℃/分にて1000℃まで昇温させて、熱分析を行った。
(粒度分布)
秤量した試料0.05gを純水200mlの入ったビーカーに入れ、これにトリトンX−100(ICNバイオメディカル社製、和光純薬販売)の0.1%水溶液2滴を滴下した。前記ビーカーを超音波で5分間分散処理した。その後、ビーカーに純水50mlを加え再度超音波で3分間分散処理した。レーザー回析散乱式粒度分布測定装置(日機装社製 マイクロトラックHRA)によって分散液中の粒子の粒度分布を測定した。
<合剤層の空隙率および吸液特性の評価>
黒鉛材100gに、増粘剤としてカルボキシメチルセルロース1.5gおよび水97.72gを加え混ぜ合わせた。これに固形分含有率40%のスチレンブタジエンラバー微粒子の分散した水溶液3.8gを加え攪拌・混合し、塗布に適した流動性を有するスラリー(合剤)を作製した。作製した分散液を厚さ20μmの銅箔上にドクターブレードを用いて乾燥塗膜厚150μmとなるように塗布し、ホットプレート上で乾燥し、その後、真空乾燥機に入れて70℃で12時間乾燥させて、銅箔上に合剤層を形成した。合剤の塗布量は約7mg/cm2である。
得られた合剤層を銅箔とともに打ち抜いて18mmφの大きさの小箔片を得た。それを超鋼製プレス板で挟み、プレス圧1.0t/cm2となるようにプレスした。合剤の真密度、および合剤層の厚さから空隙率を算出した。また、プレスした小箔片の合剤層に、プロピレンカーボネート(PC)3μlをマイクロシリンジにより滴下した。滴下したPCは合剤層に浸み込み、合剤層表面からPCが消失したように肉眼で観察される。滴下終了時から合剤層表面からPCが消失するまでの時間を測定した。この時間を吸液性の指標とした。
<合剤層中の黒鉛の配向性の評価>
得られた合剤層を銅箔とともに打ち抜いて18mmφの大きさの小箔片を3つ得た。それらのうち2つを超鋼製プレス板で挟み、プレス圧0.1t/cm2、およびプレス圧1.0t/cm2となるようにそれぞれプレスした。プレスしていない小箔片(表1には「0.0t/cm2プレス」と表記した。)、0.1t/cm2でプレスした小箔片、および1.0t/cm2でプレスした小箔片を測定用セルに両面テープで貼り付け、下記の条件でX線回折を測定した。
X線発生条件: 電圧40KV,電流30mA、
測定範囲:110面 74〜80°, 004面 52〜58°、
管球: 銅、
得られた回折ピーク波形を平滑化処理し、バックグランド除去及びKα2除去を行った。その後、2θ=53.2〜54.7°に表れる004回折ピークの面積に対する2θ=77〜78.5°に現れる110回折ピークの面積の比を算出した。
製造例1 (黒鉛aの調製)
石油系コークスを細川ミクロン社製バンタムミルで粉砕した。次に、日清エンジニアリング社製ターボクラシファイアーTC−15Nで気流分級し、粒径0.5μm以下の粒子を実質的に含まない炭素原料を得る。該炭素原料を、ネジ蓋つき黒鉛ルツボに充填し、アチソン炉にて3100℃で加熱処理して、黒鉛aを得た。黒鉛aは、50%粒子径が15.5μm、BET比表面積が2.3m2/gであった。また、合剤の塗布量は7mg/cm2であった。黒鉛aは合剤層の空隙率が36.4%、合剤層の吸液特性が11秒であった。
製造例2 (黒鉛bの調製)
平均粒径6μmの鱗片状の天然黒鉛をハイブリダイザー(奈良機械製)にて球状化して、黒鉛bを得た。黒鉛bは、50%粒子径が16.7μm、BET比表面積が5.9m2/gであった。また、合剤の塗布量は7mg/cm2であった。黒鉛bは合剤層の空隙率が14.2%、合剤層の吸液特性が301秒であった。
<電池評価>
(負極作製)
混合黒鉛材料100gに増粘剤としてカルボキシメチルセルロース(CMC)1.5g、水を適宜加えて粘度を調節し、固形分比40%のスチレンブタジエンラバー微粒子の分散した水溶液3.8gを加え攪拌・混合し、充分な流動性を有するスラリー状の分散液を作製した。作製した分散液を厚み20μmの銅箔上にドクターブレードを用いて乾燥塗膜厚150μmで均一となるように塗布し、ホットプレートにて乾燥した。その後、真空乾燥機で70℃、12時間乾燥した。乾燥した電極はロールプレスにより密度を1.5g/ccと調製し、電池評価用負極を得た。
(正極作製)
Li3Ni1/3Mn1/3Co1/3 90g、導電助剤としてカーボンブラック(TIMCAL社製)5g、および結着材としてポリフッ化ビニリデン(PVdF)5gにN−メチル−ピロリドンを適宜加えながら攪拌・混合し、スラリー状の分散液を作製した。
