JPWO2013021970A1 - 二次電池集電体用圧延銅箔およびその製造方法 - Google Patents
二次電池集電体用圧延銅箔およびその製造方法 Download PDFInfo
- Publication number
- JPWO2013021970A1 JPWO2013021970A1 JP2013505226A JP2013505226A JPWO2013021970A1 JP WO2013021970 A1 JPWO2013021970 A1 JP WO2013021970A1 JP 2013505226 A JP2013505226 A JP 2013505226A JP 2013505226 A JP2013505226 A JP 2013505226A JP WO2013021970 A1 JPWO2013021970 A1 JP WO2013021970A1
- Authority
- JP
- Japan
- Prior art keywords
- copper foil
- rolled copper
- temperature
- secondary battery
- current collector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 139
- 239000011889 copper foil Substances 0.000 title claims abstract description 109
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 100
- 229910000881 Cu alloy Inorganic materials 0.000 claims abstract description 97
- 238000005096 rolling process Methods 0.000 claims abstract description 43
- 239000013078 crystal Substances 0.000 claims abstract description 37
- 239000010949 copper Substances 0.000 claims abstract description 30
- 229910052802 copper Inorganic materials 0.000 claims abstract description 28
- 238000000137 annealing Methods 0.000 claims description 110
- 238000001953 recrystallisation Methods 0.000 claims description 59
- 238000000034 method Methods 0.000 claims description 49
- 238000005097 cold rolling Methods 0.000 claims description 43
- 229910052804 chromium Inorganic materials 0.000 claims description 41
- 229910052726 zirconium Inorganic materials 0.000 claims description 37
- 239000000654 additive Substances 0.000 claims description 28
- 229910052710 silicon Inorganic materials 0.000 claims description 28
- 239000002243 precursor Substances 0.000 claims description 21
- 230000000996 additive effect Effects 0.000 claims description 20
- 229910052749 magnesium Inorganic materials 0.000 claims description 20
- 239000000463 material Substances 0.000 claims description 18
- 229910052725 zinc Inorganic materials 0.000 claims description 18
- 229910017876 Cu—Ni—Si Inorganic materials 0.000 claims description 17
- 229910052718 tin Inorganic materials 0.000 claims description 17
- 238000010438 heat treatment Methods 0.000 claims description 16
- 239000012535 impurity Substances 0.000 claims description 15
- 229910017755 Cu-Sn Inorganic materials 0.000 claims description 14
- 229910017770 Cu—Ag Inorganic materials 0.000 claims description 14
- 229910017927 Cu—Sn Inorganic materials 0.000 claims description 14
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 claims description 14
- 238000005098 hot rolling Methods 0.000 claims description 14
- 229910052748 manganese Inorganic materials 0.000 claims description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 11
- 239000001301 oxygen Substances 0.000 claims description 11
- 229910052760 oxygen Inorganic materials 0.000 claims description 11
- 238000000265 homogenisation Methods 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 5
- 238000007747 plating Methods 0.000 abstract description 13
- 238000011156 evaluation Methods 0.000 description 118
- 230000000052 comparative effect Effects 0.000 description 109
- 238000012423 maintenance Methods 0.000 description 23
- 239000011149 active material Substances 0.000 description 20
- 229910045601 alloy Inorganic materials 0.000 description 15
- 239000000956 alloy Substances 0.000 description 15
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 15
- CONKBQPVFMXDOV-QHCPKHFHSA-N 6-[(5S)-5-[[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]methyl]-2-oxo-1,3-oxazolidin-3-yl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C[C@H]1CN(C(O1)=O)C1=CC2=C(NC(O2)=O)C=C1 CONKBQPVFMXDOV-QHCPKHFHSA-N 0.000 description 11
- 239000011888 foil Substances 0.000 description 11
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 10
- 238000001887 electron backscatter diffraction Methods 0.000 description 10
- 238000005259 measurement Methods 0.000 description 8
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 6
- WZFUQSJFWNHZHM-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 WZFUQSJFWNHZHM-UHFFFAOYSA-N 0.000 description 6
