JPWO2013141141A1 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JPWO2013141141A1
JPWO2013141141A1 JP2014506183A JP2014506183A JPWO2013141141A1 JP WO2013141141 A1 JPWO2013141141 A1 JP WO2013141141A1 JP 2014506183 A JP2014506183 A JP 2014506183A JP 2014506183 A JP2014506183 A JP 2014506183A JP WO2013141141 A1 JPWO2013141141 A1 JP WO2013141141A1
Authority
JP
Japan
Prior art keywords
proton
semiconductor device
layer
concentration
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014506183A
Other languages
English (en)
Other versions
JP6020553B2 (ja
Inventor
勇介 小林
勇介 小林
吉村 尚
尚 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Publication of JPWO2013141141A1 publication Critical patent/JPWO2013141141A1/ja
Application granted granted Critical
Publication of JP6020553B2 publication Critical patent/JP6020553B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering
    • H01L21/3223Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering using cavities formed by hydrogen or noble gas ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/30Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface
    • H01L29/32Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface the imperfections being within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66128Planar diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8611Planar PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

第1導電型の半導体基板(101)の裏面からプロトン注入する注入工程と、注入工程後に、半導体基板(101)を炉中でアニール処理を行うことによって、半導体基板(101)よりも高い不純物濃度を有する第1導電型の第1半導体領域(101a)を形成する形成工程を含み、形成工程は、炉を水素雰囲気中とし、炉アニールの水素の容積濃度を0.5%以上4.65%未満で行う。これにより、プロトン注入によるドナー生成において、結晶欠陥低減を図ることができる。また、ドナー化率を向上させることができる。