作製した分散液を厚さ20μmのアルミ箔上にロールコーターにより塗布し、乾燥させ、その後、ロールプレスにて加圧成形した。得られた正極の塗布量は10mg/cm2であり、電極密度は3.0g/ccであった。
<電解液調製>
非水溶媒として、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)を体積比3:7で混合し、電解質塩として六フッ化リン酸リチウム(LiPF6)を1.0mol/L溶解させたものを電解液とした。
<電池作製>
上記負極および正極を打ち抜いて面積20cm2の負極片および正極片を得た。正極片のAl箔にAlタブを、負極片のCu箔にNiタブをそれぞれ取り付けた。ポリプロピレン製フィルム微多孔膜を負極片と正極片との間に挟み入れ、その状態でアルミラミネートに入れた。そして、それに電解液を注液した。その後、アルミラミネートの開口部を熱融着によって封止して評価用の電池(設計容量25mAh)を作製した。
<初回放電容量>
上限電圧4.15VとしてCC(コンスタントカレント)およびCV(コンスタントボルテージ)モードで、5mAで、カットオフ電流値1.25mAで充電を行った。
下限電圧2.8Vとして、CCモードで5mAの放電を行って、初回放電容量を測定した。
<DC−IR試験>
初回放電容量(1C=25mAh)を基準として、満充電状態から210分間、0.1CでCC放電し、30分間休止し、次いで25mAで5秒間放電した。このときの電圧降下量を測定した。電圧降下量からオームの法則(R=ΔV/0.025)により電池内部抵抗を測定した。SOC50%
<サイクル特性の測定>
上限電圧4.15VとしてCCおよびCVモードで、50mAで、カットオフ電流値1.25mAで充電を行った。
下限電圧2.8Vとして、CCモードで50mAの放電を行った。
上記条件で、500サイクル充放電を繰り返した。
500サイクル時の放電容量を測定した。初回放電容量に対する500サイクル時放電容量の割合を算出し、それを放電容量維持率とした。
(500サイクル後放電容量維持率(%))
=(500サイクル時放電容量)/(初回放電容量)×100
実施例1
黒鉛a 70質量部と、黒鉛b 30質量部とを不二パンダル製スパルタンリューザーに入れ、5分間混合して、混合黒鉛材Aを得た。混合黒鉛材Aは50%粒子径が15.9μm、BET比表面積が3.1m2/gであった。
混合黒鉛材Aは合剤層の空隙率が33.8%、合剤層の吸液特性が39秒であった。1.0t/cm2プレス後の合剤層の厚さは約50μmであった。合剤の塗布量は7mg/cm2であった。合剤層中の黒鉛配向性(A(110)/A(004))、および電池特性は表1に示すとおりであった。
実施例2
黒鉛aの量を50質量部に、黒鉛bの量を50質量部に変えた以外は実施例1と同じ方法で混合黒鉛材Bを得た。混合黒鉛材Bは50%粒子径が16.39μm、BET比表面積が3.9m2/gであった。
混合黒鉛材Bは合剤層の空隙率が32.0%、合剤層の吸液特性が36秒であった。1.0t/cm2プレス後の合剤層の厚さは約50μmであった。合剤の塗布量は7mg/cm2であった。合剤層中の黒鉛配向性(A(110)/A(004))、および電池特性は表1に示すとおりであった。
実施例3
黒鉛aの量を30質量部に、黒鉛bの量を70質量部に変えた以外は実施例1と同じ方法で混合黒鉛材Cを得た。混合黒鉛材Cは50%粒子径が16.8μm、BET比表面積が4.7m2/gであった。
混合黒鉛材Cは合剤層の空隙率が31.2%、合剤層の吸液特性が77秒であった。1.0t/cm2プレス後の合剤層の厚さは約50μmであった。合剤の塗布量は7mg/cm2であった。合剤層中の黒鉛配向性(A(110)/A(004))、および電池特性は表1に示すとおりであった。
比較例1
混合黒鉛材Aを黒鉛aのみに変えた以外は実施例1と同じ方法で合剤層の配向性(A(110)/A(004))および電池特性の評価を行った。結果は表1に示すとおりであった。
比較例2
混合黒鉛材Aを黒鉛bのみに変えた以外は実施例1と同じ方法で合剤層の配向性(A(110)/A(004))および電池特性の評価を行った。結果は表1に示すとおりであった。
Figure 2014024473
表1に示すとおり、本発明の一実施例である混合黒鉛材からなる負極材料を用いると、電池内部抵抗が低く且つ放電容量維持率が高いリチウムイオン二次電池を提供できることがわかる。

