JPWO2011148790A1 - Film defect inspection apparatus, defect inspection method, and release film - Google Patents

Film defect inspection apparatus, defect inspection method, and release film Download PDF

Info

Publication number
JPWO2011148790A1
JPWO2011148790A1 JP2011538755A JP2011538755A JPWO2011148790A1 JP WO2011148790 A1 JPWO2011148790 A1 JP WO2011148790A1 JP 2011538755 A JP2011538755 A JP 2011538755A JP 2011538755 A JP2011538755 A JP 2011538755A JP WO2011148790 A1 JPWO2011148790 A1 JP WO2011148790A1
Authority
JP
Japan
Prior art keywords
film
polarizing plate
angle
defect inspection
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011538755A
Other languages
Japanese (ja)
Other versions
JP5944165B2 (en
Inventor
克行 植木
克行 植木
和久 宮原
和久 宮原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JPWO2011148790A1 publication Critical patent/JPWO2011148790A1/en
Application granted granted Critical
Publication of JP5944165B2 publication Critical patent/JP5944165B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/896Optical defects in or on transparent materials, e.g. distortion, surface flaws in conveyed flat sheet or rod
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details
    • G01N2021/8908Strip illuminator, e.g. light tube
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details
    • G01N21/8903Optical details; Scanning details using a multiple detector array

Abstract

長尺物のフィルムの欠陥を検出する検査装置であって、前記フィルムの一方面側に前記フィルムを照明する照明手段と、前記照明手段と前記フィルムとの間に設けられた第1の偏光板と、前記フィルムの他方面側に設けられた第2の偏光板と、前記フィルムの他方面側に設けられ、前記照明手段から照明され前記第1の偏光板、前記フィルムおよび前記第2の偏光板を透過してきた透過光を受光する受光手段とを有し、前記第1の偏光板の角度を前記第1の偏光板の面内で、前記第2の偏光板の角度を前記第2の偏光板の面内でそれぞれ独自に調整する角度調整手段を有することを特徴とする、フィルムの欠陥検査装置とする。An inspection apparatus for detecting defects in a long film, wherein the illumination means illuminates the film on one side of the film, and a first polarizing plate provided between the illumination means and the film A second polarizing plate provided on the other surface side of the film, and provided on the other surface side of the film and illuminated from the illuminating means, the first polarizing plate, the film and the second polarized light. Light receiving means for receiving transmitted light transmitted through the plate, the angle of the first polarizing plate within the plane of the first polarizing plate, and the angle of the second polarizing plate with the second A defect inspection apparatus for a film, characterized by having an angle adjusting means for adjusting independently in the plane of the polarizing plate.

Description

本発明は、被検査フィルムの光学的欠陥検査を簡易かつ容易に行い、特に、偏光板製造工程に用いる偏光板離型フィルムの偏光板加工処理前において、欠陥検査を連続的に行う偏光板離型フィルムの欠陥検査装置および欠陥検査方法の技術分野に属する。   The present invention performs simple and easy optical defect inspection of a film to be inspected, and in particular, polarizing plate separation for performing defect inspection continuously before polarizing plate processing of a polarizing plate release film used in a polarizing plate production process. The present invention belongs to the technical field of defect inspection apparatus and defect inspection method for mold film.

近年、従来のディスプレイであるCRTに比べ薄型軽量化、低消費電力、高画質化の利点を有する液晶ディスプレイ(LCD)の需要が急速に拡大しており、とくに、大画面モニターや32インチ以上といった大画面TV用途のLCDが急速に伸びている。LCDの大画面化に伴って、バックライトの輝度を上げることや、輝度を向上させる機能性フィルムを組み込むことなどにより、大画面でも輝度を十分確保したLCDとする場合が多い。このような高輝度タイプのLCDでは、輝度が高いゆえにディスプレイ中に存在する小さな欠点が問題となる場合が多く、偏光板、位相差板といった光学特性を有する構成部材においては、これまでのLCDでは問題にならなかったようなサイズの欠点が問題となってきている。そのため、各光学部材の製造工程における欠点の発生を防ぐ一方で、欠点が発生したとしても欠点として確実に認知できるような検査性の向上も重要となってきている。   In recent years, the demand for liquid crystal displays (LCDs), which have the advantages of being thinner and lighter, lower power consumption, and higher image quality than the conventional CRT, has been rapidly increasing. LCDs for large-screen TV applications are growing rapidly. In many cases, the LCD has a sufficiently large brightness even on a large screen by increasing the brightness of the backlight or incorporating a functional film for improving the brightness as the LCD becomes larger. In such a high-brightness type LCD, since the brightness is high, small defects existing in the display often become a problem, and in components having optical characteristics such as a polarizing plate and a retardation plate, The disadvantage of the size that did not become a problem has become a problem. Therefore, while preventing the occurrence of defects in the manufacturing process of each optical member, it is also important to improve the inspection property so that even if a defect occurs, the defect can be reliably recognized as a defect.

偏光板の欠点検査はクロスニコル法による目視検査が一般的であるが、32インチ以上といった大画面TV用に使用する偏光板では、クロスニコル法を利用した自動検査器による検査も種々検討されている。   The defect inspection of the polarizing plate is generally a visual inspection by the crossed Nicols method, but for polarizing plates used for large screen TVs of 32 inches or more, various inspections by an automatic inspection device using the crossed Nicols method have been studied. Yes.

このクロスニコル法は2枚の偏光板をその配向主軸を直交させて暗視野をつくり、その間にフィルムなどの測定対象品を挟んで透過光で観察する方法である。クロスニコルに配置することで、仮に欠陥が存在しなければ撮像部から全面黒の画像が入力されるが、欠陥が存在すれば、その部分が黒にならない。つまり、偏光板中に異物や欠点があれば輝点として現れるので、欠点検査ができるというものである。ここで、偏光板には粘着剤層を介して一軸または二軸延伸した配向ポリエチレンテレフタレートフィルムを離型フィルムとして貼り合わせているので、この離型フィルムの光学的欠点が加わると、離型フィルムの輝点が加わり、欠点検査の障害となる。これまでに、離型フィルム中の異物や、表面のキズが欠点検査時の輝点となることは知られている。   The crossed Nicols method is a method in which two polarizing plates are made to have a dark field with their orientation main axes orthogonal, and a measurement object such as a film is sandwiched between them to observe with transmitted light. By arranging in crossed Nicols, if there is no defect, a black image is input from the imaging unit, but if there is a defect, that portion will not become black. In other words, if there is a foreign matter or a defect in the polarizing plate, it appears as a bright spot, so that the defect inspection can be performed. Here, since the oriented polyethylene terephthalate film uniaxially or biaxially stretched through the pressure-sensitive adhesive layer is bonded to the polarizing plate as a release film, when the optical defect of this release film is added, A bright spot is added, which becomes an obstacle to defect inspection. It has been known so far that foreign matters in the release film and scratches on the surface become bright spots during defect inspection.

しかしながら、配向フィルムは薄膜化の観点からも製法としても有利であるが、延伸による配向に起因した複屈折(位相差)を有するため、入射する直線偏光は透過によって楕円偏光となってしまい、実質的にはクロスニコルの状態にはならない。つまり、2枚の偏光板を直交させるだけでは、撮像部に入力される可視光の受光量がフィルムの複屈折によって影響されてしまう。
延伸によって製造されるフィルムにおいては、特許文献1に開示されるように、延伸端部に対して中央部が遅れて延伸されることによるボーイング(bowing)という現象が生じる。これは、端部を把持した状態での加熱延伸により、製造されるフィルムの中央部が自重や熱収縮応力によって重力方向や製造工程の進行方向に対して引っ張られ垂れ下がることにより、工程内のフィルムが懸垂線(カテナリー曲線)を構成することに起因する現象である。このため、配向フィルムの複屈折は、特許文献1における二色性と同様に、フィルム幅方向で異なる。その結果、フィルムの製造時の幅方向における位置により、フィルムの中央部と端部とでフィルム中に存在する欠陥検査を精度良く行えない部位が存在するという問題が生じていた。
However, the oriented film is advantageous from the viewpoint of thinning, but also has a birefringence (phase difference) due to orientation due to stretching, so that incident linearly polarized light becomes elliptically polarized light by transmission, In reality, it will not be in a crossed Nicol state. That is, if the two polarizing plates are simply orthogonal, the amount of visible light input to the imaging unit is affected by the birefringence of the film.
In a film manufactured by stretching, as disclosed in Patent Document 1, a phenomenon called bowing occurs due to stretching of the central portion with respect to the stretched end portion. This is because the film in the process is drawn by heating and stretching in a state where the end is gripped, and the central part of the film to be manufactured is pulled and hangs down due to its own weight or thermal shrinkage stress in the direction of gravity or the direction of progress of the manufacturing process. Is a phenomenon caused by the construction of a catenary curve. For this reason, the birefringence of the oriented film differs in the film width direction as in the dichroism in Patent Document 1. As a result, the position in the width direction at the time of manufacture of a film had the problem that the site | part which cannot perform the defect test | inspection which exists in a film with the center part and edge part of a film with a sufficient precision existed.