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 230000001276 controlling effect Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 230000000630 rising effect Effects 0.000 description 6
- 238000007788 roughening Methods 0.000 description 6
- 229910001369 Brass Inorganic materials 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 239000010951 brass Substances 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 238000007599 discharging Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910052744 lithium Inorganic materials 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 230000008602 contraction Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- 101000911772 Homo sapiens Hsc70-interacting protein Proteins 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 239000007773 negative electrode material Substances 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- JQMFQLVAJGZSQS-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-N-(2-oxo-3H-1,3-benzoxazol-6-yl)acetamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)NC1=CC2=C(NC(O2)=O)C=C1 JQMFQLVAJGZSQS-UHFFFAOYSA-N 0.000 description 1
- 229910017518 Cu Zn Inorganic materials 0.000 description 1
- 229910017532 Cu-Be Inorganic materials 0.000 description 1
- 229910017752 Cu-Zn Inorganic materials 0.000 description 1
- 229910002482 Cu–Ni Inorganic materials 0.000 description 1
- 229910017767 Cu—Al Inorganic materials 0.000 description 1
- 229910017813 Cu—Cr Inorganic materials 0.000 description 1
- 229910017827 Cu—Fe Inorganic materials 0.000 description 1
- 229910017945 Cu—Ti Inorganic materials 0.000 description 1
- 229910017943 Cu—Zn Inorganic materials 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- MYWGVEGHKGKUMM-UHFFFAOYSA-N carbonic acid;ethene Chemical compound C=C.C=C.OC(O)=O MYWGVEGHKGKUMM-UHFFFAOYSA-N 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 1
- 238000000879 optical micrograph Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920005575 poly(amic acid) Polymers 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000011871 silicon-based negative electrode active material Substances 0.000 description 1
- 239000011863 silicon-based powder Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/02—Alloys based on copper with tin as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/06—Alloys based on copper with nickel or cobalt as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
- B22F2009/041—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
Description
従って、集電体と活物質の密着性が悪いと種々の問題が発生する。例えば、電池製造工程における外部応力によって、活物質の脱落が発生する。また、電池使用中の充放電に伴う活物質の膨張・収縮によって、集電体と活物質の剥離が起こる。
この粗化処理後表面の凹凸の均一性は、圧延後の銅箔表面の凹凸の均一性によって担保されるため、電池用圧延銅箔の製造時における表面凹凸の制御は、電池特性に直結する重要な技術課題である。
周囲に対して凹凸が少なく、粗大なこの領域を圧延銅箔表面に多く含むと、その上に粗化めっきした場合に、凹凸の小さい領域を含むバラツキの大きい粗化面となってしまい、部分的に活物質が剥離することが問題となっている。
特許文献1では、圧延条件の適正化によって、凹凸の平均間隔を高める方法が、特許文献2では、凹凸の平均間隔を低減する提案がされている。
特許文献3では、表面粗さRaと局部山頂の平均間隔Sが、最適範囲で示されている。
また、特許文献1および2において、その制御方法が圧延条件の適正化であり、不均一性を解消する抜本的なものではない。したがって、近年の電池用途への要求を満足しない場合があった。
また、圧延銅箔中のRDW方位は、製造工程における最終焼鈍組織の影響を強く受け、それを制御する工程を発明した。
なお、圧延銅箔とは純銅の圧延箔を意味することもあるが、本願では広く銅合金の圧延箔を意味する。
また、Cu−(Cr,Zr)系の圧延銅箔は、副添加成分となるSn、Zn、Si、Mn、Mgから少なくとも1種を合計で0.01〜0.45mass%含有しても良い。
なお、Cu−(Cr,Zr)系の圧延銅箔は、主成分を除く残部、または主成分および副添加成分を除く残部が不可避不純物により形成されている。
また、Cu−Ag系の圧延銅箔は、副添加成分となるSn、Zn、Si、Mn、Mgから少なくとも1種を合計で0.01〜0.45mass%含有しても良い。
なお、Cu−Ag系の圧延銅箔は、主成分を除く残部、または主成分および副添加成分を除く残部が不可避不純物により形成されている。
また、Cu−Sn系の圧延銅箔は、副添加成分となるZn、Si、P、Mgから少なくとも1種を合計で0.01〜0.45mass%含有しても良い。
なお、Cu−Sn系の圧延銅箔は、主成分を除く残部、または主成分および副添加成分を除く残部が不可避不純物により形成されている。
また、Cu−Ni−Si系の圧延銅箔は、副添加成分となるSn、Zn、Si、Cr、Mn、Mg、Coから少なくとも1種を合計で0.005〜0.9mass%含有しても良い。
なお、Cu−Ni−Si系の圧延銅箔は、主成分を除く残部、または主成分および副添加成分を除く残部が不可避不純物により形成されている。
なお、純銅系の圧延銅箔は、残部が不可避不純物により形成されている。
その結果、電池などの製造工程における外力によって集電体から活物質が脱落し難くなり、二次電池の容量を向上させることができる。更に、充・放電時に膨張・収縮量の大きいスズ(Sn)系やシリコン(Si)系などの活物質が変形しても、活物質と集電体の離脱を防止し、二次電池の充・放電のサイクル特性を向上させることができる。
図2は、本発明の実施形態に係る圧延銅箔を模式的に拡大して示す図である。
この収納状態で、正極11は正極集電体13を介して正極側電池缶16に接続され、負極12は負極集電体14を介して負極側電池缶17に接続されている。
この構造により二次電池10は充電および放電が可能となっている。
本実施形態に係る圧延銅箔20は、例えば厚さdが12μm以下に設定され、以下の特徴をもって形成されている。
圧延銅箔20は、圧延方向に対して60°〜120°の方向の縞状模様の表面凹凸が見られる領域の面積率が60%以上である。
また、圧延銅箔20は、表面結晶方位におけるRDW方位{012}<100>方位から13°以内の面積率が15%以下である。