Claims (11)

  1. 人造黒鉛からなる黒鉛(A)と、天然黒鉛を球塊状に加工してなる黒鉛(B)とを含有する混合黒鉛材からなるものであって、
    混合黒鉛材100質量部、増粘剤としてのカルボキシメチルセルロース1.5質量部、バインダーとしてのスチレンブタジエンラバー1.5質量部および水100質量部とを含んでなる合剤を銅箔上に乾燥塗膜厚150μmで塗布し、70℃で12時間乾燥させ、次いで1t/cm2で加圧してなる合剤層の空隙率が25〜36%の範囲のいずれかになる、リチウムイオン二次電池用負極材料。
  2. 合剤層は、X線回折において、004回折ピークの面積に対する110回折ピークの面積の比が、0.05〜0.17である請求項1に記載の負極材料。
  3. 黒鉛(A)は、体積基準累積粒度分布における50%粒子径が10〜30μm且つBET比表面積が0.5〜5.0m2/gであり、且つ
    黒鉛(B)は、体積基準累積粒度分布における50%粒子径が12〜25μm且つBET比表面積が1.5〜7.0m2/gである、請求項1または2に記載の負極材料。
  4. 黒鉛(A)は、非針状の石油系ピッチコークスを原料として合成された、等方性の結晶構造を持ち、且つ粒子表面にコーティング層を実質的に有しないもので、一次粒子のアスペクト比が1.00〜1.32で、レーザーラマンによるR値が0.01以上0.2以下で、且つ30℃〜100℃の熱膨張率が4.0×10-6-1以上5.0×10-6-1以下である、請求項1〜3のいずれかひとつに記載の負極材料。
  5. 混合黒鉛材に含有する黒鉛(A)の量が30〜70質量%である、請求項1〜4のいずれかひとつに記載の負極材料。
  6. 人造黒鉛からなる黒鉛(A)と、天然黒鉛を球塊状に加工してなる黒鉛(B)とを含有する混合黒鉛材からなるものであって、
    黒鉛(A)は、非針状の石油系ピッチコークスを原料として合成された、等方性の結晶構造を有するもので、一次粒子のアスペクト比が1.00〜1.32で、レーザーラマンによるR値が0.01以上0.2以下であり、且つ 混合黒鉛材に含有する黒鉛(A)の量が20〜80質量%であるリチウムイオン二次電池用負極材料。
  7. 混合黒鉛材100質量部に対して0.1〜15質量部の繊維状炭素をさらに含有する、請求項1〜6のいずれかひとつに記載の負極材料。
  8. 請求項1〜7のいずれかひとつに記載の負極材料とバインダーとを含んでなる合剤を集電体上に塗布して得られる、リチウムイオン二次電池用負極。
  9. 請求項8に記載の負極を有するリチウムイオン二次電池。
  10. 混合黒鉛材を含有するリチウムイオン二次電池用負極であって、
    前記混合黒鉛材が人造黒鉛からなる黒鉛(A)と天然黒鉛を球塊状に加工してなる黒鉛(B)とを含有するものであり、
    黒鉛(A)は、非針状の石油系ピッチコークスを原料として合成された、等方性の結晶構造を有するもので、一次粒子のアスペクト比が1.00〜1.32、レーザーラマンによるR値が0.01以上0.2以下であり、且つ混合黒鉛材中の黒鉛(A)の混合比率が20〜80質量%である、リチウムイオン二次電池用負極。
  11. 混合黒鉛材を含有するリチウムイオン二次電池用負極であって、
    前記リチウムイオン二次電池用負極を1t/cm2で加圧した場合の負極の空隙率が25〜36%の範囲のいずれかである、リチウムイオン二次電池用負極。
JP2014529308A 2012-08-06 2013-08-06 リチウムイオン二次電池用負極材料 Active JP6154380B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012174443 2012-08-06
JP2012174443 2012-08-06
PCT/JP2013/004740 WO2014024473A1 (ja) 2012-08-06 2013-08-06 リチウムイオン二次電池用負極材料