かかる問題を解決したフィルムの欠陥検出装置として、下記特許文献2に開示される検査装置が公知である。この欠陥検査装置は、光源と撮像部の光路上の間に検査用偏光板を有し、フィルムの複屈折(位相差)をキャンセルするために、撮像部に入力される可視光の受光量が最小値となるよう、検査用偏光板の相対角度位置を調整し、クロスニコル状態で、偏光板付きフィルム中の欠陥を検査する装置である。   As a film defect detection apparatus that solves such a problem, an inspection apparatus disclosed in Patent Document 2 below is known. This defect inspection apparatus has a polarizing plate for inspection between the light source and the optical path of the imaging unit, and in order to cancel the birefringence (phase difference) of the film, the amount of received visible light input to the imaging unit is This is an apparatus for inspecting defects in a film with a polarizing plate in a crossed Nicol state by adjusting the relative angular position of the polarizing plate for inspection so as to be the minimum value.

しかしながら、上記特許文献2では、幅方向で複屈折のバラツキを有するフィルムを検査する場合においては、幅方向に複数台の撮像部および偏光板を有する必要がある。本発明者らの知見によれば、この時、撮像部に入力される可視光の受光量が最小値となるよう偏光板角度を調整するだけでは、撮像部位置毎つまり幅方向で均一な受光量を得ることが難しく、例えば、フィルム幅方向でフィルム端部と中央部の受光量レベルに差が生じてしまう。そのため、幅方向で複屈折のバラツキを有するフィルムを検査する場合、同時に精度良く欠陥検査を行うことができない。   However, in Patent Document 2, when inspecting a film having birefringence variation in the width direction, it is necessary to have a plurality of imaging units and polarizing plates in the width direction. According to the knowledge of the present inventors, at this time, even if the polarizing plate angle is adjusted so that the received light amount of visible light input to the imaging unit becomes the minimum value, uniform light reception at every imaging unit position, that is, in the width direction. It is difficult to obtain the amount, and for example, a difference occurs in the light receiving amount level between the film end and the center in the film width direction. Therefore, when inspecting a film having birefringence variation in the width direction, it is impossible to perform defect inspection with high accuracy at the same time.

さらに、本発明者らの知見によれば、大きな光量変化をもたらす欠陥はともかく、小さな光量変化しかもたらさない欠陥の場合には、クロスニコル検査時の視野が最も暗くなるように偏光板を配置した場合にはコントラスト差がさらに小さくなり検出が困難となる。   Furthermore, according to the knowledge of the present inventors, in the case of a defect that causes only a small light amount change, a polarizing plate is arranged so that the field of view at the time of crossed Nicol inspection is the darkest, regardless of the defect that causes a large light amount change. In such a case, the contrast difference is further reduced, making detection difficult.

特公昭39−029214号公報Japanese Examined Patent Publication No. 39-029214 特開2007―213016号公報Japanese Patent Laid-Open No. 2007-213016

本発明の目的は、フィルム幅方向に複屈折のバラツキを有するフィルムにおいても精度良く欠陥検査を行うことができ、また欠陥部と正常部とのコントラストを大きくし精度良く検査可能な欠陥検査装置を提供することにある。   An object of the present invention is to provide a defect inspection apparatus capable of accurately inspecting defects even in a film having birefringence variations in the film width direction, and increasing the contrast between a defective portion and a normal portion and inspecting with high accuracy. It is to provide.

上記目的を達成するために、本発明によれば、ある幅を有する長尺物のフィルムの欠陥を検出する検査装置であって、前記フィルムの一方面側に前記フィルムを照明する照明手段と、前記照明手段と前記フィルムとの間に設けられた第1の偏光板と、前記フィルムの他方面側に設けられた第2の偏光板と、前記フィルムの他方面側に設けられ、前記照明手段から照明され前記第1の偏光板、前記フィルムおよび前記第2の偏光板を透過してきた透過光を受光する受光手段とを有し、前記第1の偏光板の角度を前記第1の偏光板の面内で、前記第2の偏光板の角度を前記第2の偏光板の面内でそれぞれ独自に調整する角度調整手段を有することを特徴とする、フィルムの欠陥検査装置が提供される。   In order to achieve the above object, according to the present invention, there is provided an inspection apparatus for detecting a defect of a long film having a certain width, and illumination means for illuminating the film on one side of the film; A first polarizing plate provided between the illumination unit and the film; a second polarizing plate provided on the other side of the film; and the illumination unit provided on the other side of the film. Light receiving means for receiving transmitted light transmitted through the first polarizing plate, the film, and the second polarizing plate, and the angle of the first polarizing plate is set to the angle of the first polarizing plate. The film defect inspection apparatus is characterized by having angle adjusting means for independently adjusting the angle of the second polarizing plate within the plane of the second polarizing plate within the plane of the second polarizing plate.

また、本発明の好ましい形態によれば、前記第2の偏光板および前記受光手段が前記フィルムの幅方向に複数配置されており、前記第2の角度調整手段が前記複数の第2の偏光板にそれぞれ設けられていることを特徴とする、フィルムの欠陥検査装置が提供される。   According to still another preferable aspect of the present invention, a plurality of the second polarizing plates and the light receiving means are arranged in the width direction of the film, and the second angle adjusting means is the plurality of second polarizing plates. A defect inspection apparatus for a film is provided.

また、本発明の好ましい形態によれば、前記第1の偏光板の角度を前記第1の面内で調整する角度調整手段は、前記第1の偏光板を回転させる際の支点として働く軸と、前記第1の偏光板の端部を力点として略回転方向に押し引きする直動機構とを有することを特徴とする、フィルムの欠陥検査装置が提供される。   According to a preferred embodiment of the present invention, the angle adjusting means for adjusting the angle of the first polarizing plate in the first plane includes an axis that functions as a fulcrum when rotating the first polarizing plate. And a linear motion mechanism that pushes and pulls the first polarizing plate in an approximately rotational direction using the end of the first polarizing plate as a power point.

また、本発明の好ましい形態によれば、前記第1、第2の偏光板の角度が1°以下の回転精度で少なくとも−8°〜+8°の範囲で調整されることを特徴とする、フィルムの欠陥検査装置が提供される。   According to a preferred embodiment of the present invention, the angle of the first and second polarizing plates is adjusted in a range of at least −8 ° to + 8 ° with a rotation accuracy of 1 ° or less. A defect inspection apparatus is provided.

また、本発明の別の形態によれば、ある幅を有する長尺物のフィルムの欠陥を検出する欠点検査方法であって、前記フィルムの一方面側に設けた照明手段により前記フィルムを照明し、前記照明手段と前記フィルムとの間に第1の偏光板を設け、前記フィルムの他方面側に第2の偏光板を設け、前記照明手段から照明され前記第1の偏光板、前記フィルムおよび前記第2の偏光板を透過してきた透過光を前記フィルムの他方面側に設けた受光手段により受光し、前記第1の偏光板の角度を前記第1の偏光板の面内で、前記第2の偏光板の角度を前記第2の偏光板の面内でそれぞれ独自に調整することを特徴とする、フィルムの欠陥検査方法が提供される。   According to another aspect of the present invention, there is provided a defect inspection method for detecting a defect in a long film having a certain width, wherein the film is illuminated by illumination means provided on one side of the film. The first polarizing plate is provided between the illumination unit and the film, the second polarizing plate is provided on the other surface side of the film, and the first polarizing plate, the film, and the film illuminated by the illumination unit are provided. The transmitted light transmitted through the second polarizing plate is received by a light receiving means provided on the other side of the film, and the angle of the first polarizing plate is set within the plane of the first polarizing plate. A film defect inspection method is provided, wherein the angle of each of the two polarizing plates is independently adjusted within the plane of the second polarizing plate.

また、本発明の好ましい形態によれば、前記第2の偏光板および前記受光手段を前記フィルムの幅方向に複数配置し、配置位置に応じて前記第2の偏光板の角度を独自に調整することを特徴とする、フィルムの欠陥検査方法が提供される。   According to a preferred embodiment of the present invention, a plurality of the second polarizing plates and the light receiving means are arranged in the width direction of the film, and the angle of the second polarizing plate is independently adjusted according to the arrangement position. A film defect inspection method is provided.

