JPWO2013099689A1 - 光電気素子 - Google Patents

光電気素子 Download PDF

Info

Publication number
JPWO2013099689A1
JPWO2013099689A1 JP2013551626A JP2013551626A JPWO2013099689A1 JP WO2013099689 A1 JPWO2013099689 A1 JP WO2013099689A1 JP 2013551626 A JP2013551626 A JP 2013551626A JP 2013551626 A JP2013551626 A JP 2013551626A JP WO2013099689 A1 JPWO2013099689 A1 JP WO2013099689A1
Authority
JP
Japan
Prior art keywords
transport layer
charge transport
electrode
redox
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013551626A
Other languages
English (en)
Other versions
JP5957012B2 (ja
Inventor
理生 鈴鹿
理生 鈴鹿
関口 隆史
隆史 関口
直毅 林
直毅 林
西出 宏之
宏之 西出
研一 小柳津
研一 小柳津
文昭 加藤
文昭 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Waseda University
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University, Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Waseda University
Priority to JP2013551626A priority Critical patent/JP5957012B2/ja
Publication of JPWO2013099689A1 publication Critical patent/JPWO2013099689A1/ja
Application granted granted Critical
Publication of JP5957012B2 publication Critical patent/JP5957012B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • H01G9/2018Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte characterised by the ionic charge transport species, e.g. redox shuttles
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/156Hole transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/166Electron transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

【課題】光電変換効率の高い光電気素子を提供する。【解決手段】第一電極1と、この第一電極1に対向配置された第二電極2と、前記第一電極1の前記第二電極2と対向する面に設けられた半導体3と、この半導体3上に担持された光増感剤4と、前記第一電極1と前記第二電極2の間に介在する第一電荷輸送層5と、この第一電荷輸送層5と前記第二電極2との間に介在する第二電荷輸送層6とを備える光電気素子に関する。前記第一電荷輸送層5と前記第二電荷輸送層6とがそれぞれ独立に酸化還元物質を有し、第一電荷輸送層5の酸化還元物質の酸化還元電位が、第二電荷輸送層6の酸化還元物質の酸化還元電位より貴である。