Publications (2)

Publication Number Publication Date
JPWO2014024473A1 true JPWO2014024473A1 (ja) 2016-07-25
JP6154380B2 JP6154380B2 (ja) 2017-06-28

Family

ID=50067726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014529308A Active JP6154380B2 (ja) 2012-08-06 2013-08-06 リチウムイオン二次電池用負極材料

Country Status (4)

Country Link
JP (1) JP6154380B2 (ja)
KR (1) KR101887952B1 (ja)
CN (1) CN104521038B (ja)
WO (1) WO2014024473A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240105944A1 (en) * 2022-09-27 2024-03-28 Sk On Co., Ltd. Anode for Lithium Secondary Battery and Lithium Secondary Battery Including the Same

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102080255B1 (ko) * 2015-11-05 2020-02-21 주식회사 엘지화학 음극활물질 및 이를 포함하는 이차전지용 음극
KR102209653B1 (ko) * 2016-09-09 2021-01-28 주식회사 엘지화학 스웰링 현상이 개선된 음극 및 이를 포함하는 리튬이차전지
JP6848363B2 (ja) * 2016-11-09 2021-03-24 株式会社Gsユアサ 負極及び非水電解質蓄電素子
EP3605669B1 (en) * 2017-03-23 2023-11-01 GS Yuasa International Ltd. Nonaqueous electrolyte power storage device
KR102277734B1 (ko) * 2018-02-26 2021-07-16 주식회사 엘지에너지솔루션 리튬 이차전지용 음극 활물질, 이를 포함하는 리튬 이차전지용 음극 및 리튬 이차전지
CN109962236B (zh) * 2018-04-28 2020-07-17 宁德时代新能源科技股份有限公司 二次电池
CN108847489B (zh) 2018-05-04 2019-04-09 宁德时代新能源科技股份有限公司 负极极片及电池
KR102658749B1 (ko) 2018-08-17 2024-04-19 주식회사 엘지에너지솔루션 음극 활물질, 상기 음극 활물질의 제조 방법, 음극, 및 상기 음극을 포함하는 이차전지
KR102323423B1 (ko) * 2018-09-07 2021-11-05 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질, 이의 제조방법, 이를 포함하는 음극 및 이를 포함하는 리튬 이차 전지
KR102598178B1 (ko) * 2018-10-10 2023-11-03 주식회사 엘지에너지솔루션 리튬 이차전지용 음극의 제조방법
WO2020110943A1 (ja) * 2018-11-26 2020-06-04 昭和電工株式会社 リチウムイオン二次電池用負極及びリチウムイオン二次電池
WO2020110942A1 (ja) * 2018-11-26 2020-06-04 昭和電工株式会社 リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP7273378B2 (ja) * 2018-12-04 2023-05-15 株式会社レゾナック 粒子塗工箔の製造方法及び金属-粒子複合材の製造方法
KR102347003B1 (ko) 2018-12-17 2022-01-05 주식회사 엘지에너지솔루션 이차전지용 음극 활물질, 이를 포함하는 음극 및 이의 제조방법
JPWO2021059705A1 (ja) * 2019-09-27 2021-04-01
US20220384811A1 (en) 2019-10-07 2022-12-01 Imertech Sas Graphite compositions and uses in battery technology