また、本発明の好ましい形態によれば、前記第1の偏光板の角度を前記第1の面内で調整する際に、前記第1の偏光板を回転させる際の支点として働く軸と、前記第1の偏光板の端部を力点として略回転方向に押し引きする直動機構によって、偏光板角度が1°以下の回転精度で微調整することを特徴とする、フィルムの欠陥検査方法が提供される。   According to a preferred embodiment of the present invention, when adjusting the angle of the first polarizing plate in the first plane, the axis serving as a fulcrum when rotating the first polarizing plate; Provided is a film defect inspection method characterized in that a polarizing plate angle is finely adjusted with a rotation accuracy of 1 ° or less by a linear motion mechanism that pushes and pulls in an approximately rotational direction with an end portion of a first polarizing plate as a force point. Is done.

また、本発明の好ましい形態によれば、前記フィルムの検査される領域において、前記第1、第2の偏光板の角度を前記受光手段における受光量が256階調で10〜30の範囲となるよう角度をずらして検査することを特徴とする、フィルムの欠陥検査方法が提供される。   According to a preferred embodiment of the present invention, in the region to be inspected of the film, the angle of the first and second polarizing plates is such that the amount of light received by the light receiving means is in the range of 10 to 30 with 256 gradations. Thus, a defect inspection method for a film is provided, which is characterized by inspecting at different angles.

また、本発明の好ましい形態によれば、前記フィルムの検査される領域において、前記第1、第2の偏光板の角度を前記受光手段における受光量が256階調で30〜50の範囲となるよう角度をずらして検査することを特徴とする、フィルムの欠陥検査方法が提供される。   According to a preferred embodiment of the present invention, in the region to be inspected of the film, the angle of the first and second polarizing plates is such that the amount of light received by the light receiving means is in the range of 30 to 50 with 256 gradations. Thus, a defect inspection method for a film is provided, which is characterized by inspecting at different angles.

また、本発明の好ましい形態によれば、前記フィルムの検査される領域において、前記第1、第2の偏光板の角度を前記受光手段における受光量が最小値となる状態から1〜2°の範囲でずらした状態から検査することを特徴とする、のフィルムの欠陥検査方法が提供される。   According to a preferred embodiment of the present invention, in the region to be inspected of the film, the angle of the first and second polarizing plates is set to 1 to 2 ° from the state where the amount of light received by the light receiving means becomes the minimum value. There is provided a film defect inspection method characterized by inspecting from a state shifted in range.

また、本発明の好ましい形態によれば、検査対象のフィルムにおいて、他の光学フィルムや光学部材を貼り合わせる前の離型フィルムの状態で欠陥検査を適用することを特徴とする、フィルムの欠陥検査方法が提供される。   Moreover, according to the preferable form of this invention, defect inspection of the film characterized by applying a defect inspection in the state of the release film before bonding another optical film and an optical member in the film to be inspected. A method is provided.

また、本発明の別の形態によれば、ある幅を有する長尺物のフィルムの欠陥を検出する検査装置であって、前記フィルムの一方面側に前記フィルムを照明する照明手段と、前記照明手段と前記フィルムとの間に設けられた第1の偏光板と、前記フィルムの他方面側に設けられた第2の偏光板と、前記フィルムの他方面側に設けられ、前記照明手段から照明され前記第1の偏光板、前記フィルムおよび前記第2の偏光板を透過してきた透過光を受光する受光手段とを有し、前記第1の偏光板の角度を前記第1の偏光板の面内で、前記第2の偏光板の角度を前記第2の偏光板の面内でそれぞれ独自に調整する角度調整手段を有することを特徴とする、フィルムの欠陥検査方法により欠陥検査を実施されたことを特徴とする離型フィルムが提供される。   According to another aspect of the present invention, there is provided an inspection apparatus for detecting a defect of a long film having a certain width, the illumination unit illuminating the film on one side of the film, and the illumination A first polarizing plate provided between the film and the film; a second polarizing plate provided on the other surface side of the film; and provided on the other surface side of the film and illuminated from the illumination device. Light receiving means for receiving transmitted light transmitted through the first polarizing plate, the film, and the second polarizing plate, and the angle of the first polarizing plate is set to the surface of the first polarizing plate. The defect inspection was carried out by the film defect inspection method, characterized in that it has angle adjusting means for independently adjusting the angle of the second polarizing plate within the plane of the second polarizing plate. A release film characterized by .

ここで偏光板とは、特定方向に振動している光だけを透過させる性質を持つ板状あるいはフィルム状のものを言う。   Here, the polarizing plate refers to a plate-like or film-like one having a property of transmitting only light vibrating in a specific direction.

ここで離型フィルムとは、偏光板や位相差版などの光学部材の製造や検査、出荷の際に、光学特性を失わないように保護するために貼り付けされ、使用時に剥がされる目的で用いられるフィルムである。この目的から、貼り付けに必要な粘着層を表面に設けてあってもよく、また使用時に剥がせるように離型層を表面に設けてあってもよい。   Here, the release film is used for the purpose of being attached to protect the optical properties so as not to lose the optical properties during the manufacture, inspection and shipment of optical members such as polarizing plates and retardation plates, and to be peeled off during use. Film. For this purpose, an adhesive layer necessary for pasting may be provided on the surface, or a release layer may be provided on the surface so that it can be peeled off during use.

ここで他の光学フィルムや光学部材を貼り合わせる前の離型フィルムの状態とは、偏光特性をもつ物質、つまり入射した偏光を変化させて透過・出力させるような物質を貼り合わせていない状態を指す。   Here, the state of the release film before bonding another optical film or optical member refers to a state in which a substance having polarization characteristics, that is, a substance that changes the incident polarized light and transmits / outputs it is not bonded. Point to.

本発明によれば、フィルム幅方向に複屈折のバラツキを有するフィルムにおいても精度良く欠陥検査を行うことができ、また欠陥部と正常部とのコントラストを大きくし精度良く検査可能な欠陥検査装置を行うことができる。   According to the present invention, a defect inspection apparatus that can accurately inspect defects even in a film having birefringence variation in the film width direction, and that can inspect with high accuracy by increasing the contrast between the defect portion and the normal portion. It can be carried out.

本発明の欠陥検出装置の一つの形態を示した概略斜視図である。It is the schematic perspective view which showed one form of the defect detection apparatus of this invention. 本発明の欠陥検出装置の一つの形態を示した別の概略斜視図である。It is another schematic perspective view which showed one form of the defect detection apparatus of this invention. 本発明の欠陥検出装置の一つの形態を示した概略断面図である。It is the schematic sectional drawing which showed one form of the defect detection apparatus of this invention. フィルム幅方向における偏光板角度とその際の受光量分布を示した模式図である。It is the schematic diagram which showed the polarizing plate angle in the film width direction, and the received light quantity distribution in that case. フィルム幅方向における偏光板角度とその際の受光量分布を示した別の模式図である。It is another schematic diagram which showed the polarizing plate angle in the film width direction, and the light-receiving amount distribution in that case. フィルム幅方向の各受光手段における受光量分布を示した模式図である。It is the schematic diagram which showed light reception amount distribution in each light receiving means of a film width direction. フィルム幅方向における偏光板角度とその際の受光量分布を示した別の模式図である。It is another schematic diagram which showed the polarizing plate angle in the film width direction, and the light-receiving amount distribution in that case. フィルム幅方向の各受光手段における受光量分布を示した別の模式図である。It is another schematic diagram which showed received light amount distribution in each light receiving means of a film width direction. 従来技術による欠点検出でのバックグラウンドノイズと欠点部の受光量の関係(a)、および本発明技術による欠点検出でのバックグラウンドノイズと欠点部の受光量の関係(b)を対比した模式図である。Schematic diagram comparing the relationship between the background noise in the defect detection according to the prior art and the received light amount of the defect part (a), and the relationship between the background noise and the received light amount of the defect part in the defect detection according to the present invention (b). It is. 本発明の欠陥検出装置において第1の偏光板を回転させる際の支点および力点の配置の一つの形態を示した模式図である。It is the schematic diagram which showed one form of arrangement | positioning of the fulcrum and power point at the time of rotating the 1st polarizing plate in the defect detection apparatus of this invention. 本発明の欠陥検出装置において第1の偏光板を略回転方向に押し引きする直動機構の一つの形態を示した模式図である。It is the schematic diagram which showed one form of the linear motion mechanism which pushes and pulls the 1st polarizing plate in a substantially rotational direction in the defect detection apparatus of this invention. 本発明の欠陥検出装置において第2の偏光板を回転させる際の支点および力点の配置の一つの形態を示した模式図である。It is the schematic diagram which showed one form of arrangement | positioning of the fulcrum and power point at the time of rotating the 2nd polarizing plate in the defect detection apparatus of this invention. 本発明の欠陥検出装置において第2の偏光板を回転させる機構の一つの形態を示した模式図(a)、およびそれによる第2の偏光板の回転の一つの形態を示した模式図(b)である。The schematic diagram (a) which showed one form of the mechanism which rotates a 2nd polarizing plate in the defect detection apparatus of this invention, and the schematic diagram (b) which showed one form of rotation of the 2nd polarizing plate by it ). 常温でのフィルム加工時に発生した表面欠陥を本発明の受光手段における受光量が256階調で10〜30の範囲として撮像した画像(a)、および256階調で30〜50の範囲として撮像した画像(a’)、ならびに、フィルム製造時や加熱時に発生した表面欠陥を本発明の受光手段における受光量が256階調で10〜30の範囲として撮像した画像(b)、および256階調で30〜50の範囲として撮像した画像(b’)である。An image (a) obtained by imaging a surface defect generated during film processing at room temperature in a range of 10 to 30 in 256 gradations and a range of 30 to 50 in 256 gradations. An image (a ′), an image (b) obtained by imaging the surface defect generated during film production or heating with the light receiving means of the present invention in the range of 10 to 30 in 256 gradations, and 256 gradations It is the image (b ') imaged as the range of 30-50.