Description

本発明は、光を電気に、あるいは電気を光に変換する光電気素子に関するものである。
近年、光電池や太陽電池などの光電変換による発電素子、有機ELなどの発光素子、エレクトロクロミック表示素子や電子ペーパーなどの光学表示素子、温度・光などを感知するセンサ素子などに、光電気素子が用いられている。この中で太陽電池などの光電気素子において、pn接合型の素子が実用化されているが、例えば、特許文献1に記載されているように、光電気化学的な光電気素子も種々検討されている。この光電気素子は、半導体を付着した第一電極と、第二電極との間に、電解質などの電荷輸送層を挟持して形成されるものであり、半導体には一般に光増感剤として色素を担持させ、色素増感型太陽電池として使用されている。そして光が半導体に照射されると、半導体から発生した電荷が電荷輸送層を移動し、半導体を付着した第一電極を負極、第二電極を正極として、電気を外部に取り出すことができるものである。
このような光電気素子を含む光電気化学デバイスにおいて、特許文献2では、半導体に接してラジカル化合物を設けることが提案されている。このものでは、半導体に光照射して生じたキャリヤ(電子または正孔)がラジカル化合物のレドックス反応(酸化還元反応)に関与し、ラジカル化合物が電気化学的酸化反応又は還元反応を伴う酸化還元対となるので、半導体に光照射した際の応答速度が速くなり、また安定性や再現性に優れたものとなるものである。
しかし、上記の特許文献2のものでは、光増感剤で分離された電子と正孔のうち、正孔が電極に移動する過程における効率的な電荷輸送が行われないため、光電変換効率も不十分になるものであった。
特許第2664194号公報 特開2003−100360号公報
本発明は上記の点に鑑みてなされたものであり、光電変換効率の高い光電気素子を提供することを目的とするものである。
本発明の光電気素子は、第一電極と、この第一電極に対向配置された第二電極と、前記第一電極の前記第二電極と対向する面に設けられた半導体と、この半導体上に担持された光増感剤と、前記第一電極と前記第二電極の間に介在する第一電荷輸送層と、この第一電荷輸送層と前記第二電極との間に介在する第二電荷輸送層とを備える光電気素子において、前記第一電荷輸送層と前記第二電荷輸送層とがそれぞれ独立に酸化還元物質を有し、第一電荷輸送層の酸化還元物質の酸化還元電位が、第二電荷輸送層の酸化還元物質の酸化還元電位より貴であることを特徴とするものである。
本発明にあっては、前記第二電荷輸送層と前記第二電極とが化学結合していることが好ましい。
本発明にあっては、前記第二電荷輸送層が高分子ゲルであることが好ましい。
本発明にあっては、前記第二電荷輸送層は、前記第一電荷輸送層側に隔膜を有し、前記第一電荷輸送層と前記隔膜を介して接していることが好ましい。
本発明にあっては、前記隔膜が、多孔質ガラス、セルロース膜、塩橋、イオン交換膜の群れから選ばれる少なくとも一つであることが好ましい。
本発明にあっては、前記第一電荷輸送層の酸化還元物質の酸化還元電位が、前記第二電荷輸送層の酸化還元物質の酸化還元電位より、60mV以上貴であることが好ましい。
本発明は、光電変換効率の高いものである。
本発明の実施の形態の一例を示す概略の断面図である。 同上の一部を示す概略の断面図である。 同上の一部を示す概略の断面図である。 同上の一部を示す概略の断面図である。 同上の動作を説明する説明図である。 同上の他例を示す概略の断面図である。
以下、本発明を実施するための形態を説明する。
図1は本発明の光電気素子の一例を示すものである。この光電気素子は第一電極1と第二電極2からなる一対の電極を備え、第一電極1と第二電極2とが対向して配置されている。第一電極1の第二電極2とは反対側の表面には半導体3の層が設けられており、また半導体3上に光増感剤4が担持されている。また、第一電極1と第二電極2の間には第一電荷輸送層5が介在しており、この第一電荷輸送層5と第二電極2との間には第二電荷輸送層6が介在している。より具体的には、第一電荷輸送層5は半導体3上の光増感剤4と第二電荷輸送層6との間に介在している。
第一電極1及び第二電極2は、透光性のガラスやフィルム、光を透過するように加工された金属で形成することができる。例えば、上記金属が線状(ストライプ)、波線状、格子状(メッシュ状)、パンチングメタル状、粒子の集合体状であれば、隙間を光が通過でき、さらに透明導電材料を用いる必要がないため、材料コスト削減による経済的な観点から好ましい。これらの形状の基板を用いる場合は、素子の耐久性の観点からプラスチックやガラスなどの構造材料と共に適用することもできる。
また、第一電極1と第二電極2の一方を光入射用基板として機能させるのであれば、他方は光を透過しない材料を用いることができる。その場合、導電性はあってもなくてもよいが、基板を第一電極1や第二電極2として作用させる場合には導電性のある材料が好ましい。第一電極1と第二電極2は、例えば、炭素、アルミニウム、チタン、鉄、ニッケル、銅、ロジウム、インジウム、スズ、亜鉛、白金、金などの材料やステンレスなど上記材料のうち少なくとも1種類を含む合金を用いることができる。後述するように、ラジカル化合物がハロゲンイオンなどに比べて金属を腐食しにくいために、第一電極1と第二電極2には汎用の金属を用いることができる。
第一電極1と第二電極2は同じ材料で形成することができる。第一電極1と第二電極2の一方は透光性はあってもなくてもよいが、両側の第一電極1と第二電極2から光を入射させることを可能にすることができる点で、両方が透明であることが好ましい。また、上記のように第一電極1と第二電極2の一方に金属箔を使用した場合は、他方は透光性のある材料で形成することが好ましい。
第一電極1は、例えば、基板上に成膜され、光電気素子の負極として機能するものであり、金属そのもので形成するようにしてもよく、又は基板やフィルム上に導電材層を積層して形成するようにしてもよい。好ましい導電材としては金属、例えば白金、金、銀、銅、アルミニウム、ロジウム、インジウム等、又は炭素、若しくは導電性の金属酸化物、例えばインジウム−錫複合酸化物、アンチモンをドープした酸化錫、フッ素をドープした酸化錫等、あるいは上記化合物の複合物が挙げられる。本発明では電子移動速度が速いラジカル化合物を用いるので、第一電極1の表面での電子の漏れを防ぐため、つまり整流性を持たせるために、上記化合物上に酸化シリコン、酸化スズ、酸化チタン、酸化ジルコニウム、酸化アルミニウムなどでコートした材料を電極に用いるのが好ましい。
この第一電極1は、表面抵抗が低い程よいものであり、好ましい表面抵抗の範囲としては、200Ω/□以下であり、より好ましくは50Ω/□以下である。表面抵抗の下限は特に制限されないが、通常0.1Ω/□である。また、第一電極1は光透過率が高い程よいものであり、好ましい光透過率の範囲としては50%以上であり、より好ましくは80%以上である。さらに第一電極1の膜厚は、1〜100nmの範囲内にあることが好ましい。膜厚がこの範囲内であれば、均一な膜厚の電極膜を形成することができ、また光透過性が低下せず、十分な光を半導体3に入射させることができるからである。透明な第一電極1を使用する場合、光は半導体3が被着される側のこの第一電極1から入射させることが好ましい。
第二電極2は、光電気素子の正極として機能するものであり、上記の第一電極1と同様に形成することができる。この第二電極2は、光電気素子の正極として効率よく作用するために、後述の第二電荷輸送層6に用いる電解質の還元体に電子を与える触媒作用を有する素材を使用することが好ましい。このような素材としては、例えば白金、金、銀、銅、アルミニウム、ロジウム、インジウム等の金属、又はグラファイト、カーボンナノチューブ、白金を担持したカーボン等の炭素材料、若しくはインジウム−錫複合酸化物、アンチモンをドープした酸化錫、フッ素をドープした酸化錫等の導電性の金属酸化物、ポリエチレンジオキシチオフェン、ポリピロール、ポリアニリン等の導電性高分子などを挙げることができる。これらのうち、白金やグラファイト、ポリエチレンジオキシチオフェンなどが特に好ましい。
半導体3としては、Cd、Zn、In、Pb、Mo、W、Sb、Bi、Cu、Hg、Ti、Ag、Mn、Fe、V、Sn、Zr、Sr、Ga、Si、Crなどの金属元素の酸化物、SrTiO、CaTiOなどのペロブスカイト、CdS、ZnS、In、PbS、MoS、WS、Sb、Bi、ZnCdS、CuSなどの硫化物、CdSe、InSe、WSe、HgS、PbSe、CdTeなどの金属カルコゲナイド、その他GaAs、Si、Se、Cd、Zn、InP、AgBr、PbI、HgI、BiIなどを用いることができる。また、これらの半導体材料から選ばれる少なくとも一種以上を含む複合体、例えば、CdS/TiO、CdS/AgI、AgS/AgI、CdS/ZnO、CdS/HgS、CdS/PbS、ZnO/ZnS、ZnO/ZnSe、CdS/HgS、CdS/CdSe1−x、CdS/Te1−x、CdSe/Te1−x、ZnS/CdSe、ZnSe/CdSe、CdS/ZnS、TiO/Cd、CdS/CdSeCdZn1−yS、CdS/HgS/CdSなどを用いることができる。また、ポリフェニレンビニレンやポリチオフェンやポリアセチレン、テトラセン、ペンタセン、フタロシアニンなどの有機半導体を用いることもできる。
さらに、半導体3は、その分子内の一部として繰り返し酸化還元が可能な酸化還元部を有すると共に、他の一部として電解質溶液を含んで膨潤してゲルとなる部位を有する有機化合物でもよい。
ここで、半導体3に用いられる有機化合物について詳しく説明する。この有機化合物は、その分子内の一部として繰り返し酸化還元が可能な酸化還元部を有すると共に、他の一部として電解質溶液を含んで膨潤してゲルとなる部位(以下ゲル部位と呼ぶ)を有する。酸化還元部はゲル部位に化学的に結合している。分子内での酸化還元部とゲル部位の位置関係は、特に限定されないが、例えばゲル部位で分子の主鎖などの骨格が形成される場合に、酸化還元部は側鎖として主鎖に結合している。またゲル部位を形成する分子骨格と酸化還元部を形成する分子骨格が交互に結合した構造であってもよい。
ここで、酸化還元(酸化還元反応)とは、イオンや原子や化合物が電子を授受することであり、酸化還元部とは、酸化還元反応(レドックス反応)により安定的に電子を授受することができる部位をいうものである。
また、有機化合物は酸化還元部を有しており、電解質溶液によって膨潤された状態で半導体3を形成している。すなわちゲル状態では有機化合物は立体網目構造をとり、この網目空間内を液体が満たしている。
酸化還元部とゲル部位を有する有機化合物は、低分子体でもよいし、高分子体でもよい。低分子体である場合、水素結合などを介したいわゆる低分子ゲルを形成する有機化合物を使用することができる。また高分子体の場合は数平均分子量1000以上の有機化合物であれば、自発的にゲル化の機能を発現することができるために好ましい。高分子体の場合の有機化合物の分子量の上限は特に制限されないが、100万以下であることが好ましい。また、ゲルの状態は、例えば、こんにゃく状や、イオン交換膜のような外観形状であることが好ましいが、特に制限されるものではない。
また、「繰り返し酸化還元が可能な酸化還元部」とは、酸化還元反応において可逆的に酸化体および還元体となる部位を指す。この酸化還元部は酸化体と還元体が同一電荷を持つ酸化還元系構成物質であることが好ましい。
上記のような酸化還元部とゲル部位とを一つの分子中に有する有機化合物は、次の一般式で表すことができる。
(Xnj:Y
(Xおよび(Xnjはゲル部位を示し、Xはゲル部位を形成する化合物のモノマーを示すものであり、ポリマー骨格で形成することができる。モノマーの重合度nは、n=1〜10万の範囲が好ましい。YはXに結合している酸化還元部を示すものである。またj,kはそれぞれ1分子中に含まれる(X、Yの数を表す任意の整数であり、いずれも1〜10万の範囲が好ましい。酸化還元部Yはゲル部位(Xおよび(Xnjをなすポリマー骨格のいかなる部位に結合していてもよい。また、酸化還元部Yは種類の異なる材料を含んでいてもよく、この場合は電子交換反応の観点から酸化還元電位が近い材料が好ましい。
酸化還元部とゲル部位を一分子中に有し、電子輸送層1として機能する有機化合物としては、キノン類が化学結合したキノン誘導体骨格を有するポリマー、イミドを含有するイミド誘導体骨格を有するポリマー、フェノキシルを含有するフェノキシル誘導体骨格を有するポリマー、ビオロゲンを含有するビオロゲン誘導体骨格を有するポリマーなどが挙げられる。これらの有機化合物では、それぞれポリマー骨格がゲル部位となり、キノン誘導体骨格、イミド誘導体骨格、フェノキシル誘導体骨格、ビオロゲン誘導体骨格がそれぞれ酸化還元部となる。