Description

この発明は、半導体装置の製造方法に関する。
電力用半導体装置として、400V、600V、1200V、1700V、3300Vあるいはそれ以上の耐圧を有するダイオードやIGBT(Insulated Gate Bipolar Transistor)等がある。これらの電力用半導体装置は、コンバーター・インバーター等の電力変換装置に用いられている。電力用半導体装置は、低損失・高効率・高耐量という特性および低コストが求められている。
図12は、従来技術を説明するダイオードの断面図である。n-型半導体基板1500の主面にp型アノード層1501が形成され、対面にはn+型カソード層1502が形成される。そして、p型アノード層1501の外周位置に終端領域1503となるp型の層が形成されている。p型アノード層1501上にはアノード電極1505が設けられ、n+型カソード層1502の下面には、カソード電極1506が設けられる。1507はフィールドプレート、1508は絶縁層である。
このダイオード等の素子で、スイッチング時におけるノイズの原因となる電圧振動を低減させるために、おもて面側から裏面側に向かってn-型半導体基板1500の深い位置でのドーピング濃度コントロールが求められている。
キャリア濃度コントロールの方法として、比較的低い加速電圧で、シリコン中に深い飛程が得られるプロトン注入を用いたドナー生成の方法が知られている。この方法は、所定の濃度の酸素が含まれる領域にプロトン注入を行い、n型領域を形成する方法である。このプロトン注入は、シリコン基板中に結晶欠陥を発生させることが知られている。ドナー生成にはこの結晶欠陥が不可欠であるが、欠陥の種類や濃度などによっては、漏れ電流の増加を招き電気特性の悪化を引き起こす。
プロトン注入により導入される欠陥は、プロトンの飛程Rp(イオン注入によって注入されたイオンが最も高濃度に存在する位置の注入面からの距離)だけでなく、注入面から飛程までのプロトンの通過領域や、注入面近傍に多く残留する。この残留欠陥は、格子位置からの原子(この場合シリコン原子)のずれが大きく、また結晶格子自体の強い乱れにより、アモルファスに近い状態である。そのため、残留欠陥は、電子および正孔といったキャリアの散乱中心となってキャリア移動度を低下させて導通抵抗を増加させるほか、キャリアの発生中心となって漏れ電流を増加させる等、素子の特性不良をもたらす。このように、プロトンの注入により、プロトンの注入面から飛程までのプロトンの通過領域に残留し、キャリア移動度の低下や漏れ電流の原因となるような、結晶状態から強く乱れた欠陥を、特にディスオーダーと呼ぶ。
このようにディスオーダーは、キャリア移動度を低下させ、漏れ電流や導通損失の増加等の特性不良をもたらす。そのため、漏れ電流の増加を抑えつつもドナーの生成を行うというような、適切な結晶欠陥の制御技術が必要になっている。
プロトン注入によるドナー生成の方法によれば、主なドナー生成要因の一つはシリコン中に導入した水素が熱処理によりシリコン空孔と酸素原子が結びついたVO欠陥の酸素と置換されて、酸素クラスターによるドナー化を促進することが知られている。
このプロトン注入によるドナー生成において、ドナー生成量を上げるためにはシリコン中に導入した水素量を増やすことが効果的であるが、プロトン注入量を上げると結晶欠陥が増大してしまう。また、高温の熱処理により結晶欠陥を回復させるとプロトンによるドナーが消滅してしまう。このため、ドナー生成量を上げるには上記のようなトレードオフ関係があり、このトレードオフ特性を克服するためにプロトン注入以外で水素をシリコン中に導入する方法を組み合わせるか、高温熱処理以外で結晶欠陥を回復させる必要がある。
例えば、プロトン注入によるドナー生成に対して、プロトン注入量とアニール温度に関する技術(例えば、下記特許文献1参照。)、プロトン注入によるドナー生成方法に対し熱処理条件を記載した技術(例えば、下記特許文献2参照。)、プロトン注入によるドナー生成方法により形成された領域について注入面からの深さを記載した技術(例えば、下記特許文献3参照。)が開示されている。
特許文献1の技術は、シリコンサイリスタペレットを、主接合形成後、周辺部に局所的にプロトンをイオン打ち込みし、低温熱処理し結晶中のプロトンを局所的にドナー化させ、低抵抗のチャンネルストップ層を形成するというものであり、シリコン基板のパターニングの困難な結晶内部の場所に、簡単なプロセスでチャンネルストップ層を形成するというものである。
特許文献2の技術は、半導体基板に埋設された阻止ゾーンを形成する方法にかかり、第1および第2の面を有し、第1伝導型の基本ドーピングがなされた半導体基板を準備する工程と、半導体基板における第1および第2の面の一方に、陽子を注入し、陽子が、注入面と離間して配された、半導体基板の第1の領域に導入されるようにする工程と、半導体基板を所定時間、所定温度に加熱する加熱処理を行い、第1の領域、および該第1の領域と注入面で隣接する第2の領域の両方で、水素によって誘発されたドナーが生成されるようにする工程と、を含む。
特許文献3の技術では、半導体基板へのプロトンの注入により、複数の阻止ゾーンが形成され、そのうち最も深いもので注入面から15μmの深さに形成する技術が開示されている。
特開平9−260639号公報 米国特許出願公開第2006−0286753号明細書 米国特許出願公開第2006−0081923号明細書
しかしながら、特許文献1には、水素雰囲気アニールに関する詳細な記載はない。また、特許文献2には、ドナー化率を上げる方法は記載されていない。ここで、ドナー化率とは、プロトンの照射量(ドーズ量)に対して、プロトンによってドナー化された領域の深さ方向の積分濃度の割合である。プロトン注入によるドナー化率を上げるためには、水素をより多くシリコン中に導入する必要があるが、プロトン注入のドーズ量を上げると結晶欠陥も増加してしまい特性劣化を引き起こす。また、高温熱処理で結晶欠陥を回復させるとドナーが消滅してしまう。このように、プロトン注入によるドナー生成において、結晶欠陥低減と、ドナー化率の向上を両立させることができなかった。
また、発明者らが鋭意研究を重ねた結果、プロトン注入の飛程(イオン注入によって注入されたイオンが最も高濃度に存在する位置の注入面からの距離)が、特許文献3にあるような15μmを超える場合、プロトンの注入面近傍および通過領域のディスオーダーの低減が十分ではないことが分かった。図13は、プロトン注入の飛程Rpが15μm前後およびそれより深い場合のキャリア濃度分布を飛程ごとに比較した特性図である。図13(a)には飛程Rpが50μmである場合を示し、図13(b)には飛程Rpが20μmである場合を示し、図13(c)には飛程Rpが15μmである場合を示す。
図13(c)の飛程Rp=15μmの場合、プロトンの注入面近傍(深さが0μm〜5μm)および通過領域のキャリア濃度は、シリコン基板の不純物濃度1×1014(/cm3)よりも高くなっており、ディスオーダーは十分低減されている。一方、図13(b)の飛程Rp=20μmおよび図13(a)の飛程Rp=50μmでは、プロトンの注入面近傍および通過領域のキャリア濃度が大きく低下しており、ディスオーダーが低減されていないことがわかる。このようにディスオーダーが残留する場合、素子の漏れ電流や導通損失が高くなってしまう。これによって、プロトン注入の飛程Rpが15μmを超える場合、ディスオーダーを低減する新たな方法の検討が必要である。
この発明は、上述した従来技術による問題点を解消するため、プロトン注入によるドナー生成において、結晶欠陥低減を図ることを目的とする。また、プロトン注入によるドナー生成において、ドナー化率の向上を図ることを目的とする。
上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置の製造方法は、次の特徴を有する。まず、第1導電型の半導体基板の裏面からプロトン注入する注入工程を行う。前記注入工程後に、前記半導体基板をアニール炉でアニール処理を行うことによって、前記半導体基板よりも高い不純物濃度を有する第1導電型の第1半導体領域を形成する形成工程を行う。このとき、前記形成工程は、前記アニール炉を水素雰囲気中とし、当該水素の容積濃度を0.5%以上4.65%未満で行う。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記半導体装置はダイオードであり、前記第1導電型の前記第1半導体領域がn型のフィールドストップ層であり、前記半導体基板がカソード層であることを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記半導体装置は絶縁ゲート型バイポーラトランジスタであり、前記第1導電型の前記第1半導体領域がn型のフィールドストップ層であり、前記半導体基板がドリフト層であることを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記水素の容積濃度は、前記半導体基板の前記n型のフィールドストップ層からカソード電極までの領域のキャリア濃度を基板濃度程度にできる濃度に設定したことを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記水素の容積濃度は、前記半導体基板の前記n型のフィールドストップ層からコレクタ電極までの領域のキャリア濃度を基板濃度程度にできる濃度に設定したことを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記アニール処理のアニール温度は300℃〜450℃であることを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記アニール処理のアニール温度は350℃〜400℃であることを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記アニール処理の処理時間は1時間〜10時間であることを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記アニール処理の処理時間は3時間〜7時間であることを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記アニール処理の処理時間は5時間以下であることを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記プロトン注入のプロトンの注入量は、3×1012/cm2〜5×1014/cm2であることを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記プロトン注入のプロトンの注入量は、1×1013/cm2〜1×1014/cm2であることを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記プロトン注入のプロトンの注入エネルギーEの対数log(E)をyとし、前記プロトンの飛程Rpの対数log(Rp)をxとすると、y=−0.0047x4+0.0528x3−0.2211x2+0.9923x+5.0474を満たすことを特徴とする。
上述した発明によれば、プロトン注入後のアニールを水素雰囲気中において水素濃度0.5%以上4.65%未満の範囲中で行うことにより、プロトン注入以外でシリコン中に水素を導入できるようになる。そして、プロトン通過箇所の結晶欠陥を回復させることができ、前記n型のフィールドストップ層からカソード電極までの領域のキャリア濃度の落ち込みを防止できる。
本発明にかかる半導体装置の製造方法によれば、プロトン注入によるドナー生成において、結晶欠陥を増やさずにシリコン基板に水素を導入することができ、結晶欠陥による特性劣化を引き起こさないという効果を奏する。また、本発明にかかる半導体装置の製造方法によれば、プロトン注入によるドナー生成において、ドナー化率を向上できるという効果を奏する。
図1は、本発明を適用した半導体装置としてダイオードを示す断面図である。 図2は、本発明のダイオードの活性部の製造工程を示す断面図(その1)である。 図3は、本発明のダイオードの活性部の製造工程を示す断面図(その2)である。 図4は、本発明のダイオードの活性部の製造工程を示す断面図(その3)である。 図5は、本発明のダイオードの活性部の製造工程を示す断面図(その4)である。 図6は、本発明のダイオードの活性部の製造工程を示す断面図(その5)である。 図7は、本発明のダイオードの活性部の製造工程を示す断面図(その6)である。 図8は、本発明のダイオードの活性部の製造工程を示す断面図(その7)である。 図9は、第1の実施の形態にかかるダイオードの活性部の製造工程におけるアニール後のキャリア濃度の深さ方向の分布の測定結果を示す特性図である。 図10は、基板濃度に対する回復率とプロトン炉アニールの水素濃度の関係を示す特性図である。 図11は、本発明を適用した半導体装置としてIGBTを示す断面図である。 図12は、従来技術を説明するダイオードの断面図である。 図13は、プロトン注入の飛程Rpが15μm前後およびそれより深い場合のキャリア濃度分布を飛程ごとに比較した特性図である。 図14は、電圧波形が振動を始める閾値電圧について示す特性図である。 図15は、一般的なダイオードの逆回復時の発振波形である。 図16は、本発明にかかる半導体装置のプロトンの飛程とプロトンの加速エネルギーとの関係を示す特性図である。 図17は、本発明にかかる半導体装置において空乏層が最初に達するフィールドストップ層の位置条件を示す図表である。 図18は、複数のフィールドストップ層を有するIGBTを示す説明図である。 図19は、複数のフィールドストップ層を有するダイオードを示す説明図である。 図20は、本発明にかかる半導体装置のキャリアライフタイムを示す特性図である。 図21は、本発明にかかる半導体装置の逆回復波形を示す特性図である。 図22は、第2の実施の形態にかかるダイオードの活性部の製造工程におけるアニール後のキャリア濃度の深さ方向の分布の測定結果を示す特性図である。 図23は、第3の実施の形態にかかるダイオードの活性部の製造工程におけるアニール後のキャリア濃度の深さ方向の分布の測定結果を示す特性図である。 図24は、第4の実施の形態にかかるダイオードの活性部の製造工程におけるアニール後のキャリア濃度の深さ方向の分布の測定結果を示す特性図である。
以下に添付図面を参照して、この発明にかかる半導体装置の製造方法の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および−は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。
(第1の実施の形態)
図1は、本発明を適用した半導体装置としてダイオードを示す断面図である。図1に示す半導体装置100は、ダイオードの例を示すが、絶縁ゲートバイポーラトランジスタ(IGBT)であってもよい。
この半導体装置100は、n-型半導体基板(n-ドリフト領域)101の主面の表面層にp型アノード層102が形成され、対面(裏面)の表面層にはn+型カソード層101bが形成される。そしてp型アノード層102の外周位置に終端領域104となるp型の層が形成される。この半導体装置100は、スイッチング時におけるノイズの原因となる電圧振動を低減させるために、おもて面側から裏面側に対して深い位置でのn型ドーピング濃度のコントロールを行っている。
この図1には、プロトン注入後、水素雰囲気アニールによりプロトンのドナー生成を促進させた状態を示している。キャリア濃度コントロールについては、比較的低い加速電圧で、シリコン中に深い飛程が得られるプロトン注入を用いてn層101aを形成する。このn層101aはプロトン注入によるフィールドストップ(FS)層となり、n-ドリフト領域(n-型半導体基板101)より高い不純物濃度を有する。
p型アノード層102上にはアノード電極105が設けられ、n+型カソード層101bの下面(半導体装置100の裏面)には、カソード電極106が設けられる。また、活性部110は、半導体装置のオン時に電流が流れる領域であり、耐圧構造部111は、n-型半導体基板(n-ドリフト領域)101の主面側の電界を緩和し、耐圧を保持する領域である。
耐圧構造部111には、例えばフローティングのp型領域であるフィールドリミッティングリング(FLR:終端領域)104と、終端領域104に電気的に接続された導電膜であるフィールドプレート(FP)107とが設けられている。108は絶縁層である。
図2〜図8は、それぞれ本発明のダイオードの活性部の製造工程を示す断面図である。これらの図を用いて活性部110の構造について説明する。はじめに、図2に示すように、n-ドリフト領域となるn-型半導体基板101を水蒸気雰囲気中で熱処理をすることにより初期酸化膜を形成する。この後、フォトリソグラフィとウェットエッチングにより活性部領域のみ酸化膜を取り除く。
そして、図3に示すように、酸化膜108をマスクとして、n-型半導体基板101の主面側から例えばボロン(B)をイオン注入し、熱処理することにより、p型アノード層102を形成する。また、p型アノード層102上にアノード電極105をメタルのスパッタにより形成する。108は、上記の酸化膜による絶縁層である。
次に、アノード電極105を覆うおもて面保護膜(不図示)を作製し、図4に示すように、おもて面側から電子線401を照射し、熱処理することにより、ライフタイムキラー制御を行う。この後、図5に示すように、n-型半導体基板101を裏面側から研削していき、半導体装置100として用いる製品厚さの位置502まで研削する。
次に、図6に示すように、n-型半導体基板101の裏面側から所定の注入エネルギーおよび注入量を有してプロトン601を注入する。そして、図7に示すように、プロトン601のドナー領域(フィールドストップ層としてのn層101a)を生成するために、炉内の水素H2雰囲気中で所定温度のアニール701を行う。このn層101aは、p型アノード層102およびn+型カソード層101bとも離れて設けられる。
プロトン601の注入エネルギーは0.3MeVから10MeV、例えば、2.2MeV(飛程Rpは55μm)、注入量は1×1014/cm2とする。プロトン601の注入エネルギーが1.0MeV〜5.0MeVの場合、プロトン601の飛程Rpは16μm〜220μmとなる。特に、プロトン601の注入エネルギーが1.0MeV以上の場合、プロトン601の飛程Rpは16μm以上となり、逆回復の発振抑制効果が大きくなり好ましい。逆回復の発振抑制効果については後述する。さらに、プロトン601の注入エネルギーが2.0MeV〜3.0MeVの場合、プロトン601の飛程Rpは20μm〜100μmとなる。
プロトン601の注入量は、例えば、3×1012/cm2〜5×1014/cm2程度であってもよい。好ましくは、プロトン601の注入量は、欠陥回復とドナー化率とが所望の状態となるように、1×1013/cm2〜1×1014/cm2程度であるのがよい。ドナー生成のためのアニール701は、例えば、温度が380℃、水素濃度が0.5%以上4.65%未満の雰囲気であってもよい。アニール701の処理時間は、例えば1時間〜10時間程度であってもよい。好ましくは、アニール701の処理時間は、例えば3時間〜7時間程度であるのがよい。その理由は、アニール701の開始から1時間程度生じる温度変動を安定させることができるからである。また、製造コストを低く抑える場合には、アニール701の処理時間は例えば1時間〜5時間程度であるのがよい。
この後、図8に示すように、n-型半導体基板101の裏面側から例えばリン(P)をイオン注入801し、熱処理によりn+層(n+型カソード層101b、以下、n+層101bとする)を形成する。この後、n-型半導体基板101の裏面にメタルをスパッタしてカソード電極106を形成する。n層101aとn+層101bはフィールドストップ領域となり、n-ドリフト領域(n-型半導体基板101)より高い不純物濃度を有する。これにより、図1に示すダイオードの活性部が完成する。
(実施例)
次に、上記構成の半導体装置100についての特性について説明する。図9は、第1の実施の形態にかかるダイオードの活性部の製造工程におけるアニール後のキャリア濃度の深さ方向の分布の測定結果を示す特性図である。プロトン炉において水素濃度が0%と4%のそれぞれでアニールを行った際の図1のX−X’軸部分の広がり抵抗測定法(SRA:Spreading Resistance Analysis)による測定結果を示している(図22〜24においても同様)。このSRA法により測定したキャリア濃度は、キャリアの移動度が結晶の理想値と同じ場合はほぼドーピング濃度を示す。一方、結晶欠陥が多い場合や結晶の乱れ(ディスオーダー)が多い場合には、移動度が下がるので広がり抵抗が増加し、キャリア濃度が低く測定される(つまり、見かけ上、ドーピング濃度が低い値となる)。図中0の位置は、カソード電極106とn+層101bの境界である(図22〜24においても同様)。水素濃度が0%の場合、図中点線で示すように、プロトンが通過した箇所は多量の結晶欠陥が生じるため、n層101aからn+層101bへの間において、キャリア濃度が下がっていることがわかる。
一方、水素濃度が4%の場合、図中実線で示すように、プロトン通過箇所の結晶欠陥が回復しており、n層101aからn+層101bへの間において、キャリア濃度が落ち込むことがなく、基板濃度(N0)程度にできる。
図10は、基板濃度に対する回復率とプロトン炉アニールの水素濃度の関係を示す特性図である。この図10を用い、SRA法による測定における最小キャリア濃度をN1とし、基板濃度に対する回復率とプロトン炉アニールの水素濃度の関係を示す。水素濃度が0%から0.5%になると急激に結晶回復率が上がり、3%以上で結晶回復率はほぼ飽和してくる。水素濃度バラツキの影響を考慮すると水素濃度0.5%以上で行うべきである。また、水素は4.65%以上の濃度になると爆発の危険があること、3%以上は効果がほぼ飽和している。以上の結晶回復率と水素濃度との関係を考慮すると、水素濃度は4.65%未満で行うことが望ましい。さらに好ましくは、結晶回復率が80%以上でかつ爆発のリスクを低減できるように、水素濃度を1.0%以上4.0%以下としてもよい。
上記のように、第1の実施の形態によれば、プロトン注入後の熱処理を水素雰囲気中において水素濃度0.5%以上4.65%未満の範囲内で行うことにより、プロトン注入以外でシリコン中に水素を導入できるようになる。また、多量の水素は、結晶欠陥のダングリングボンドを終端させ、結晶回復を促進させる効果がある。
そして、上記第1の実施の形態の製造方法によれば、ドナー生成のためのドーズ量を小さくでき、また、炉のアニール温度を下げることができるようになるため、工程時間(リードタイム)を下げることができるようになり、半導体装置100のチップ単価(コスト)を下げることができるようになる。
(第2の実施の形態)
次に、第2の実施の形態にかかる半導体装置の製造方法について説明する。第2の実施の形態にかかる半導体装置の製造方法は、プロトンの加速エネルギーとアニール条件が第1の実施の形態にかかる半導体装置の製造方法と異なる。第2の実施の形態にかかる半導体装置の製造方法のプロトンのアニール条件以外の構成は、第1の実施の形態にかかる半導体装置の製造方法と同様である。
具体的には、まず、第1の実施の形態と同様に、p型アノード層102の形成からプロトン601の注入までの工程を行う(図2〜6)。プロトンの加速エネルギーは、例えば1.1MeV(飛程Rpは18μm)である。次に、例えば、水素濃度が0.5%以上4.65%未満の雰囲気において340℃の温度で10時間のアニール701を行うことでドナー領域(n層101a)を生成する(図7)。その後、第1の実施の形態と同様に、リンのイオン注入およびレーザーアニールによるn+層101bの形成から以降の工程を行うことで(図8)、図1に示すダイオードが完成する。