CN110767888A (zh) * 2019-10-28 2020-02-07 腾冲鸿鑫新型材料有限公司 一种锂电池负极材料及其制备方法
KR20210111569A (ko) 2020-03-03 2021-09-13 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지
JP7403653B2 (ja) * 2020-03-27 2023-12-22 寧徳時代新能源科技股▲分▼有限公司 二次電池及び当該二次電池を含む装置
CN112335080B (zh) 2020-06-04 2022-03-18 宁德新能源科技有限公司 负极活性材料及使用其的电化学装置和电子装置
KR20220034586A (ko) * 2020-09-11 2022-03-18 주식회사 엘지에너지솔루션 음극재, 이를 포함하는 음극 및 이차전지
JP7150797B2 (ja) 2020-11-05 2022-10-11 プライムプラネットエナジー&ソリューションズ株式会社 非水電解質二次電池用負極板の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07302595A (ja) * 1994-05-09 1995-11-14 Asahi Organic Chem Ind Co Ltd カーボン粒子の製造方法及びそのカーボン粒子を含んでなる負極
JPH1154123A (ja) * 1997-05-30 1999-02-26 Matsushita Electric Ind Co Ltd 非水電解質二次電池
WO2012086826A1 (ja) * 2010-12-21 2012-06-28 Jfeケミカル株式会社 リチウムイオン二次電池用負極材料、リチウムイオン二次電池負極およびリチウムイオン二次電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS534391A (en) 1976-06-30 1978-01-14 Mitsubishi Electric Corp Electronic stethoscope
JP3126030B2 (ja) 1990-11-22 2001-01-22 大阪瓦斯株式会社 リチウム二次電池
JP3653105B2 (ja) 1993-02-25 2005-05-25 呉羽化学工業株式会社 二次電池電極用炭素質材料
JP3361510B2 (ja) 1996-10-30 2003-01-07 日立化成工業株式会社 リチウム二次電池用負極及びその製造法並びにリチウム二次電池
JP2007220454A (ja) * 2006-02-16 2007-08-30 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP5407196B2 (ja) * 2008-06-27 2014-02-05 三菱化学株式会社 非水系二次電池用複合黒鉛粒子、それを含有する負極材料、負極及び非水系二次電池
JP5512355B2 (ja) * 2010-03-31 2014-06-04 三洋電機株式会社 非水電解質二次電池用負極活物質及びこれを用いてなる非水電解質二次電池ならびにこれらの製造方法
CN101826634B (zh) * 2010-05-17 2015-07-01 江西省福斯特新能源有限公司 一种锂离子电池及其制作方法
CN101887967B (zh) * 2010-06-18 2012-11-28 深圳市贝特瑞新能源材料股份有限公司 锂离子电池负极材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07302595A (ja) * 1994-05-09 1995-11-14 Asahi Organic Chem Ind Co Ltd カーボン粒子の製造方法及びそのカーボン粒子を含んでなる負極
JPH1154123A (ja) * 1997-05-30 1999-02-26 Matsushita Electric Ind Co Ltd 非水電解質二次電池
WO2012086826A1 (ja) * 2010-12-21 2012-06-28 Jfeケミカル株式会社 リチウムイオン二次電池用負極材料、リチウムイオン二次電池負極およびリチウムイオン二次電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240105944A1 (en) * 2022-09-27 2024-03-28 Sk On Co., Ltd. Anode for Lithium Secondary Battery and Lithium Secondary Battery Including the Same