上記の有機化合物のうち、キノン類が化学結合したキノン誘導体骨格を有するポリマーの例として、下記[化1]〜[化4]の化学構造を有するものが挙げられる。[化1]〜[化4]において、Rはメチレン、エチレン、プロパン−1,3−ジエニル、エチリデン、プロパン−2,2−ジイル、アルカンジイル、ベンジリデン、プロピレン、ビニリデン、プロペン−1,3−ジイル、ブト−1−エン−1,4−ジイルなどの飽和又は不飽和炭化水素類;シクロヘキサンジイル、シクロヘキセンジイル、シクロヘキサジエンジイル、フェニレン、ナフタレン、ビフェニレンなど環状炭化水素類;オキサリル、マロニル、サクシニル、グルタニル、アジポイル、アルカンジオイル、セバコイル、フマロイル、マレオイル、フタロイル、イソフタロイル、テレフタロイルなどケト、二価アシル基;オキシ、オキシメチレノキシ、オキシカルボニルなどエーテル、エステル類;サルファンジイル、サルファニル、サルホニルなど硫黄を含む基;イミノ、ニトリロ、ヒドラゾ、アゾ、アジノ、ジアゾアミノ、ウリレン、アミドなど窒素を含む基;シランジイル、ジシラン−1,2−ジイルなど珪素を含む基;またはこれらの基の末端を置換した基或いは複合した基を示す。
[化1]はポリマー主鎖にアントラキノンが化学結合して構成される有機化合物の例である。[化2]はアントラキノンが繰り返しユニットとしてポリマー主鎖に組み込まれて構成される有機化合物の例である。また[化3]はアントラキノンが架橋ユニットとなっている有機化合物の例である。さらに[化4]は酸素原子と分子内水素結合を形成するプロトン供与性基を有するアントラキノンの例を示すものである。
Figure 2013099689
Figure 2013099689
Figure 2013099689
Figure 2013099689
また酸化還元部Yがイミドを含有するイミド誘導体骨格を有するポリマーとして、[化5]や[化6]に示すポリイミドを用いることができる。ここで、[化5]や[化6]において、R〜Rはフェニレン基などの芳香族基、アルキレン基、アルキルエーテルなど脂肪族鎖、エーテル基である。ポリイミドポリマー骨格はR〜Rの部分で架橋していてもよく、また、用いた溶媒中で膨潤するのみで溶出しなければ架橋構造を有さなくてもよい。架橋した場合はその部分がゲル部位(Xおよび(Xnjに相当する。また架橋構造を導入する場合、架橋ユニットにイミド基が含有されていてもよい。イミド基は、電気化学的に可逆な酸化還元特性を示すのであれば、フタルイミドやピロメリットイミドなどが好適である。
Figure 2013099689
Figure 2013099689
また、フェノキシルを含有するフェノキシル誘導体骨格を有するポリマーとして、例えば[化7]に示すようなガルビ化合物(ガルビポリマー)が挙げられる。このガルビ化合物において、ガルビノキシル基([化8]参照)が酸化還元部位Yに相当し、ポリマー骨格がゲル部位(Xおよび(Xnjに相当する。
Figure 2013099689
Figure 2013099689
また、ビオロゲンを含有するビオロゲン誘導体骨格を有するポリマーとして、例えば、[化9]や[化10]に示すようなポリビオロゲンポリマーを挙げることができる。このポリビオロゲンポリマーにおいては、[化11]に示す部分が酸化還元部Yに相当し、ポリマー骨格がゲル部位(Xおよび(Xnjに相当する。
Figure 2013099689
Figure 2013099689
Figure 2013099689
なお、[化1]〜[化3]、[化5]〜[化7]、[化9]及び[化10]で示すm、nは、モノマーの重合度を示すものであり、1〜10万の範囲が好ましい。
前述したように、上記の酸化還元部とポリマー骨格を有する有機化合物は、ポリマー骨格がその骨格間に電解質溶液を含有して膨潤し、これにより半導体3がゲル化してゲル層となる。このようにポリマー骨格間に電解質溶液が含まれることで、酸化還元部の酸化還元反応により形成されるイオン状態が電解質溶液中の対イオンで補償され、酸化還元部を安定化させることができるものである。前記電解質溶液としては、例えば後述する正孔輸送層4を形成する電解質溶液が挙げられる。
以上のような半導体3の中でも、TiOが、第一電荷輸送層5を形成する電解質溶液中への光溶解の回避と、高い光電変換特性を得ることができる点で好ましい。
第一電極1の表面に形成される半導体3の層の膜厚は、0.01〜100μmの範囲内であることが好ましい。この範囲内であれば、十分な光電変換効果が得られ、また、可視光及び近赤外光に対する透過性が悪化することもないからである。半導体3の層の膜厚の一層好ましい範囲は0.5〜50μmであり、特に好ましい範囲は1〜20μmである。
半導体3が無機化合物である場合、半導体3の層は半導体とバインダーの混合溶液を、公知慣用の方法、例えば、ドクターブレードやバーコータなどを使う塗布方法、スプレー法、ディップコーティング法、スクリーン印刷法、スピンコート法などにより第一電極1の表面に塗布し、その後、加熱焼成やプレス機での加圧などによりバインダー成分を除去することによって形成することができる。
また、半導体3が無機化合物である場合、半導体3の層の表面粗さは、実効面積/投影面積において10以上であることが好ましい。表面粗さを10以上にすることにより、電荷分離界面の表面積を上げることができるために、光電変換特性を向上させることができるものである。より好ましい表面粗さは100〜2000である。
また、半導体3が有機化合物である場合、半導体3の層を形成するにあたっては、溶液などを塗布して形成する湿式の形成方法が、より簡便で低コストな製法であることから好ましい。特に半導体3を数平均分子量1000以上のいわゆる高分子の有機化合物で形成する場合は、成形性の観点から湿式の形成方法が好ましい。湿式のプロセスとしては、スピンコート法や液滴を滴下乾燥して得られるドロップキャスト法、スクリーン印刷やグラビア印刷などの印刷法などが挙げられる。そのほか、スパッタ法や蒸着法などの真空プロセスを採用することもできる。
以上のようにして形成される半導体3の表面上には、光増感剤4が担持される。これにより、光増感剤4の光電荷分離の界面を形成することができるため、光電変換効率を向上させることができるものである。
このような光増感剤4としては、公知な材料を用いることができるものであり、半導体超微粒子などの無機材料でも、色素、顔料などの有機材料でもよい。効率よく光を吸収し、電荷を分離する観点からは色素が好ましく、9−フェニルキサンテン系色素、クマリン系色素、アクリジン系色素、トリフェニルメタン系色素、テトラフェニルメタン系色素、キノン系色素、アゾ系色素、インジゴ系色素、シアニン系色素、メロシアニン系色素、キサンテン系色素などが挙げられる。または、RuL(HO)タイプのルテニウム−シス−ジアクア−ビピリジル錯体(ここで、Lは4,4’−ジカルボキシル−2,2’−ビピリジンを示す。)、または、ルテニウム−トリス(RuL)、ルテニウム−ビス(RuL)、オスニウム−トリス(OsL)、オスニウム−ビス(OsL)などのタイプの遷移金属錯体、または亜鉛−テトラ(4−カルボキシフェニル)ポルフィリン、鉄−ヘキサシアニド錯体、フタロシアニンなどが挙げられる。その他、例えば、「FPD・DSSC・光メモリーと機能性色素の最新技術と材料開発」((株)エヌ・ティー・エス)のDSSCの章にあるような色素も適用することができる。中でも半導体3上で会合性を有する色素は、密に充填して半導体3表面を覆うため、絶縁体層として機能するという観点から好ましい。光増感剤4が絶縁体層として機能する場合、電荷分離界面において発生電子の整流性を付与することができ、電荷分離後の電荷の再結合を抑制することができる。また、電子輸送材料と正孔輸送材料に存在する電子と正孔の再結合点を劇的に減らすことができるものであり、それにより得られる光電気素子の変換効率をより向上させることができるものである。
会合体を形成して効果のある色素としては、[化12]の構造で示されるものが好ましく、具体的には、[化13]の構造で示される色素が好ましい。なお、有機溶剤などに溶けている色素と半導体3上に担持された色素の吸収スペクトルの形状から会合性の判別は可能である。会合していれば、前者と後者でスペクトルの形状が大きく異なることが知られている。
Figure 2013099689
(但し、X、Xはアルキル基、アルケニル基、アラルキル基、アリール基、ヘテロ環を少なくとも一種類以上を含み、それぞれ置換基を有していてもよい。Xに半導体と吸着する部位、例えば、カルボキシル基、スルホニル基、ホスホニル基を有する。)
Figure 2013099689
また、上記光増感剤4に用いることができる半導体超微粒子としては、硫化カドミウム、硫化鉛、硫化銀などの硫化物半導体などを挙げることができる。また、その粒子径としては、本発明の半導体3層に対して光増感作用があれば特に制限はないが、1〜10nmの範囲が好ましい。
半導体3に光増感剤4を担持させる方法は、例えば、光増感剤4を溶解あるいは分散させた溶液に、半導体3を被着させた第一電極1を備えた基板を浸漬させる方法が挙げられる。この溶液の溶媒としては、水、アルコール、トルエン、ジメチルホルムアミドなど光増感剤4を溶解可能なものであれば全て使用できる。また、光増感剤溶液に一定時間浸漬させている時に、加熱還流をしたり、超音波を印加したりすることもできる。さらに光増感剤4を担持させた後、担持されずに残ってしまった光増感剤4を取り除くために、アルコールで洗浄あるいは加熱還流することが望ましい。
光増感剤4の半導体3における担持量は、1×10−10〜1×10−4mol/cmの範囲内であればよく、特に0.1×10−8〜9.0×10−6mol/cmの範囲が好ましい。この範囲内であれば、経済的且つ十分に光電変換効率向上の効果を得ることができるからである。
第一電荷輸送層5と第二電荷輸送層6とはそれぞれ独立に酸化還元物質を有して形成されている。第一電荷輸送層5及び第二電荷輸送層6には電解質を用いることができる。第一電荷輸送層5及び第二電荷輸送層6に電解質を用いる場合、この電解質は支持塩と、酸化体と還元体からなる一対の酸化還元系構成物質の、いずれか一方あるいは両方である。支持塩(支持電解質)としては、例えば過塩素酸テトラブチルアンモニウム、六フッ化リン酸テトラエチルアンモニウム、イミダゾリウム塩やピリジニウム塩などのアンモニウム塩、過塩素酸リチウムや四フッ化ホウ素カリウムなどアルカリ金属塩などが挙げられる。酸化還元系構成物質とは、酸化還元反応において可逆的に酸化体および還元体の形で存在する一対の物質を意味するものであり、このような酸化還元系構成物質としては、例えば、塩素化合物−塩素、ヨウ素化合物−ヨウ素、臭素化合物−臭素、タリウムイオン(III)−タリウムイオン(I)、水銀イオン(II)−水銀イオン(I)、ルテニウムイオン(III)−ルテニウムイオン(II)、銅イオン(II)−銅イオン(I)、鉄イオン(III)−鉄イオン(II)、ニッケルイオン(II)−ニッケルイオン(III)、バナジウムイオン(III)−バナジウムイオン(II)、マンガン酸イオン−過マンガン酸イオンなどが挙げられるが、これらに限定はされない。この場合、半導体3を形成する有機化合物の酸化還元部とは区別されて機能する。また、電解質溶液がゲル化または固定化されていてもよい。
第一電荷輸送層5及び第二電荷輸送層6に用いられる電解質を溶解するために使用される溶媒は、酸化還元系構成物質を溶解してイオン伝導性に優れた化合物が好ましい。溶媒としては水性溶媒及び有機溶媒のいずれも使用できるが、構成物質をより安定化するため、有機溶媒が好ましい。例えば、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、エチレンカーボネート、プロピレンカーボネート等のカーボネート化合物、酢酸メチル、プロピオン酸メチル、γ−ブチロラクトン等のエステル化合物、ジエチルエーテル、1,2−ジメトキシエタン、1,3−ジオキソシラン、テトラヒドロフラン、2−メチル−テトラヒドロフラン等のエーテル化合物、3−メチル−2−オキサゾジリノン、2−メチルピロリドン等の複素環化合物、アセトニトリル、メトキシアセトニトリル、プロピオニトリル等のニトリル化合物、スルフォラン、ジメチルスルフォキシド、ジメチルホルムアミド等の非プロトン性極性化合物などが挙げられる。これらはそれぞれ単独で用いることもでき、また、2種類以上を混合して併用することもできる。中でも、エチレンカーボネート、プロピレンカーボネート等のカーボネ−ト化合物、γ―ブチロラクトン、3−メチル−2−オキサゾジリノン、2−メチルピロリドン等の複素環化合物、アセトニトリル、メトキシアセトニトリル、プロピオニトリル、3−メトキシプロピオニトリル、吉草酸ニトリル等のニトリル化合物が好ましい。 また、第一電荷輸送層5及び第二電荷輸送層6にイオン性液体を用いることも、不揮発性,難燃性などの観点から有効といえる。その場合、公知公例のイオン性液体全般を用いることができるが、例えばイミダゾリウム系、ピリジン系、脂環式アミン系、脂肪族アミン系、アゾニウムアミン系イオン性液体や、欧州特許第718288号明細書、国際公開第95/18456号パンフレット、電気化学第65巻11号923頁(1997年)、J. Electrochem. Soc.143巻,10号,3099頁(1996年)、Inorg. Chem. 35巻,1168頁(1996年)に記載された構造のものが挙げられる。