以下、図面を用いて詳細に説明する。本発明の欠陥検査装置は、図1に示すように、フィルム面の検査される領域において、フィルムの一方面側に第1の偏光板を、他方面側に第2の偏光板をフィルムと平行に配置し、前記第1の偏光板を挟み、偏光板の外側からフィルムを照明する照明手段と、前記フィルムの他方面側において第1の偏光板、フィルムおよび第2の偏光板を透過してきた透過光を受光する受光手段とを有する。   Hereinafter, it explains in detail using a drawing. As shown in FIG. 1, the defect inspection apparatus of the present invention has a first polarizing plate on one side of the film and a second polarizing plate on the other side parallel to the film in the region to be inspected. And the illumination means for illuminating the film from the outside of the polarizing plate with the first polarizing plate interposed therebetween, and the first polarizing plate, the film and the second polarizing plate have been transmitted on the other side of the film Light receiving means for receiving the transmitted light.

本発明の欠陥検査装置が適用されるフィルムとしては、偏光板、位相差板といった光学部材の離型フィルムとして用いられるフィルム、具体的にはポリエチレンテレフタレート(PET)フィルムなどのプラスチックフィルムが挙げられる。   Examples of the film to which the defect inspection apparatus of the present invention is applied include a film used as a release film for an optical member such as a polarizing plate and a retardation plate, specifically, a plastic film such as a polyethylene terephthalate (PET) film.

また第1の偏光板について、適用できる偏光板は、フィルムを照明する照明手段からの光を余すことなく偏光できるサイズであれば特に限定されず、市販の偏光板が適用できるが照明手段からフィルムを照明する光を余すことなく十分に偏光させるために、照明手段の照明範囲を十分にカバーできるサイズである必要があり、好ましくはフィルムと平行な平面における大きさが照明手段よりも大きな偏光板を用いることが良い。さらに好ましくは、複数の照明手段をフィルムの幅方向に並べて用いる場合は、その照明手段の数と等しい数の偏光板を用いることにより、より高精度にクロスニコル光学系の調整が可能となる。   In addition, the polarizing plate that can be applied to the first polarizing plate is not particularly limited as long as it can be polarized without leaving the light from the illumination unit that illuminates the film, and a commercially available polarizing plate can be applied. In order to sufficiently polarize the light that illuminates the light, it is necessary to have a size that can sufficiently cover the illumination range of the illumination means, and preferably a polarizing plate having a larger size in a plane parallel to the film than the illumination means It is good to use. More preferably, when a plurality of illuminating means are used side by side in the film width direction, the crossed Nicols optical system can be adjusted with higher accuracy by using the same number of polarizing plates as the number of illuminating means.

また、第2の偏光板についても同様に、フィルムを透過し受光手段に入射する照明光を余すことなく偏光できるサイズであれば特に限定されず、市販の偏光板が適用できるが、好ましくは受光手段と同数の偏光板を用いて、かつそれぞれの偏光板を受光手段の受光部前面に配することにより、各受光手段ごとに偏光板の角度調整が可能となることから、より高精度にクロスニコル光学系の調整が可能となることが良い。   Similarly, the second polarizing plate is not particularly limited as long as it has a size capable of polarizing the illumination light that passes through the film and enters the light receiving means, and a commercially available polarizing plate can be applied. By using the same number of polarizing plates as each device and arranging each polarizing plate in front of the light receiving part of the light receiving device, the angle of the polarizing plate can be adjusted for each light receiving device, so crossing can be performed with higher accuracy. It is preferable that the Nicol optical system can be adjusted.

また、受光手段については、偏光板を介して欠点での照明手段からの散乱・反射光を受光できるものであれば特に限定されないが、コストや信号処理の容易さから、市販のCCDカメラあるいはCMOSカメラを用いることが好ましい。さらに好ましくは、設置スペースやカメラ1台あたりの撮像視野から、受光素子であるCCDあるいはCMOSが1直線状に並んでいるラインセンサカメラを用いることが好ましい。また、コスト、受光精度、検査範囲を考慮して、図2に示すように必要に応じて複数の受光手段を幅方向に並べて使用することも好ましい。   The light receiving means is not particularly limited as long as it can receive the scattered / reflected light from the illuminating means through a polarizing plate. However, a commercially available CCD camera or CMOS can be used because of cost and signal processing ease. It is preferable to use a camera. More preferably, it is preferable to use a line sensor camera in which CCDs or CMOSs as light receiving elements are arranged in a straight line from the installation space and the imaging field of view per camera. In consideration of cost, light receiving accuracy, and inspection range, it is also preferable to use a plurality of light receiving means arranged in the width direction as necessary as shown in FIG.

また、照明手段については、フィルムにおける検査範囲を均一に照明できるものが好ましく、例えば、ライン状に発光素子を並べたライン状のLED照明や、ロッド状の蛍光灯、またメタルハラロイドランプ等の光源からの光を光ファイバを用いてロッド状のライトガイドに導き、照明する方法が適用できる。特に照明光量が大きいことから、メタルハラロイドランプ光源からの光を光ファイバを用いてロッド状のライトガイドに導き、照明する方法が好ましい。この場合、特にフィルムの幅が大きく検査範囲が広い場合は、1本の長いライトガイドではコストが大きくなることから、コストや検査範囲、および受光手段の個数を考慮して、複数の照明手段をフィルムの幅方向に並べて使用しても良い。   The illumination means is preferably capable of uniformly illuminating the inspection range of the film, for example, a line-shaped LED illumination in which light-emitting elements are arranged in a line, a rod-shaped fluorescent lamp, a metal haloloid lamp, etc. A method of illuminating by guiding light from a light source to a rod-shaped light guide using an optical fiber can be applied. In particular, since the amount of illumination light is large, a method of illuminating by guiding light from a metal haloloid lamp light source to a rod-shaped light guide using an optical fiber is preferable. In this case, especially when the width of the film is large and the inspection range is wide, the cost of one long light guide increases. Therefore, in consideration of the cost, the inspection range, and the number of light receiving means, a plurality of illumination means are provided. They may be used side by side in the width direction of the film.

また、フィルムと第1の偏光板、第2の偏光板、照明手段、受光手段とのそれぞれの位置関係については、欠点での照明手段からの散乱・反射光を可能な限り強い強度で受光できるようにするために、図3に示すように1直線状に配置されることが好ましい。さらに好ましくは、検査対象のフィルムの面と前記直線が垂直であることが、設置の容易さ、保守性の観点から好ましい。   In addition, with respect to the positional relationship between the film and the first polarizing plate, the second polarizing plate, the illumination means, and the light receiving means, it is possible to receive scattered / reflected light from the illumination means due to defects with as strong an intensity as possible. In order to do so, it is preferable to arrange them in a straight line as shown in FIG. More preferably, the surface of the film to be inspected and the straight line are perpendicular to each other from the viewpoint of ease of installation and maintainability.

また、第1の偏光板と第2の偏光板の関係については、前記クロスニコル法におけるクロスニコルの状態で配置することにより、前記クロスニコル法と同様の方法で欠陥検査を行うことができる。その場合、仮に欠陥が存在しなければ撮像部から全面黒の画像が入力されるが、欠陥が存在すれば、その部分が黒にならない。つまり、偏光板中に異物や欠点があれば輝点として現れる。受光手段により得られた信号は、信号処理手段により処理され、欠点の有無の判定などの処理が行われる。   Moreover, about the relationship between a 1st polarizing plate and a 2nd polarizing plate, a defect inspection can be performed by the method similar to the said cross Nicol method by arrange | positioning in the state of the cross Nicol in the said cross Nicol method. In that case, if a defect does not exist, a black image is input from the imaging unit. However, if a defect exists, the portion does not become black. That is, if there are foreign matters or defects in the polarizing plate, they appear as bright spots. The signal obtained by the light receiving means is processed by the signal processing means, and processing such as determination of the presence or absence of defects is performed.