このように製造したダイオードのキャリア濃度の深さ方向の分布をSRA法により測定した結果を図22に示す。図22は、第2の実施の形態にかかるダイオードの活性部の製造工程におけるアニール後のキャリア濃度の深さ方向の分布の測定結果を示す特性図である。図22に示すように、プロトン601の注入面近傍および通過領域のキャリア濃度がn-型半導体基板101の不純物濃度(点線で図示する基板濃度、図23,24においても同様)よりも高くなっていることから、結晶欠陥(ディスオーダー)を回復させながらドナー領域を生成することができることがわかる。
以上、説明したように、第2の実施の形態によれば、第1の実施の形態と同様の効果を得ることができる。第2の実施の形態によれば、プロトンのアニール温度を340℃以下とすることにより、裏面研削前の厚さの厚いn-型半導体基板に基板おもて面側の構造(p型アノード層、アノード電極および層間絶縁膜など)をすべて形成することができるため、n-型半導体基板の厚さが薄い状態で行う工程を少なくすることができる。これにより、歩留りを向上させることができ、かつ製造設備のコストを低減することができる。また、第2の実施の形態によれば、プロトンのアニール温度を340℃以下とすることにより、裏面研削前の厚さの厚いn-型半導体基板に電子線照射を行うことができるため、歩留りを向上させることができる。さらに、プロトンのドナー化率は、アニール温度が300℃以上350℃未満の範囲で最も高くなる(例えば10〜50%)。よって、この温度範囲でアニール処理を行うことで、プロトンのドナー化率を高く維持することができる。
(第3の実施の形態)
次に、第3の実施の形態にかかる半導体装置の製造方法について説明する。第3の実施の形態にかかる半導体装置の製造方法が第1の実施の形態にかかる半導体装置の製造方法と異なる点は、プロトンの加速エネルギーと、欠陥回復とドナー化率とが所望の状態となるように、水素濃度が0.5%以上4.65%未満の雰囲気において340℃より高く400℃以下の温度のプロトンのアニールを行う点である。このため、第3の実施の形態においては、各工程を行う順序が第1の実施の形態と異なり、プロトンのアニール後に、ライフタイム制御のための電子線照射および熱処理を行う。
具体的には、まず、第1の実施の形態と同様に、p型アノード層の形成からおもて面保護膜の形成までの工程を行う。次に、n-型半導体基板を裏面側から研削していき、半導体装置として用いる製品厚さの位置まで研削する。次に、n-型半導体基板の裏面側からプロトンを加速エネルギー1.1MeVで注入した後、水素濃度が0.5%以上4.65%未満の雰囲気において例えば380℃の温度で10時間のアニールを行うことでドナー領域を生成する。次に、基板おもて面側から電子線を照射し、熱処理することにより、ライフタイムキラー制御を行う。その後、第1の実施の形態と同様に、リンのイオン注入およびレーザーアニールによるn+層の形成から以降の工程を行うことで、図1に示すダイオードが完成する。
このように製造したダイオードのキャリア濃度の深さ方向の分布をSRA法により測定した結果を図23に示す。図23は、第3の実施の形態にかかるダイオードの活性部の製造工程におけるアニール後のキャリア濃度の深さ方向の分布の測定結果を示す特性図である。図23に示すように、プロトンの注入面近傍および通過領域のキャリア濃度がn-型半導体基板の不純物濃度よりも高くなっていることから、第3の実施の形態において結晶欠陥(ディスオーダー)を回復させながらドナー領域を生成することができることがわかる。
以上、説明したように、第3の実施の形態によれば、第1の実施の形態と同様の効果を得ることができる。また、第3の実施の形態によれば、プロトンのアニール温度を400℃以下とすることにより、欠陥を低減させるとともに、ドナー化率を向上させることができる。また、第2の実施の形態と同様に、裏面研削前の厚さの厚いn-型半導体基板に基板おもて面側の構造をすべて形成することができるため、歩留り向上やコスト低減を実現することができる。
(第4の実施の形態)
次に、第4の実施の形態にかかる半導体装置の製造方法について説明する。第4の実施の形態にかかる半導体装置の製造方法が第1の実施の形態にかかる半導体装置の製造方法と異なる点は、加速エネルギーと、ドナー化率を高くするために、水素濃度が0.5%以上4.65%未満の雰囲気において300℃〜450℃の温度でプロトンのアニールを行う点である。このため、第4の実施の形態においては、各工程を行う順序が第1の実施の形態と異なり、プロトンのアニール後に、おもて面保護膜の形成と、ライフタイム制御のための電子線照射および熱処理とを行う。
具体的には、まず、第1の実施の形態と同様に、p型アノード層およびアノード電極を形成する。次に、n-型半導体基板を裏面側から研削していき、半導体装置として用いる製品厚さの位置まで研削する。次に、n-型半導体基板の裏面側から加速エネルギーを1.1MeVとしてプロトンを注入した後、水素濃度が0.5%以上4.65%未満の雰囲気において例えば420℃の温度で5時間のアニールを行うことでドナー領域を生成する。次に、アノード電極を覆うおもて面保護膜を形成する。次に、基板おもて面側から電子線を照射し、熱処理することにより、ライフタイムキラー制御を行う。その後、第1の実施の形態と同様に、リンのイオン注入およびレーザーアニールによるn+層の形成から以降の工程を行うことで、図1に示すダイオードが完成する。
このように製造したダイオードのキャリア濃度の深さ方向の分布をSRA法により測定した結果を図24に示す。図24は、第4の実施の形態にかかるダイオードの活性部の製造工程におけるアニール後のキャリア濃度の深さ方向の分布の測定結果を示す特性図である。図24に示すように、プロトンの注入面近傍および通過領域のキャリア濃度がn-型半導体基板の不純物濃度よりも高くなっていることから、第4の実施の形態において結晶欠陥(ディスオーダー)を回復させながらドナー領域を生成することができることがわかる。また、プロトンの注入面近傍および通過領域のキャリア濃度が第2,3の実施の形態の場合よりも高くなっていることから、第2,3の実施の形態よりも結晶欠陥を安定して回復させることができることがわかる。
以上、説明したように、第4の実施の形態によれば、第1の実施の形態と同様の効果を得ることができる。また、第4の実施の形態によれば、プロトンのアニール温度を高くすることにより、裏面研削後、n-型半導体基板の厚さが薄い状態で行う工程数が多くなるが、結晶欠陥を安定して回復させることができる。
(第5の実施の形態)
以上において本発明は、半導体基板にダイオードを形成する半導体装置の製造方法について説明したが、上述した実施の形態に限らず、絶縁ゲート型バイポーラトランジスタ(IGBT)のn層(フィールドストップ層)101aを作製するものについても同様に適用することが可能である。
図11は、本発明を適用した半導体装置としてIGBTを示す断面図である。このIGBT200は、n-型半導体基板(n-ドリフト領域)201の主面の表面層にp型ベース層210が形成されている。さらにこのp型ベース層210の表面層には、n型エミッタ層209が形成されている。そして、n-ドリフト領域(n-型半導体基板201)、p型ベース層210、n型エミッタ層209に対向するように、ゲート酸化膜213を介して、トレンチ型のゲート電極208が設けられ、金属−酸化膜−半導体(MOS)型ゲート電極を形成している。
また、n-型半導体基板201の主面の表面層には、トレンチ型のゲート電極208のp型ベース層210側に対して反対側の側面に接するように、フローティング(浮遊)電位のフローティングp層211が形成される。そして、フローティングp層211を挟んでトレンチ型のゲート電極208と隣り合うように、ゲート酸化膜213を介してトレンチ型のダミーゲート212が形成される。ダミーゲート212の電位は、フローティング電位であってもよいし、エミッタ電位であってもよい。一方、対面(裏面)の表面層にはp+型コレクタ層203が形成される。そしてp型ベース層210の外周位置に終端領域104となるp型のガードリング204が形成される。
このIGBT200は、スイッチング時におけるノイズの原因となる電圧振動を低減させるために、おもて面側から裏面側に対して深い位置でのn型ドーピング濃度のコントロールを行っている。この図11には、プロトン注入後、水素雰囲気アニールによりプロトンのドナー生成を促進させた状態を示している。キャリア濃度コントロールについては、比較的低い加速電圧で、シリコン中に深い飛程が得られるプロトン注入を用いてn型層201aを形成する。このn型層201aはプロトン注入によるフィールドストップ層となり、n-ドリフト領域(n-型半導体基板201)より高い不純物濃度を有する。
p型ベース層210およびn型エミッタ層209上にはエミッタ電極202が設けられ、p+型コレクタ層203の下面(IGBT200の裏面)には、コレクタ電極206が設けられる。また、活性部110は、IGBTがオンの時に電流が流れる領域であり、終端領域104は、n-型半導体基板(n-ドリフト領域)201の主面側の電界を緩和し、耐圧を保持する領域である。終端領域104には、例えばフローティングのp型領域であるp型ガードリング204と、ガードリング204に電気的に接続された導電膜であるフィールドプレート(FP)207とが設けられている。205は層間絶縁膜、214は絶縁層である。
以上、説明したように、第5の実施の形態によれば、第1の実施の形態と同様の効果を得ることができる。
(第6の実施の形態)
次に、フィールドストップ層の位置についての説明を、第6の実施の形態として説明する。プロトン注入によるフィールドストップ層は、当然1つだけでなく複数形成してもよい。以下では、複数回のプロトン注入において、1段目のフィールドストップ層のプロトンピーク位置の好ましい位置について説明する。1段目のフィールドストップ層とは、ダイオードの場合はn+型カソード層、IGBTの場合はp+型コレクタ層側となる基板裏面から、深さ方向で最も深い箇所に位置するフィールドストップ層のことである。
図15は、一般的なダイオードの逆回復時の発振波形である。アノード電流が定格電流の1/10以下の場合、蓄積キャリアが少ないために、逆回復が終わる手前で発振することがある。アノード電流をある値に固定して、異なる電源電圧VCCにてダイオードを逆回復させる。このとき、電源電圧VCCがある所定の値を超えると、カソード・アノード間電圧波形において、通常のオーバーシュート電圧のピーク値を超えた後に、付加的なオーバーシュートが発生するようになる。そして、この付加的なオーバーシュート(電圧)がトリガーとなり、以降の波形が振動する。電源電圧VCCがこの所定の値をさらに超えると、付加的なオーバーシュート電圧がさらに増加し、以降の振動の振幅も増加する。このように、電圧波形が振動を始める閾値電圧を発振開始閾値VRROと呼ぶ。このVRROが高ければ高いほど、ダイオードは逆回復時に発振しないことを示すので、好ましい。
発振開始閾値VRROは、ダイオードのp型アノード層とn-ドリフト領域とのpn接合からn-ドリフト領域を広がる空乏層端(厳密には、正孔が存在するので空間電荷領域端)が、複数のプロトンピークのうち最初に達する1段目のプロトンピークの位置に依存する。その理由は、次のとおりである。逆回復時に空乏層がおもて面側のp型アノード層からn-ドリフト領域を広がるときに、空乏層端が1つ目のフィールドストップ層に達することでその広がりが抑えられ、蓄積キャリアの掃き出しが弱まる。その結果、キャリアの枯渇が抑制され、発振が抑えられる。
逆回復時の空乏層は、p型アノード層とn-ドリフト領域との間のpn接合からカソード電極に向かって深さ方向に沿って広がる。このため、空乏層端が最初に達するフィールドストップ層のピーク位置は、p型アノード層とn-ドリフト領域との間のpn接合に最も近いフィールドストップ層となる。そこで、n-型半導体基板の厚さ(アノード電極とカソード電極とに挟まれた部分の厚さ)をW0、空乏層端が最初に達するフィールドストップ層のピーク位置の、カソード電極とn-型半導体基板の裏面との界面からの深さ(以下、裏面からの距離とする)をXとする。ここで、距離指標Lを導入する。距離指標Lは、下記の(1)式であらわされる。
Figure 2013141141
図17は、本発明にかかる半導体装置において空乏層が最初に達するフィールドストップ層の位置条件を示す図表である。図19は、複数のフィールドストップ層を有するダイオードを示す説明図である。図19(a)には、複数のフィールドストップ層3を形成したダイオードの断面図を示す。図19(b)には、図19(a)の切断線B−B’に沿ったネットドーピング濃度分布を示す。n-ドリフト領域1となるn-型半導体基板のおもて面側にp型アノード層52を形成し、裏面側にはn+型カソード層53を形成している。符号51はアノード電極であり、符号54はカソード電極である。n-ドリフト領域1の内部にはフィールドストップ層3を例えば3段形成している。また、基板裏面から最も深いフィールドストップ層3のピーク位置の、基板裏面からの距離Xは50μmである。これは、図17に示す図表に基づいて距離指標Lを58.2μmとし、後述するγを1.2とした場合である。また、図19(b)に示したLの矢印は、例えばp型アノード層52とn-ドリフト領域1との間のpn接合からの距離(長さ)を示している。
図18は、複数のフィールドストップ層を有するIGBTを示す説明図である。図18(a)には、複数のフィールドストップ層3を形成したIGBTの断面図を示す。図18(b)には、図18(a)の切断線A−A’に沿ったネットドーピング濃度分布を示す。n-ドリフト領域1となるn-型半導体基板のおもて面側にp型ベース層33を形成し、裏面側にはpコレクタ層4を形成している。符号2はn+エミッタ層であり、符号23はp型ベース層33とn-ドリフト領域1との間のpn接合であり、符号31はエミッタ電極であり、符号32はコレクタ電極である。また、符号38はnバッファ層であり、符号41は層間絶縁膜であり、符号42はゲート電極であり、符号43はゲート絶縁膜である。n-ドリフト領域1の内部にはフィールドストップ層3を例えば3段形成している。基板裏面から最も深いフィールドストップ層3のピーク位置の、基板裏面からの距離Xは50μmである。これは、図17に示す図表に基づいて距離指標Lを58.2μmとし、後述するγを1.2とした場合である。また、図18(b)示したLの矢印は、例えばp型ベース層33とn-ドリフト領域1との間のpn接合23からの距離(長さ)を示している。
次に、ダイオードの逆回復発振について説明する。上記(1)式に示す距離指標Lは、逆回復時に、カソード・アノード間電圧VAKが電源電圧VCCとなるときに、p型アノード層とn-ドリフト領域との間のpn接合からn-ドリフト領域に広がる空乏層(正しくは空間電荷領域)の端部(空乏層端)の、当該pn接合からの距離を示す指標である。平方根の内部の分数の中で、分母は逆回復時の空間電荷領域(簡単には、空乏層)の空間電荷密度を示している。周知のポアソンの式は、divE=ρ/εで表され、Eは電界強度、ρは空間電荷密度でρ=q(p−n+Nd−Na)である。qは電荷素量、pは正孔濃度、nは電子濃度、Ndはドナー濃度、Naはアクセプタ濃度、εは半導体の誘電率である。特にドナー濃度Ndは、n-ドリフト領域を深さ方向に積分し、積分した区間の距離で割った平均濃度とする。
この空間電荷密度ρは、逆回復時に空間電荷領域(空乏層)を駆け抜ける正孔濃度pとn-ドリフト領域の平均的なドナー濃度Ndで記述され、電子濃度はこれらよりも無視できるほど低く、アクセプタが存在しないため、ρ≒q(p+Nd)と表すことができる。このときの正孔濃度pは、ダイオードの遮断電流によって決まり、特に素子の定格電流密度が通電している状況を想定するため、p=JF/(qvsat)で表され、JFは素子の定格電流密度、vsatはキャリアの速度が所定の電界強度で飽和した飽和速度である。
上記ポアソンの式を距離xで2回積分し、電圧VとしてE=−gradV(周知の電界Eと電圧Vとの関係)であるため、境界条件を適当にとれば、V=(1/2)(ρ/ε)x2となる。この電圧Vが、定格電圧BVの1/2としたときに得られる空間電荷領域の長さxを、上記の距離指標Lとしているのである。その理由は、インバーター等の実機では、電圧Vとなる動作電圧(電源電圧VCC)を、定格電圧の半値程度とするためである。フィールドストップ層は、ドーピング濃度をn-ドリフト領域よりも高濃度とすることで、逆回復時に広がる空間電荷領域の伸びを、フィールドストップ層において広がり難くする機能を有する。ダイオードのアノード電流が、回路上の別の位置にあるIGBTのMOSゲートのオンにより遮断電流から減少を始めるときに、空乏層が最初に達するフィールドストップ層のピーク位置が、ちょうどこの空間電荷領域の長さにあれば、蓄積キャリアがn-ドリフト領域に残存した状態で、空間電荷領域の伸びを抑えることができるので、残存キャリアの掃出しが抑えられる。
実際の逆回復動作は、例えばIGBTモジュールを周知のPWMインバーターでモーター駆動するときには、電源電圧VCCや遮断電流が固定ではなく可変である。したがって、このような場合では、空乏層が最初に達するフィールドストップ層のピーク位置の好ましい位置に、ある程度の幅を持たせる必要がある。発明者らの検討の結果、空乏層が最初に達するフィールドストップ層のピーク位置の裏面からの距離Xは、図17に示す図表のようになる。図17には、定格電圧が600V〜6500Vのそれぞれにおいて、最初に空乏層端が達するフィールドストップ層のピーク位置の裏面からの距離Xを示す。ここで、X=W0−γLとおき、γは係数である。このγを、例えば0.7〜1.6まで変化させたときのXを示している。
図17に示すように、各定格電圧では、素子(ダイオード)が定格電圧よりも10%程度高い耐圧を持つように、安全設計をする。そして、オン電圧や逆回復損失がそれぞれ十分低くなるように、図17に示すようにn-型半導体基板の総厚(研削等によって薄くした後の仕上がり時の厚さ)およびn-ドリフト領域の平均的な比抵抗とする。平均的とは、フィールドストップ層を含めたn-ドリフト領域全体の平均濃度および比抵抗である。定格電圧によって、定格電流密度JFも図17に示したような典型値となる。定格電流密度JFは、定格電圧と定格電流密度JFとの積によって決まるエネルギー密度が、およそ一定の値となるように設定され、ほぼ図17に示す値のようになる。これらの値を用いて上記(1)式に従い距離指標Lを計算すると、図17に記載した値となる。最初に空乏層端が達するフィールドストップ層のピーク位置の裏面からの距離Xは、この距離指標Lに対してγを0.7〜1.6とした値をn-型半導体基板の厚さW0から引いた値となる。
これら距離指標Lおよびn-型半導体基板の厚さW0の値に対して、逆回復発振が十分抑えられるような、最初に空乏層端が達するフィールドストップ層のピーク位置の裏面からの距離Xは、次のようになる。図14は、電圧波形が振動を始める閾値電圧について示す特性図である。図14には、このγに対する、発振開始閾値VRROの依存性を、典型的ないくつかの定格電圧Vrate(600V、1200V、3300V)について示す。ここで、縦軸は、発振開始閾値VRROを定格電圧Vrateで規格化した値とする。3つの定格電圧Vrateともに、γが1.5以下で発振開始閾値VRROを急激に高くできることがわかる。
前述のように、インバーター等の実機では、電圧Vとなる動作電圧(電源電圧VCC)を定格電圧Vrateの半値程度とするため、電源電圧VCCを定格電圧Vrateの半値とするときには、少なくともダイオードの逆回復発振は生じないようにしなければならない。つまり、VRRO/Vrateの値は0.5以上とする必要がある。図14から、VRRO/Vrateの値が0.5以上となるのは、γが0.2以上1.5以下であるので、少なくともγを0.2〜1.5とすることが好ましい。
また、図示しない600V〜1200Vの間(800Vや1000Vなど)、1200V〜3300Vの間(1400V,1700V,2500Vなど)、および3300V以上(4500V、6500Vなど)のいずれにおいても、図14に示す3つの曲線から大きく逸脱せず、この3つの曲線と同様の依存性(γに対する発振開始閾値VRROの値)を示す。図17から、γが0.7〜1.4の範囲で、いずれの定格電圧Vrateも発振開始閾値VRROを十分高くできる領域であると分かる。
γが0.7より小さくなると、発振開始閾値VRROは定格電圧Vrateのおよそ80%以上であるものの、フィールドストップ層がp型ベース層に近くなるため、素子のアバランシェ耐圧が定格電圧Vrateより小さくなる場合が生じる。そのため、γは0.7以上が好ましい。また、γが1.4より大きくなると、発振開始閾値VRROは定格電圧Vrateの約70%から急速に減少し、逆回復発振が発生し易くなる。したがって、γは1.4以下であるのが好ましい。より好ましくは、γが0.8〜1.3の範囲内、さらに好ましくはγが0.9〜1.2の範囲内であれば、素子のアバランシェ耐圧を定格電圧Vrateよりも十分高くしつつ、発振開始閾値VRROを最も高くすることができる。
この図14で重要な点は、いずれの定格電圧Vrateにおいても、発振開始閾値VRROを十分高くできるγの範囲は、ほぼ同じ(0.7〜1.4)となることである。この理由は、空乏層が最初に到達するフィールドストップ層のピーク位置の裏面からの距離Xの範囲を、W0−L(γ=1)を中心とすることが最も効果的なためである。γ=1.0を含むことが最も効果的なのは、パワー密度(定格電圧Vrateと定格電流密度JFとの積)が略一定(例えば1.8×105〜2.6×105VA/cm2)となることに起因する。つまり、ターンオフ等のスイッチング時に、素子の電圧が定格電圧Vrate相当になったときに、空間電荷領域端の距離(深さ)は上記(1)式で示す距離指標L程度となり、この距離指標Lの位置に裏面から最も深いフィールドストップ層のピーク位置があれば(すなわちγが約1.0)、スイッチング時の発振は抑制することができる。そして、パワー密度が略一定なので、距離指標Lは定格電圧Vrateに比例するようになる。これにより、どの定格電圧Vrateにおいても、γ=1を略中心に含む範囲とすれば発振開始閾値VRROを十分高くでき、逆回復時の発振抑制効果を最も大きくできる。
以上より、最初に空乏層端が達するフィールドストップ層のピーク位置の裏面からの距離Xを上記範囲とすることで、逆回復時にダイオードは蓄積キャリアを十分残存させることができ、発振現象を抑えることができる。したがって、いずれの定格電圧Vrateにおいても、最初に空乏層端が達するフィールドストップ層のピーク位置の裏面からの距離Xは、距離指標Lの係数γを上述の範囲とすることがよい。これにより、逆回復時の発振現象を効果的に抑制することができる。
また、図17では、定格電圧Vrateが600V以上において、上述のように裏面から最も深い1つ目(1段目)のフィールドストップ層の裏面からの深さをγ=1程度とする場合、距離指標Lはいずれの定格電圧Vrateも20μmより深いことがわかる。すなわち裏面から最も深い1段目のプロトンピークを形成するためのプロトンの飛程Rpを基板裏面から15μmよりも深く、特に20μm以上とする理由は、まさにこの発振抑制効果を最も高くするためである。