結晶方位は、電子後方散乱回折(EBSD法)による結晶方位測定が適用可能である。
また、本実施形態に係る圧延銅箔20は、以下の(1)〜(5)に示すような銅合金または純銅系として形成される。
圧延銅箔20は、主成分としてCrおよびZrのうちの少なくとも一方を含むCu−(Cr,Zr)系の銅合金であって、主成分となるCr、Zrのうち少なくとも1種を合計で0.01〜0.9mass%含有する銅合金として形成される。
また、Cu−(Cr,Zr)系の銅合金は、必要に応じて副添加成分となるSn、Zn、Si、Mn、Mgから少なくとも1種を合計で0.01〜0.45mass%含有する銅合金として形成される。
Cu−(Cr,Zr)系の銅合金は、主成分を除く残部、または主成分および副添加成分を除く残部が不可避不純物により形成されている。
圧延銅箔20は、主成分としてAgを含むCu−Ag系の銅合金であって、主成分となるAgを合計で0.01〜0.9mass%含有する銅合金として形成される。
また、Cu−Ag系の銅合金は、必要に応じて副添加成分となるSn、Zn、Si、Mn、Mgから少なくとも1種を合計で0.01〜0.45mass%含有する銅合金として形成される。
Cu−Ag系の銅合金は、主成分を除く残部、または主成分および副添加成分を除く残部が不可避不純物により形成されている。
圧延銅箔20は、主成分としてSnを含むCu−Sn系の銅合金であって、主成分となるSnを合計で0.01〜4.9mass%含有する銅合金として形成される。
また、Cu−Sn系の銅合金は、必要に応じて副添加成分となるZn、Si、P、Mgから少なくとも1種を合計で0.01〜0.45mass%含有する銅合金として形成される。
Cu−Sn系の銅合金は、主成分を除く残部、または主成分および副添加成分を除く残部が不可避不純物により形成されている。
圧延銅箔20は、主成分としてNiおよびSiを含むCu−Ni−Si系の銅合金であって、主成分となるNiを1.4〜4.8mass%、Siを0.2〜1.3mass%含有する合銅合金として形成される。
また、Cu−Ni−Si系の銅合金は、必要に応じて副添加成分となるSn、Zn、Si、Cr、Mn、Mg、Coから少なくとも1種を合計で0.005〜0.9mass%含有する銅合金として形成される。
Cu−Ni−Si系の銅合金は、主成分を除く残部、または主成分および副添加成分を除く残部が不可避不純物により形成されている。
圧延銅箔20は、酸素を含む純銅系(TPC系)の銅材料であって、酸素量が2〜200ppmで、残部が不可避不純物からなる。
圧延銅箔20は、図3に示すように、第1工程ST1から第13工程ST13を基本工程として製造される。
第4工程ST4は熱間圧延工程である。熱間圧延とは、金属を再結晶温度以上に加熱して行う圧延をいう。第5工程ST5は水冷工程であり、第6工程ST6は酸化スケールの除去のための面削工程である。
第7工程ST7は第1(中間)冷間圧延工程であり、第8工程ST8は中間的な焼きなましを行う第1中間焼鈍工程である。冷間圧延は、再結晶が生じない温度範囲(例えば常温)下で行う圧延をいう。
第9工程ST9は第2中間冷間圧延工程であり、第10工程ST10は第2中間焼鈍工程であり、第11工程ST11は第3中間冷間圧延工程である。
第12工程は最終的な焼きなましを行う最終焼鈍工程であり、第13工程ST13は仕上圧延工程である。
本実施形態では、第10工程ST10の第2中間焼鈍工程において、昇温速度を、通常の中間焼鈍の昇温速度より高めて再結晶前駆現象の時間を与えない速度として、かつ、焼鈍の到達温度を、特定の粒界の優先移動を抑制し、ランダム化した再結晶組織が得られるように、銅合金の再結晶温度の上限より高い温度としている。
本実施形態に係る圧延銅箔20の製造においては、第10工程ST10の第2中間焼鈍における昇温速度は2°C/秒以上、かつ到達温度は800°C以上であることを特徴としている。
このように、本実施形態に係る圧延銅箔20の製造においては、1秒間に数℃ごとのステップあるいは数十℃ごとのステップで昇温する。
図4は、圧延銅箔の表面組織において縞状凹凸領域と、縞状凹凸領域の間に見られる低凹凸領域とを示す図である。
図4において、1Hが縞状凹凸領域を、1Lが低凹凸領域をそれぞれ示している。
図5は、本実施形態に係る圧延銅箔20の表面組織に縞状凹凸が多い状態を示す図である。
面積率が60%以上であることが、粗化めっきの均一性を担保するのに必要である。好ましくは70%以上、更に好ましくは80%以上である。
図5に示す本実施形態に係る圧延銅箔20は、縞状凹凸が多い状態となっている。
圧延銅箔20において、RDW方位が少ないほど、縞状凹凸領域の面積率が高められ、良好な粗化めっきが可能となり、RDW方位の面積率は15%以下である。好ましくは12%以下、更に好ましくは8%以下である。
図6においては、圧延集合組織であるBrass方位およびS方位および、RDW方位の方位の領域と、隣接測定点間のなす角が15°以上で定義された結晶粒界が表示されている。
Brass方位、S方位の領域RGN−BSは圧延方向(RD、図の左右方向)に10μm前後の大きさの結晶粒に分断され、そのサイズと縞状凹凸が対応している。
一方、RDW方位の領域RGN−Rは、その結晶粒内の方位勾配はあるものの、結晶粒界を持たず、RD方向に粗大な結晶粒となっており、これが、縞状凹凸を有さない領域に対応していることがわかる。
Brass方位およびS方位の圧延変形におけるテイラー因子はそれぞれ、3.3および3.5であるのに対し、RDW方位のテイラー因子は2.4であり、あらゆる結晶方位の中でも最も低い値である。
すなわち、高い加工率の箔圧延加工を行い、転位や空孔などの格子欠陥の密度が著しく高い状況下で、Brass方位やS方位は結晶滑りが起きにくいために、せん断帯や粒界の形成によって変形が担われて結晶粒が分断し、その結果、圧延表面にピットを形成する。
それに対し、RDW方位は結晶滑りによって変形が担われるために、一つの結晶粒が伸長するのみで粒内に新しい粒界を形成せず、その結果、ピットの少ない表面となる。
また、(1 2 0)[0 0 1]と(2 1 0)[0 0 1]などのように、銅合金の立方晶の対称性のもとで等価な方位については、ファミリーを表すカッコ記号を使用し、{h k l}<u v w>と示す。
本実施形態においては、5万平方μm以上の試料面積に対し、0.2μmのステップでスキャンし、方位を解析する。
面積率とは、理想方位からのずれ角度が13°以内の領域の面積を、全体の測定面積で割って(除して)算出したものである。
理想方位からのずれ角度については、共通の回転軸を中心に回転角を計算し、ずれ角度とした。
図7においては、(001)および(101)および(111)の回転軸に関して、13°以内の方位を示しているが、あらゆる回転軸に関してRDW方位との回転角度を計算した。回転軸は最も小さいずれ角度で表現できるものを採用した。
EBSDによる方位解析において得られる情報は、電子線が試料に侵入する数10nmの深さまでの方位情報を含んでいるが、測定している広さに対して充分に小さいため、本明細書中では面積率として記載した。また、方位分布は板表面から測定した。
本発明の実施形態において有効性が見出された結晶方位に制御するための製造工程を示す。
なお、上述したように、圧延方向に対して60°〜120°の方向の縞状模様の表面凹凸が見られる領域の面積率が60%以上であり、さらにまた、表面結晶方位におけるRDW方位{012}<100>方位から13°以内の面積率が15%以下であることを満足すれば、ここで示す製造工程に限定されるものではない。
すなわち、溶解工程、鋳造工程、均質化熱処理工程、熱間圧延工程、水冷工程、面削工程、第1(中間)冷間圧延工程、第1中間焼鈍工程、第2中間冷間工程、第2中間焼鈍工程、第3中間冷間工程、最終焼鈍工程、仕上圧延工程からなる製造工程が基本となる。
銅合金の再結晶温度は、合金によって差違があるもののおおよそ150〜800°C(ここでは800°C未満)である。
本発明の実施形態において低く制御したいRDW方位は、再結晶における優先成長方位であるとともに、圧延しても非回転のまま残存し易い傾向がある。
よって、第12工程ST12の最終焼鈍における組織中のRDW方位の低減が必要である。
再結晶過程における優先方位の形成は、結晶方位ごとの回復速度の違いが影響していると考えられるが、昇温速度を高めて再結晶前駆現象の時間を与えないこと、および、到達温度の高温化によって特定の粒界の優先移動を抑制し、ランダム化した再結晶組織が得られるためである。
焼鈍速度の好ましい範囲は、5°C/秒以上、更に好ましい範囲は10°C/秒以上である。上限は特に設けないが、最高は200°C/秒である。
到達温度の好ましい範囲は870°C以上、更に好ましい範囲は950°C以上である。上限は材料の高温脆性が顕著となる1000°Cである。
上述の結晶方位制御による効果は、各種の合金系に適用することができる。
そして、電池全体の設計によって、銅箔に必要な特性が異なり、それに応じて適切な合金系が選定されれば良い。圧延箔の強度と導電性は、おおよそトレードオフの関係にあり、各合金系の特性は下記の表1に示すようになる。
ここで、70%IACSとは、電気抵抗率がIACS(国際焼きなまし銅線標準)という名の“標準焼きなまし銅線”を100%とした場合の導線が70%の導電性をもつということを示している。