また、第一電荷輸送層5及び第二電荷輸送層6として、ゲル化電解質、あるいは高分子電解質を使用することもできる。ゲル化剤としては、ポリマー、またはポリマー架橋反応等の手法によるゲル化剤、または重合することができる多官能モノマーによるゲル化剤、オイルゲル化剤などが挙げられる。ゲル化電解質、高分子電解質には一般に用いられるものを適用することができるが、ポリフッ化ビニリデンなどのフッ化ビニリデン系重合体、ポリアクリル酸などのアクリル酸系重合体、ポリアクリロニトリルなどのアクリロニトリル系重合体およびポリエチレンオキシドなどのポリエーテル系重合体、あるいは構造中にアミド構造を有する化合物が好ましい。
これら第一電荷輸送層5及び第二電荷輸送層6の溶媒は同じ組成で構成されていることが好ましい。これら溶媒が同じ組成で構成されていることにより、溶媒の混和の問題が起こることがなく、耐久性に優れた素子を構成することが可能となる。
また本実施の形態においては、上記第一電荷輸送層5の酸化還元物質と、第二電荷輸送層6の酸化還元物質において、第一電荷輸送層5の酸化還元物質の酸化還元電位が、第二電荷輸送層6の酸化還元物質の酸化還元電位より貴であることを特徴とする。上記のような構成である場合、第一電荷輸送層5から正孔が効率的に第二電荷輸送層6へと注入され、素子の整流性が向上することとなる。すなわち、素子特性低下の原因となる第一電荷輸送層5から第二電荷輸送層6への電子移動が抑制される。
また、第一電荷輸送層5の酸化還元物質の酸化還元電位は、第二電荷輸送層6の酸化還元物質の酸化還元電位より、60mV以上貴であることが好ましい。この場合、上記効果がより顕著に見られ、素子特性を向上させることができる。第一電荷輸送層5の酸化還元物質の酸化還元電位と第二電荷輸送層6の酸化還元物質の酸化還元電位の電位差が60mVであれば、第一電荷輸送層5の酸化還元物質と、第二電荷輸送層6の酸化還元物質との酸化体の安定性は10倍以上異なることになる。尚、第一電荷輸送層5の酸化還元物質の酸化還元電位と第二電荷輸送層6の酸化還元物質の酸化還元電位の電位差は、特に指定されないが、600mV以下であることが好ましい。
また、本実施の形態における第二電荷輸送層6の酸化還元物質は酸化状態を含んでいることが好ましい。第二電荷輸送層6の酸化還元物質が酸化体であるならば、上記効果がより顕著にみられ、より効率的に第二電極2から第二電荷輸送層6が電子を引き抜くことが可能となる。
また、第一電荷輸送層5及び第二電荷輸送層6に含めることができる酸化還元系構成物質としては、酸化還元対を溶媒中に溶解させた溶液や、溶融塩のような固体電解質、ヨウ化銅などp型半導体、トリフェニルアミン等のアミン誘導体、フェロセンや、ポリアセチレン、ポリアニリン、ポリチオフェン等の導電性高分子などを用いることができる。
さらに、第一電荷輸送層5及び第二電荷輸送層6には安定ラジカル化合物を含有させることができる。このように安定ラジカル化合物が第一電荷輸送層5及び第二電荷輸送層6に含有されていると、生成された正孔が安定ラジカル化合物の非常に速い電子移動反応によって、効率よく対極まで輸送させることができ、変換効率を向上することができるものである。
安定ラジカル化合物としては、不対電子を有する化学種、すなわちラジカルを有する化合物であれば特に限定されることなく使用することができる。
前記、安定ラジカル化合物としては、分子中にニトロキシド(NO・)を有するラジカル化合物が好ましい。また安定ラジカル化合物の分子量(数平均分子量)は1000以上であることが好ましく、この場合、安定ラジカル化合物が常温では固体になり、或いは固体に近づくため、揮発が起こり難くなり、素子の安定性を向上することができる。
この安定ラジカル化合物についてさらに説明する。安定ラジカル化合物は、電気化学的酸化反応または電気化学的還元反応の少なくとも一方の過程でラジカル化合物を生成する化合物である。安定ラジカル化合物の種類は特に限定されるものではないが、安定なラジカル化合物であることが好ましい。特に安定ラジカル化合物が、次の[化14]および[化15]の何れか一方又は両方の構造単位を含む有機化合物であることが好ましい。
Figure 2013099689
上記[化14]中、置換基Rは、置換または非置換のC2〜C30のアルキレン基、C2〜C30のアルケニレン基、又はC4〜C30のアリーレン基であり、Xは、ニトロキシルラジカル基の他、オキシラジカル基、硫黄ラジカル基、ヒドラジルラジカル基、炭素ラジカル基、又はホウ素ラジカル基などが好ましい。nは、2以上の整数である。
Figure 2013099689
上記[化15]中、置換基RおよびRはそれぞれ独立に、置換または非置換のC2〜C30のアルキレン基、C2〜C30のアルケニレン基、又はC4〜C30のアリーレン基であり、Yは、ニトキシルラジカル基、硫黄ラジカル基、ヒドラジルラジカル基、又は炭素ラジカル基であり、nは、2以上の整数である。
[化14]および式[化15]に示される安定ラジカル化合物としては、例えば、オキシラジカル化合物、ニトロキシルラジカル化合物、炭素ラジカル化合物、窒素ラジカル化合物、ホウ素ラジカル化合物、硫黄ラジカル化合物等が挙げられる。
上記オキシラジカル化合物の具体例としては、例えば次の[化16]、[化17]に示されるアリールオキシラジカル化合物、[化18]に示されるセミキノンラジカル化合物等が挙げられる。
Figure 2013099689
Figure 2013099689
Figure 2013099689
[化16]〜[化18]中、置換基R〜Rはそれぞれ独立に、水素原子、置換もしくは非置換の脂肪族または芳香族のC1〜C30の炭化水素基、ハロゲン基、ヒドロキシル基、ニトロ基、ニトロソ基、シアノ基、アルコキシ基、アリールオキシ基またはアシル基である。
また、ニトロキシルラジカル化合物の具体例としては、下記[化19]で示されるペリジノキシ環を有する安定ラジカル化合物、[化20]で示されるピロリジノキシ環を有する安定ラジカル化合物、[化21]で示されるピロリノキン環を有する安定ラジカル化合物、[化22]で示されるニトロニルニトロキシド構造を有する安定ラジカル化合物などが挙げられる。
Figure 2013099689
Figure 2013099689
Figure 2013099689
Figure 2013099689
[化19]〜[化22]中、R〜R10およびR〜Rは、それぞれ独立に、水素原子、置換もしくは非置換の脂肪族または芳香族のC1〜C30の炭化水素基、ハロゲン基、ヒドロキシル基、ニトロ基、ニトロソ基、シアノ基、アルコキシ基、アリールオキシ基またはアシル基である。また、[化22]において、nは2以上の整数である。
また、上記ニトロキシルラジカル化合物の具体例としては、次の[化23]で示される三価のヒドラジル基を有するラジカル化合物、[化24]で示される三価のフェルダジル基を有するラジカル化合物、[化25]で示されるアミノトリアジン構造を有するラジカル化合物などが挙げられる。
Figure 2013099689
Figure 2013099689
Figure 2013099689
[化23]〜[化25]中、R11〜R19は、それぞれ独立に、水素原子、置換もしくは非置換の脂肪族または芳香族のC1〜C30の炭化水素基、ハロゲン基、ヒドロキシル基、ニトロ基、ニトロソ基、シアノ基、アルコキシ基、アリールオキシ基またはアシル基である。
以上の[化14]〜[化25]の有機高分子化合物は安定性に優れ、その結果、光電変換素子やエネルギー蓄積素子において安定して使用できるので、安定性に優れしかも応答速度に優れた光電気素子を容易に得ることができる。
また、室温で固体状態となる安定ラジカルを用いることが好ましい。この場合、ラジカル化合物と半導体3との接触を安定に保つことができ、他の化学物質との副反応や溶融、拡散による変成、劣化を抑制することができる。その結果、光電気素子の安定性を優れたものにすることができる。
さらに、具体的な高分子体である有機化合物の好ましい例としては、下記[化26]〜[化29]で示される化合物(ニトロキシラジカルポリマー)が挙げられる。
Figure 2013099689
Figure 2013099689
Figure 2013099689
Figure 2013099689
[化26]乃至[化29]におけるnは、モノマーの重合度を示すものであり、1〜10万の範囲が好ましい。
上記の酸化還元部とポリマー骨格を有する有機化合物は、ポリマー骨格がその骨格間に電解質溶液を含有して膨潤することでゲル層を形成する。このように第一電荷輸送層5及び第二電荷輸送層6に電解質溶液が含まれることで、酸化還元部の酸化還元反応により形成されるイオン状態が電解質溶液中の対イオンで補償され、酸化還元部を安定化させることができるものである。
また、ゲル化電解質、あるいは高分子電解質を使用することもできる。ゲル化剤としては、ポリマー、またはポリマー架橋反応等の手法によるゲル化剤、または重合することができる多官能モノマーによるゲル化剤、オイルゲル化剤などが挙げられる。ゲル化電解質、高分子電解質には一般に用いられるものを適用することができるが、ポリフッ化ビニリデンなどのフッ化ビニリデン系重合体、ポリアクリル酸などのアクリル酸系重合体、ポリアクリロニトリルなどのアクリロニトリル系重合体およびポリエチレンオキシドなどのポリエーテル系重合体、あるいは構造中にアミド構造を有する化合物が好ましい。
電解質溶液は、電解質と溶媒を含むものであればよい。電解質としては、支持塩と、酸化体と還元体からなる酸化還元系構成物質とが挙げられ、これらのうちのいずれか一方であっても、両方であってもよい。支持塩(支持電解質)としては、例えば過塩素酸テトラブチルアンモニウム、六フッ化リン酸テトラエチルアンモニウム、イミダゾリウム塩やピリジニウム塩などのアンモニウム塩、過塩素酸リチウムや四フッ化ホウ素酸カリウムなどアルカリ金属塩などが挙げられる。酸化還元系構成物質とは、酸化還元反応において可逆的に酸化体および還元体の形で存在する物質を意味するものであり、このような酸化還元系構成物質としては、例えば、塩素化合物−塩素、ヨウ素化合物−ヨウ素、臭素化合物−臭素、タリウムイオン(III)−タリウムイオン(I)、水銀イオン(II)−水銀イオン(I)、ルテニウムイオン(III)−ルテニウムイオン(II)、銅イオン(II)−銅イオン(I)、鉄イオン(III)−鉄イオン(II)、ニッケルイオン(II)−ニッケルイオン(III)、バナジウムイオン(III)−バナジウムイオン(II)、マンガン酸イオン−過マンガン酸イオンなどが挙げられるが、これらに限定はされない。
また電解質溶液を構成する溶媒としては、水、有機溶媒、イオン液体のいずれか少なくとも一つを含むものが挙げられる。電解質溶液の溶媒として水や有機溶媒を用いることによって、有機化合物の酸化還元部の還元状態を安定化することができ、より安定して電子を輸送することができる。溶媒としては水性溶媒及び有機溶媒のいずれも使用できるが、酸化還元部をより安定化するためには、イオン伝導性に優れた有機溶媒が好ましい。このような有機溶媒としては例えば、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、エチレンカーボネート、プロピレンカーボネート等のカーボネート化合物、酢酸メチル、プロピオン酸メチル、γ−ブチロラクトン等のエステル化合物、ジエチルエーテル、1,2−ジメトキシエタン、1,3−ジオキソシラン、テトラヒドロフラン、2−メチル−テトラヒドロフラン等のエーテル化合物、3−メチル−2−オキサゾジリノン、2−メチルピロリドン等の複素環化合物、アセトニトリル、メトキシアセトニトリル、プロピオニトリル等のニトリル化合物、スルフォラン、ジメチルスルフォキシド、ジメチルホルムアミド等の非プロトン性極性化合物などが挙げられる。これらの溶媒はそれぞれ単独で用いることができ、二種以上を混合して併用することもできる。また、特に光電気素子を光電変換素子として形成する場合、その太陽電池出力特性を向上させる観点からは、溶媒がエチレンカーボネート、プロピレンカーボネート等のカーボネ−ト化合物、γ―ブチロラクトン、3−メチル−2−オキサゾジリノン、2−メチルピロリドン等の複素環化合物、アセトニトリル、メトキシアセトニトリル、プロピオニトリル、3−メトキシプロピオニトリル、吉草酸ニトリル等のニトリル化合物であることが好ましい。