また、第1、第2の偏光板角度がそれぞれ独自に調整されることが好ましい。これは、幅方向で複屈折のバラツキを持つフィルムの場合、クロスニコルとなる第1、第2の偏光板の角度がフィルムの幅方向で異なるため、図4に示すように、フィルムの中心付近とフィルムの端付近とで複屈折(位相差)が異なることから、仮に第1の偏光板角度および第2の偏光板角度を幅方向でそれぞれ同様の角度とした場合、幅方向で最適なクロスニコルの条件にならないことから、受光手段へ入光する受光量に幅方向で差が生じてしまう。なお、図4においてL・C・Rとは、フィルムの進行方向に向かって左・中央・右を示す。   Further, it is preferable that the first and second polarizing plate angles are independently adjusted. This is because, in the case of a film having birefringence variations in the width direction, the angles of the first and second polarizing plates that are crossed Nicols are different in the width direction of the film. Since the birefringence (phase difference) differs between the film and the vicinity of the film edge, if the first polarizing plate angle and the second polarizing plate angle are set to the same angle in the width direction, an optimal cross in the width direction Since the Nicole condition is not satisfied, a difference occurs in the width direction in the amount of received light entering the light receiving means. In FIG. 4, L, C, and R indicate left, center, and right in the film traveling direction.

よって、図5に示すように、第1の偏光板角度と第2の偏光板角度を、フィルムの幅方向に対して、全ての受光手段においてそれぞれの受光量がもっとも少ない角度にそれぞれ調整することにより、幅方向で光学的に最適なクロスニコルの条件に近い状態が得られることからより好ましい。ここで、偏光板角度を調整するとは、第1、第2の偏光板ともに、フィルムの面と平行に、かつフィルムの走行方向に対して内側あるいは外側に回転させることを言う。また、調整される角度の方向や大きさは、フィルムの幅方向の偏光特性により異なるが、例えば図4に示すようにフィルムの幅方向の偏光特性がU字型になる場合は、U字型に合わせ、第1、第2の偏光板ともに中央を境に、フィルムの左側の偏光板とフィルムの右側の偏光板とでは回転させる方向が逆になる傾向があり、またフィルムの中央と比較し端部は最適な角度が大きくなる傾向がある。   Therefore, as shown in FIG. 5, the first polarizing plate angle and the second polarizing plate angle are adjusted to the angle at which each light receiving unit has the smallest amount of received light with respect to the width direction of the film. Is more preferable because a state close to the optically optimal crossed Nicols condition in the width direction can be obtained. Here, adjusting the polarizing plate angle means that both the first and second polarizing plates are rotated in parallel with the film surface and inward or outward with respect to the traveling direction of the film. Further, the direction and size of the angle to be adjusted differ depending on the polarization characteristics in the width direction of the film. For example, when the polarization characteristics in the width direction of the film are U-shaped as shown in FIG. Therefore, the first and second polarizing plates tend to rotate in the opposite direction between the polarizing plate on the left side of the film and the polarizing plate on the right side of the film. The end tends to have an optimum angle.

さらに好ましくは、前記第1の偏光板の角度を前記第1の面内で調整する角度調整手段は、前記第1の偏光板を回転させる際の支点として働く軸と、前記第1の偏光板の端部を力点として略回転方向に押し引きする直動機構とを有することが良い。これは、第1の偏光板は検査されるフィルムの全幅をカバーする必要から、大型LCDテレビ用など2mを超えるような光学フィルムに対しては、それ以上の幅を有する第1の偏光板を必要とすることに起因する。図10のようなこれほどに広く大きな第1の偏光板2を1°以下の回転精度で傾斜させるためには、単純なステッピングモータやサーボモータによる回転機構では回転角の位置決めや再現性に乏しく、図11のような直動機構15によって図10にあるような力点13を動かすことにより、支点14を軸に第1の偏光板2の端部を略回転方向に押し引きさせることが回転精度の面から好ましい。さらには、サーボモータによって直動機構15を駆動することが、停止精度のみならず、駆動動作の完了をフィードバックで確認する点や、大負荷時においてもトルクの安定性を確保する点で好ましい。   More preferably, the angle adjusting means for adjusting the angle of the first polarizing plate in the first plane includes an axis that serves as a fulcrum when rotating the first polarizing plate, and the first polarizing plate. It is preferable to have a linear motion mechanism that pushes and pulls in the direction of rotation in the direction of rotation with the end of the power point as a power point. This is because the first polarizing plate needs to cover the entire width of the film to be inspected, so for an optical film exceeding 2 m such as for a large LCD TV, the first polarizing plate having a width larger than that is used. Due to need. In order to incline such a large first polarizing plate 2 as shown in FIG. 10 with a rotation accuracy of 1 ° or less, the rotation mechanism using a simple stepping motor or servo motor has poor positioning and reproducibility of the rotation angle. 11, by moving the force point 13 as shown in FIG. 10 by the linear motion mechanism 15 as shown in FIG. 11, the end of the first polarizing plate 2 is pushed and pulled in the rotation direction about the fulcrum 14 as the rotational accuracy. From the viewpoint of Furthermore, it is preferable to drive the linear motion mechanism 15 by a servomotor not only in terms of stopping accuracy but also in terms of confirming the completion of the driving operation by feedback and ensuring torque stability even under heavy loads.

さらに好ましくは、受光手段の受光量をモニタリングすることにより、最適な角度となるようモーター等の稼動手段を用いて自動的に調整されることが良い。この時、偏光板角度がフィルムの幅方向の複屈折のバラツキの変化に対応する必要があることと、偏光板の調整精度が高い方がより完全なクロスニコルの状態に近づきより、結果的に高い検査精度が得られることから、第1、第2の偏光板角度が1°以下の回転精度で、−8°〜+8°の範囲で調整されることが好ましい。第2の偏光板角度の調整機構としては、図12および図13に見られるように、第2の偏光板3の端部を支点18を軸とした梃子状の機構により、より支点18に近い力点17にて駆動することが好ましい。これは、単純に第2の偏光板3の端部を直接ステッピングモータ、サーボモータなどの回転機構やそれらを用いた直動機構で駆動する場合に比べ、より支点18に近い力点17を駆動させることで、梃子の原理により少ない力、つまり図13における第2の偏光板を回転させる機構の駆動装置19のトルクが小さいものであっても、第2の偏光板を小さい力で大きく回転させることが可能となるためである。なお、この梃子となる部分については、図13に見られるような棒状のもので−8°〜+8°という非常に微少な角度調整には足りるが、駆動側同様に円盤を用いても同様の効果を得ることは可能である。   More preferably, by monitoring the amount of light received by the light receiving means, it is preferable to automatically adjust using an operating means such as a motor so that the optimum angle is obtained. At this time, the polarizing plate angle needs to correspond to the variation in the birefringence variation in the width direction of the film, and the higher the adjustment accuracy of the polarizing plate, the closer to the more complete crossed Nicols state, as a result Since high inspection accuracy can be obtained, the first and second polarizing plate angles are preferably adjusted in a range of −8 ° to + 8 ° with a rotation accuracy of 1 ° or less. As shown in FIGS. 12 and 13, the second polarizing plate angle adjusting mechanism is closer to the fulcrum 18 by a lever-shaped mechanism with the end of the second polarizing plate 3 as the fulcrum 18 as an axis. It is preferable to drive at the force point 17. This simply drives the force point 17 closer to the fulcrum 18 than when the end of the second polarizing plate 3 is directly driven by a rotation mechanism such as a stepping motor or servomotor or a linear motion mechanism using them. Therefore, even if the torque of the driving device 19 of the mechanism for rotating the second polarizing plate in FIG. 13 is small due to the principle of the lever, the second polarizing plate is rotated largely with a small force. This is because it becomes possible. In addition, the rod-shaped portion as shown in FIG. 13 is sufficient for adjusting the angle as very small as −8 ° to + 8 ° as shown in FIG. It is possible to obtain an effect.

さらに好ましくは、前記フィルムの検査される領域において、前記第1、第2の偏光板の角度を前記受光手段における受光量が256階調で10〜30の範囲となるよう角度をずらして検査することが良い。これにより、図14(a)(a’)にみられるように常温でのフィルム加工時に発生した表面欠陥をより高いピーク強度で鮮明にとらえることができる。   More preferably, in the region to be inspected of the film, the angle of the first and second polarizing plates is inspected by shifting the angle so that the amount of light received by the light receiving means is in the range of 10 to 30 in 256 gradations. That is good. As a result, as shown in FIGS. 14A and 14A, surface defects generated during film processing at room temperature can be clearly captured with higher peak intensity.

ならびに、さらに好ましくは、前記フィルムの検査される領域において、前記第1、第2の偏光板の角度を前記受光手段における受光量が256階調で30〜50の範囲となるよう角度をずらして検査することが良い。これにより、図14(b)(b’)にみられるようにフィルム製造時や加熱時に発生した表面欠陥をより広い幅の大きな像としてとらえることができる。   More preferably, in the region to be inspected of the film, the angle of the first and second polarizing plates is shifted so that the amount of light received by the light receiving means is in the range of 30 to 50 with 256 gradations. It is good to inspect. As a result, as shown in FIGS. 14B and 14B, surface defects generated during film production and heating can be captured as a wider image having a larger width.