このCu−(Cr、Zr)系の銅合金の導電性は70〜95%IACSであり、電気特性も良好である。
このCu−Ag系の銅合金は、導電性が80〜98%IACSと高い電気特性を発現する。
このCu−Sn系の銅合金は、導電性が15〜95%とばらつきの範囲が大きいが、主成分や副添加成分の成分添加量を最適化することにより、高い電気(電池)特性を発現することができる。
このCu−Ni−Si系の銅合金は、導電性が20〜50%と若干低目であるが、主成分や副添加成分の成分添加量最適化することにより、用途に応じた電気(電池)特性を発現することができる。
この純銅系の銅材料は、導電性が95〜100%IACSと高い電気特性を発現する。
また、上記(1)〜(5)の銅合金の各々で規定した成分の下限値未満に添加した場合に、その添加効果が充分に得られない。成分添加量は、上述の用途に応じて、適宜、調整されるものである。
Cu−Ag系の主成分Agの好ましい範囲は0.02〜0.15mass%、更に好ましい範囲は0.03〜0.05mass%である。
Cu−Sn系の主成分Snの好ましい範囲は0.1〜2.3mass%、更に好ましい範囲は0.6〜0.9mass%である。
Cu−Ni−Si系の主成分Niの好ましい範囲は2.1〜4.2mass%、更に好ましい範囲は3.4〜3.9mass%である。
上記の主成分に加えて、強度や耐熱性などの向上を目的に、Sn、Zn、Si、Mn、Mg、Pなどの副添加元素の添加が許容される。
特に、厚さ12μm以下の箔までの圧延において、内在する第2相によってピンホールが発生する問題に対しては、Si、Mg、Pなどの添加によって溶湯を脱酸して酸化物の形成を抑制することが、また、Mnの添加によって硫化物の形成を抑制することが、有効である。
したがって、本発明の実施形態の効果は、高濃度の合金になるほど、その効果がより顕著となる。すなわち、本発明の実施形態の適用にあたって、好ましい合金系はCu−Ag系であり、より好ましい合金系はCu−Sn系、Cu−Ni−Si系、Cu−Cr系である。
実施例の結果については下記の表2〜表6に示されている。
Cu−(Cr、Zr)系の実施例の評価結果については表2に、Cu−Ag系の実施例の評価結果については表3に、Cu−Sn系の実施例の評価結果については表4に、Cu−Ni−Si系の実施例の評価結果については表5に、純銅系の実施例の評価結果については表6に示されている。
表2〜表6においては、上記(1)〜(5)の銅合金の実施例の評価結果を参考例および比較例と対比して示されている。
これら表2〜表6の実施例の結果評価について述べる前に、本実施形態および比較例の圧延銅箔の製造方法、粗化めっき前の圧延銅箔についての評価方法、電池評価方法等について説明する。
本実施形態に係る圧延銅箔の製造方法の実施例について、図3に関連付けて説明する。
第1工程ST1において、原料を高周波溶解炉により溶解させ、溶解した原料を第2工程ST2において0.1〜100°C/秒の冷却速度で鋳造を行い、鋳塊を得た。鋳塊は、表2〜表6に示す合金成分を含有し、残部がCuと不可避不純物により形成される。
第4工程ST4で熱間加工を行った後に、第5工程ST5において水冷し、第6工程ST6において酸化スケール除去のために面削を行った。
その後に、第7工程ST7で第1(中間)冷間圧延を行い、第8工程ST8で第1中間焼鈍を行い、第9工程ST9で第2中間冷間圧延を行う。さらに、第10工程ST10で第2中間焼鈍を行い、第11工程ST11で第3中間冷間圧延を行い、第12工程ST12で最終焼鈍を行い、第13工程ST13で仕上圧延を行い、板厚が12μm以下の圧延箔を作製した。
第8工程ST8の第1中間焼鈍および第12工程ST12の最終焼鈍の焼鈍熱処理は、通常の再結晶温度である300°C以上800°C未満の温度に、3秒間〜10時間保持した。
ただし、第10工程ST10の第2中間焼鈍は昇温速度を2°C/秒以上、到達温度は800°C以上1000°C以下の条件で行った。
各熱処理や圧延の後に、材料表面の酸化や粗度の状態に応じて酸洗浄や表面研磨を行い、また形状に応じてテンションレベラーによる矯正を行った。
上記の本実施形態に係る製造方法の例を工程Aとする。
工程Eは、第10工程ST10の第2中間焼鈍の昇温速度を0.2〜1.8°C/秒とし、到達温度を300°C以上800°C未満とし、それ以外は工程Aと同様とした。
工程Fは、第10工程ST10の第2中間焼鈍の昇温速度を0.2〜1.8°C/秒とし、到達温度を800〜1000°Cとし、それ以外は工程Aと同様とした。
工程Gは、第10工程ST10の第2中間焼鈍の昇温速度を2°C/秒以上とし、到達温度を300°C以上800°C未満とし、それ以外は工程Aと同様とした。
工程Hは、電気炉により大気中で木炭被覆下で溶解し、50mm×80mm×180mmの鋳塊を溶製し、これを熱間圧延して厚さ15mmのスラブとし、さらに820°Cで熱間圧延して厚さ3.3mmに板材に仕上げた後水冷した。
これらの板材について、厚さ1.2mmに冷間圧延した後炉温750°C×20Sで中間焼鈍し、厚さ0.4mmに冷間圧延した後、炉温700°C×20Sで中間焼鈍し、厚さ0.2mmに冷間圧延した後、炉温650°C×20Sの中間焼鈍を行い、さらに冷間圧延して厚さ10μmの銅合金箔を製造した。
この工程Hは、特許文献4(特開2000−328159号公報)に開示されている。
工程Iは、鋳塊を均熱処理後、終了温度500°Cで熱間圧延し、次いで銅箔の結晶方位を支配する冷間圧延および最終焼鈍の各工程の条件を、最終焼鈍前の冷間圧延率を10〜95%、最終焼鈍温度を400°C以上、最終焼鈍後の冷間圧延率を10〜99%の範囲で製造した。
この工程Iは、特許文献5(特開平11−310864号公報)に開示されている。
縞状凹凸領域の面積率AR1は、光学顕微鏡写真において、圧延方向に対して60°〜120°の方向の縞状の凹凸が確認される領域を黒く塗りつぶし、その後に画像処理を行って2階調化し、黒色の面積を全面積で割り戻して、面積率とした。視野の面積は200,000平方μmであり、3視野の測定の平均を測定した。
RDW方位面積率AR2は、前述したEBSD法により、前述した方法によって圧延表面から測定した。圧延表面の加工変質層が厚いためにパターンが鮮明でない場合は、化学研磨によって最表層のみ溶解し、測定した。
引張強度(TS)および伸び(EL)を、JIS Z2241に準じて圧延平行方向の引張試験により測定した。
20°C(±0.5°C)に保たれた恒温漕中で四端子法により比抵抗を計測して導電率を算出した。なお、端子間距離は100mmとした。
[粗化めっきの方法]
圧延した銅箔表面に下記の条件で微細粗化粒子を下記銅めっき条件により設けた。
<めっき浴組成>
Cu(金属として):60〜70g/l
硫酸:110〜130g/l
<めっき条件>
温度:45〜55°C
電流密度:60〜70A/dm2
処理時間:0.4〜2.0秒
(i)正極
LiCoO2粉末90重量%、黒鉛粉末7重量%、ポリフッ化ビニリデン粉末3重量%を混合してN−メチルピロリドンをエタノールに溶解した溶液を添加して混練し、正極剤ペーストを調整した。このペーストをアルミ箔に均一に塗着した後、窒素雰囲気中で乾燥してエタノールを揮散させ、次いでロール圧延を行って、シートを作製した。
このシートを切断した後、その一端にアルミ箔のリード端子を超音波溶接で取り付け正極とした。
天然黒鉛粉末(平均粒径10μm)90重量%、ポリフッ化ビニリデン粉末10重量%を混合し、N−メチルピロリドンをエタノールに溶解した溶液を添加して混練しペーストを作製した。次いで、このペーストを実施例、比較例で作製した圧延銅箔の両面に塗着した。塗着後の銅箔を窒素雰囲気中で乾燥し、溶剤を揮散させ、ついで、ロール圧延してシートを成型した。
このシートを切断した後その一端にニッケル箔のリードを超音波溶接して取り付け、負極とした。
以上のようにして製造した正極と負極の間に厚み25μmのポリプロピレン製のセパレータを挟み、これを軟鋼表面にニッケルめっきされた電池缶に収容して負極のリード端子を缶底にスポット溶接した。次いで、絶縁材の上蓋を置き、ガスケットを挿入後正極のリード端子とアルミ製安全弁とを超音波溶接して接続し、炭酸プロピレンと炭酸ジエチルと炭酸エチレンからなる非水電解液を電池缶の中に注入した後、前記安全弁に蓋を取り付け、密閉構造のリチウムイオンニ次電池を組み立てた。
上記作製の電池につき、充電電流50mAで4.2Vになるまで充電し、50mAで2.5Vになるまで放電するサイクルを1サイクルとする充放電サイクル試験を行った。初回充電時の電池容量を表2〜表6に示した。
(i)正極
出発原料として、Li2CO3およびCoCO3を用いて、Li:Coの原子比が1:1となるように秤量して乳鉢で混合し、これを金型でプレスし加圧成形した後、空気中において800°Cで24時間焼成し、LiCoO2の焼成体を得た。これを乳鉢で粉砕し、平均粒径20μmに調製した。
得られたLiCoO2粉末90重量部と、導電剤として人工黒鉛粉末5重量部を、結着剤としてポリフッ化ビニリデン5重量部を含む5重量%のN−メチルピロリドン溶液に混合し、正極合剤スラリーとした。
この正極合剤スラリーを、集電体であるアルミニウム箔の上に塗布し、乾燥した後圧延した。得られたものを切り抜き、正極とした。
活物質としての平均粒径3μmのケイ素粉末(純度99.9%)80.2重量部を、バインダーとしてのポリアミド酸(バインダーα1)19.8重量部を含む8.6重量%のN−メチルピロリドン溶液に混合し、負極合剤スラリーとした。