また電解質溶液の溶媒としてイオン液体を用いると、酸化還元部の安定化作用が特に向上する。しかもイオン液体は揮発性がなく、難燃性が高いために安定性に優れるものである。イオン液体としては、公知のイオン性液体全般を用いることができるが、例えば1−エチル−3−メチルイミダゾリウムテトラシアノボレートなどイミダゾリウム系、ピリジン系、脂環式アミン系、脂肪族アミン系、アゾニウムアミン系のイオン性液体や、欧州特許第718288号明細書、国際公開WO95/18456号パンフレット、電気化学第65巻11号923頁(1997年)、J. Electrochem. Soc.143巻,10号,3099頁(1996年)、Inorg.Chem.35巻,1168頁(1996年)に記載されたものを挙げることができる。
上記の第二電荷輸送層6は第二電極2上に修飾されている形で存在していてもよい。この場合、第二電極2と第二電荷輸送層6との接着性が良好であり、長期間使用時の第二電荷輸送層6のはがれが起こりにくくなることが期待される。修飾の形態は、第二電極2上に存在する官能基を用いて、図2に示すように、酸化還元部位とアンカー基を有する化合物10を用いて化学結合により行うことができる。具体的には、例えば、第二電極2に金を用いた場合、以下の構造式[化30]に示すような、アンカー基としてチオール基を有する酸化還元物質(フェロセニルアルキルチオール)を用いることができる。
Figure 2013099689
[化30]におけるnは1〜20の整数である。
また、第二電極2に導電性酸化物を用いた場合は、以下の構造式[化31]に示すような、アンカー基としてカルボキシル基やリン酸基やアミノ基を有する酸化還元物質を用いることができる。
Figure 2013099689
また、図3に示すように、上記の第二電荷輸送層6は高分子ゲル(ゲル層)に形成されて第二電極2の表面に設けられていることが好ましい。この場合、第二電荷輸送層6と電解液との間に十分な接触面積が得られ、整流性向上効果を得ることができる。また、この際、高分子ゲルの厚みは10nm〜10μmであることが好ましく、100nm〜1μmであることがより好ましい。この範囲にあれば、高分子ゲルと電解液との十分な接触面積が得られ、また、高分子ゲルの膜内での電荷輸送が阻害されることも少ない。高分子ゲルの膜厚が薄すぎた場合、電解液と十分な接触面積が得られず、整流性向上効果が低下し、高分子ゲルの膜厚が厚すぎた場合には、高分子ゲルの膜内の支持電解質の拡散が抵抗成分となり、光電変換特性が低下する。
また、図4に示すように、第一電荷輸送層5と第二電荷輸送層6とは、隔膜11によって分離されていてもよい。この場合、第一電荷輸送層5と第二電荷輸送層6の材料選択性が広がる。また、第二電荷輸送層6は隔膜11を介して第一電荷輸送層5と接している。隔膜11としては、電気的なやり取りを行いつつも、溶媒の混和を防ぐことができるものであればよい。すなわち、多孔質体、塩橋、イオン交換膜が上げられる。多孔質体としては、孔径が10μm以下であることが必要であり、この場合、溶媒の混和を防ぐことができる。具体的は、多孔質ガラス、セルロース膜などをあげることができる。また、塩橋としては、寒天などで溶媒に膨潤する保持体に、KClなどの支持塩を溶かして硬めたものである。これら隔膜11の厚さは、特に限定されることはないが、通常100μm以下であることが好ましい。さらに好ましくは1μm以下である。
また、本実施の形態において、第一電荷輸送層5及び第二電荷輸送層6の他に、一又は複数の電荷輸送層を設けることによって、3層や4層又は5層以上の電荷輸送層を具備する光電気素子を形成することができる。このように第一電極1と第二電極2との間に複数の電荷輸送層を設けることによって、より電荷分離界面である半導体3との物理的距離を離すことができ、整流性が向上し、電圧の向上効果を得ることができる。具体的には、図6に示すように、第一電荷輸送層5と第二電荷輸送層6との間に存在し、第一電荷輸送層5と第二電荷輸送層6の双方に接触する第三電荷輸送層7を設けることができる。第三電荷輸送層7は独立に酸化還元物質を有し、その酸化還元電位は、第一電荷輸送層5より卑であり、かつ第二電荷輸送層6より貴であることを特徴とするものである。第三電荷輸送層7としては、第一電荷輸送層5や第二電荷輸送層6と同様の材料を用いることができる。
また、本発明における、電子と正孔の流れを逆にした、いわゆるp型増感太陽電池についても、同様の効果を発現することができる。その場合、第一電極1、第二電極2、半導体3、光増感剤4、第一電荷輸送層5、第二電荷輸送層6の素子の構成は同様であるが、第一電荷輸送層5の酸化還元物質の酸化還元電位が、第二電荷輸送層6の酸化還元物質の酸化還元電位より卑であることが求められる。すなわち、第一電極1と、この第一電極1に対向配置された第二電極2と、前記第一電極1の前記第二電極2と対向する面に設けられた半導体3と、この半導体3上に担持された光増感剤4と、前記第一電極1と前記第二電極2の間に介在する第一電荷輸送層5と、この第一電荷輸送層5と前記第二電極2との間に介在する第二電荷輸送層6とを備える光電気素子に関わる光電気素子であって、前記第一電荷輸送層5と前記第二電荷輸送層6とがそれぞれ独立に酸化還元物質を有し、第一電荷輸送層5の酸化還元物質の酸化還元電位が、第二電荷輸送層6の酸化還元物質の酸化還元電位より卑である。また、この場合、半導体3は、p型半導体であることが望ましい。p型半導体とは、正孔が多数キャリアとなる半導体のことであり、その例としては、CuO、CuO、CuGaO、ZnRh、NiO、CoO、CuAlO、SrCu、半導体に不純物ドープしたものなどがあげられる。
以上のように形成される光電気素子にあって、半導体3に光が照射されると、半導体3から電子又は正孔が生成し、図5に示すように、この電子が第一電極1に、正孔が電荷輸送層5から電荷輸送層6へと効率的に輸送され第二電極2へと移動する。このときの電流を、第一電極1を負極、第二電極2を正極として、外部に取り出すことができるものである。そして、第一電荷輸送層5と第二電荷輸送層6とを設け、第一電荷輸送層5の酸化還元物質の酸化還元電位が、第二電荷輸送層6の酸化還元物質の酸化還元電位より貴であることにより、第一電荷輸送内5に存在する正孔が第二電荷輸送層6内へとすばやく移動し、正孔は第二電荷輸送層6内へと濃縮され、第一電荷輸送層5に存在する正孔の量は低下する。これによって、電圧低下要因である、第一電荷輸送層5内の正孔と第一電極1との反応量を低減させることができ、電圧の向上効果が発現するものである。従って、電荷分離界面における電荷分離後の電荷の再結合を抑制することができるとともに、第一電荷輸送層5及び第二電荷輸送層6における電荷の輸送特性を向上することができ、光と電気の変換効率に優れた光電気素子を得ることができるものである。
以下、本発明を実施例によって具体的に説明する。
[比較例1]
平均1次粒子径が20nmの高純度酸化チタン粉末をエチルセルロース中に分散させ、スクリーン印刷用のペーストを作製した。そして、表面にフッ素ドープSnOで第一電極を形成した厚み1mmの導電性ガラス基板(旭硝子製、10Ω/□)を用いた。このガラス基板の第一電極を形成した側の表面にスパッタ法により約10nm厚の酸化チタン層を付着させた後、この上に上記のペーストを塗布して乾燥し、得られた乾燥物を500℃で30分間、空気中で焼成することによって、第一電極上に厚さ2μmの多孔質酸化チタン半導体の膜(チタンコート)を形成した。この半導体の表面粗さは約250であった。
次に、この酸化チタン半導体膜を設けた基板を、既述の[化13]で示される光増感色素(D131(三菱製紙製))の濃度が0.3mMであるアセトニトリル−ブタノール1:1混合溶媒溶液中に浸漬し、室温で16時間暗所下静置し、半導体に光増感剤を担持させることによって、作用電極とした。
一方、表面にフッ素ドープSnOを形成した厚み1mmの導電性ガラス基板(旭硝子製、10Ω/□)を用い、このSnOの表面に白金をスパッタ法により設けて第二電極(対電極)とした。
そして、上記の作用電極の酸化チタン半導体膜を形成された部分を囲むように、熱溶融性接着剤(三井デュポンポリケミカル製「バイネル」)の封止材を第二電極の上に配置し、その上に上記の作用電極を形成したガラス基板を重ね、加熱しながら加圧して貼り合わせた。この第二電極を形成したガラス基板にはダイヤモンドドリルで孔が開けてある。
次に、アセトニトリルに、TEMPO(2,2,6,6−テトラメチルピペリジン 1−オキシル)を0.01mol/l、N−メチルベンズイミダゾールを0.025mol/l、過塩素酸リチウムを0.1mol/lそれぞれ溶解した電解質溶液を調製し、この電解液をガラス基板にダイヤモンドドリルで明けた上記の孔から注入した後に、孔を紫外線硬化樹脂を用いて封止することによって、電荷輸送層(第一電荷輸送層)を形成した。
このようにして光電気素子を作製した。そして光電気素子に、安定化蛍光灯を用いて10000lxの照度の光を照射し、電流−電圧特性を測定して安定化後の変換効率を求めた。尚、本測定環境は太陽光に対しては約500分の1ではあるが、当然、太陽光下でも適用でき、用途を限定するものではない。結果を表1に示す。
[実施例1]
比較例1において、第二電極としてITOを用い、以下に示される構造式[化32]のリン酸TEMPOを修飾することで、第二電荷輸送層を形成した。形成方法を以下に示す。
まず、ITOをIPAに浸し、超音波で10min洗浄する。この第二電極を0.01Mリン酸TEMPO水溶液に一昼夜浸漬し、第二電荷輸送層が形成された第二電極を作製した。また、比較例1において、電荷輸送層(第一電荷輸送層)を形成する際の電解液に溶解させていたTEMPOのかわりに、CN−TEMPOを用いた。
その他の構成は比較例1と同様にして光電気素子の作製を行った。
尚、第一電荷輸送層の酸化還元物質の酸化還元電位は、第二電荷輸送層の酸化還元物質の酸化還元電位より60mV貴であった。
Figure 2013099689
[実施例2]
比較例1において、第二電極上に第二電解輸送層として以下の構造式[化33]の化合物を用いて形成した。また、比較例1において、TEMPOのかわりにCN−TEMPOを用いた。その他の構成は比較例1と同様にして光電気素子の作製を行った。
尚、第一電荷輸送層の酸化還元物質の酸化還元電位は、第二電荷輸送層の酸化還元物質の酸化還元電位より40mV貴であった。
Figure 2013099689
第二電荷輸送層の作製方法を以下に示す。
50質量%水酸化ナトリウム水溶液 4mlに、エピクロロヒドリン 2.5ml(30mmol)と、テトラブチルアンモニウム硫酸水素ナトリウム 84mg(239μmol)とを加え、攪拌する。これに4−ヒドロキシ−2,2,6,6テトラメチルピペリジン−1−オキシル 1.03g(5.98mmol)をさらに加え、室温で12時間反応させる。次に、エーテル抽出、エ−テル/ヘキサン混合溶媒(混合容積比=1/1)を用い、カラム精製を経て4−グリシジロキシ−2,2,6,6−テトラメチルピペリジン−1−オキシル 1.14g(収率84%)を得た。
上記で得られた4−グリシジロキシ−2,2,6,6−テトラメチルピペリジン−1−オキシル 228mg(1.00mmol)をテトラヒドロフラン(=THF)中、tert−ブトキシカリウム(=t−BuOK) 5.6mg(0.05mmol)を重合開始剤として加え、窒素雰囲気下、60℃で24時間反応後、ジエチルエーテルへの再沈殿精製を経て橙色粉末としてポリ((2,2,6,6−テトラメチルピペリジン−1−オキシル−オキシル−4−イル)−グリシジルエーテル)を得た(構造式[化33]参照)。得られたポリマーの分子量は数平均分子量3600(ポリスチレン換算)、分散度(重量平均分子量/数平均分子量)1.4であった(収量150mg、収率66%)。
得られた化合物10mgをDMF溶媒1mlに溶解させ、スピンコートすることにより、膜厚さ100nmの第二電荷輸送層を形成した。
[実施例3]
比較例1において、電荷輸送層(第一電荷輸送層)の第二電極側に隔膜を設けた第二電荷輸送層を形成した。隔膜として厚さ10μmのセルロース膜を用いて形成した。また、比較例1において、電荷輸送層(第一電荷輸送層)を形成する際の電解液に溶解させていたTEMPOのかわりに、CN−TEMPOを用いた。そのほかは比較例1と同様に素子作製を行った。
尚、第一電荷輸送層の酸化還元物質の酸化還元電位は、第二電荷輸送層の酸化還元物質の酸化還元電位より300mV貴であった。
Figure 2013099689
表1の結果から、第二電荷輸送層を形成した実施例1〜3は、比較例1と比べて、高い光電変換効率を得られることが分かった。
[比較例2]
(ガルビモノマーの合成)
反応容器内に、4−ブロモ−2,6−ジ−tert−ブチルフェノール(135.8g;0.476mol)と、アセトニトリル(270ml)とを入れ、さらに不活性雰囲気下で、N,O−ビス(トリメチルシリル)アセトアミド(BSA)(106.3g;129.6ml)を加え、70℃で終夜撹拌し、完全に結晶が析出するまで反応した。析出した白色結晶を濾過し、真空乾燥した後、エタノールで再結晶して精製することによって、[化25]において符号「1」で示す、(4−ブロモ−2,6−ジ−tert−ブチルフェノキシ)トリメチルシラン(150.0g;0.420mol)の白色板状結晶を得た。
次に、反応容器内で前記(4−ブロモ−2,6−ジ−tert−ブチルフェノキシ)トリメチルシラン(9.83g;0.0275mol)を、不活性雰囲気下、テトラヒドロフラン(200ml)に溶解し、調製された溶液をドライアイス/メタノールを用いて−78℃に冷却した。この反応容器内の溶液に1.58Mのn−ブチルリチウム/ヘキサン溶液(15.8ml;0.025mol)を加え、78℃の温度で30分撹拌することでリチオ化した。その後、この溶液に4−ブロモ安息香酸メチル(1.08g;0.005mol、Mw:215.0、TCI)のテトラヒドロフラン(75ml)溶液を添加した後、−78℃〜室温で終夜撹拌した。これにより溶液は黄色から薄黄色、アニオンの発生を示す濃青色へと変化した。反応後、反応容器内の溶液に飽和塩化アンモニウム水溶液を、溶液の色が完全に黄色になるまで加えた後、この溶液をエーテル/水で分液抽出することにより黄色粘稠液体状の生成物を得た。
次に反応容器内に、前記生成物、THF(10ml)、メタノール(7.5ml)、撹拌子を入れ、溶解後、10N−HCl(1〜2ml)を反応容器内の溶液が赤橙色に変化するまで徐々に加え、30分間、室温にて撹拌した。次に溶媒除去、エーテル/水による分液抽出、溶媒除去、カラムクロマトグラフィー(ヘキサン/クロロホルム=1/1)による分画、ヘキサンによる再結晶の各操作を経て精製し、[化34]において符号「2」で示す、(p−ブロモフェニル)ヒドロガルビノキシル(2.86g;0.0049mol)の橙色結晶を得た。
次いで、反応容器内で前記(p−ブロモフェニル)ヒドロガルビノキシル(2.50g;4.33mmol)を、不活性雰囲気下、トルエン(21.6ml;0.2M)に溶解し、この溶液に2,6−ジ−tert−ブチル−p−クレゾール(4.76mg;0.0216mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)(0.150g;0.130mmol)、トリ−n−ブチルビニルスズ(1.65g;5.20mmol,Mw:317.1,TCI)を素早く加え、100℃で17時間加熱撹拌した。
これにより得られた反応生成物をエーテル/水で分液抽出し、溶媒除去した後、フラッシュカラムクロマトグラフィー(ヘキサン/クロロホルム=1/3)にて分画し、さらにヘキサンで再結晶して精製することによって、[化34]において符号「3」で示す、p−ヒドロガルビノキシルスチレン(1.54g;2.93mmol)の橙色微結晶を得た。
(ガルビモノマーの重合)
上記ガルビモノマーの合成で得られたガルビモノマー(p−ヒドロガルビノキシルスチレン)1gと、テトラエチレングリコールジアクリレート57.7mgと、アゾビスイソブチロニトリル15.1mgを、テトラヒドロフラン2mlに溶解した後、窒素置換し、一晩還流することで、ガルビモノマーを重合させ、[化34]において符号「4」で示すガルビポリマーを得た。
上記ガルビポリマー([化34]における符号「4」)2質量%をクロロベンゼンに溶解分散した。この溶液を第一電極(FTO電極)上に、1000rpmでスピンコートし、60℃、0.01MPa下で1時間乾燥することで、半導体を形成した。この半導体の層の厚みは120nmとした。
この半導体を[化35]で示される増感色素(D131)のアセトニトリル飽和溶液中に1時間浸漬し、光増感剤を担持した。
Figure 2013099689
Figure 2013099689
(素子の作製)
上記半導体の形成における導電性ガラス基板と同じ構成を有する導電性ガラス基板を用意した。
イソプロピルアルコールに塩化白金酸をその濃度が5mMとなるように溶解し、得られた溶液を前記導電性ガラス基板のコーティング膜上にスピンコートした後、400℃で30分間焼成することで、第二電極を形成した。
次に、半導体を形成した第一電極が設けられた導電性ガラス基板と、第二電極が設けられた導電性ガラス基板とを、半導体と第二電極とが対向するように配置すると共に、両者の間の外縁に幅1mm、厚み50μmの熱溶融性接着剤(デュポン社製、バイネル)を介在させた。この熱溶融性接着剤を加熱しながら前記二つの導電性ガラス基板を厚み方向に加圧することで、二つの導電性ガラス基板を熱溶融性接着剤を介して接合した。熱溶融性接着剤には、電解液の注入口となる空隙を形成した。続いて、半導体と第二電極との間に前記注入口から電解液を充填した。次に、前記注入口にUV硬化性樹脂を塗布した後、UV光を照射して前記UV硬化性樹脂を硬化させることで、前記注入口を孔埋めした。これにより、電解液からなる電荷輸送層(第一電荷輸送層)を形成すると共にこの電解液を半導体へ浸透させて半導体を構成する有機化合物(ガルビポリマー)を膨潤させ、ゲル層を形成した。前記電解液としては、TEMPOを1M、増感色素(D131)を2mM、LiTFSIを0.5M、N−メチルベンズイミダゾールを1.6Mの濃度で含有する、アセトニトリル溶液を用いた。以上により、光電変換素子を作製した。
[比較例3]
構造式(14)で示される光吸収材料は、例えば下記[化36]で示される化学反応により製造される。
この反応においては、まず4,4−ビピリジルがエタノールに加えられ、更に2−ブロモエチルアミンが加えられ、これにより得られた溶液が70℃で終夜撹枠混合されることで、構造式(14)−1で示される化合物の黄色固体が得られる(収率59%)。
次に、テトラヒドロフラン(THF)/エタノール混合溶媒中に構造式(14)−1で示される化合物とDl31色素とが加えられ、更にエステル縮合剤(4−(4,6−ジメトキシー1,3,5−トリアジンー2−イル)−4−メチルモルホリニウムクロリド;DMT−MM)、及び塩基(トリエチルアミン;TEA)が加えられる。これにより得られた溶液が室温で一時間放置されると、構造式(14)−2で示される化合物が生成する(収率70%)。
次に、エタノール中に構造式(14)−2で示される化合物が加えられ、更にヨードメタンが過剰量加えられる。これにより得られた溶液が60℃で終夜放置された後、水で洗浄され、更に生成物がジエチルエーテル中で再沈殿される。これにより、構造式(14)で示される光吸収材料の赤褐色固体が得られる(収率65%)。この構造式(14)で示される光吸収材料はクロロホルム、アセトニトリル、メタノールに可溶であり、水に不溶である。構造式(14)で示される光吸収材料は、lH−NMRおよびFAB−Massより同定される。
Figure 2013099689
(素子の作製)
平均1次粒子径が40nmのGZO(ガリウムドープ酸化スズ)をエチルセルロース中に分散させることで、スクリーン印刷用のペーストを得た。
厚さ1mmの導電性ガラス基板(フッ素ドープ酸化スズ、表面抵抗100Ω/□)上に前記スクリーン印刷用のペーストを塗布した後、乾燥することで、乾燥皮膜を形成した。この乾燥皮膜を空気中500℃で60分間焼成した。これにより、半導体を第一電極の表面に形成した。
構造式(14)で示される光吸収材料を含有するアセトニトリル溶液を調製した。各溶液中の光吸収材料を濃度は0.2mMとした。
上記の光吸収材料を含有するアセトニトリル溶液溶液に、半導体を設けた第一電極を浸漬し、室温で24時間暗所下に静置した。これにより、半導体の表面に光増感剤を層状に形成した。
導電性ガラス基板(日本板硝子製、フッ素ドープSnO、表面抵抗:10Ω/□)の表面上に白金膜を、塩化白金酸の熱還元によって形成することで、第二電極(対電極)を得た。
第一電極と第二電極とを、両者の間に半導体が配置されるように対向させた。この第一電極と第二電極との間には、封止材(熱溶融性接着剤、三井・デュポンポリケミカル株式会社製の商品名バイネル)を、半導体の一辺を除いて取り囲むように配置した。この状態で第一電極を設けた基板と第二電極を設けた基板とを加熱しながら加圧することで、封止材を介して両者を貼り合わせた。
水に、TEMPOを0.01mol/dmの濃度、塩化ナトリウムを0.1mol/dmの濃度、の濃度で溶解させることで、電解質溶液を調製した。第一電極と第二電極との間に、封止材で塞がれていない隙間から、前記電解質電解液を注入し、電荷輸送層を形成した。続いて、封止材で塞がれていない隙間を紫外線硬化樹脂により塞いだ。これにより、受光面積が1cmの光電変換素子を得た。
素子の評価は比較例1と同様にして行った。結果を表1に示す。
[実施例4]
比較例2において、第二電極としてITOを用い、上記構造式[化32]のリン酸TEMPOを修飾することで、第二電荷輸送層を形成した。形成方法を以下に示す。
まず、ITOをIPAに浸し、超音波で10min洗浄する。この第二電極を0.01Mリン酸TEMPO水溶液に一昼夜浸漬し、第二電荷輸送層が形成された第二電極を作製した。また、比較例2において、電荷輸送層(第一電荷輸送層)を形成する際の電解液に溶解させていたTEMPOのかわりに、CN−TEMPOを用いた。
その他の構成は比較例2と同様にして光電気素子の作製を行った。
尚、第一電荷輸送層の酸化還元物質の酸化還元電位は、第二電荷輸送層の酸化還元物質の酸化還元電位より60mV貴であった。
[実施例5]
比較例3において、第二電極としてITOを用い、上記構造式[化32]のリン酸TEMPOを修飾することで、第二電荷輸送層を形成した。形成方法を以下に示す。
まず、ITOをIPAに浸し、超音波で10min洗浄する。この第二電極を0.01Mリン酸TEMPO水溶液に一昼夜浸漬し、第二電荷輸送層が形成された第二電極を作製した。また、比較例3において、電荷輸送層(第一電荷輸送層)を形成する際の電解液に溶解させていたTEMPOのかわりにCN−TEMPOを用いた。
その他の構成は比較例3と同様にして光電気素子の作製を行った。
尚、第一電荷輸送層の酸化還元物質の酸化還元電位は、第二電荷輸送層の酸化還元物質の酸化還元電位より60mV貴であった。
[実施例6]
比較例3において、第二電極上に第二電解輸送層として上記構造式[化33]の化合物を用いて形成した。また、比較例3において、電荷輸送層(第一電荷輸送層)を形成する際の電解液に溶解させていたTEMPOのかわりにCN−TEMPOを用いた。その他の構成は比較例3と同様にして光電気素子の作製を行った。
尚、第一電荷輸送層の酸化還元物質の酸化還元電位は、第二電荷輸送層の酸化還元物質の酸化還元電位より40mV貴であった。
第二電荷輸送層の作製方法は、実施例2の場合と同様である。
得られた化合物10mgをDMF溶媒1mlに溶解させ、スピンコートすることにより、膜厚さ100nmの第二電荷輸送層を形成した。
[実施例7]
比較例3において、電荷輸送層(第一電荷輸送層)の第二電極側に隔膜を設けた第二電荷輸送層を形成した。隔膜として厚さ10μmのセルロース膜を用いて形成した。また、比較例3において、電荷輸送層(第一電荷輸送層)を形成する際の電解液に溶解させていたTEMPOのかわりに、CN−TEMPOを用いた。
そのほかは比較例3と同様に素子作製を行った。
尚、第一電荷輸送層の酸化還元物質の酸化還元電位は、第二電荷輸送層の酸化還元物質の酸化還元電位より300mV貴であった。
Figure 2013099689
表2の結果から、第二電荷輸送層を形成した実施例4〜7は、比較例2,3と比べて、高い光電変換効率を得られることが分かった。
1 第一電極
2 第二電極
3 半導体
4 光増感剤
5 第一電荷輸送層
6 第二電荷輸送層
11 隔膜