さらに好ましくは、クロスニコルの状態から1〜2°の範囲で偏光板の角度をずらして設置することが好ましい。これは、上記の方法で第1、第2の偏光板角度をそれぞれ最適な角度に調整されることにより、幅方向で最適なクロスニコルの条件に近い状態とした場合でも、各受光手段においてクロスニコルの状態が異なることから、例えば受光手段の個数が5個の場合は図6に示すように、受光量のベースラインがフィルムの中心付近と端とで異なる受光量の分布が生じる。しかし、各受光手段は最適な偏光板角度に調整されているため、例えばフィルムの端付近の受光量のベースラインを下げ、中心付近に合わせることは困難である。そこで、図7に示すように各受光手段の前面に配されている第2の偏光板の角度を1〜2°の範囲でずらすことにより、受光量のベースラインを上げる方向に調整することで、ボーイングによる複屈折の曲線的な分布を有するフィルムに対しても、図8に示すようにそれぞれの受光手段の受光量を幅方向で均一化させ直線性を得ることが可能となる。   More preferably, it is preferable to install the polarizing plate by shifting the angle of the polarizing plate within a range of 1 to 2 ° from the crossed Nicol state. This is because the first and second polarizing plate angles are adjusted to the optimum angles by the above-described method, so that even when the cross-Nicol condition is close to the optimum in the width direction, the cross-sections of each light receiving means are crossed. Since the Nicole state is different, for example, when the number of light receiving means is 5, as shown in FIG. 6, the distribution of the received light amount is different between the vicinity of the center of the film and the end of the film. However, since each light receiving means is adjusted to an optimum polarizing plate angle, for example, it is difficult to lower the baseline of the amount of received light near the end of the film and adjust it to the vicinity of the center. Therefore, as shown in FIG. 7, by adjusting the angle of the received light amount in the direction of increasing the baseline of the received light amount by shifting the angle of the second polarizing plate arranged in front of each light receiving means within the range of 1 to 2 °. Even for a film having a curved distribution of birefringence due to bowing, as shown in FIG. 8, it is possible to obtain linearity by uniformizing the amount of light received by each light receiving means in the width direction.

これにより、フィルムの幅方向で検出感度を一定にすることが可能となり、図9(a)に示すような従来技術に比べて、本発明技術によって図9(b)にあるように欠点のない部分の受光量のベースラインがより明るい方向に調整されるとともに、空気層による光散乱分などで生じるバックグラウンドノイズがカバーされることでノイズNがN’へと低減でき、S/N比が上げられる。これにより、従来技術よりも欠点のない部分の受光量のベースラインに対して、欠点検知のための閾値を近づけることが可能となり、欠点によって閾値を超える受光量を検知する幅hもh’へとより広く確保できることから、より高精度かつより誤検出の少ない検査が可能となる。   This makes it possible to make the detection sensitivity constant in the width direction of the film, and there is no defect as shown in FIG. 9B by the technique of the present invention compared to the conventional technique as shown in FIG. 9A. The baseline of the received light amount of the part is adjusted in a brighter direction, and the background noise generated by light scattering by the air layer is covered, so that the noise N can be reduced to N ′ and the S / N ratio is increased. Raised. As a result, it becomes possible to bring the threshold for detecting the defect closer to the baseline of the received light amount in the portion having no defect than in the prior art, and the width h for detecting the received light amount exceeding the threshold due to the defect also becomes h ′. Therefore, it is possible to perform inspection with higher accuracy and fewer false detections.

[実施例1]
被検査サンプルとして東レ製 “ルミラー”[38R64]を用意した。
[Example 1]
“Lumiler” [38R64] manufactured by Toray was prepared as a sample to be inspected.

本発明の欠陥検査装置において、照明手段として250Wのメタルハライド(目白プレシジョン製 BMH-250A)を使用し、受光手段として分解能25μmのCCDカメラ(DALSA製 P3-80-8K-40)と第2の偏光板を組み合わせて複数配置し、被検査サンプルについて検査幅1255mmを撮像してベース受光量の確認を行った。   In the defect inspection apparatus of the present invention, a 250 W metal halide (BMH-250A manufactured by Mejiro Precision) is used as illumination means, a CCD camera (P3-80-8K-40 manufactured by DALSA) having a resolution of 25 μm and second polarization as light receiving means. A plurality of plates were combined, and an inspection width of 1255 mm was imaged on the sample to be inspected to confirm the amount of received light.

ベース受光量の評価は、第1の偏光板、第2の偏光板の両方の角度を調整し、全検査幅での受光量の256階調で評価したときの平均値が最小となった状態で受光量の最大値と最小値の差を確認し、この差を受光量バラツキとして評価した。実施例における受光量バラツキは20以下であることを確認した。   Evaluation of the amount of received light in the base is a state in which the average value when the angle of both the first polarizing plate and the second polarizing plate is adjusted and the light receiving amount in the entire inspection width is evaluated with 256 gradations is minimized. The difference between the maximum value and the minimum value of the amount of received light was confirmed, and this difference was evaluated as the variation in the amount of received light. It was confirmed that the received light amount variation in the example was 20 or less.

更に第1の偏光板、第2の偏光板の両方の角度を調整することで、ベース受光量を256階調で10〜30、及び30〜50の範囲に調整可能であることを確認した。このことから実施例1の条件では、フィルム幅方向に複屈折のバラツキを有するフィルムにおいても検査精度が均一であり、精度良く検査が行えることを確認した。   Furthermore, it was confirmed that by adjusting the angles of both the first polarizing plate and the second polarizing plate, the amount of received light in the base can be adjusted to a range of 10 to 30 and 30 to 50 in 256 gradations. From this, it was confirmed that, under the conditions of Example 1, the inspection accuracy was uniform even in the film having the birefringence variation in the film width direction, and the inspection could be performed with high accuracy.

実施例1における条件で具体的に表面欠陥を撮像したものを図14に示す。常温でのPETフィルム加工時に発生した表面欠陥を本発明の受光手段における受光量が256階調で10〜30の範囲として撮像した画像(a)、および256階調で30〜50の範囲として撮像した画像(a’)を比較すると、ベースラインからのピーク強度は(a)で40、(a’)で17であった。つまり、このように常温でフィルム表面に生じた欠陥を検出するにあたっては、本発明の受光手段における受光量が256階調で10〜30の範囲として撮像することで、S/N比の向上が実現された。   FIG. 14 shows a specific image of surface defects taken under the conditions in Example 1. An image (a) obtained by imaging a surface defect generated during processing of a PET film at room temperature in a range of 10 to 30 in 256 gradations, and a range of 30 to 50 in 256 gradations. When the images (a ′) were compared, the peak intensity from the baseline was 40 for (a) and 17 for (a ′). In other words, in detecting defects on the film surface at room temperature in this way, the S / N ratio can be improved by imaging the light receiving amount of the light receiving means of the present invention in the range of 10 to 30 with 256 gradations. Realized.

また、PETフィルム製造における加熱延伸時に発生した表面欠陥を本発明の受光手段における受光量が256階調で10〜30の範囲として撮像した画像(b)、および256階調で30〜50の範囲として撮像した画像(b’)を比較すると、ベースラインからのピーク強度は(b)で80、(b’)で70であったが、検出される幅は(b)で760、(b’)で940と大きな差が見られた。つまり、このように加熱工程でフィルム表面に生じた欠陥を検出するにあたっては、本発明の受光手段における受光量が256階調で30〜50の範囲として撮像することで、閾値を超える受光量を検知する幅hの向上が実現された。
[比較例1]
実施例1における同じ装置、同じフィルムを用いて、カメラ側に設置されている第2の偏光板の角度を一律に固定し、光源側に設置された第1の偏光板の角度のみを調整することで特許文献2に記載されているように偏光板の相対角度だけを調整する以外は実施例と同様に撮像し、ベース受光量の確認を行った。
In addition, an image (b) obtained by imaging the surface defects generated at the time of heat stretching in the PET film production with the light receiving means of the present invention in the range of 10 to 30 in 256 gradations, and the range of 30 to 50 in 256 gradations As a result, the peak intensity from the baseline was 80 in (b) and 70 in (b ′), but the detected width was 760 in (b), (b ′). ) Showed a big difference with 940. In other words, in detecting defects generated on the film surface in the heating process in this way, the amount of light received by the light receiving means of the present invention is imaged in the range of 30 to 50 with 256 gradations, so that the amount of light received exceeding the threshold value can be obtained. Improvement of the detection width h was realized.
[Comparative Example 1]
Using the same apparatus and the same film in Example 1, the angle of the second polarizing plate installed on the camera side is fixed uniformly, and only the angle of the first polarizing plate installed on the light source side is adjusted. Thus, as described in Patent Document 2, images were picked up in the same manner as in Example except that only the relative angle of the polarizing plate was adjusted, and the amount of received light was confirmed.