この負極合剤スラリーを、実施例、比較例で作製した圧延銅箔に塗布し、乾燥した後、これを圧延した。これをアルゴン雰囲気下で400°C、30時間熱処理し、焼結して負極とした。
電解液として、エチレンカーボネートとジエチレンカーボネートとの等体積混合溶媒に、LiPF6を1モル/リットル溶解したものを作製した。上記正極、負極、および電解液を用いて、リチウム二次電池を作製した。
正極および負極は、セパレータを介して対向している。
上記の電池の充放電サイクル特性を評価した。各電池を25°Cにおいて、電流値1mAで4.2Vまで充電した後、電流値1mAで2.75Vまで放電し、これを1サイクルの充放電とした。1サイクル目の放電容量に対して、50サイクル後の放電容量を、放電容量維持率として測定した。
以下に、表ごとの評価結果に示すように、本発明の実施形態で規定した圧延方向に対して60°〜120°の方向の縞状模様の表面凹凸が見られる縞状凹凸領域の面積率AR1が60%以上であり、表面結晶方位におけるRDW方位{012}<100>方位から13°以内のRDW方位面積率AR2が15%以下であること等を満足する場合には、電池評価における特性が良好であった。一方、製造工程E〜Iで製造された比較例は、縞状凹凸領域の面積率AR1およびRDW方位面積率AR2を満足せず、電池評価結果が劣った。
本実施形態に係る圧延銅箔(本例)として製造工程Aにより製造された実施例1−1〜1−8、製造工程Aで製造された参考例1−11、製造工程E,F,G,H,Iで製造された比較例1−21〜1−25について評価を行った。
ただし、実施例1−6は、副添加成分を合計0.52mass%含有して、副添加成分合計で0.01〜0.45mass%の条件を若干超えている。
また、参考例1−11は、主成分Cr、Zrの合計が0.01〜0.9mass%含有の条件を満足していない。
実施例1−1〜1−8は、RDW方位面積率AR2が15%以下の条件を満足している。
実施例1−4、1−7は、副添加物を含まないが、電池評価は満足している。
参考例1−11は、ピンホールが多数のために製造を中止した。
この参考例1−11の結果からも、主成分の含有量が本実施形態で規定する範囲内にあるか否かで電気的特性に大きく影響するものと推察される。
そして、比較例1−21は、電池評価1としての初回充電容量が実施例1−1の481mAhと比較して342mAhと低く、電池評価2としての維持率も、実施例1−1の36%の半分以下の16%である。
このように、比較例1−21は、電池評価における特性が実施例より劣っている。
すなわち、本製造方法の特徴である、第2中間焼鈍の昇温速度を再結晶前駆現象の時間を与えないような昇温速度にせず、かつ特定の粒界の優先移動を抑制し、ランダム化した再結晶組織を得るために到達温度を銅合金の再結晶温度の上限より高い温度としていないことから、縞状凹凸領域面積率AR1およびRDW方位面積率AR2の条件を満足することができず、ひいては電池特性が低くなっているものと推察される。
そして、比較例1−22は、電池評価1としての初回充電容量が実施例1−1の481mAhと比較して385mAhと低く、電池評価2としての維持率も、実施例1−1の36%の半分以下の13%である。
このように、比較例1−22は、電池評価における特性が本例より劣っている。
すなわち、本製造方法(工程A)の特徴である第2中間焼鈍において、特定の粒界の優先移動を抑制し、ランダム化した再結晶組織を得るために到達温度を銅合金の再結晶温度の上限より高い温度としたとしても、第2中間焼鈍の昇温速度を高めずに、0.2〜1.8°C/秒としたことから、縞状凹凸領域面積率AR1およびRDW方位面積率AR2の条件を満足することができず、ひいては電池特性が低くなっているものと推察される。
そして、比較例1−23は、電池評価1としての初回充電容量が実施例1−1の481mAhと比較して372mAhと低く、電池評価2としての維持率も、実施例1−1の36%の半分以下の16%である。
このように、比較例1−23は、電池評価における特性が実施例より劣っている。
すなわち、本製造方法(工程A)の特徴である第2中間焼鈍において、再結晶前駆現象の時間を与えないように昇温速度を高めたとしても、特定の粒界の優先移動を抑制し、ランダム化した再結晶組織を得るために到達温度を銅合金の再結晶温度の上限より高い温度としていないことから、縞状凹凸領域面積率AR1およびRDW方位面積率AR2の条件を満足することができず、ひいては電池特性が低くなっているものと推察される。
そして、比較例1−24は、電池評価1としての初回充電容量が実施例1−1の481mAhと比較して362mAhと低く、電池評価2としての維持率も、実施例1−1の36%の半分以下の17%である。
このように、比較例1−24は、電池評価における特性が実施例より劣っている。
すなわち、本製造方法(工程A)の特徴である最終の中間焼鈍において、特定の粒界の優先移動を抑制し、ランダム化した再結晶組織を得るために到達温度を銅合金の再結晶温度の上限より高い温度としていないことから、縞状凹凸領域面積率AR1およびRDW方位面積率AR2の条件を満足することができず、ひいては電池特性が低くなっているものと推察される。
そして、比較例1−25は、電池評価1としての初回充電容量が実施例1−1の481mAhと比較して362mAhと低く、電池評価2としての維持率も、実施例1−1の36%より低い21%である。
比較例1−25は、電池評価における特性が実施例より劣っている。
すなわち、本製造方法の特徴である、最終焼鈍の前に、本製造方法(工程A)の特徴である、再結晶前駆現象の時間を与えないように昇温速度を高め、かつ特定の粒界の優先移動を抑制し、ランダム化した再結晶組織を得るために到達温度を銅合金の再結晶温度の上限より高い温度とする第2中間焼鈍を行っていないことから、縞状凹凸領域面積率AR1およびRDW方位面積率AR2の条件を満足することができず、ひいては電池特性が低くなっているものと推察される。
本実施形態に係る圧延銅箔(本例)として製造工程Aにより製造された実施例2−1〜2−5、製造工程Aで製造された参考例2−11、製造工程G,H,Iで製造された比較例2−21〜2−23について評価を行った。
ただし、参考例2−11は、主成分Agの合計が0.01〜0.9mass%含有の条件を満足していない。
実施例2−1〜2−5は、RDW方位面積率AR2が15%以下の条件を満足している。
参考例2−11は、ピンホール多数のために製造を中止した。
この参考例2−11の結果からも、主成分の含有量が本実施形態で規定する範囲内にあるか否かで電気的特性に大きく影響するものと推察される。
そして、比較例2−21は、電池評価1としての初回充電容量が実施例2−2の432mAhと比較して355mAhと低く、電池評価2としての維持率も、実施例2−2の31%の半分以下の15%である。
このように、比較例2−21は、電池評価における特性が実施例より劣っている。
すなわち、本製造方法(工程A)の特徴である第2中間焼鈍において、再結晶前駆現象の時間を与えないように昇温速度を高めたとしても、特定の粒界の優先移動を抑制し、ランダム化した再結晶組織を得るために到達温度を銅合金の再結晶温度の上限より高い温度としていないことから、縞状凹凸領域面積率AR1およびRDW方位面積率AR2の条件を満足することができず、ひいては電池特性が低くなっているものと推察される。
そして、比較例2−22は、電池評価1としての初回充電容量が本例の実施例2−2の432mAhと比較して361mAhと低く、電池評価2としての維持率も、実施例2−2の31%の半分以下の13%である。
このように、比較例2−22は、電池評価における特性が本例より劣っている。
すなわち、本製造方法(工程A)の特徴である最終の中間焼鈍において、特定の粒界の優先移動を抑制し、ランダム化した再結晶組織を得るために到達温度を銅合金の再結晶温度の上限より高い温度としていないことから、縞状凹凸領域面積率AR1およびRDW方位面積率AR2の条件を満足することができず、ひいては電池特性が低くなっているものと推察される。
比較例2−23は、電池評価1としての初回充電容量が実施例2−2の432mAhと比較して355mAhと低く、電池評価2としての維持率も、実施例2−2の31%の半分以下の11%である。
このように、比較例2−23は、電池評価における特性が実施例より劣っている。
すなわち、本製造方法の特徴である、最終焼鈍の前に、本製造方法(工程A)の特徴である、再結晶前駆現象の時間を与えないように昇温速度を高め、かつ特定の粒界の優先移動を抑制し、ランダム化した再結晶組織を得るために到達温度を銅合金の再結晶温度の上限より高い温度とする第2中間焼鈍を行っていないことから、縞状凹凸領域面積率AR1およびRDW方位面積率AR2の条件を満足することができず、ひいては電池特性が低くなっているものと推察される。
本実施形態に係る圧延銅箔(本例)として製造工程Aにより製造された実施例3−1〜3−6、製造工程Aで製造された参考例3−11、製造工程G,H,Iで製造された比較例3−21〜3−23について評価を行った。
ただし、参考例3−11は、主成分Snの合計が0.01〜4.9mass%含有の条件を満足していない。
実施例3−1〜3−6は、RDW方位面積率AR2が15%以下の条件を満足している。
参考例3−11は、ピンホール多数のために製造を中止した。