Claims (6)

  1. 第一電極と、この第一電極に対向配置された第二電極と、前記第一電極の前記第二電極と対向する面に設けられた半導体と、この半導体上に担持された光増感剤と、前記第一電極と前記第二電極の間に介在する第一電荷輸送層と、この第一電荷輸送層と前記第二電極との間に第二電荷輸送層とを備える光電気素子において、前記第一電荷輸送層と前記第二電荷輸送層とがそれぞれ独立に酸化還元物質を有し、第一電荷輸送層の酸化還元物質の酸化還元電位が、第二電荷輸送層の酸化還元物質の酸化還元電位より貴であることを特徴とする光電気素子。
  2. 前記第二電荷輸送層と前記第二電極とが化学結合していることを特徴とする請求項1に記載の光電気素子。
  3. 前記第二電荷輸送層が高分子ゲルであることを特徴とする請求項1に記載の光電気素子。
  4. 前記第二電荷輸送層は、前記第一電荷輸送層側に隔膜を有し、前記第一電荷輸送層と前記隔膜を介して接していることを特徴とする請求項1に記載の光電気素子。
  5. 前記隔膜が、多孔質ガラス、セルロース膜、塩橋、イオン交換膜の群れから選ばれる少なくとも一つであることを特徴とする請求項4に記載の光電気素子。
  6. 前記第一電荷輸送層の酸化還元物質の酸化還元電位が、前記第二電荷輸送層の酸化還元物質の酸化還元電位より、60mV以上貴であることを特徴とする請求項1乃至5のいずれか一項に記載の光電気素子。
JP2013551626A 2011-12-28 2012-12-18 光電気素子 Active JP5957012B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013551626A JP5957012B2 (ja) 2011-12-28 2012-12-18 光電気素子

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011287223 2011-12-28
JP2011287223 2011-12-28
PCT/JP2012/082728 WO2013099689A1 (ja) 2011-12-28 2012-12-18 光電気素子
JP2013551626A JP5957012B2 (ja) 2011-12-28 2012-12-18 光電気素子

Publications (2)

Publication Number Publication Date
JPWO2013099689A1 true JPWO2013099689A1 (ja) 2015-05-07
JP5957012B2 JP5957012B2 (ja) 2016-07-27

Family

ID=48697181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013551626A Active JP5957012B2 (ja) 2011-12-28 2012-12-18 光電気素子

Country Status (4)

Country Link
US (1) US9013023B2 (ja)
JP (1) JP5957012B2 (ja)
CN (1) CN103503099B (ja)
WO (1) WO2013099689A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180114919A1 (en) * 2015-04-21 2018-04-26 Sumitomo Seika Chemicals Co., Ltd. Dye-sensitized solar cell and electrolysis solution for dye-sensitized solar cell
WO2018123402A1 (ja) * 2016-12-28 2018-07-05 パナソニックIpマネジメント株式会社 太陽電池、光吸収層および光吸収層の形成方法
CN108987586A (zh) * 2017-06-02 2018-12-11 颜步 一种钙钛矿太阳能电池组件及其制备方法
US11322627B2 (en) * 2018-09-19 2022-05-03 Kabushiki Kaisha Toshiba Solar cell, multi-junction solar cell, solar cell module, and solar power generation system
KR20210071496A (ko) * 2019-12-06 2021-06-16 삼성전기주식회사 적층 세라믹 전자부품

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11260428A (ja) * 1998-03-11 1999-09-24 Toshiba Corp 光化学電池
WO2010147162A1 (ja) * 2009-06-19 2010-12-23 パナソニック電工株式会社 光電気素子

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120807B2 (ja) * 1986-12-20 1995-12-20 富士通株式会社 定電流半導体装置
CH674596A5 (ja) 1988-02-12 1990-06-15 Sulzer Ag
JPH05308146A (ja) * 1992-05-01 1993-11-19 Ricoh Co Ltd 有機光起電力素子
DE69330060T2 (de) * 1992-10-26 2001-11-15 Dainippon Printing Co Ltd Photoelektrischer Sensor, Informationsaufzeichnungssystem und Methode zur Informationsaufzeichnung
DE69416428T2 (de) 1993-12-29 1999-09-16 Ecole Polytech Photoelektrochemische zelle und elektrolyt für diese zelle
EP0718288B8 (fr) 1994-12-21 2005-10-26 Hydro Quebec Sels liquides hydrophobes, leur préparation et leur application en électrochimie
JPH08321646A (ja) * 1995-03-17 1996-12-03 Dainippon Printing Co Ltd 光センサー、情報記録装置および情報記録再生方法
US6352777B1 (en) * 1998-08-19 2002-03-05 The Trustees Of Princeton University Organic photosensitive optoelectronic devices with transparent electrodes
JP2001085077A (ja) 1999-09-14 2001-03-30 Fuji Xerox Co Ltd 光電変換素子およびその製造方法
JP4967211B2 (ja) 2001-09-26 2012-07-04 日本電気株式会社 光電気化学デバイス
MXPA02012553A (es) * 2001-12-21 2004-09-03 Canon Kk Miembro electrofotografico fotosensible, cartucho de proceso y aparato electrofotografico.
JP3984137B2 (ja) 2002-09-27 2007-10-03 株式会社東芝 色素増感型太陽電池及びその製造方法
US8158881B2 (en) * 2005-07-14 2012-04-17 Konarka Technologies, Inc. Tandem photovoltaic cells
DE102005046190A1 (de) * 2005-09-27 2007-04-05 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauelement mit Stromaufweitungsschicht
JP5034517B2 (ja) * 2007-01-29 2012-09-26 富士ゼロックス株式会社 光書き込み型表示素子の駆動装置および駆動方法、並びに光書き込み型表示装置
JP5237664B2 (ja) 2007-06-14 2013-07-17 パナソニック株式会社 光電変換素子
US7719180B2 (en) * 2007-10-16 2010-05-18 Global Oled Technology Llc Inverted OLED device with improved efficiency
JP5540600B2 (ja) 2008-08-13 2014-07-02 三菱化学株式会社 電子デバイス、有機電界発光素子、有機el表示装置および有機el照明
CN102439092B (zh) 2009-05-22 2014-10-08 松下电器产业株式会社 光吸收材料和光电转换元件
JP5480552B2 (ja) 2009-07-31 2014-04-23 パナソニック株式会社 光電気素子
JP5584447B2 (ja) 2009-10-27 2014-09-03 パナソニック株式会社 光電気素子
JP5658504B2 (ja) * 2009-07-31 2015-01-28 パナソニック株式会社 光電気素子
WO2011096508A1 (ja) * 2010-02-05 2011-08-11 パナソニック電工株式会社 光電気素子
TWI495120B (zh) * 2011-02-09 2015-08-01 Sino American Silicon Prod Inc 光電元件及其製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11260428A (ja) * 1998-03-11 1999-09-24 Toshiba Corp 光化学電池
WO2010147162A1 (ja) * 2009-06-19 2010-12-23 パナソニック電工株式会社 光電気素子

Also Published As

Publication number Publication date
CN103503099B (zh) 2017-09-15
US9013023B2 (en) 2015-04-21
CN103503099A (zh) 2014-01-08
US20140070202A1 (en) 2014-03-13
JP5957012B2 (ja) 2016-07-27
WO2013099689A1 (ja) 2013-07-04

Similar Documents

Publication Publication Date Title
JP5204848B2 (ja) 光電気素子
JP5658504B2 (ja) 光電気素子
JP5947688B2 (ja) 電極複合体、及びこれを備える光電気素子
JP5966012B2 (ja) 光電変換素子
JP5815157B2 (ja) 電気化学デバイス
JP5894372B2 (ja) 光電気素子、及び光電気素子の製造方法
WO2010147162A1 (ja) 光電気素子
JP5480552B2 (ja) 光電気素子
JP5400180B2 (ja) 光電気素子
JP5649716B2 (ja) 光電気素子
JP6010549B2 (ja) 光電気素子及びその製造方法
JP5957012B2 (ja) 光電気素子
JP5639510B2 (ja) 光電変換素子
JP5654779B2 (ja) 光電気素子
JP5584447B2 (ja) 光電気素子
WO2012121190A1 (ja) 光電気素子
JP2013137876A (ja) 光電変換素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160617

R150 Certificate of patent or registration of utility model

Ref document number: 5957012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250