Also Published As

Publication number Publication date
KR101887952B1 (ko) 2018-08-13
KR20150027167A (ko) 2015-03-11
CN104521038A (zh) 2015-04-15
WO2014024473A1 (ja) 2014-02-13
JP6154380B2 (ja) 2017-06-28
CN104521038B (zh) 2017-08-22

Similar Documents

Publication Publication Date Title
JP6154380B2 (ja) リチウムイオン二次電池用負極材料
JP6404530B1 (ja) 全固体リチウムイオン電池
JP6432519B2 (ja) 非水系二次電池負極用炭素材、非水系二次電池用負極及び非水系二次電池
JP5390336B2 (ja) 非水電解質二次電池用負極材料、非水電解質二次電池用負極材の製造方法並びに非水電解質二次電池用負極及び非水電解質二次電池
JP5960053B2 (ja) リチウム二次電池用負極活物質
JP5960052B2 (ja) リチウム二次電池用黒鉛系負極活物質
WO2014092141A1 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極シート及びリチウム二次電池
WO2012133788A1 (ja) 非水系二次電池用黒鉛粒子及びその製造方法、負極並びに非水系二次電池
JP2013179074A (ja) 複合黒鉛粒子およびその用途
JP2007153661A (ja) 黒鉛材料、電池電極用炭素材料、及び電池
US20190334173A1 (en) Composite graphite particles, method for producing same, and use thereof
JP2015135811A (ja) 非水系二次電池負極用炭素材、それを用いた非水系二次電池用負極及び非水系二次電池
US20200227746A1 (en) Negative electrode active material for secondary battery, and secondary battery
JP7248019B2 (ja) 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池
JP6957127B1 (ja) リチウムイオン二次電池の負極用炭素材料およびその製造方法並びにそれを用いた負極およびリチウムイオン二次電池
JP2018063755A (ja) 安定化リチウム粉、及びそれを用いたリチウムイオン二次電池
WO2020110943A1 (ja) リチウムイオン二次電池用負極及びリチウムイオン二次電池
US20220127146A1 (en) Carbon material for negative electrode of lithium ion secondary battery and method of producing the same, and negative electrode and lithium ion secondary battery using the carbon material
JP6070016B2 (ja) 非水系二次電池用複合炭素材及びその製造方法、負極並びに非水系二次電池
JP5079219B2 (ja) 非水電解液二次電池負極用黒鉛材料
JP2017111958A (ja) リチウムイオン二次電池用負電極
CA3235684A1 (en) Particles and method for producing same, and secondary battery and method for manufacturing same
JP2023550137A (ja) 複合黒鉛材料及びその調製方法、負極シート、二次電池、電池モジュール、電池パック及び電気装置
JP2019175776A (ja) 非水系二次電池用負極材及びその製造方法、非水系二次電池用負極並びに非水系二次電池
JP2016081816A (ja) リチウム二次電池用負極材料及びその製造方法、並びに該負極材料を用いたリチウム二次電池用負極及びリチウム二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170601

R150 Certificate of patent or registration of utility model

Ref document number: 6154380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350