この参考例3−11の結果からも、主成分の含有量が本実施形態で規定する範囲内にあるか否かで電気的特性に大きく影響するものと推察される。
そして、比較例3−21は、電池評価1としての初回充電容量が実施例3−1の441mAhと比較して375mAhと低く、電池評価2としての維持率も、実施例3−1の31%の半分以下の15%である。
このように、比較例3−21は、電池評価における特性が実施例より劣っている。
すなわち、本製造方法(工程A)の特徴である第2中間焼鈍において、再結晶前駆現象の時間を与えないように昇温速度を高めたとしても、特定の粒界の優先移動を抑制し、ランダム化した再結晶組織を得るために到達温度を銅合金の再結晶温度の上限より高い温度としていないことから、縞状凹凸領域面積率AR1およびRDW方位面積率AR2の条件を満足することができず、ひいては電池特性が低くなっているものと推察される。
そして、比較例3−22は、電池評価1としての初回充電容量が実施例3−1の441mAhと比較して375mAhと低く、電池評価2としての維持率も、実施例3−1の31%の半分以下の13%である。
このように、比較例3−22は、電池評価における特性が実施例より劣っている。
すなわち、本製造方法(工程A)の特徴である最終の中間焼鈍において、特定の粒界の優先移動を抑制し、ランダム化した再結晶組織を得るために到達温度を銅合金の再結晶温度の上限より高い温度としていないことから、縞状凹凸領域面積率AR1およびRDW方位面積率AR2の条件を満足することができず、ひいては電池特性が低くなっているものと推察される。
比較例3−23は、電池評価1としての初回充電容量が実施例3−1の441mAhと比較して340mAhと低く、電池評価2としての維持率も、実施例3−1の31%の半分以下の11%である。
このように、比較例3−23は、電池評価における特性が実施例より劣っている。
すなわち、本製造方法の特徴である、最終焼鈍の前に、本製造方法(工程A)の特徴である、再結晶前駆現象の時間を与えないように昇温速度を高め、かつ特定の粒界の優先移動を抑制し、ランダム化した再結晶組織を得るために到達温度を銅合金の再結晶温度の上限より高い温度とする第2中間焼鈍を行っていないことから、縞状凹凸領域面積率AR1およびRDW方位面積率AR2の条件を満足することができず、ひいては電池特性が低くなっているものと推察される。
本実施形態に係る圧延銅箔(本例)として製造工程Aにより製造された実施例4−1〜4−8、製造工程Aで製造された参考例4−11、製造工程G,F,Iで製造された比較例4−21〜4−23について評価を行った。
ただし、参考例4−11は、主成分Niの1.4〜4.8mass%含有の条件を満足していない。
実施例4−1〜4−8は、RDW方位面積率AR2が15%以下の条件を満足している。
この参考例4−11の結果からも、主成分の含有量が本実施形態で規定する範囲内にあるか否かで電気的特性に大きく影響するものと推察される。
そして、比較例4−21は、電池評価1としての初回充電容量が実施例4−1の441mAhと比較して381mAhと低く、電池評価2としての維持率も、実施例4−1の32%の半分以下の14%である。
このように、比較例4−21は、電池評価における特性が実施例より劣っている。
すなわち、本製造方法(工程A)の特徴である第2中間焼鈍において、再結晶前駆現象の時間を与えないように昇温速度を高めたとしても、特定の粒界の優先移動を抑制し、ランダム化した再結晶組織を得るために到達温度を銅合金の再結晶温度の上限より高い温度としていないことから、縞状凹凸領域面積率AR1およびRDW方位面積率AR2の条件を満足することができず、ひいては電池特性が低くなっているものと推察される。
そして、比較例4−22は、電池評価1としての初回充電容量が本例の実施例4−1の441mAhと比較して351mAhと低く、電池評価2としての維持率も、実施例4−1の32%の半分以下の13%である。
このように、比較例4−22は、電池評価における特性が実施例より劣っている。
すなわち、本製造方法(工程A)の特徴である第2中間焼鈍において、特定の粒界の優先移動を抑制し、ランダム化した再結晶組織を得るために到達温度を銅合金の再結晶温度の上限より高い温度としたとしても、第2中間焼鈍の昇温速度を高めずに、0.2〜1.8°C/秒としたことから、縞状凹凸領域面積率AR1およびRDW方位面積率AR2の条件を満足することができず、ひいては電池特性が低くなっているものと推察される。
そして、比較例4−23は、電池評価1としての初回充電容量が本例の実施例4−1の441mAhと比較して326mAhと低く、電池評価2としての維持率も、実施例4−1の32%より半分以下の11%である。
このように、比較例4−23は、電池評価における特性が実施例より劣っている。
すなわち、本製造方法の特徴である、最終焼鈍の前に、本製造方法(工程A)の特徴である、再結晶前駆現象の時間を与えないように昇温速度を高め、かつ特定の粒界の優先移動を抑制し、ランダム化した再結晶組織を得るために到達温度を銅合金の再結晶温度の上限より高い温度とする第2中間焼鈍を行っていないことから、縞状凹凸領域面積率AR1およびRDW方位面積率AR2の条件を満足することができず、ひいては電池特性が低くなっているものと推察される。
本実施形態に係る圧延銅箔(本例)として製造工程Aにより製造された実施例5−1〜5−2、製造工程E,F,G,H,Iで製造された比較例5−21〜5−25について評価を行った。
実施例5−2は、酸素量が6ppmで、酸素量の条件2〜200ppmを満足している。
本例の実施例5−1,5−2は、RDW方位面積率AR2が15%以下の条件を満足している。
そして、比較例5−21は、電池評価1としての初回充電容量が実施例5−1の451mAhと比較して385mAhと低く、電池評価2としての維持率も、実施例5−1の27%の1/3の9%である。
このように、比較例5−21は、電池評価における特性が実施例より劣っている。
すなわち、本製造方法の特徴である、第2中間焼鈍の昇温速度を再結晶前駆現象の時間を与えないような昇温速度にせず、かつ特定の粒界の優先移動を抑制し、ランダム化した再結晶組織を得るために到達温度を銅合金の再結晶温度の上限より高い温度としていないことから、縞状凹凸領域面積率AR1およびRDW方位面積率AR2の条件を満足することができず、ひいては電池特性が低くなっているものと推察される。
そして、比較例5−22は、電池評価1としての初回充電容量が実施例5−1の451mAhと比較して375mAhと低く、電池評価2としての維持率も、実施例5−1の27%の1/3以下の8%である。
このように、比較例5−22は、電池評価における特性が実施例より劣っている。
すなわち、本製造方法(工程A)の特徴である第2中間焼鈍において、特定の粒界の優先移動を抑制し、ランダム化した再結晶組織を得るために到達温度を銅合金の再結晶温度の上限より高い温度としたとしても、第2中間焼鈍の昇温速度を高めずに、0.2〜1.8°C/秒としたことから、縞状凹凸領域面積率AR1およびRDW方位面積率AR2の条件を満足することができず、ひいては電池特性が低くなっているものと推察される。
そして、比較例5−23は、電池評価1としての初回充電容量が実施例5−1の451mAhと比較して355mAhと低く、電池評価2としての維持率も、実施例5−1の27%の1/4以下の6%である。
このように、比較例5−23は、電池評価における特性が実施例より劣っている。
すなわち、本製造方法(工程A)の特徴である第2中間焼鈍において、再結晶前駆現象の時間を与えないように昇温速度を高めたとしても、特定の粒界の優先移動を抑制し、ランダム化した再結晶組織を得るために到達温度を銅合金の再結晶温度の上限より高い温度としていないことから、縞状凹凸領域面積率AR1およびRDW方位面積率AR2の条件を満足することができず、ひいては電池特性が低くなっているものと推察される。
そして、比較例5−24は、電池評価1としての初回充電容量が実施例5−1の451mAhと比較して365mAhと低く、電池評価2としての維持率も、実施例5−1の27%の1/3の9%である。
このように、比較例5−24は、電池評価における特性が実施例より劣っている。
すなわち、本製造方法(工程A)の特徴である最終の中間焼鈍において、特定の粒界の優先移動を抑制し、ランダム化した再結晶組織を得るために到達温度を銅合金の再結晶温度の上限より高い温度としていないことから、縞状凹凸領域面積率AR1およびRDW方位面積率AR2の条件を満足することができず、ひいては電池特性が低くなっているものと推察される。
そして、比較例5−25は、電池評価1としての初回充電容量が実施例5−1の451mAhと比較して370mAhと低く、電池評価2としての維持率も、実施例5−1の27%より1/4以下の6%である。
このように、比較例5−25は、電池評価における特性が実施例より劣っている。
すなわち、本製造方法の特徴である、最終焼鈍の前に、本製造方法(工程A)の特徴である、再結晶前駆現象の時間を与えないように昇温速度を高め、かつ特定の粒界の優先移動を抑制し、ランダム化した再結晶組織を得るために到達温度を銅合金の再結晶温度の上限より高い温度とする第2中間焼鈍を行っていないことから、縞状凹凸領域面積率AR1およびRDW方位面積率AR2の条件を満足することができず、ひいては電池特性が低くなっているものと推察される。