以上のように、良好なスイッチング特性を得るためには、n-型半導体基板の裏面から少なくとも15μmよりも深い領域にフィールドストップ層を形成する必要がある。なお、上記の距離指標Lの考え方、およびγの好ましい範囲については、ダイオードだけでなく、IGBTにおいても同様の範囲とすることが可能である。つまり、逆回復発振はターンオフ発振と置き換えて考えればよく、発振の起きやすさ、および抑制する作用効果についても、類似している。
(第7の実施の形態)
次に、本発明にかかる半導体装置の製造方法におけるプロトンの加速エネルギーについての説明を、第7の実施の形態として説明する。上記のγの範囲を満たすように、空乏層が最初に達するフィールドストップ層のピーク位置が基板裏面からの距離Xを有するように当該フィールドストップ層を実際にプロトン注入で形成するには、プロトンの加速エネルギーを図16に示す特性図から決めればよい。図16は、本発明にかかる半導体装置のプロトンの飛程とプロトンの加速エネルギーとの関係を示す特性図である。
発明者らは鋭意研究を重ねた結果、プロトンの飛程Rp(フィールドストップ層のピーク位置)と、プロトンの加速エネルギーEについて、プロトンの飛程Rpの対数log(Rp)をx、プロトンの加速エネルギーEの対数log(E)をyとすると、下記(2)式の関係があることを見出した。
y=−0.0047x4+0.0528x3−0.2211x2+0.9923x+5.0474 ・・・(2)
図16は、上記(2)式を示す特性図であり、プロトンの所望の飛程Rpを得るためのプロトンの加速エネルギーを示している。図16の横軸はプロトンの飛程Rpの対数log(Rp)であり、log(Rp)の軸数値の下側の括弧内に対応する飛程Rp(μm)を示す。また、縦軸はプロトンの加速エネルギーEの対数log(E)であり、log(E)の軸数値の左側の括弧内に対応するプロトンの加速エネルギーEを示す。上記(2)式は、実験等によって得られた、プロトンの飛程Rpの対数log(Rp)と加速エネルギーの対数log(E)との各値を、x(=log(Rp))の4次の多項式でフィッティングさせた式である。
なお、上記のフィッティング式を用いて所望のプロトンの平均飛程Rpからプロトン注入の加速エネルギーEを算出(以下、算出値Eとする)して、この加速エネルギーの算出値Eでプロトンをシリコン基板に注入した場合における、実際の加速エネルギーE’と実際に広がり抵抗測定法(SRA法)等によって得られた平均飛程Rp’(プロトンピーク位置)との関係は、以下のように考えればよい。
加速エネルギーの算出値Eに対して、実際の加速エネルギーE’がE±10%程度の範囲にあれば、実際の平均飛程Rp’も所望の平均飛程Rpに対して±10%程度の範囲に収まり、測定誤差の範囲内となる。そのため、実際の平均飛程Rp’の所望の平均飛程Rpからのバラつきが、ダイオードやIGBTの電気的特性へ与える影響は、無視できる程度に十分小さい。したがって、実際の加速エネルギーE’が算出値E±10%の範囲にあれば、実際の平均飛程Rp’は実質的に設定どおりの平均飛程Rpであると判断することができる。あるいは、実際の加速エネルギーE’を上記(2)式に当てはめて算出した平均飛程Rpに対して、実際の平均飛程Rp’が±10%以内に収まれば、問題ない。
実際の加速器では、加速エネルギーEおよび平均飛程Rpはいずれも上記の範囲(±10%)に収まり得るため、実際の加速エネルギーE’および実際の平均飛程Rp’は、所望の平均飛程Rpと算出値Eとで表される上記(2)式に示すフィッティング式にしたがっていると考えて、全く差支えない。さらに、バラつきや誤差の範囲が、平均飛程Rpに対して±10%以下であればよく、好適には±5%に収まれば、申し分なく上記(2)式に従っていると考えることができる。
上記(2)式を用いることにより、所望のプロトンの飛程Rpを得るのに必要なプロトンの加速エネルギーEを求めることができる。上述したフィールドストップ層を形成するためのプロトンの各加速エネルギーEも、上記(2)式を用いており、実際に上記の加速エネルギーE’でプロトンを注入した試料を周知の広がり抵抗測定法(SRA法)にて測定した実測値ともよく一致する。したがって、上記(2)式を用いることで、極めて精度よく、プロトンの飛程Rpに基づいて必要なプロトンの加速エネルギーEを予測することが可能となった。
(第8の実施の形態)
次に、本発明にかかる半導体装置の逆回復波形についての説明を、第8の実施の形態として説明する。図21は、本発明にかかる半導体装置の逆回復波形を示す特性図である。図21には、第1の実施の形態にしたがって作製された本発明(以下、実施例1とする)の逆回復波形と、プロトン注入を行わずに電子線照射のみとした比較例の逆回復波形とを示す。定格電圧は1200Vとし、FZシリコン基板のドーピング濃度(平均濃度)Nd、および、研削後のFZシリコン基板の仕上がり厚さW0は図17の通りである。基板裏面から最も深いフィールドストップ層のγは1である。電子線照射条件は、本発明では線量を300kGyとし、加速エネルギーを5MeVとした。比較例では線量を60kGyとした。本発明および比較例のいずれも定格電流密度(図17の1200Vの欄)における順電圧降下は1.8Vとした。試験条件は、電源電圧VCCを800Vとし、初期の定常的なアノード電流を定格電流(電流密度×活性面積約1cm2)とし、チョッパー回路においてダイオード、駆動用IGBT(同じ1200V)、中間コンデンサとの浮遊インダクタンスを200nHとした。
図21からも明らかなように、実施例1は、比較例よりも、逆回復ピーク電流が小さく、電源電圧VCCに対して高い電圧が発生するオーバーシュート電圧も200V程度小さくすることができていることがわかる。すなわち、本発明の逆回復波形はいわゆるソフトリカバリー波形である。これは、高速だがハードリカバリーになりやすい電子線照射によるライフタイム制御でも、極めてソフトな波形を達成することができたことを示し、従来(比較例)では得られない効果である。
このような本発明に見られる効果の作用(理由)について、図20を参照して説明する。図20は、本発明にかかる半導体装置のキャリアライフタイムを示す特性図である。図20には、実施例1のダイオードについて、アノード電極からの深さ方向に対するネットドーピング濃度、点欠陥濃度、およびキャリアライフタイムを示す。本発明がソフトリカバリー化を実現することができる理由は、電子線照射によって導入された点欠陥(空孔(V)、複空孔(VV))に対し、基板裏面からのプロトン注入によって導入された水素原子によってダングリングボンドが終端されたためであると推測される。キャリアの生成・消滅を促す欠陥は、点欠陥が主であり、空孔(V)・複空孔(VV)を主体とするエネルギー中心(センター)である。点欠陥にはダングリングボンドが形成されている。そこに、基板裏面からプロトンを注入してアニール(熱処理)を行うことにより、欠陥が緩和されて正常な結晶状態に近い状態に戻ろうとする。このとき、ダングリングボンドを周辺の水素原子が終端する。これにより、空孔(V)および複空孔(VV)を主体とするセンターは消滅する。一方、水素原子に起因するドナー(水素誘起ドナー)は、空孔(V)+酸素(O)+水素(H)のVOH欠陥が主体であるため、プロトン注入により単にダングリングボンドが水素原子で終端されるだけでなく、VOH欠陥も形成される。すなわち、ドナー形成に最も寄与するVOH欠陥の形成こそが、空孔(V)および複空孔(VV)を主体とする点欠陥を消滅させる理由である。これが、漏れ電流やキャリア再結合の原因である空孔(V)および複空孔(VV)の密度を低下させつつ、VOHドナーの生成を促すと推測される。
ここで、通常は、シリコンウェハーをインゴットから製造してウェハー状にスライスした段階で、ウェハーには酸素が含まれている。例えば純ポリシリコンから製造したFZウェハーには、酸素は1×1015/cm3〜1×1016/cm3程度含有されている。CZウェハーを原料とするポリシリコンから引き上げたFZウェハーについては、酸素は1×1016/cm3〜1×1017/cm3程度含有されている。これらの含有されている酸素が、VOH欠陥のOとして寄与する。
なお、従来技術として、ドナーをあまり形成せずにライフタイム低減のみを目的としたプロトン注入は広く知られているが、このプロトン注入は空孔(V)および複空孔(VV)を主体とする欠陥を大量に残し、VOH欠陥は相対的にほとんど形成していないものと推測される。この点は、本発明の基板裏面からのプロトン注入と水素誘起ドナーとによるフィールドストップ層の形成、および電子線照射によるダングリングボンドを水素原子で終端する効果によって得られる空孔(V)および複空孔(VV)を主体とする欠陥の低減と、大きく異なる点である。
このような現象により、点欠陥密度は、図20の中段に示すように、p型アノード層からフィールドストップ層までは電子線照射による点欠陥が十分残留し、一様なライフタイム分布を形成している。このときのライフタイムは、例えば、0.1μs以上3μs以下の程度である。一方、フィールドストップ層から基板裏面のカソード側では、プロトンの注入により、基板裏面から50μm程度およびそれよりさらにカソード側に近いところで、水素濃度が増加する。この水素原子がダングリングボンドを終端することで、点欠陥濃度は減少する。これにより、フィールドストップ層を形成している深さ領域(裏面から50μm深さ〜基板裏面表層)のライフタイムは、それより浅い領域よりも増加し、例えば10μs程度となる。この値は、電子線照射を行わないときのライフタイム値(10μs以上)か、それに十分近い値である。これにより、図示しない少数キャリア(この場合正孔)の濃度分布は、アノード側で十分低く、カソード側で十分高い分布とすることができ、ダイオードのソフトリカバリー特性にとって極めて理想的なキャリア濃度分布を達成できる。
以上より、基板の深さ方向に電子線照射により点欠陥を導入し、基板裏面からのプロトン注入によって水素誘起ドナーからなるフィールドストップ層を形成することによって、フィールドストップ層を形成した領域の空孔(V)および複空孔(VV)を主体とする点欠陥を減らし、ライフタイム分布をソフトリカバリー特性に有効な分布とすることができる。
以上のように、本発明にかかる半導体装置の製造方法は、例えば産業用あるいは自動車用のモーター制御やエンジン制御に使用されるパワー半導体装置に有用である。
100 半導体装置(ダイオード)
101 n-型半導体基板
101a n層(フィールドストップ層)
101b n+型カソード層(n+層)
102 p型アノード層
104 終端領域
105 アノード電極
106 カソード電極
107 フィールドプレート
108 絶縁層
200 半導体装置(IGBT)
この発明は、半導体装置の製造方法に関する。
電力用半導体装置として、400V、600V、1200V、1700V、3300Vあるいはそれ以上の耐圧を有するダイオードやIGBT(Insulated Gate Bipolar Transistor)等がある。これらの電力用半導体装置は、コンバーター・インバーター等の電力変換装置に用いられている。電力用半導体装置は、低損失・高効率・高耐量という特性および低コストが求められている。
図12は、従来技術を説明するダイオードの断面図である。n-型半導体基板1500の主面にp型アノード層1501が形成され、対面にはn+型カソード層1502が形成される。そして、p型アノード層1501の外周位置に終端領域1503となるp型の層が形成されている。p型アノード層1501上にはアノード電極1505が設けられ、n+型カソード層1502の下面には、カソード電極1506が設けられる。1507はフィールドプレート、1508は絶縁層である。
このダイオード等の素子で、スイッチング時におけるノイズの原因となる電圧振動を低減させるために、おもて面側から裏面側に向かってn-型半導体基板1500の深い位置でのドーピング濃度コントロールが求められている。
キャリア濃度コントロールの方法として、比較的低い加速電圧で、シリコン中に深い飛程が得られるプロトン注入を用いたドナー生成の方法が知られている。この方法は、所定の濃度の酸素が含まれる領域にプロトン注入を行い、n型領域を形成する方法である。このプロトン注入は、シリコン基板中に結晶欠陥を発生させることが知られている。ドナー生成にはこの結晶欠陥が不可欠であるが、欠陥の種類や濃度などによっては、漏れ電流の増加を招き電気特性の悪化を引き起こす。
プロトン注入により導入される欠陥は、プロトンの飛程Rp(イオン注入によって注入されたイオンが最も高濃度に存在する位置の注入面からの距離)だけでなく、注入面から飛程までのプロトンの通過領域や、注入面近傍に多く残留する。この残留欠陥は、格子位置からの原子(この場合シリコン原子)のずれが大きく、また結晶格子自体の強い乱れにより、アモルファスに近い状態である。そのため、残留欠陥は、電子および正孔といったキャリアの散乱中心となってキャリア移動度を低下させて導通抵抗を増加させるほか、キャリアの発生中心となって漏れ電流を増加させる等、素子の特性不良をもたらす。このように、プロトンの注入により、プロトンの注入面から飛程までのプロトンの通過領域に残留し、キャリア移動度の低下や漏れ電流の原因となるような、結晶状態から強く乱れた欠陥を、特にディスオーダーと呼ぶ。
このようにディスオーダーは、キャリア移動度を低下させ、漏れ電流や導通損失の増加等の特性不良をもたらす。そのため、漏れ電流の増加を抑えつつもドナーの生成を行うというような、適切な結晶欠陥の制御技術が必要になっている。
プロトン注入によるドナー生成の方法によれば、主なドナー生成要因の一つはシリコン中に導入した水素が熱処理によりシリコン空孔と酸素原子が結びついたVO欠陥の酸素と置換されて、酸素クラスターによるドナー化を促進することが知られている。
このプロトン注入によるドナー生成において、ドナー生成量を上げるためにはシリコン中に導入した水素量を増やすことが効果的であるが、プロトン注入量を上げると結晶欠陥が増大してしまう。また、高温の熱処理により結晶欠陥を回復させるとプロトンによるドナーが消滅してしまう。このため、ドナー生成量を上げるには上記のようなトレードオフ関係があり、このトレードオフ特性を克服するためにプロトン注入以外で水素をシリコン中に導入する方法を組み合わせるか、高温熱処理以外で結晶欠陥を回復させる必要がある。
例えば、プロトン注入によるドナー生成に対して、プロトン注入量とアニール温度に関する技術(例えば、下記特許文献1参照。)、プロトン注入によるドナー生成方法に対し熱処理条件を記載した技術(例えば、下記特許文献2参照。)、プロトン注入によるドナー生成方法により形成された領域について注入面からの深さを記載した技術(例えば、下記特許文献3参照。)が開示されている。
特許文献1の技術は、シリコンサイリスタペレットを、主接合形成後、周辺部に局所的にプロトンをイオン打ち込みし、低温熱処理し結晶中のプロトンを局所的にドナー化させ、低抵抗のチャンネルストップ層を形成するというものであり、シリコン基板のパターニングの困難な結晶内部の場所に、簡単なプロセスでチャンネルストップ層を形成するというものである。
特許文献2の技術は、半導体基板に埋設された阻止ゾーンを形成する方法にかかり、第1および第2の面を有し、第1伝導型の基本ドーピングがなされた半導体基板を準備する工程と、半導体基板における第1および第2の面の一方に、陽子を注入し、陽子が、注入面と離間して配された、半導体基板の第1の領域に導入されるようにする工程と、半導体基板を所定時間、所定温度に加熱する加熱処理を行い、第1の領域、および該第1の領域と注入面で隣接する第2の領域の両方で、水素によって誘発されたドナーが生成されるようにする工程と、を含む。
特許文献3の技術では、半導体基板へのプロトンの注入により、複数の阻止ゾーンが形成され、そのうち最も深いもので注入面から15μmの深さに形成する技術が開示されている。
特開平9−260639号公報 米国特許出願公開第2006−0286753号明細書 米国特許出願公開第2006−0081923号明細書
しかしながら、特許文献1には、水素雰囲気アニールに関する詳細な記載はない。また、特許文献2には、ドナー化率を上げる方法は記載されていない。ここで、ドナー化率とは、プロトンの照射量(ドーズ量)に対して、プロトンによってドナー化された領域の深さ方向の積分濃度の割合である。プロトン注入によるドナー化率を上げるためには、水素をより多くシリコン中に導入する必要があるが、プロトン注入のドーズ量を上げると結晶欠陥も増加してしまい特性劣化を引き起こす。また、高温熱処理で結晶欠陥を回復させるとドナーが消滅してしまう。このように、プロトン注入によるドナー生成において、結晶欠陥低減と、ドナー化率の向上を両立させることができなかった。
また、発明者らが鋭意研究を重ねた結果、プロトン注入の飛程(イオン注入によって注入されたイオンが最も高濃度に存在する位置の注入面からの距離)が、特許文献3にあるような15μmを超える場合、プロトンの注入面近傍および通過領域のディスオーダーの低減が十分ではないことが分かった。図13は、プロトン注入の飛程Rpが15μm前後およびそれより深い場合のキャリア濃度分布を飛程ごとに比較した特性図である。図13(a)には飛程Rpが50μmである場合を示し、図13(b)には飛程Rpが20μmである場合を示し、図13(c)には飛程Rpが15μmである場合を示す。
図13(c)の飛程Rp=15μmの場合、プロトンの注入面近傍(深さが0μm〜5μm)および通過領域のキャリア濃度は、シリコン基板の不純物濃度1×1014(/cm3)よりも高くなっており、ディスオーダーは十分低減されている。一方、図13(b)の飛程Rp=20μmおよび図13(a)の飛程Rp=50μmでは、プロトンの注入面近傍および通過領域のキャリア濃度が大きく低下しており、ディスオーダーが低減されていないことがわかる。このようにディスオーダーが残留する場合、素子の漏れ電流や導通損失が高くなってしまう。これによって、プロトン注入の飛程Rpが15μmを超える場合、ディスオーダーを低減する新たな方法の検討が必要である。
この発明は、上述した従来技術による問題点を解消するため、プロトン注入によるドナー生成において、結晶欠陥低減を図ることを目的とする。また、プロトン注入によるドナー生成において、ドナー化率の向上を図ることを目的とする。
上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置の製造方法は、次の特徴を有する。まず、第1導電型の半導体基板の裏面からプロトン注入する注入工程を行う。前記注入工程後に、前記半導体基板をアニール炉でアニール処理を行うことによって、前記半導体基板よりも高い不純物濃度を有する第1導電型の第1半導体領域を形成する形成工程を行う。このとき、前記形成工程は、前記アニール炉を水素雰囲気中とし、当該水素の容積濃度を0.5%以上4.65%未満で行う。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記半導体装置はダイオードであり、前記第1導電型の前記第1半導体領域がn型のフィールドストップ層であり、前記半導体基板がドリフト層であることを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記半導体装置は絶縁ゲート型バイポーラトランジスタであり、前記第1導電型の前記第1半導体領域がn型のフィールドストップ層であり、前記半導体基板がドリフト層であることを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記水素の容積濃度は、前記半導体基板の前記n型のフィールドストップ層からカソード電極までの領域のキャリア濃度を基板濃度程度にできる濃度に設定したことを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記水素の容積濃度は、前記半導体基板の前記n型のフィールドストップ層からコレクタ電極までの領域のキャリア濃度を基板濃度程度にできる濃度に設定したことを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記アニール処理のアニール温度は300℃〜450℃であることを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記アニール処理のアニール温度は340℃より高く400℃以下であることを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記アニール処理の処理時間は1時間〜10時間であることを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記アニール処理の処理時間は3時間〜7時間であることを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記アニール処理の処理時間は5時間以下であることを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記プロトン注入のプロトンの注入量は、3×1012/cm2〜5×1014/cm2であることを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記プロトン注入のプロトンの注入量は、1×1013/cm2〜1×1014/cm2であることを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記プロトン注入のプロトンの注入エネルギーEの対数log(E)をyとし、前記プロトンの飛程Rpの対数log(Rp)をxとすると、y=−0.0047x4+0.0528x3−0.2211x2+0.9923x+5.0474を満たすことを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記形成工程において、前記水素の容積濃度を1.0%以上4.0%以下で行うことを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記水素の容積濃度は、前記半導体基板の前記n型のフィールドストップ層からカソード電極までの領域のキャリア濃度を基板濃度以上にできる濃度に設定したことを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記水素の容積濃度は、前記半導体基板の前記n型のフィールドストップ層からコレクタ電極までの領域のキャリア濃度を基板濃度以上にできる濃度に設定したことを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記半導体基板を裏面から研削する研削工程を含むことを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記プロトン注入は、前記半導体基板の研削面側から行うことを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記半導体基板に電子線を照射する照射工程を含むことを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記電子線を照射した後に、前記半導体基板に熱処理を行う熱処理工程を含むことを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記プロトンの裏面からの飛程が15μm以上であることを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、qを電荷素量、Ndを前記ドリフト層の平均濃度、εSを前記半導体基板の誘電率、Vrateを定格電圧、JFを定格電流密度、vsatをキャリアの速度が所定の電界強度で飽和した飽和速度として、距離指標Lが下記式(1)で表わされ、前記プロトンの裏面からの飛程をXとし、前記半導体基板の厚さをW0として、X=W0−γLであり、γは0.2以上1.5以下であることを特徴とする。