比較例1の条件では受光量バラツキ30より大きくなり、ベース受光量を256階調で10〜30、及び30〜50の範囲に調整することはできなかった。このことから比較例の条件では、フィルム幅方向に複屈折のバラツキを有するフィルムでは検査精度が均一にならず、精度良い検査が行えないことが確認された。   Under the conditions of Comparative Example 1, the received light amount variation was larger than 30, and the base received light amount could not be adjusted in the range of 10 to 30 and 30 to 50 in 256 gradations. From this, under the conditions of the comparative example, it was confirmed that the film having birefringence variation in the film width direction does not have uniform inspection accuracy and cannot perform inspection with high accuracy.

本発明はフィルムの欠陥検出装置に限らず、透過性のある紙やシート状の物の欠陥検出装置などにも応用することができるが、その応用範囲が、これらに限られるものではない。   The present invention can be applied not only to a film defect detection apparatus but also to a defect detection apparatus for transparent paper or sheet-like objects, but the application range is not limited thereto.

1 検査対象のフィルム
2 第1の偏光板
3 第2の偏光板
4 照明手段
5 受光手段
6 信号処理手段
7 製造時に左側の部分から得られたフィルム
8 製造時に中央部から得られたフィルム
9 製造時に右側の部分から得られたフィルム
10 製造時に左側の部分から得られたフィルムにおける受光量分布
11 製造時に中央部から得られたフィルムにおける受光量分布
12 製造時に右側の部分から得られたフィルムにおける受光量分布
13 第1の偏光板を回転させる際の力点
14 第1の偏光板を回転させる際の支点
15 第1の偏光板を略回転方向に押し引きする直動機構
16 直動機構の駆動装置
17 第2の偏光板を回転させる際の力点
18 第2の偏光板を回転させる際の支点
19 第2の偏光板を回転させる機構の駆動装置
DESCRIPTION OF SYMBOLS 1 Film to be inspected 2 1st polarizing plate 3 2nd polarizing plate 4 Illumination means 5 Light receiving means 6 Signal processing means 7 Film obtained from the left part at the time of manufacture 8 Film obtained from the center at the time of manufacture 9 Production Sometimes obtained from the right part of the film 10 Received light amount distribution in the film obtained from the left part during production 11 Received light quantity distribution in the film obtained from the central part during production 12 In the film obtained from the right part during production Received light amount distribution 13 Power point when rotating the first polarizing plate 14 Support point when rotating the first polarizing plate 15 Linear motion mechanism that pushes and pulls the first polarizing plate substantially in the direction of rotation 16 Driving the linear motion mechanism Device 17 Power point when rotating the second polarizing plate 18 Support point when rotating the second polarizing plate 19 Driving device of the mechanism for rotating the second polarizing plate

Claims (12)

長尺物のフィルムの欠陥を検出する検査装置であって、前記フィルムの一方面側に前記フィルムを照明する照明手段と、前記照明手段と前記フィルムとの間に設けられた第1の偏光板と、前記フィルムの他方面側に設けられた第2の偏光板と、前記フィルムの他方面側に設けられ、前記照明手段から照明され前記第1の偏光板、前記フィルムおよび前記第2の偏光板を透過してきた透過光を受光する受光手段とを有し、前記第1の偏光板の角度を前記第1の偏光板の面内で、前記第2の偏光板の角度を前記第2の偏光板の面内でそれぞれ独自に調整する角度調整手段を有することを特徴とする、フィルムの欠陥検査装置。 An inspection apparatus for detecting defects in a long film, wherein the illumination means illuminates the film on one side of the film, and a first polarizing plate provided between the illumination means and the film A second polarizing plate provided on the other surface side of the film, and provided on the other surface side of the film and illuminated from the illuminating means, the first polarizing plate, the film and the second polarized light. Light receiving means for receiving transmitted light transmitted through the plate, the angle of the first polarizing plate within the plane of the first polarizing plate, and the angle of the second polarizing plate with the second A defect inspection apparatus for a film, characterized by having an angle adjusting means for adjusting independently in the plane of the polarizing plate. 前記第2の偏光板および前記受光手段が前記フィルムの幅方向に複数配置されており、前記第2の角度調整手段が前記複数の第2の偏光板にそれぞれ設けられていることを特徴とする、請求項1に記載のフィルムの欠陥検査装置。 A plurality of the second polarizing plates and the light receiving means are arranged in the width direction of the film, and the second angle adjusting means is provided in each of the plurality of second polarizing plates. The film defect inspection apparatus according to claim 1. 前記第1の偏光板の角度を前記第1の面内で調整する角度調整手段は、前記第1の偏光板を回転させる際の支点として働く軸と、前記第1の偏光板の端部を力点として略回転方向に押し引きする直動機構とを有することを特徴とする、請求項1または2に記載のフィルムの欠陥検査装置。 The angle adjusting means for adjusting the angle of the first polarizing plate in the first plane includes an axis that serves as a fulcrum when rotating the first polarizing plate, and an end of the first polarizing plate. The film defect inspection apparatus according to claim 1, further comprising a linear motion mechanism that pushes and pulls in a substantially rotating direction as a force point. 前記第1、第2の偏光板の角度が1°以下の回転精度で少なくとも−8°〜+8°の範囲で調整されることを特徴とする請求項1〜3のいずれかに記載のフィルムの欠陥検査装置。 The angle of said 1st, 2nd polarizing plate is adjusted in the range of -8 degrees-+8 degrees at least with the rotation precision of 1 degrees or less, The film in any one of Claims 1-3 characterized by the above-mentioned. Defect inspection equipment. 長尺物のフィルムの欠陥を検出する欠点検査方法であって、前記フィルムの一方面側に設けた照明手段により前記フィルムを照明し、前記照明手段と前記フィルムとの間に第1の偏光板を設け、前記フィルムの他方面側に第2の偏光板を設け、前記照明手段から照明され前記第1の偏光板、前記フィルムおよび前記第2の偏光板を透過してきた透過光を前記フィルムの他方面側に設けた受光手段により受光し、前記第1の偏光板の角度を前記第1の偏光板の面内で、前記第2の偏光板の角度を前記第2の偏光板の面内でそれぞれ独自に調整することを特徴とする、フィルムの欠陥検査方法。 A defect inspection method for detecting a defect in a long film, wherein the film is illuminated by illumination means provided on one side of the film, and a first polarizing plate is provided between the illumination means and the film. The second polarizing plate is provided on the other surface side of the film, and the transmitted light that is illuminated from the illumination means and passes through the first polarizing plate, the film, and the second polarizing plate is transmitted to the film. Light is received by a light receiving means provided on the other side, and the angle of the first polarizing plate is in the plane of the first polarizing plate, and the angle of the second polarizing plate is in the plane of the second polarizing plate. Film defect inspection method, characterized in that each is adjusted independently. 前記第2の偏光板および前記受光手段を前記フィルムの幅方向に複数配置し、配置位置に応じて前記第2の偏光板の角度を独自に調整することを特徴とする、請求項5に記載のフィルムの欠陥検査方法。 The said 2nd polarizing plate and the said light-receiving means are multiply arranged by the width direction of the said film, and the angle of the said 2nd polarizing plate is adjusted independently according to an arrangement position, The characterized by the above-mentioned. Film defect inspection method. 前記第1の偏光板の角度を前記第1の面内で調整する際に、前記第1の偏光板を回転させる際の支点として働く軸と、前記第1の偏光板の端部を力点として略回転方向に押し引きする直動機構によって、偏光板角度が1°以下の回転精度で微調整することを特徴とする、請求項5または6に記載のフィルムの欠陥検査方法。 When the angle of the first polarizing plate is adjusted in the first plane, the axis serving as a fulcrum when rotating the first polarizing plate and the end of the first polarizing plate as a power point The film defect inspection method according to claim 5, wherein the polarizing plate angle is finely adjusted with a rotation accuracy of 1 ° or less by a linear motion mechanism that pushes and pulls in a substantially rotating direction. 前記第1、第2の偏光板の角度を前記受光手段における受光量が256階調で10〜30の範囲となるよう角度をずらして検査することを特徴とする請求項5〜7のいずれかに記載のフィルムの欠陥検査方法。 The angle of said 1st, 2nd polarizing plate is test | inspected by shifting angle so that the light-receiving amount in the said light-receiving means may be in the range of 10-30 in 256 gradations. The film defect inspection method described in 1. 前記第1、第2の偏光板の角度を前記受光手段における受光量が256階調で30〜50の範囲となるよう角度をずらして検査することを特徴とする請求項5〜7のいずれかに記載のフィルムの欠陥検査方法。 The angle of said 1st, 2nd polarizing plate is test | inspected by shifting angle so that the light-receiving amount in the said light-receiving means may be in the range of 30-50 in 256 gradations. The film defect inspection method described in 1. 前記第1、第2の偏光板の角度を前記受光手段における受光量が最小値となる状態から1〜2°の範囲でずらした状態から検査することを特徴とする請求項5〜9のいずれかに記載のフィルムの欠陥検査方法。 The inspection is performed from a state in which the angles of the first and second polarizing plates are shifted within a range of 1 to 2 ° from a state in which the amount of light received by the light receiving unit is a minimum value. The defect inspection method of the film of crab. 他の光学フィルムや光学部材を貼り合わせる前の離型フィルムの状態で欠陥検査を適用することを特徴とする請求項5〜10のいずれかに記載のフィルムの欠陥検査方法。 The defect inspection method for a film according to any one of claims 5 to 10, wherein the defect inspection is applied in a state of a release film before bonding another optical film or an optical member. 請求項5〜11のいずれかに記載の欠陥検査方法により欠陥検査を実施したことを特徴とする、離型フィルム。 A mold release film, wherein the defect inspection is performed by the defect inspection method according to claim 5.
JP2011538755A 2010-05-25 2011-05-12 Film defect inspection apparatus and defect inspection method Active JP5944165B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010119220 2010-05-25
JP2010119220 2010-05-25
PCT/JP2011/060954 WO2011148790A1 (en) 2010-05-25 2011-05-12 Film defect inspection device, defect inspection method, and release film

Publications (2)

Publication Number Publication Date
JPWO2011148790A1 true JPWO2011148790A1 (en) 2013-07-25
JP5944165B2 JP5944165B2 (en) 2016-07-05

Family

ID=45003782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011538755A Active JP5944165B2 (en) 2010-05-25 2011-05-12 Film defect inspection apparatus and defect inspection method

Country Status (5)

Country Link
JP (1) JP5944165B2 (en)
KR (1) KR101744606B1 (en)
CN (1) CN102906561B (en)
TW (1) TWI509238B (en)
WO (1) WO2011148790A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5972061B2 (en) * 2012-06-18 2016-08-17 旭化成株式会社 Polarization axis direction measuring apparatus and polarization axis direction measuring method
TWI481834B (en) * 2012-10-31 2015-04-21 Oto Photonics Inc Optical sensing module, optical mechanics of spectrometer, and spectrometer
WO2014117331A1 (en) 2013-01-30 2014-08-07 台湾超微光学股份有限公司 Optical sensing module, optical mechanism of spectrometer, and spectrometer
TWI490446B (en) * 2013-04-10 2015-07-01 致茂電子股份有限公司 Lighting module detecting device and lighting module detecting method
JP6182806B2 (en) * 2013-06-04 2017-08-23 住友化学株式会社 Defect inspection system and film manufacturing apparatus
JP6255186B2 (en) * 2013-08-07 2017-12-27 日東電工株式会社 Optical member inspection method, optical product manufacturing method, and optical member inspection apparatus
JP6437329B2 (en) * 2015-02-03 2018-12-12 住友化学株式会社 Optical film defect inspection method
KR101733017B1 (en) * 2015-02-25 2017-05-24 동우 화인켐 주식회사 Apparatus and method for detecting defect of optical film
CN106353332B (en) * 2015-07-15 2019-05-28 明眼有限公司 Utilize the polarisation film detection apparatus of pattern light-transmitting plate
CN206583816U (en) * 2015-12-15 2017-10-24 住友化学株式会社 Defect inspection filming apparatus, defect inspecting system and film manufacturing device
WO2017171153A1 (en) * 2016-03-31 2017-10-05 동우화인켐 주식회사 Polarizing plate inspection method and polarizing plate inspection device
JP6924645B2 (en) * 2017-07-31 2021-08-25 日東電工株式会社 Polarizing film imaging device, inspection device, and inspection method
JP6948215B2 (en) * 2017-10-11 2021-10-13 住友化学株式会社 Defect inspection equipment, defect inspection method, and film manufacturing method
KR102272037B1 (en) * 2019-04-01 2021-07-02 주식회사 성우하이텍 Apparatus and method for inspecting piercing hole
JP2020173188A (en) * 2019-04-11 2020-10-22 住友化学株式会社 Inspection device, inspection method, and film manufacturing method
DE102019220561B4 (en) * 2019-12-23 2021-09-30 Greenerity Gmbh Method and device for analyzing a functional layer of an electrochemical cell or an electrochemical sensor application
CN116465826B (en) * 2023-03-15 2023-10-24 东阳市诰源闪光材料有限公司 Device and method for testing polarization rate of optical film
CN116559199A (en) * 2023-07-10 2023-08-08 杭州百子尖科技股份有限公司 Film defect detection device and detection method based on machine vision

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5828500A (en) * 1995-10-11 1998-10-27 Asahi Kogaku Kogyo Kabushiki Kaisha Optical element inspecting apparatus
JPH09136323A (en) * 1995-11-15 1997-05-27 Toray Ind Inc Apparatus for manufacturing resin-coated sheet and method therefor
US6650410B2 (en) * 2000-03-08 2003-11-18 Fuji Photo Film Co., Ltd. Apparatus, system and method for checking film for defects
JP3452882B2 (en) * 2000-08-31 2003-10-06 富士ファイン株式会社 Transparent object inspection device
US20050151230A1 (en) * 2001-12-14 2005-07-14 Toyo Kohan Co., Ltd. Preventive film for polarizing film and preventive film for releasable polarizing film, and polarizing plate using them
JP2006047143A (en) * 2004-08-05 2006-02-16 Sekisui Chem Co Ltd Film inspection method and apparatus
WO2006137385A1 (en) * 2005-06-21 2006-12-28 Gunze Limited Film inspection apparatus and method
JP5051874B2 (en) * 2006-01-11 2012-10-17 日東電工株式会社 Laminated film manufacturing method, laminated film defect detection method, laminated film defect detection apparatus
JP2008008787A (en) * 2006-06-29 2008-01-17 Nireco Corp Inspection method of transparent solid and inspection device of transparency solid
JP2008155435A (en) * 2006-12-22 2008-07-10 Toyobo Co Ltd Biaxially stretched resin film
JP2009025270A (en) * 2007-07-24 2009-02-05 Toray Ind Inc Determination method for fisheye, determination device therefor, and manufacturing method for thermoplastic resin film
JP2009199024A (en) * 2008-02-25 2009-09-03 Mitsubishi Plastics Inc Mold release film
JP2009199023A (en) * 2008-02-25 2009-09-03 Mitsubishi Plastics Inc Mold release film

Also Published As

Publication number Publication date
TWI509238B (en) 2015-11-21
KR20130076801A (en) 2013-07-08
TW201213792A (en) 2012-04-01
JP5944165B2 (en) 2016-07-05
CN102906561B (en) 2015-10-07
KR101744606B1 (en) 2017-06-09
WO2011148790A1 (en) 2011-12-01
CN102906561A (en) 2013-01-30

Similar Documents

Publication Publication Date Title
JP5944165B2 (en) Film defect inspection apparatus and defect inspection method
CN101086483B (en) Apparatus and method for inspecting film defect
JP5051874B2 (en) Laminated film manufacturing method, laminated film defect detection method, laminated film defect detection apparatus
JP4628824B2 (en) Film defect inspection apparatus and film manufacturing method
KR101326455B1 (en) Apparatus and method for characterizing defects in a transparent substrate
US8149376B2 (en) Test data processing apparatus and test data processing method
JP5024935B2 (en) Device and method for detecting defect of light transmitting member
CN102753960A (en) Defect inspection method for LCD panel having laminated sheet polariser
KR20100021051A (en) Apparatus and method for inspecting liquid crytal display panel
JP2000028546A (en) Defect inspecting method and device for optically compensating film
KR100479073B1 (en) Apparatus of inspection for back light unit
JP2008267991A (en) Phase difference film inspecting device, phase difference film inspecting method, and method of manufacturing phase difference film using same
JP3803999B2 (en) Defect inspection equipment
US11906442B2 (en) Foreign material inspection system of display unit
KR101367922B1 (en) Method and Apparatus for Inspecting Substrate with High Efficiency Reflection and Transmission and Phase Shift of Transmission Light
CN112129782A (en) Method and device for detecting foreign matter layering of display panel
JP2008241469A (en) Defect inspection apparatus
CN216816479U (en) Detection device and detection equipment
CN113376162B (en) Display chip detection device and method
JP2006047143A (en) Film inspection method and apparatus
TW202219496A (en) Inspection method
KR20080093233A (en) Method and apparatus for inspecting substrate with high efficiency reflection and transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150617

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160525

R150 Certificate of patent or registration of utility model

Ref document number: 5944165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250