一方、製造工程E〜Iで製造された比較例は、縞状凹凸領域の面積率AR1やRDW方位面積率AR2が規定の条件を満足せず、電池評価結果が劣った。
また、表6に示す純銅系に対して、表2〜表5の合金系の方が良好な電池特性を示すものといえる。
11・・・正極
12・・・負極
13・・・正極集電体
14・・・負極集電体
15・・・セパレータ
16・・・正極側電池缶
17・・・負極側電池缶
18・・・絶縁パッキング
20・・・圧延銅箔
また、Cu−Ni−Si系の圧延銅箔は、副添加成分となるSn、Zn、Mn、Mg、Coから少なくとも1種を合計で0.005〜0.9mass%含有する。
なお、Cu−Ni−Si系の圧延銅箔は、主成分を除く残部、または主成分および副添加成分を除く残部が不可避不純物により形成されている。
Claims (17)
- 圧延により形成した銅または銅合金からなる圧延銅箔であって、
表面の結晶方位において、RDW方位{012}<100>方位から13°以内の面積率が15%以下である二次電池集電体用圧延銅箔。 - 圧延方向に対して60°〜120°の方向の縞状模様の表面凹凸が見られる領域の面積率が60%以上である請求項1に記載の二次電池集電体用圧延銅箔。
- 主成分としてCrおよびZrのうちの少なくとも一方を含むCu−(Cr,Zr)系の銅合金であって、主成分となるCr、Zrのうち少なくとも1種を合計で0.01〜0.9mass%含有する
請求項1または2記載の二次電池集電体用圧延銅箔。 - 副添加成分となるSn、Zn、Si、Mn、Mgから少なくとも1種を合計で0.01〜0.45mass%含有する
請求項3記載の二次電池集電体用圧延銅箔。 - 主成分としてAgを含むCu−Ag系の銅合金であって、主成分となるAgを合計で0.01〜0.9mass%含有する
請求項1または2記載の二次電池集電体用圧延銅箔。 - 副添加成分となるSn、Zn、Si、Mn、Mgから少なくとも1種を合計で0.01〜0.45mass%含有する
請求項5記載の二次電池集電体用圧延銅箔。 - 主成分としてSnを含むCu−Sn系の銅合金であって、主成分となるSnを合計で0.01〜4.9mass%含有する
請求項1または2記載の二次電池集電体用圧延銅箔。 - 副添加成分となるZn、Si、P、Mgから少なくとも1種を合計で0.01〜0.45mass%含有する
請求項7記載の二次電池集電体用圧延銅箔。 - 主成分としてNiおよびSiを含むCu−Ni−Si系の銅合金であって、主成分となるNiを1.4〜4.8mass%、Siを0.2〜1.3mass%含有する
請求項1または2記載の二次電池集電体用圧延銅箔。 - 副添加成分となるSn、Zn、Si、Cr、Mn、Mg、Coから少なくとも1種を合計で0.005〜0.9mass%含有する
請求項9記載の二次電池集電体用圧延銅箔。 - 酸素を含む純銅系であって、酸素量が2〜200ppmである
請求項1または2記載の二次電池集電体用圧延銅箔。 - 主成分を除く残部、または主成分および副添加成分を除く残部が不可避不純物により形成されている
請求項3から11のいずれか一に記載の二次電池集電体用圧延銅箔。 - 請求項1から12のいずれか一に記載の二次電池集電体用圧延銅箔を製造する圧延銅箔の製造方法であって、
被圧延材に対して再結晶温度以上に加熱して熱間圧延を行う熱間圧延工程と、
前記熱間圧延工程後に、再結晶が生じない温度下で冷間圧延を行う少なくとも2回の中間冷間圧延工程と、
前記中間冷間圧延工程の間に、所定の温度下でかつ昇温速度で中間的な焼きなしを行う少なくとも1回の中間焼鈍工程と、
最終回の前記中間冷間圧延工程の後に、所定の温度下でかつ所定の昇温速度で最終的な焼きなましを行う最終焼鈍工程と、を含み、
前記最終焼鈍工程に入る前に行われる前記中間焼鈍工程において、
前記昇温速度が、再結晶前駆現象の時間を与えない速度に設定され、
到達温度が、特定の粒界の優先移動を抑制し、ランダム化した再結晶組織が得られる高い温度に設定される
二次電池集電体用圧延銅箔の製造方法。 - 前記最終焼鈍工程に入る前に行われる前記中間焼鈍工程において、
前記到達温度が、銅合金の再結晶温度の上限より高い温度である
請求項13記載の二次電池集電体用圧延銅箔の製造方法。 - 前記最終焼鈍工程に入る前に行われる前記中間焼鈍工程において、
前記昇温速度が、2°C/秒以上であり、
前記到達温度が800°C以上の温度である
請求項13または14記載の二次電池集電体用圧延銅箔の製造方法。 - 前記熱間圧延工程の後に冷間圧延を行う第1中間冷間圧延工程と、
上記第1中間冷間圧延工程に続いて、中間的な焼鈍を行う第1中間焼鈍工程と、
前記第1中間焼鈍工程に続いて冷間圧延を行う第2中間冷間圧延工程と、
上記第2中間冷間圧延工程に続いて、中間的な焼鈍を行う第2中間焼鈍工程と、
前記第2中間焼鈍工程に続いて冷間圧延を行う第3中間冷間圧延工程と、を含み、
前記最終焼鈍工程は、
前記第3中間冷間圧延工程に続いて行われ、
前記第2中間焼鈍工程が、
前記最終焼鈍工程に入る前に行われる前記中間焼鈍工程であって、
前記昇温速度が、再結晶前駆現象の時間を与えない速度に設定され、
到達温度が、特定の粒界の優先移動を抑制し、ランダム化した再結晶組織が得られる高い温度に設定される
請求項13から15のいずれか一に記載の二次電池集電体用圧延銅箔の製造方法。 - 前記熱間圧延の工程の前に、
前記被圧延材に対して均質化熱処理を行う均質化熱処理工程を含む
請求項13から16のいずれか一に記載の二次電池集電体用圧延銅箔の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013505226A JP5480444B2 (ja) | 2011-08-05 | 2012-08-06 | 二次電池集電体用圧延銅箔およびその製造方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011171983 | 2011-08-05 | ||
JP2011171983 | 2011-08-05 | ||
PCT/JP2012/069981 WO2013021970A1 (ja) | 2011-08-05 | 2012-08-06 | 二次電池集電体用圧延銅箔およびその製造方法 |
JP2013505226A JP5480444B2 (ja) | 2011-08-05 | 2012-08-06 | 二次電池集電体用圧延銅箔およびその製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5480444B2 JP5480444B2 (ja) | 2014-04-23 |
JPWO2013021970A1 true JPWO2013021970A1 (ja) | 2015-03-05 |
Family
ID=47668477
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013505226A Active JP5480444B2 (ja) | 2011-08-05 | 2012-08-06 | 二次電池集電体用圧延銅箔およびその製造方法 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP5480444B2 (ja) |
KR (1) | KR101924250B1 (ja) |
CN (1) | CN103732767B (ja) |
TW (1) | TWI556488B (ja) |
WO (1) | WO2013021970A1 (ja) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6182372B2 (ja) * | 2013-07-10 | 2017-08-16 | 古河電気工業株式会社 | 二次電池集電体用銅合金圧延箔およびその製造方法 |
EP3026145A4 (en) * | 2013-07-23 | 2017-04-12 | JX Nippon Mining & Metals Corporation | Treated surface copper foil, copper foil with carrier, substrate, resin substrate, printed circuit board, copper clad laminate, and printed circuit board manufacturing method |
CN104630543B (zh) * | 2015-01-23 | 2017-06-16 | 上海康成铜业集团有限公司 | 一种换向器用低银铜镧合金及制备方法 |
CN108400338B (zh) * | 2017-02-03 | 2021-11-30 | Jx金属株式会社 | 表面处理铜箔以及使用其的集电体、电极及电池 |
KR102334718B1 (ko) * | 2017-02-17 | 2021-12-06 | 후루카와 덴키 고교 가부시키가이샤 | 저항재용 구리 합금 재료 및 그 제조 방법, 및 저항기 |
JP6790153B2 (ja) * | 2019-03-04 | 2020-11-25 | Jx金属株式会社 | 二次電池負極集電体用圧延銅箔、それを用いた二次電池負極集電体及び二次電池並びに二次電池負極集電体用圧延銅箔の製造方法 |
CN110252972B (zh) * | 2019-07-06 | 2021-11-30 | 湖北精益高精铜板带有限公司 | 高强高导微合金铜箔及其加工方法 |