Figure 2013141141
上述した発明によれば、プロトン注入後のアニールを水素雰囲気中において水素濃度0.5%以上4.65%未満の範囲中で行うことにより、プロトン注入以外でシリコン中に水素を導入できるようになる。そして、プロトン通過箇所の結晶欠陥を回復させることができ、前記n型のフィールドストップ層からカソード電極までの領域のキャリア濃度の落ち込みを防止できる。
本発明にかかる半導体装置の製造方法によれば、プロトン注入によるドナー生成において、結晶欠陥を増やさずにシリコン基板に水素を導入することができ、結晶欠陥による特性劣化を引き起こさないという効果を奏する。また、本発明にかかる半導体装置の製造方法によれば、プロトン注入によるドナー生成において、ドナー化率を向上できるという効果を奏する。
図1は、本発明を適用した半導体装置としてダイオードを示す断面図である。 図2は、本発明のダイオードの活性部の製造工程を示す断面図(その1)である。 図3は、本発明のダイオードの活性部の製造工程を示す断面図(その2)である。 図4は、本発明のダイオードの活性部の製造工程を示す断面図(その3)である。 図5は、本発明のダイオードの活性部の製造工程を示す断面図(その4)である。 図6は、本発明のダイオードの活性部の製造工程を示す断面図(その5)である。 図7は、本発明のダイオードの活性部の製造工程を示す断面図(その6)である。 図8は、本発明のダイオードの活性部の製造工程を示す断面図(その7)である。 図9は、第1の実施の形態にかかるダイオードの活性部の製造工程におけるアニール後のキャリア濃度の深さ方向の分布の測定結果を示す特性図である。 図10は、基板濃度に対する回復率とプロトン炉アニールの水素濃度の関係を示す特性図である。 図11は、本発明を適用した半導体装置としてIGBTを示す断面図である。 図12は、従来技術を説明するダイオードの断面図である。 図13は、プロトン注入の飛程Rpが15μm前後およびそれより深い場合のキャリア濃度分布を飛程ごとに比較した特性図である。 図14は、電圧波形が振動を始める閾値電圧について示す特性図である。 図15は、一般的なダイオードの逆回復時の発振波形である。 図16は、本発明にかかる半導体装置のプロトンの飛程とプロトンの加速エネルギーとの関係を示す特性図である。 図17は、本発明にかかる半導体装置において空乏層が最初に達するフィールドストップ層の位置条件を示す図表である。 図18は、複数のフィールドストップ層を有するIGBTを示す説明図である。 図19は、複数のフィールドストップ層を有するダイオードを示す説明図である。 図20は、本発明にかかる半導体装置のキャリアライフタイムを示す特性図である。 図21は、本発明にかかる半導体装置の逆回復波形を示す特性図である。 図22は、第2の実施の形態にかかるダイオードの活性部の製造工程におけるアニール後のキャリア濃度の深さ方向の分布の測定結果を示す特性図である。 図23は、第3の実施の形態にかかるダイオードの活性部の製造工程におけるアニール後のキャリア濃度の深さ方向の分布の測定結果を示す特性図である。 図24は、第4の実施の形態にかかるダイオードの活性部の製造工程におけるアニール後のキャリア濃度の深さ方向の分布の測定結果を示す特性図である。
以下に添付図面を参照して、この発明にかかる半導体装置の製造方法の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および−は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。
(第1の実施の形態)
図1は、本発明を適用した半導体装置としてダイオードを示す断面図である。図1に示す半導体装置100は、ダイオードの例を示すが、絶縁ゲートバイポーラトランジスタ(IGBT)であってもよい。
この半導体装置100は、n-型半導体基板(n-ドリフト領域)101の主面の表面層にp型アノード層102が形成され、対面(裏面)の表面層にはn+型カソード層101bが形成される。そしてp型アノード層102の外周位置に終端領域104となるp型の層が形成される。この半導体装置100は、スイッチング時におけるノイズの原因となる電圧振動を低減させるために、おもて面側から裏面側に対して深い位置でのn型ドーピング濃度のコントロールを行っている。
この図1には、プロトン注入後、水素雰囲気アニールによりプロトンのドナー生成を促進させた状態を示している。キャリア濃度コントロールについては、比較的低い加速電圧で、シリコン中に深い飛程が得られるプロトン注入を用いてn層101aを形成する。このn層101aはプロトン注入によるフィールドストップ(FS)層となり、n-ドリフト領域(n-型半導体基板101)より高い不純物濃度を有する。
p型アノード層102上にはアノード電極105が設けられ、n+型カソード層101bの下面(半導体装置100の裏面)には、カソード電極106が設けられる。また、活性部110は、半導体装置のオン時に電流が流れる領域であり、耐圧構造部111は、n-型半導体基板(n-ドリフト領域)101の主面側の電界を緩和し、耐圧を保持する領域である。
耐圧構造部111には、例えばフローティングのp型領域であるフィールドリミッティングリング(FLR:終端領域)104と、終端領域104に電気的に接続された導電膜であるフィールドプレート(FP)107とが設けられている。108は絶縁層である。
図2〜図8は、それぞれ本発明のダイオードの活性部の製造工程を示す断面図である。これらの図を用いて活性部110の構造について説明する。はじめに、図2に示すように、n-ドリフト領域となるn-型半導体基板101を水蒸気雰囲気中で熱処理をすることにより初期酸化膜を形成する。この後、フォトリソグラフィとウェットエッチングにより活性部領域のみ酸化膜を取り除く。
そして、図3に示すように、酸化膜108をマスクとして、n-型半導体基板101の主面側から例えばボロン(B)をイオン注入し、熱処理することにより、p型アノード層102を形成する。また、p型アノード層102上にアノード電極105をメタルのスパッタにより形成する。108は、上記の酸化膜による絶縁層である。
次に、アノード電極105を覆うおもて面保護膜(不図示)を作製し、図4に示すように、おもて面側から電子線401を照射し、熱処理することにより、ライフタイムキラー制御を行う。この後、図5に示すように、n-型半導体基板101を裏面側から研削していき、半導体装置100として用いる製品厚さの位置502まで研削する。
次に、図6に示すように、n-型半導体基板101の裏面側から所定の注入エネルギーおよび注入量を有してプロトン601を注入する。そして、図7に示すように、プロトン601のドナー領域(フィールドストップ層としてのn層101a)を生成するために、炉内の水素H2雰囲気中で所定温度のアニール701を行う。このn層101aは、p型アノード層102およびn+型カソード層101bとも離れて設けられる。
プロトン601の注入エネルギーは0.3MeVから10MeV、例えば、2.2MeV(飛程Rpは55μm)、注入量は1×1014/cm2とする。プロトン601の注入エネルギーが1.0MeV〜5.0MeVの場合、プロトン601の飛程Rpは16μm〜220μmとなる。特に、プロトン601の注入エネルギーが1.0MeV以上の場合、プロトン601の飛程Rpは16μm以上となり、逆回復の発振抑制効果が大きくなり好ましい。逆回復の発振抑制効果については後述する。さらに、プロトン601の注入エネルギーが2.0MeV〜3.0MeVの場合、プロトン601の飛程Rpは20μm〜100μmとなる。
プロトン601の注入量は、例えば、3×1012/cm2〜5×1014/cm2程度であってもよい。好ましくは、プロトン601の注入量は、欠陥回復とドナー化率とが所望の状態となるように、1×1013/cm2〜1×1014/cm2程度であるのがよい。ドナー生成のためのアニール701は、例えば、温度が380℃、水素濃度が0.5%以上4.65%未満の雰囲気であってもよい。アニール701の処理時間は、例えば1時間〜10時間程度であってもよい。好ましくは、アニール701の処理時間は、例えば3時間〜7時間程度であるのがよい。その理由は、アニール701の開始から1時間程度生じる温度変動を安定させることができるからである。また、製造コストを低く抑える場合には、アニール701の処理時間は例えば1時間〜5時間程度であるのがよい。
この後、図8に示すように、n-型半導体基板101の裏面側から例えばリン(P)をイオン注入801し、熱処理によりn+層(n+型カソード層101b、以下、n+層101bとする)を形成する。この後、n-型半導体基板101の裏面にメタルをスパッタしてカソード電極106を形成する。n層101aとn+層101bはフィールドストップ領域となり、n-ドリフト領域(n-型半導体基板101)より高い不純物濃度を有する。これにより、図1に示すダイオードの活性部が完成する。
(実施例)
次に、上記構成の半導体装置100についての特性について説明する。図9は、第1の実施の形態にかかるダイオードの活性部の製造工程におけるアニール後のキャリア濃度の深さ方向の分布の測定結果を示す特性図である。プロトン炉において水素濃度が0%と4%のそれぞれでアニールを行った際の図1のX−X'軸部分の広がり抵抗測定法(SRA:Spreading Resistance Analysis)による測定結果を示している(図22〜24においても同様)。このSRA法により測定したキャリア濃度は、キャリアの移動度が結晶の理想値と同じ場合はほぼドーピング濃度を示す。一方、結晶欠陥が多い場合や結晶の乱れ(ディスオーダー)が多い場合には、移動度が下がるので広がり抵抗が増加し、キャリア濃度が低く測定される(つまり、見かけ上、ドーピング濃度が低い値となる)。図中0の位置は、カソード電極106とn+層101bの境界である(図22〜24においても同様)。水素濃度が0%の場合、図中点線で示すように、プロトンが通過した箇所は多量の結晶欠陥が生じるため、n層101aからn+層101bへの間において、キャリア濃度が下がっていることがわかる。
一方、水素濃度が4%の場合、図中実線で示すように、プロトン通過箇所の結晶欠陥が回復しており、n層101aからn+層101bへの間において、キャリア濃度が落ち込むことがなく、基板濃度(N0)程度にできる。
図10は、基板濃度に対する回復率とプロトン炉アニールの水素濃度の関係を示す特性図である。この図10を用い、SRA法による測定における最小キャリア濃度をN1とし、基板濃度に対する回復率とプロトン炉アニールの水素濃度の関係を示す。水素濃度が0%から0.5%になると急激に結晶回復率が上がり、3%以上で結晶回復率はほぼ飽和してくる。水素濃度バラツキの影響を考慮すると水素濃度0.5%以上で行うべきである。また、水素は4.65%以上の濃度になると爆発の危険があること、3%以上は効果がほぼ飽和している。以上の結晶回復率と水素濃度との関係を考慮すると、水素濃度は4.65%未満で行うことが望ましい。さらに好ましくは、結晶回復率が80%以上でかつ爆発のリスクを低減できるように、水素濃度を1.0%以上4.0%以下としてもよい。
上記のように、第1の実施の形態によれば、プロトン注入後の熱処理を水素雰囲気中において水素濃度0.5%以上4.65%未満の範囲内で行うことにより、プロトン注入以外でシリコン中に水素を導入できるようになる。また、多量の水素は、結晶欠陥のダングリングボンドを終端させ、結晶回復を促進させる効果がある。
そして、上記第1の実施の形態の製造方法によれば、ドナー生成のためのドーズ量を小さくでき、また、炉のアニール温度を下げることができるようになるため、工程時間(リードタイム)を下げることができるようになり、半導体装置100のチップ単価(コスト)を下げることができるようになる。
(第2の実施の形態)
次に、第2の実施の形態にかかる半導体装置の製造方法について説明する。第2の実施の形態にかかる半導体装置の製造方法は、プロトンの加速エネルギーとアニール条件が第1の実施の形態にかかる半導体装置の製造方法と異なる。第2の実施の形態にかかる半導体装置の製造方法のプロトンのアニール条件以外の構成は、第1の実施の形態にかかる半導体装置の製造方法と同様である。
具体的には、まず、第1の実施の形態と同様に、p型アノード層102の形成からプロトン601の注入までの工程を行う(図2〜6)。プロトンの加速エネルギーは、例えば1.1MeV(飛程Rpは18μm)である。次に、例えば、水素濃度が0.5%以上4.65%未満の雰囲気において340℃の温度で10時間のアニール701を行うことでドナー領域(n層101a)を生成する(図7)。その後、第1の実施の形態と同様に、リンのイオン注入およびレーザーアニールによるn+層101bの形成から以降の工程を行うことで(図8)、図1に示すダイオードが完成する。
このように製造したダイオードのキャリア濃度の深さ方向の分布をSRA法により測定した結果を図22に示す。図22は、第2の実施の形態にかかるダイオードの活性部の製造工程におけるアニール後のキャリア濃度の深さ方向の分布の測定結果を示す特性図である。図22に示すように、プロトン601の注入面近傍および通過領域のキャリア濃度がn-型半導体基板101の不純物濃度(点線で図示する基板濃度、図23,24においても同様)よりも高くなっていることから、結晶欠陥(ディスオーダー)を回復させながらドナー領域を生成することができることがわかる。
以上、説明したように、第2の実施の形態によれば、第1の実施の形態と同様の効果を得ることができる。第2の実施の形態によれば、プロトンのアニール温度を340℃以下とすることにより、裏面研削前の厚さの厚いn-型半導体基板に基板おもて面側の構造(p型アノード層、アノード電極および層間絶縁膜など)をすべて形成することができるため、n-型半導体基板の厚さが薄い状態で行う工程を少なくすることができる。これにより、歩留りを向上させることができ、かつ製造設備のコストを低減することができる。また、第2の実施の形態によれば、プロトンのアニール温度を340℃以下とすることにより、裏面研削前の厚さの厚いn-型半導体基板に電子線照射を行うことができるため、歩留りを向上させることができる。さらに、プロトンのドナー化率は、アニール温度が300℃以上350℃未満の範囲で最も高くなる(例えば10〜50%)。よって、この温度範囲でアニール処理を行うことで、プロトンのドナー化率を高く維持することができる。
(第3の実施の形態)
次に、第3の実施の形態にかかる半導体装置の製造方法について説明する。第3の実施の形態にかかる半導体装置の製造方法が第1の実施の形態にかかる半導体装置の製造方法と異なる点は、プロトンの加速エネルギーと、欠陥回復とドナー化率とが所望の状態となるように、水素濃度が0.5%以上4.65%未満の雰囲気において340℃より高く400℃以下の温度のプロトンのアニールを行う点である。このため、第3の実施の形態においては、各工程を行う順序が第1の実施の形態と異なり、プロトンのアニール後に、ライフタイム制御のための電子線照射および熱処理を行う。
具体的には、まず、第1の実施の形態と同様に、p型アノード層の形成からおもて面保護膜の形成までの工程を行う。次に、n-型半導体基板を裏面側から研削していき、半導体装置として用いる製品厚さの位置まで研削する。次に、n-型半導体基板の裏面側からプロトンを加速エネルギー1.1MeVで注入した後、水素濃度が0.5%以上4.65%未満の雰囲気において例えば380℃の温度で10時間のアニールを行うことでドナー領域を生成する。次に、基板おもて面側から電子線を照射し、熱処理することにより、ライフタイムキラー制御を行う。その後、第1の実施の形態と同様に、リンのイオン注入およびレーザーアニールによるn+層の形成から以降の工程を行うことで、図1に示すダイオードが完成する。
このように製造したダイオードのキャリア濃度の深さ方向の分布をSRA法により測定した結果を図23に示す。図23は、第3の実施の形態にかかるダイオードの活性部の製造工程におけるアニール後のキャリア濃度の深さ方向の分布の測定結果を示す特性図である。図23に示すように、プロトンの注入面近傍および通過領域のキャリア濃度がn-型半導体基板の不純物濃度よりも高くなっていることから、第3の実施の形態において結晶欠陥(ディスオーダー)を回復させながらドナー領域を生成することができることがわかる。
以上、説明したように、第3の実施の形態によれば、第1の実施の形態と同様の効果を得ることができる。また、第3の実施の形態によれば、プロトンのアニール温度を400℃以下とすることにより、欠陥を低減させるとともに、ドナー化率を向上させることができる。また、第2の実施の形態と同様に、裏面研削前の厚さの厚いn-型半導体基板に基板おもて面側の構造をすべて形成することができるため、歩留り向上やコスト低減を実現することができる。
(第4の実施の形態)
次に、第4の実施の形態にかかる半導体装置の製造方法について説明する。第4の実施の形態にかかる半導体装置の製造方法が第1の実施の形態にかかる半導体装置の製造方法と異なる点は、加速エネルギーと、ドナー化率を高くするために、水素濃度が0.5%以上4.65%未満の雰囲気において300℃〜450℃の温度でプロトンのアニールを行う点である。このため、第4の実施の形態においては、各工程を行う順序が第1の実施の形態と異なり、プロトンのアニール後に、おもて面保護膜の形成と、ライフタイム制御のための電子線照射および熱処理とを行う。
具体的には、まず、第1の実施の形態と同様に、p型アノード層およびアノード電極を形成する。次に、n-型半導体基板を裏面側から研削していき、半導体装置として用いる製品厚さの位置まで研削する。次に、n-型半導体基板の裏面側から加速エネルギーを1.1MeVとしてプロトンを注入した後、水素濃度が0.5%以上4.65%未満の雰囲気において例えば420℃の温度で5時間のアニールを行うことでドナー領域を生成する。次に、アノード電極を覆うおもて面保護膜を形成する。次に、基板おもて面側から電子線を照射し、熱処理することにより、ライフタイムキラー制御を行う。その後、第1の実施の形態と同様に、リンのイオン注入およびレーザーアニールによるn+層の形成から以降の工程を行うことで、図1に示すダイオードが完成する。
このように製造したダイオードのキャリア濃度の深さ方向の分布をSRA法により測定した結果を図24に示す。図24は、第4の実施の形態にかかるダイオードの活性部の製造工程におけるアニール後のキャリア濃度の深さ方向の分布の測定結果を示す特性図である。図24に示すように、プロトンの注入面近傍および通過領域のキャリア濃度がn-型半導体基板の不純物濃度よりも高くなっていることから、第4の実施の形態において結晶欠陥(ディスオーダー)を回復させながらドナー領域を生成することができることがわかる。また、プロトンの注入面近傍および通過領域のキャリア濃度が第2,3の実施の形態の場合よりも高くなっていることから、第2,3の実施の形態よりも結晶欠陥を安定して回復させることができることがわかる。
以上、説明したように、第4の実施の形態によれば、第1の実施の形態と同様の効果を得ることができる。また、第4の実施の形態によれば、プロトンのアニール温度を高くすることにより、裏面研削後、n-型半導体基板の厚さが薄い状態で行う工程数が多くなるが、結晶欠陥を安定して回復させることができる。
(第5の実施の形態)
以上において本発明は、半導体基板にダイオードを形成する半導体装置の製造方法について説明したが、上述した実施の形態に限らず、絶縁ゲート型バイポーラトランジスタ(IGBT)のn層(フィールドストップ層)101aを作製するものについても同様に適用することが可能である。
図11は、本発明を適用した半導体装置としてIGBTを示す断面図である。このIGBT200は、n-型半導体基板(n-ドリフト領域)201の主面の表面層にp型ベース層210が形成されている。さらにこのp型ベース層210の表面層には、n型エミッタ層209が形成されている。そして、n-ドリフト領域(n-型半導体基板201)、p型ベース層210、n型エミッタ層209に対向するように、ゲート酸化膜213を介して、トレンチ型のゲート電極208が設けられ、金属−酸化膜−半導体(MOS)型ゲート電極を形成している。
また、n-型半導体基板201の主面の表面層には、トレンチ型のゲート電極208のp型ベース層210側に対して反対側の側面に接するように、フローティング(浮遊)電位のフローティングp層211が形成される。そして、フローティングp層211を挟んでトレンチ型のゲート電極208と隣り合うように、ゲート酸化膜213を介してトレンチ型のダミーゲート212が形成される。ダミーゲート212の電位は、フローティング電位であってもよいし、エミッタ電位であってもよい。一方、対面(裏面)の表面層にはp+型コレクタ層203が形成される。そしてp型ベース層210の外周位置に終端領域104となるp型のガードリング204が形成される。
このIGBT200は、スイッチング時におけるノイズの原因となる電圧振動を低減させるために、おもて面側から裏面側に対して深い位置でのn型ドーピング濃度のコントロールを行っている。この図11には、プロトン注入後、水素雰囲気アニールによりプロトンのドナー生成を促進させた状態を示している。キャリア濃度コントロールについては、比較的低い加速電圧で、シリコン中に深い飛程が得られるプロトン注入を用いてn型層201aを形成する。このn型層201aはプロトン注入によるフィールドストップ層となり、n-ドリフト領域(n-型半導体基板201)より高い不純物濃度を有する。
p型ベース層210およびn型エミッタ層209上にはエミッタ電極202が設けられ、p+型コレクタ層203の下面(IGBT200の裏面)には、コレクタ電極206が設けられる。また、活性部110は、IGBTがオンの時に電流が流れる領域であり、終端領域104は、n-型半導体基板(n-ドリフト領域)201の主面側の電界を緩和し、耐圧を保持する領域である。終端領域104には、例えばフローティングのp型領域であるp型ガードリング204と、ガードリング204に電気的に接続された導電膜であるフィールドプレート(FP)207とが設けられている。205は層間絶縁膜、214は絶縁層である。
以上、説明したように、第5の実施の形態によれば、第1の実施の形態と同様の効果を得ることができる。
(第6の実施の形態)
次に、フィールドストップ層の位置についての説明を、第6の実施の形態として説明する。プロトン注入によるフィールドストップ層は、当然1つだけでなく複数形成してもよい。以下では、複数回のプロトン注入において、1段目のフィールドストップ層のプロトンピーク位置の好ましい位置について説明する。1段目のフィールドストップ層とは、ダイオードの場合はn+型カソード層、IGBTの場合はp+型コレクタ層側となる基板裏面から、深さ方向で最も深い箇所に位置するフィールドストップ層のことである。
図15は、一般的なダイオードの逆回復時の発振波形である。アノード電流が定格電流の1/10以下の場合、蓄積キャリアが少ないために、逆回復が終わる手前で発振することがある。アノード電流をある値に固定して、異なる電源電圧VCCにてダイオードを逆回復させる。このとき、電源電圧VCCがある所定の値を超えると、カソード・アノード間電圧波形において、通常のオーバーシュート電圧のピーク値を超えた後に、付加的なオーバーシュートが発生するようになる。そして、この付加的なオーバーシュート(電圧)がトリガーとなり、以降の波形が振動する。電源電圧VCCがこの所定の値をさらに超えると、付加的なオーバーシュート電圧がさらに増加し、以降の振動の振幅も増加する。このように、電圧波形が振動を始める閾値電圧を発振開始閾値VRROと呼ぶ。このVRROが高ければ高いほど、ダイオードは逆回復時に発振しないことを示すので、好ましい。
発振開始閾値VRROは、ダイオードのp型アノード層とn-ドリフト領域とのpn接合からn-ドリフト領域を広がる空乏層端(厳密には、正孔が存在するので空間電荷領域端)が、複数のプロトンピークのうち最初に達する1段目のプロトンピークの位置に依存する。その理由は、次のとおりである。逆回復時に空乏層がおもて面側のp型アノード層からn-ドリフト領域を広がるときに、空乏層端が1つ目のフィールドストップ層に達することでその広がりが抑えられ、蓄積キャリアの掃き出しが弱まる。その結果、キャリアの枯渇が抑制され、発振が抑えられる。
逆回復時の空乏層は、p型アノード層とn-ドリフト領域との間のpn接合からカソード電極に向かって深さ方向に沿って広がる。このため、空乏層端が最初に達するフィールドストップ層のピーク位置は、p型アノード層とn-ドリフト領域との間のpn接合に最も近いフィールドストップ層となる。そこで、n-型半導体基板の厚さ(アノード電極とカソード電極とに挟まれた部分の厚さ)をW0、空乏層端が最初に達するフィールドストップ層のピーク位置の、カソード電極とn-型半導体基板の裏面との界面からの深さ(以下、裏面からの距離とする)をXとする。ここで、距離指標Lを導入する。距離指標Lは、下記の(1)式であらわされる。
Figure 2013141141
図17は、本発明にかかる半導体装置において空乏層が最初に達するフィールドストップ層の位置条件を示す図表である。図19は、複数のフィールドストップ層を有するダイオードを示す説明図である。図19(a)には、複数のフィールドストップ層3を形成したダイオードの断面図を示す。図19(b)には、図19(a)の切断線B−B'に沿ったネットドーピング濃度分布を示す。n-ドリフト領域1となるn-型半導体基板のおもて面側にp型アノード層52を形成し、裏面側にはn+型カソード層53を形成している。符号51はアノード電極であり、符号54はカソード電極である。n-ドリフト領域1の内部にはフィールドストップ層3を例えば3段形成している。また、基板裏面から最も深いフィールドストップ層3のピーク位置の、基板裏面からの距離Xは50μmである。これは、図17に示す図表に基づいて距離指標Lを58.2μmとし、後述するγを1.2とした場合である。また、図19(b)に示したLの矢印は、例えばp型アノード層52とn-ドリフト領域1との間のpn接合からの距離(長さ)を示している。
図18は、複数のフィールドストップ層を有するIGBTを示す説明図である。図18(a)には、複数のフィールドストップ層3を形成したIGBTの断面図を示す。図18(b)には、図18(a)の切断線A−A'に沿ったネットドーピング濃度分布を示す。n-ドリフト領域1となるn-型半導体基板のおもて面側にp型ベース層33を形成し、裏面側にはpコレクタ層4を形成している。符号2はn+エミッタ層であり、符号23はp型ベース層33とn-ドリフト領域1との間のpn接合であり、符号31はエミッタ電極であり、符号32はコレクタ電極である。また、符号38はnバッファ層であり、符号41は層間絶縁膜であり、符号42はゲート電極であり、符号43はゲート絶縁膜である。n-ドリフト領域1の内部にはフィールドストップ層3を例えば3段形成している。基板裏面から最も深いフィールドストップ層3のピーク位置の、基板裏面からの距離Xは50μmである。これは、図17に示す図表に基づいて距離指標Lを58.2μmとし、後述するγを1.2とした場合である。また、図18(b)示したLの矢印は、例えばp型ベース層33とn-ドリフト領域1との間のpn接合23からの距離(長さ)を示している。
次に、ダイオードの逆回復発振について説明する。上記(1)式に示す距離指標Lは、逆回復時に、カソード・アノード間電圧VAKが電源電圧VCCとなるときに、p型アノード層とn-ドリフト領域との間のpn接合からn-ドリフト領域に広がる空乏層(正しくは空間電荷領域)の端部(空乏層端)の、当該pn接合からの距離を示す指標である。平方根の内部の分数の中で、分母は逆回復時の空間電荷領域(簡単には、空乏層)の空間電荷密度を示している。周知のポアソンの式は、divE=ρ/εで表され、Eは電界強度、ρは空間電荷密度でρ=q(p−n+Nd−Na)である。qは電荷素量、pは正孔濃度、nは電子濃度、Ndはドナー濃度、Naはアクセプタ濃度、εは半導体の誘電率である。特にドナー濃度Ndは、n-ドリフト領域を深さ方向に積分し、積分した区間の距離で割った平均濃度とする。
この空間電荷密度ρは、逆回復時に空間電荷領域(空乏層)を駆け抜ける正孔濃度pとn-ドリフト領域の平均的なドナー濃度Ndで記述され、電子濃度はこれらよりも無視できるほど低く、アクセプタが存在しないため、ρ≒q(p+Nd)と表すことができる。このときの正孔濃度pは、ダイオードの遮断電流によって決まり、特に素子の定格電流密度が通電している状況を想定するため、p=JF/(qvsat)で表され、JFは素子の定格電流密度、vsatはキャリアの速度が所定の電界強度で飽和した飽和速度である。
上記ポアソンの式を距離xで2回積分し、電圧VとしてE=−gradV(周知の電界Eと電圧Vとの関係)であるため、境界条件を適当にとれば、V=(1/2)(ρ/ε)x2となる。この電圧Vが、定格電圧BVの1/2としたときに得られる空間電荷領域の長さxを、上記の距離指標Lとしているのである。その理由は、インバーター等の実機では、電圧Vとなる動作電圧(電源電圧VCC)を、定格電圧の半値程度とするためである。フィールドストップ層は、ドーピング濃度をn-ドリフト領域よりも高濃度とすることで、逆回復時に広がる空間電荷領域の伸びを、フィールドストップ層において広がり難くする機能を有する。ダイオードのアノード電流が、回路上の別の位置にあるIGBTのMOSゲートのオンにより遮断電流から減少を始めるときに、空乏層が最初に達するフィールドストップ層のピーク位置が、ちょうどこの空間電荷領域の長さにあれば、蓄積キャリアがn-ドリフト領域に残存した状態で、空間電荷領域の伸びを抑えることができるので、残存キャリアの掃出しが抑えられる。
実際の逆回復動作は、例えばIGBTモジュールを周知のPWMインバーターでモーター駆動するときには、電源電圧VCCや遮断電流が固定ではなく可変である。したがって、このような場合では、空乏層が最初に達するフィールドストップ層のピーク位置の好ましい位置に、ある程度の幅を持たせる必要がある。発明者らの検討の結果、空乏層が最初に達するフィールドストップ層のピーク位置の裏面からの距離Xは、図17に示す図表のようになる。図17には、定格電圧が600V〜6500Vのそれぞれにおいて、最初に空乏層端が達するフィールドストップ層のピーク位置の裏面からの距離Xを示す。ここで、X=W0−γLとおき、γは係数である。このγを、例えば0.7〜1.6まで変化させたときのXを示している。
図17に示すように、各定格電圧では、素子(ダイオード)が定格電圧よりも10%程度高い耐圧を持つように、安全設計をする。そして、オン電圧や逆回復損失がそれぞれ十分低くなるように、図17に示すようにn-型半導体基板の総厚(研削等によって薄くした後の仕上がり時の厚さ)およびn-ドリフト領域の平均的な比抵抗とする。平均的とは、フィールドストップ層を含めたn-ドリフト領域全体の平均濃度および比抵抗である。定格電圧によって、定格電流密度JFも図17に示したような典型値となる。定格電流密度JFは、定格電圧と定格電流密度JFとの積によって決まるエネルギー密度が、およそ一定の値となるように設定され、ほぼ図17に示す値のようになる。これらの値を用いて上記(1)式に従い距離指標Lを計算すると、図17に記載した値となる。最初に空乏層端が達するフィールドストップ層のピーク位置の裏面からの距離Xは、この距離指標Lに対してγを0.7〜1.6とした値をn-型半導体基板の厚さW0から引いた値となる。
これら距離指標Lおよびn-型半導体基板の厚さW0の値に対して、逆回復発振が十分抑えられるような、最初に空乏層端が達するフィールドストップ層のピーク位置の裏面からの距離Xは、次のようになる。図14は、電圧波形が振動を始める閾値電圧について示す特性図である。図14には、このγに対する、発振開始閾値VRROの依存性を、典型的ないくつかの定格電圧Vrate(600V、1200V、3300V)について示す。ここで、縦軸は、発振開始閾値VRROを定格電圧Vrateで規格化した値とする。3つの定格電圧Vrateともに、γが1.5以下で発振開始閾値VRROを急激に高くできることがわかる。
前述のように、インバーター等の実機では、電圧Vとなる動作電圧(電源電圧VCC)を定格電圧Vrateの半値程度とするため、電源電圧VCCを定格電圧Vrateの半値とするときには、少なくともダイオードの逆回復発振は生じないようにしなければならない。つまり、VRRO/Vrateの値は0.5以上とする必要がある。図14から、VRRO/Vrateの値が0.5以上となるのは、γが0.2以上1.5以下であるので、少なくともγを0.2〜1.5とすることが好ましい。
また、図示しない600V〜1200Vの間(800Vや1000Vなど)、1200V〜3300Vの間(1400V,1700V,2500Vなど)、および3300V以上(4500V、6500Vなど)のいずれにおいても、図14に示す3つの曲線から大きく逸脱せず、この3つの曲線と同様の依存性(γに対する発振開始閾値VRROの値)を示す。図17から、γが0.7〜1.4の範囲で、いずれの定格電圧Vrateも発振開始閾値VRROを十分高くできる領域であると分かる。
γが0.7より小さくなると、発振開始閾値VRROは定格電圧Vrateのおよそ80%以上であるものの、フィールドストップ層がp型ベース層に近くなるため、素子のアバランシェ耐圧が定格電圧Vrateより小さくなる場合が生じる。そのため、γは0.7以上が好ましい。また、γが1.4より大きくなると、発振開始閾値VRROは定格電圧Vrateの約70%から急速に減少し、逆回復発振が発生し易くなる。したがって、γは1.4以下であるのが好ましい。より好ましくは、γが0.8〜1.3の範囲内、さらに好ましくはγが0.9〜1.2の範囲内であれば、素子のアバランシェ耐圧を定格電圧Vrateよりも十分高くしつつ、発振開始閾値VRROを最も高くすることができる。
この図14で重要な点は、いずれの定格電圧Vrateにおいても、発振開始閾値VRROを十分高くできるγの範囲は、ほぼ同じ(0.7〜1.4)となることである。この理由は、空乏層が最初に到達するフィールドストップ層のピーク位置の裏面からの距離Xの範囲を、W0−L(γ=1)を中心とすることが最も効果的なためである。γ=1.0を含むことが最も効果的なのは、パワー密度(定格電圧Vrateと定格電流密度JFとの積)が略一定(例えば1.8×105〜2.6×105VA/cm2)となることに起因する。つまり、ターンオフ等のスイッチング時に、素子の電圧が定格電圧Vrate相当になったときに、空間電荷領域端の距離(深さ)は上記(1)式で示す距離指標L程度となり、この距離指標Lの位置に裏面から最も深いフィールドストップ層のピーク位置があれば(すなわちγが約1.0)、スイッチング時の発振は抑制することができる。そして、パワー密度が略一定なので、距離指標Lは定格電圧Vrateに比例するようになる。これにより、どの定格電圧Vrateにおいても、γ=1を略中心に含む範囲とすれば発振開始閾値VRROを十分高くでき、逆回復時の発振抑制効果を最も大きくできる。
以上より、最初に空乏層端が達するフィールドストップ層のピーク位置の裏面からの距離Xを上記範囲とすることで、逆回復時にダイオードは蓄積キャリアを十分残存させることができ、発振現象を抑えることができる。したがって、いずれの定格電圧Vrateにおいても、最初に空乏層端が達するフィールドストップ層のピーク位置の裏面からの距離Xは、距離指標Lの係数γを上述の範囲とすることがよい。これにより、逆回復時の発振現象を効果的に抑制することができる。
また、図17では、定格電圧Vrateが600V以上において、上述のように裏面から最も深い1つ目(1段目)のフィールドストップ層の裏面からの深さをγ=1程度とする場合、距離指標Lはいずれの定格電圧Vrateも20μmより深いことがわかる。すなわち裏面から最も深い1段目のプロトンピークを形成するためのプロトンの飛程Rpを基板裏面から15μmよりも深く、特に20μm以上とする理由は、まさにこの発振抑制効果を最も高くするためである。
以上のように、良好なスイッチング特性を得るためには、n-型半導体基板の裏面から少なくとも15μmよりも深い領域にフィールドストップ層を形成する必要がある。なお、上記の距離指標Lの考え方、およびγの好ましい範囲については、ダイオードだけでなく、IGBTにおいても同様の範囲とすることが可能である。つまり、逆回復発振はターンオフ発振と置き換えて考えればよく、発振の起きやすさ、および抑制する作用効果についても、類似している。
(第7の実施の形態)
次に、本発明にかかる半導体装置の製造方法におけるプロトンの加速エネルギーについての説明を、第7の実施の形態として説明する。上記のγの範囲を満たすように、空乏層が最初に達するフィールドストップ層のピーク位置が基板裏面からの距離Xを有するように当該フィールドストップ層を実際にプロトン注入で形成するには、プロトンの加速エネルギーを図16に示す特性図から決めればよい。図16は、本発明にかかる半導体装置のプロトンの飛程とプロトンの加速エネルギーとの関係を示す特性図である。
発明者らは鋭意研究を重ねた結果、プロトンの飛程Rp(フィールドストップ層のピーク位置)と、プロトンの加速エネルギーEについて、プロトンの飛程Rpの対数log(Rp)をx、プロトンの加速エネルギーEの対数log(E)をyとすると、下記(2)式の関係があることを見出した。
y=−0.0047x4+0.0528x3−0.2211x2+0.9923x+5.0474 ・・・(2)
図16は、上記(2)式を示す特性図であり、プロトンの所望の飛程Rpを得るためのプロトンの加速エネルギーを示している。図16の横軸はプロトンの飛程Rpの対数log(Rp)であり、log(Rp)の軸数値の下側の括弧内に対応する飛程Rp(μm)を示す。また、縦軸はプロトンの加速エネルギーEの対数log(E)であり、log(E)の軸数値の左側の括弧内に対応するプロトンの加速エネルギーEを示す。上記(2)式は、実験等によって得られた、プロトンの飛程Rpの対数log(Rp)と加速エネルギーの対数log(E)との各値を、x(=log(Rp))の4次の多項式でフィッティングさせた式である。
なお、上記のフィッティング式を用いて所望のプロトンの平均飛程Rpからプロトン注入の加速エネルギーEを算出(以下、算出値Eとする)して、この加速エネルギーの算出値Eでプロトンをシリコン基板に注入した場合における、実際の加速エネルギーE'と実際に広がり抵抗測定法(SRA法)等によって得られた平均飛程Rp'(プロトンピーク位置)との関係は、以下のように考えればよい。
加速エネルギーの算出値Eに対して、実際の加速エネルギーE'がE±10%程度の範囲にあれば、実際の平均飛程Rp'も所望の平均飛程Rpに対して±10%程度の範囲に収まり、測定誤差の範囲内となる。そのため、実際の平均飛程Rp'の所望の平均飛程Rpからのバラつきが、ダイオードやIGBTの電気的特性へ与える影響は、無視できる程度に十分小さい。したがって、実際の加速エネルギーE'が算出値E±10%の範囲にあれば、実際の平均飛程Rp'は実質的に設定どおりの平均飛程Rpであると判断することができる。あるいは、実際の加速エネルギーE'を上記(2)式に当てはめて算出した平均飛程Rpに対して、実際の平均飛程Rp'が±10%以内に収まれば、問題ない。
実際の加速器では、加速エネルギーEおよび平均飛程Rpはいずれも上記の範囲(±10%)に収まり得るため、実際の加速エネルギーE'および実際の平均飛程Rp'は、所望の平均飛程Rpと算出値Eとで表される上記(2)式に示すフィッティング式にしたがっていると考えて、全く差支えない。さらに、バラつきや誤差の範囲が、平均飛程Rpに対して±10%以下であればよく、好適には±5%に収まれば、申し分なく上記(2)式に従っていると考えることができる。
上記(2)式を用いることにより、所望のプロトンの飛程Rpを得るのに必要なプロトンの加速エネルギーEを求めることができる。上述したフィールドストップ層を形成するためのプロトンの各加速エネルギーEも、上記(2)式を用いており、実際に上記の加速エネルギーE'でプロトンを注入した試料を周知の広がり抵抗測定法(SRA法)にて測定した実測値ともよく一致する。したがって、上記(2)式を用いることで、極めて精度よく、プロトンの飛程Rpに基づいて必要なプロトンの加速エネルギーEを予測することが可能となった。
(第8の実施の形態)
次に、本発明にかかる半導体装置の逆回復波形についての説明を、第8の実施の形態として説明する。図21は、本発明にかかる半導体装置の逆回復波形を示す特性図である。図21には、第1の実施の形態にしたがって作製された本発明(以下、実施例1とする)の逆回復波形と、プロトン注入を行わずに電子線照射のみとした比較例の逆回復波形とを示す。定格電圧は1200Vとし、FZシリコン基板のドーピング濃度(平均濃度)Nd、および、研削後のFZシリコン基板の仕上がり厚さW0は図17の通りである。基板裏面から最も深いフィールドストップ層のγは1である。電子線照射条件は、本発明では線量を300kGyとし、加速エネルギーを5MeVとした。比較例では線量を60kGyとした。本発明および比較例のいずれも定格電流密度(図17の1200Vの欄)における順電圧降下は1.8Vとした。試験条件は、電源電圧VCCを800Vとし、初期の定常的なアノード電流を定格電流(電流密度×活性面積約1cm2)とし、チョッパー回路においてダイオード、駆動用IGBT(同じ1200V)、中間コンデンサとの浮遊インダクタンスを200nHとした。
図21からも明らかなように、実施例1は、比較例よりも、逆回復ピーク電流が小さく、電源電圧VCCに対して高い電圧が発生するオーバーシュート電圧も200V程度小さくすることができていることがわかる。すなわち、本発明の逆回復波形はいわゆるソフトリカバリー波形である。これは、高速だがハードリカバリーになりやすい電子線照射によるライフタイム制御でも、極めてソフトな波形を達成することができたことを示し、従来(比較例)では得られない効果である。
このような本発明に見られる効果の作用(理由)について、図20を参照して説明する。図20は、本発明にかかる半導体装置のキャリアライフタイムを示す特性図である。図20には、実施例1のダイオードについて、アノード電極からの深さ方向に対するネットドーピング濃度、点欠陥濃度、およびキャリアライフタイムを示す。本発明がソフトリカバリー化を実現することができる理由は、電子線照射によって導入された点欠陥(空孔(V)、複空孔(VV))に対し、基板裏面からのプロトン注入によって導入された水素原子によってダングリングボンドが終端されたためであると推測される。キャリアの生成・消滅を促す欠陥は、点欠陥が主であり、空孔(V)・複空孔(VV)を主体とするエネルギー中心(センター)である。点欠陥にはダングリングボンドが形成されている。そこに、基板裏面からプロトンを注入してアニール(熱処理)を行うことにより、欠陥が緩和されて正常な結晶状態に近い状態に戻ろうとする。このとき、ダングリングボンドを周辺の水素原子が終端する。これにより、空孔(V)および複空孔(VV)を主体とするセンターは消滅する。一方、水素原子に起因するドナー(水素誘起ドナー)は、空孔(V)+酸素(O)+水素(H)のVOH欠陥が主体であるため、プロトン注入により単にダングリングボンドが水素原子で終端されるだけでなく、VOH欠陥も形成される。すなわち、ドナー形成に最も寄与するVOH欠陥の形成こそが、空孔(V)および複空孔(VV)を主体とする点欠陥を消滅させる理由である。これが、漏れ電流やキャリア再結合の原因である空孔(V)および複空孔(VV)の密度を低下させつつ、VOHドナーの生成を促すと推測される。
ここで、通常は、シリコンウェハーをインゴットから製造してウェハー状にスライスした段階で、ウェハーには酸素が含まれている。例えば純ポリシリコンから製造したFZウェハーには、酸素は1×1015/cm3〜1×1016/cm3程度含有されている。CZウェハーを原料とするポリシリコンから引き上げたFZウェハーについては、酸素は1×1016/cm3〜1×1017/cm3程度含有されている。これらの含有されている酸素が、VOH欠陥のOとして寄与する。
なお、従来技術として、ドナーをあまり形成せずにライフタイム低減のみを目的としたプロトン注入は広く知られているが、このプロトン注入は空孔(V)および複空孔(VV)を主体とする欠陥を大量に残し、VOH欠陥は相対的にほとんど形成していないものと推測される。この点は、本発明の基板裏面からのプロトン注入と水素誘起ドナーとによるフィールドストップ層の形成、および電子線照射によるダングリングボンドを水素原子で終端する効果によって得られる空孔(V)および複空孔(VV)を主体とする欠陥の低減と、大きく異なる点である。
このような現象により、点欠陥密度は、図20の中段に示すように、p型アノード層からフィールドストップ層までは電子線照射による点欠陥が十分残留し、一様なライフタイム分布を形成している。このときのライフタイムは、例えば、0.1μs以上3μs以下の程度である。一方、フィールドストップ層から基板裏面のカソード側では、プロトンの注入により、基板裏面から50μm程度およびそれよりさらにカソード側に近いところで、水素濃度が増加する。この水素原子がダングリングボンドを終端することで、点欠陥濃度は減少する。これにより、フィールドストップ層を形成している深さ領域(裏面から50μm深さ〜基板裏面表層)のライフタイムは、それより浅い領域よりも増加し、例えば10μs程度となる。この値は、電子線照射を行わないときのライフタイム値(10μs以上)か、それに十分近い値である。これにより、図示しない少数キャリア(この場合正孔)の濃度分布は、アノード側で十分低く、カソード側で十分高い分布とすることができ、ダイオードのソフトリカバリー特性にとって極めて理想的なキャリア濃度分布を達成できる。
以上より、基板の深さ方向に電子線照射により点欠陥を導入し、基板裏面からのプロトン注入によって水素誘起ドナーからなるフィールドストップ層を形成することによって、フィールドストップ層を形成した領域の空孔(V)および複空孔(VV)を主体とする点欠陥を減らし、ライフタイム分布をソフトリカバリー特性に有効な分布とすることができる。
以上のように、本発明にかかる半導体装置の製造方法は、例えば産業用あるいは自動車用のモーター制御やエンジン制御に使用されるパワー半導体装置に有用である。
100 半導体装置(ダイオード)
101 n-型半導体基板
101a n層(フィールドストップ層)
101b n+型カソード層(n+層)
102 p型アノード層
104 終端領域
105 アノード電極
106 カソード電極
107 フィールドプレート
108 絶縁層
200 半導体装置(IGBT)

Claims (13)

  1. 第1導電型の半導体基板の裏面からプロトン注入する注入工程と、
    前記注入工程後に、前記半導体基板をアニール炉でアニール処理を行うことによって、前記半導体基板よりも高い不純物濃度を有する第1導電型の第1半導体領域を形成する形成工程と、を含み、
    前記形成工程は、前記アニール炉を水素雰囲気中とし、当該水素の容積濃度を0.5%以上4.65%未満で行うことを特徴とする半導体装置の製造方法。
  2. 前記半導体装置はダイオードであり、前記第1導電型の前記第1半導体領域がn型のフィールドストップ層であり、前記半導体基板がカソード層であることを特徴とする請求項1に記載の半導体装置の製造方法。
  3. 前記半導体装置は絶縁ゲート型バイポーラトランジスタであり、前記第1導電型の前記第1半導体領域がn型のフィールドストップ層であり、前記半導体基板がドリフト層であることを特徴とする請求項1に記載の半導体装置の製造方法。
  4. 前記水素の容積濃度は、前記半導体基板の前記n型のフィールドストップ層からカソード電極までの領域のキャリア濃度を基板濃度程度にできる濃度に設定したことを特徴とする請求項2に記載の半導体装置の製造方法。
  5. 前記水素の容積濃度は、前記半導体基板の前記n型のフィールドストップ層からコレクタ電極までの領域のキャリア濃度を基板濃度程度にできる濃度に設定したことを特徴とする請求項3に記載の半導体装置の製造方法。
  6. 前記アニール処理のアニール温度は300℃〜450℃であることを特徴とする請求項1に記載の半導体装置の製造方法。
  7. 前記アニール処理のアニール温度は350℃〜400℃であることを特徴とする請求項1に記載の半導体装置の製造方法。
  8. 前記アニール処理の処理時間は1時間〜10時間であることを特徴とする請求項1に記載の半導体装置の製造方法。
  9. 前記アニール処理の処理時間は3時間〜7時間であることを特徴とする請求項8に記載の半導体装置の製造方法。
  10. 前記アニール処理の処理時間は5時間以下であることを特徴とする請求項8に記載の半導体装置の製造方法。
  11. 前記プロトン注入のプロトンの注入量は、3×1012/cm2〜5×1014/cm2であることを特徴とする請求項1に記載の半導体装置の製造方法。
  12. 前記プロトン注入のプロトンの注入量は、1×1013/cm2〜1×1014/cm2であることを特徴とする請求項11に記載の半導体装置の製造方法。
  13. 前記プロトン注入のプロトンの注入エネルギーEの対数log(E)をyとし、前記プロトンの飛程Rpの対数log(Rp)をxとすると、y=−0.0047x4+0.0528x3−0.2211x2+0.9923x+5.0474を満たすことを特徴とする請求項1〜12のいずれか一つに記載の半導体装置の製造方法。
JP2014506183A 2012-03-19 2013-03-14 半導体装置の製造方法 Active JP6020553B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012062750 2012-03-19
JP2012062750 2012-03-19
PCT/JP2013/057310 WO2013141141A1 (ja) 2012-03-19 2013-03-14 半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JPWO2013141141A1 true JPWO2013141141A1 (ja) 2015-08-03
JP6020553B2 JP6020553B2 (ja) 2016-11-02

Family

ID=49222600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014506183A Active JP6020553B2 (ja) 2012-03-19 2013-03-14 半導体装置の製造方法

Country Status (5)

Country Link
US (1) US9530672B2 (ja)
EP (1) EP2790208B1 (ja)
JP (1) JP6020553B2 (ja)
CN (2) CN104040692B (ja)
WO (1) WO2013141141A1 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101982737B1 (ko) * 2012-03-30 2019-05-27 후지 덴키 가부시키가이샤 반도체 장치의 제조방법
JP6037012B2 (ja) * 2013-06-26 2016-11-30 富士電機株式会社 半導体装置および半導体装置の製造方法
US9419116B2 (en) * 2014-01-22 2016-08-16 Alexei Ankoudinov Diodes and methods of manufacturing diodes
US9224876B2 (en) * 2014-01-24 2015-12-29 Alexei Ankoudinov Fast switching diodes and methods of manufacturing those diodes
JP6237921B2 (ja) * 2014-09-30 2017-11-29 富士電機株式会社 半導体装置および半導体装置の製造方法
DE112015000206T5 (de) 2014-10-03 2016-08-25 Fuji Electric Co., Ltd. Halbleitervorrichtung und Verfahren zum Herstellen einer Halbleitervorrichtung
US20160126308A1 (en) * 2014-10-31 2016-05-05 Global Power Technologies Group, Inc. Super-junction edge termination for power devices
CN104392912B (zh) * 2014-11-05 2017-11-10 中国东方电气集团有限公司 一种在半导体器件中形成n型埋层的方法
DE102014116666B4 (de) * 2014-11-14 2022-04-21 Infineon Technologies Ag Ein Verfahren zum Bilden eines Halbleiterbauelements
JP6109432B2 (ja) * 2015-04-02 2017-04-05 三菱電機株式会社 電力用半導体装置の製造方法
US9806186B2 (en) * 2015-10-02 2017-10-31 D3 Semiconductor LLC Termination region architecture for vertical power transistors
EP3353814B1 (en) * 2015-11-27 2019-07-10 ABB Schweiz AG Area efficient floating field ring termination
CN106935498B (zh) * 2015-12-30 2019-09-13 节能元件控股有限公司 绝缘栅双极晶体管的背面场栏的低温氧化层制作方法
CN107452621B (zh) * 2016-05-31 2021-07-20 无锡华润微电子有限公司 快恢复二极管及其制造方法
DE102016112139B3 (de) * 2016-07-01 2018-01-04 Infineon Technologies Ag Verfahren zum Reduzieren einer Verunreinigungskonzentration in einem Halbleiterkörper
JP6756376B2 (ja) * 2016-11-16 2020-09-16 富士電機株式会社 半導体装置
US11676996B2 (en) 2017-07-19 2023-06-13 Mitsubishi Electric Corporation Method of manufacturing semiconductor device, and semiconductor device
DE112019000094T5 (de) * 2018-03-19 2020-09-24 Fuji Electric Co., Ltd. Halbleitervorrichtung und verfahren zum herstellen einerhalbleitervorrichtung
IT201800007263A1 (it) * 2018-07-17 2020-01-17 Sensore ottico a bassa potenza per applicazioni di consumo, industriali e automobilistiche
DE102018129467A1 (de) * 2018-11-22 2020-05-28 Infineon Technologies Ag Verfahren zum herstellen eines halbleiterbauelements
WO2020149354A1 (ja) * 2019-01-18 2020-07-23 富士電機株式会社 半導体装置および半導体装置の製造方法
JP7246983B2 (ja) * 2019-03-20 2023-03-28 株式会社東芝 半導体装置
CN113544857A (zh) * 2019-09-11 2021-10-22 富士电机株式会社 半导体装置以及制造方法
CN113711364A (zh) 2019-10-11 2021-11-26 富士电机株式会社 半导体装置和半导体装置的制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0427706B2 (ja) * 1982-06-28 1992-05-12 Handotai Kenkyu Shinkokai
WO2007055352A1 (ja) * 2005-11-14 2007-05-18 Fuji Electric Device Technology Co., Ltd. 半導体装置およびその製造方法
JP2008091853A (ja) * 2006-09-07 2008-04-17 Fuji Electric Device Technology Co Ltd 半導体装置およびその製造方法
JP2008211148A (ja) * 2007-02-28 2008-09-11 Fuji Electric Device Technology Co Ltd 半導体装置およびその製造方法
JP2009099705A (ja) * 2007-10-16 2009-05-07 Toyota Motor Corp 半導体装置の製造方法
WO2011052787A1 (ja) * 2009-11-02 2011-05-05 富士電機システムズ株式会社 半導体装置および半導体装置の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09260639A (ja) 1996-03-27 1997-10-03 Hitachi Ltd シリコン半導体装置の製造方法
JP4728508B2 (ja) * 2001-06-11 2011-07-20 株式会社東芝 縦型電力用半導体素子の製造方法
DE102004047749B4 (de) 2004-09-30 2008-12-04 Infineon Technologies Austria Ag Halbleiterbauteil Diode und IGBT sowie dafür geeignetes Herstellungsverfahren
DE102005026408B3 (de) 2005-06-08 2007-02-01 Infineon Technologies Ag Verfahren zur Herstellung einer Stoppzone in einem Halbleiterkörper und Halbleiterbauelement mit einer Stoppzone
EP2793266B1 (en) 2011-12-15 2020-11-11 Fuji Electric Co., Ltd. Method for manufacturing a semiconductor device
WO2013141221A1 (ja) 2012-03-19 2013-09-26 富士電機株式会社 半導体装置の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0427706B2 (ja) * 1982-06-28 1992-05-12 Handotai Kenkyu Shinkokai
WO2007055352A1 (ja) * 2005-11-14 2007-05-18 Fuji Electric Device Technology Co., Ltd. 半導体装置およびその製造方法
JP2008091853A (ja) * 2006-09-07 2008-04-17 Fuji Electric Device Technology Co Ltd 半導体装置およびその製造方法
JP2008211148A (ja) * 2007-02-28 2008-09-11 Fuji Electric Device Technology Co Ltd 半導体装置およびその製造方法
JP2009099705A (ja) * 2007-10-16 2009-05-07 Toyota Motor Corp 半導体装置の製造方法
WO2011052787A1 (ja) * 2009-11-02 2011-05-05 富士電機システムズ株式会社 半導体装置および半導体装置の製造方法

Also Published As

Publication number Publication date
EP2790208A4 (en) 2015-06-17
EP2790208A1 (en) 2014-10-15
CN104040692A (zh) 2014-09-10
JP6020553B2 (ja) 2016-11-02
CN104040692B (zh) 2016-11-09
US9530672B2 (en) 2016-12-27
WO2013141141A1 (ja) 2013-09-26
US20150050798A1 (en) 2015-02-19
CN106887385A (zh) 2017-06-23
EP2790208B1 (en) 2020-12-02
CN106887385B (zh) 2020-06-12

Similar Documents

Publication Publication Date Title
JP6020553B2 (ja) 半導体装置の製造方法
JP6015745B2 (ja) 半導体装置の製造方法
US11469297B2 (en) Semiconductor device and method for producing semiconductor device
US10651269B2 (en) Semiconductor device and method for producing semiconductor device
JP6103011B2 (ja) 半導体装置の製造方法
JP5741716B2 (ja) 半導体装置およびその製造方法
JP2017183749A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160919

R150 Certificate of patent or registration of utility model

Ref document number: 6020553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250