CN113369301A (zh) * | 2021-04-30 | 2021-09-10 | 重庆材料研究院有限公司 | 用于铜网制作的压延铜箔及其制备方法 |
WO2024014173A1 (ja) * | 2022-07-14 | 2024-01-18 | Jx金属株式会社 | 圧延銅箔、銅張積層板、銅張積層板の製造方法、フレキシブルプリント配線板の製造方法及び電子部品の製造方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002294368A (ja) * | 2001-03-30 | 2002-10-09 | Kobe Steel Ltd | 端子・コネクタ用銅合金及びその製造方法 |
JP2008106356A (ja) * | 2006-09-27 | 2008-05-08 | Dowa Metaltech Kk | 銅合金板材およびその製造法 |
JP2009215604A (ja) * | 2008-03-10 | 2009-09-24 | Hitachi Cable Ltd | 銅箔とその製造方法 |
JP2009242871A (ja) * | 2008-03-31 | 2009-10-22 | Nippon Mining & Metals Co Ltd | 高強度高導電性二相銅合金箔 |
WO2011068135A1 (ja) * | 2009-12-02 | 2011-06-09 | 古河電気工業株式会社 | 銅合金板材およびその製造方法 |
JP2011117034A (ja) * | 2009-12-02 | 2011-06-16 | Furukawa Electric Co Ltd:The | 銅合金材料 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4428715B2 (ja) * | 2006-09-29 | 2010-03-10 | 日鉱金属株式会社 | 銅合金箔 |
JP4981748B2 (ja) * | 2007-05-31 | 2012-07-25 | 古河電気工業株式会社 | 電気・電子機器用銅合金 |
JP2009079282A (ja) * | 2007-09-27 | 2009-04-16 | Nikko Kinzoku Kk | 析出硬化型銅合金箔 |
JP5245813B2 (ja) * | 2008-12-25 | 2013-07-24 | 日立電線株式会社 | 圧延銅箔 |
JP2010150597A (ja) * | 2008-12-25 | 2010-07-08 | Hitachi Cable Ltd | 圧延銅箔 |
KR101291012B1 (ko) * | 2009-01-09 | 2013-07-30 | 미쓰비시 신도 가부시키가이샤 | 고강도 고도전 동합금 압연판 및 그 제조 방법 |
JP5520533B2 (ja) * | 2009-07-03 | 2014-06-11 | 古河電気工業株式会社 | 銅合金材およびその製造方法 |
KR101953412B1 (ko) * | 2011-08-05 | 2019-02-28 | 후루카와 덴키 고교 가부시키가이샤 | 이차전지 집전체용 압연 동박 및 그 제조방법 |
CN102851527B (zh) | 2012-09-07 | 2014-05-07 | 江西理工大学 | 一种铜银镁合金接触线及其制备方法 |
-
2012
- 2012-08-06 TW TW101128381A patent/TWI556488B/zh active
- 2012-08-06 KR KR1020147005987A patent/KR101924250B1/ko active IP Right Grant
- 2012-08-06 WO PCT/JP2012/069981 patent/WO2013021970A1/ja active Application Filing
- 2012-08-06 JP JP2013505226A patent/JP5480444B2/ja active Active
- 2012-08-06 CN CN201280038733.3A patent/CN103732767B/zh not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002294368A (ja) * | 2001-03-30 | 2002-10-09 | Kobe Steel Ltd | 端子・コネクタ用銅合金及びその製造方法 |
JP2008106356A (ja) * | 2006-09-27 | 2008-05-08 | Dowa Metaltech Kk | 銅合金板材およびその製造法 |
JP2009215604A (ja) * | 2008-03-10 | 2009-09-24 | Hitachi Cable Ltd | 銅箔とその製造方法 |
JP2009242871A (ja) * | 2008-03-31 | 2009-10-22 | Nippon Mining & Metals Co Ltd | 高強度高導電性二相銅合金箔 |
WO2011068135A1 (ja) * | 2009-12-02 | 2011-06-09 | 古河電気工業株式会社 | 銅合金板材およびその製造方法 |
JP2011117034A (ja) * | 2009-12-02 | 2011-06-16 | Furukawa Electric Co Ltd:The | 銅合金材料 |
Also Published As
Publication number | Publication date |
---|---|
TW201316589A (zh) | 2013-04-16 |
CN103732767B (zh) | 2016-08-31 |
CN103732767A (zh) | 2014-04-16 |
KR101924250B1 (ko) | 2018-11-30 |
JP5480444B2 (ja) | 2014-04-23 |
TWI556488B (zh) | 2016-11-01 |
WO2013021970A1 (ja) | 2013-02-14 |
KR20140053285A (ko) | 2014-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5480444B2 (ja) | 二次電池集電体用圧延銅箔およびその製造方法 | |
JP5567210B2 (ja) | 二次電池負極集電体用圧延銅箔およびその製造方法 | |
KR101912767B1 (ko) | 전극 집전체용 알루미늄 합금호일 및 제조 방법 | |
KR101314696B1 (ko) | 집전체용 알루미늄 합금박 및 그 제조 방법 | |
EP2657359B1 (en) | Electrode current collector and manufacturing method thereof | |
JP4799701B1 (ja) | 電子材料用Cu−Co−Si系銅合金条及びその製造方法 | |
US11108052B2 (en) | Rolled copper foil for negative electrode current collector of secondary battery, negative electrode of secondary battery and secondary battery using the rolled copper, and method for manufacturing rolled copper foil for negative electrode current collector of secondary battery | |
KR20160075604A (ko) | 전극 집전체용 알루미늄 합금박 및 그 제조방법 | |
EP2658017B1 (en) | Aluminum alloy foil for electrode current collectors and manufacturing method thereof | |
JP5791720B2 (ja) | 電極集電体用アルミニウム合金箔及びその製造方法 | |
JP6220773B2 (ja) | 電極集電体用アルミニウム合金箔の製造方法 | |
CN102899520A (zh) | 轧制铜箔及其制造方法、使用其的锂离子二次电池负极 | |
JP6058915B2 (ja) | 二次電池負極集電体用圧延銅箔又は圧延銅合金箔、それを用いたリチウムイオン二次電池用負極材及びリチウムイオン二次電池 | |
JP2009205888A (ja) | リチウム二次電池用負極及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140121 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140213 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5480444 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |