JPWO2011019032A1 - 試料処理システム - Google Patents

試料処理システム Download PDF

Info

Publication number
JPWO2011019032A1
JPWO2011019032A1 JP2011526765A JP2011526765A JPWO2011019032A1 JP WO2011019032 A1 JPWO2011019032 A1 JP WO2011019032A1 JP 2011526765 A JP2011526765 A JP 2011526765A JP 2011526765 A JP2011526765 A JP 2011526765A JP WO2011019032 A1 JPWO2011019032 A1 JP WO2011019032A1
Authority
JP
Japan
Prior art keywords
sample
container
processing system
reaction
dispensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011526765A
Other languages
English (en)
Other versions
JP5611951B2 (ja
Inventor
勝弘 神田
勝弘 神田
真 野上
真 野上
泉 和氣
泉 和氣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2011526765A priority Critical patent/JP5611951B2/ja
Publication of JPWO2011019032A1 publication Critical patent/JPWO2011019032A1/ja
Application granted granted Critical
Publication of JP5611951B2 publication Critical patent/JP5611951B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4055Concentrating samples by solubility techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/405Concentrating samples by adsorption or absorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/025Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a carousel or turntable for reaction cells or cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements
    • G01N2035/00475Filters
    • G01N2035/00485Filters combined with sample carriers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements
    • G01N2035/00534Mixing by a special element, e.g. stirrer
    • G01N2035/00544Mixing by a special element, e.g. stirrer using fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0439Rotary sample carriers, i.e. carousels
    • G01N2035/0453Multiple carousels working in parallel
    • G01N2035/0455Coaxial carousels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/1048General features of the devices using the transfer device for another function
    • G01N2035/1058General features of the devices using the transfer device for another function for mixing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

環状に配置され、処理対象試料から目的物質を分離抽出する為の反応容器2を搬送する手段91と、搬送手段91による反応容器2の搬送路に沿って設けられ、反応容器2に収容された処理対象試料に各種処理を施す複数の処理工程と、本前処理装置に供給される検体容器1から反応容器2に試料を分注する吸引吐出手段94、および、反応容器2に備えられたフィルタリング容器部2bとから構成される。これにより、低キャリーオーバなディスポーザブル部品を利用しつつ、その部品数を低減し、コストパフォーマンスの低下を抑制することができしつつ、高い回収効率で、かつ、装置の小型化した高速な前処理システムを実現することができる。

Description

本発明は、生体試料、水、土壌、食品等の試料中に含まれる目的成分の分離精製・抽出・フィルタリングのための試料と試薬溶との混合を含む前処理を、迅速に、効率的に行う試料処理システムに関する。
混合試料からの目的成分の分離・抽出には、目的成分の分子サイズ、分子量、分子形状に由来する物理的性質や、溶解性、親和性のような生化学的な性質を利用した様々な技術が存在する。例えば、血液のような生体試料中の微量成分の抽出に関しては、クロマトグラフィーなどの分離技術が発達しており、目的成分に適した分離カラムや固相抽出用の充填材や、磁気ビーズ等を用いた分離技術の開発やメソッドの至適化がなされている。また、前処理に使える試料量は、ますます、微量化する傾向にあり、その中でも、より高収量、高精度な分離・抽出が求められている。これら分離・抽出技術の進展・高度化にともない、分離・抽出に使用する反応液の種類や工程の増大に対応し、かつ、より微量な検体、試料に対しても分離・抽出が可能な、効率的な前処理システムが求められている。
例えば、臓器移植患者等に投与される免疫抑制剤の血中濃度測定の場合、免疫抑制剤は脂溶性が高く、血球移行性があるため、その血中濃度を測定する場合には、全血を用いて、その全血を溶血させて血球内容物を取り出した後にタンパク質等に吸着している薬剤を抽出する前処理が必要となる。
一般的に、溶血は、化学的、物理的、生物学的な原理を応用して実施することができる。例えば、化学的な方法としては、各種溶媒や界面活性剤により細胞膜を構成する脂質を溶解あるいは損傷させることにより溶血を引き起こす方法がある。物理学的な方法としては、圧力、遠心力、撹拌、凍結融解、低張化等がある。生物学的な方法としては、血球への抗体や補体結合に起因する膜貫通タンパク質複合体形成や病原性細菌が産生する溶血素(ヘモリジン)による血球細胞膜への孔形成等がある。
特に、低張化による血球バーストは原理的に単純であり、血液の塩濃度をH2O等で希釈することにより血球周囲の浸透圧を下げ、血球内に過剰に水分を取り込ませることにより細胞膜を破裂させる方法である。一般的な生理食塩水濃度は、0.9%NaCl相当であるが、0.5〜0.35%NaCl相当まで希釈すると溶血現象を起こすことが知られている。
また、亜鉛のキレーティング効果を応用することにより、γグロブリンのような血液中に多量に存在する主要タンパク質を凝集させ、沈殿させることができる。この目的のため、H2Oの代わりにZTT検査(Zinc sulfate Turbidity Test:硫酸亜鉛混濁試験)にも用いられている硫酸亜鉛水溶液を血液に添加することにより、溶血と同時に除タンパク質をも合わせて行う方法も一般的に行われている。
一方、血液中のタンパク質に吸着している目的成分を回収する方法として、除タンパク質処理がある。溶血処理したサンプルに有機溶媒を添加することにより、目的成分を有機溶媒側に抽出されるとともに、タンパク質を変性させ、一般的には遠心分離することによって凝集タンパク質と上清を分離した後、上清分を回収している。除タンパク質処理は、血中に多種多様かつ大量に含まれているタンパク質を凝集させることによって除去する工程であり、このような処理を施すことによってはじめて全血由来の試料を血清あるいは血漿検体と同等に扱える状態になる。
有機溶媒は、前述のように溶血効果もあるため、直接血液に添加して溶血、除タンパク質を行う方法もある。また、そのときに除タンパク質効果を補足するため、前述の硫酸亜鉛を添加する方法もある。
全血検体に前記のような処理を施すことによって、血球移行性の薬剤を溶液状態で回収することができるため、例えば、固相抽出処理や液体クロマトグラフィー分離等のような精製操作に供試することが可能となる。一般的には、除タンパク質処理後の回収上清はドライアップした後、適切な容量の溶解液で再溶解することにより、液量の低減と目的成分の濃縮を行う。その後、例えば、再溶解物を液体クロマトグラフィー質量分析計(LCMS:Liquid Chromatograph Mass Spectrometer)等に供試することにより、濃縮後の目的成分の分離精製と検出を行い、目的成分の同定や定量解析を実施する。
このような技術を用いて対象の試料から目的成分を分離・抽出する場合、試料は様々な物質や異なった諸性質を示す多成分で構成されていることが多く、目的の微量成分を効率良く抽出するためには、抽出可能な状態にするための試料調製や粗精製などの前処理を施すことが必要である。これらの前処理に共通して使われる2つの要素的な技術として、溶液の分注技術および、試料と反応液等の混合の為の攪拌技術、フィルタリング技術がある。分注、攪拌技術の課題としては、低濃度の測定目的物質において、複数の測定試料を連続して前処理する場合、ある時点で前処理した試料中の微量な前処理試料成分が、前処理後も、前処理装置内の分注・攪拌機構、フィルタリング機構を汚染して残ると、次の試料の前処理に際してはキャリーオーバとなって、分離・抽出の精度を低下させる要因となる。これを防ぐ為には、試料を前処理した後の十分な装置部品内部の洗浄、もしくは、汚染が残りやすい分注ピペット・攪拌部品、フィルタリング部品などを試料ごとに着脱して交換可能な部品(以下、これをディスポーザブルな部品と呼ぶ)、もしくは、部品の一体化、共通化によるディスポーザブルな部品数を提言することが必要である。
全血液中の免疫抑制剤の濃度を液体クロマトグラフィー質量分析法にて測定する場合に必要な試料の前処理技術、分離・抽出技術の例が、非特許文献1に記載されている。液体クロマトグラフィー質量分析法での測定の前の前処理、分離・抽出処理として、
(a)全血に純水等を加える溶血処理、
(b)溶血後に、硫酸亜鉛やメタノールを加えるタンパク沈澱処理、
(c)タンパク沈殿を除去する為の遠心分離処理、
(d)タンパク沈殿を除去した上静液から、さらに、液体クロマトグラフィー質量分析法を妨害する夾雑成分を除去し、目的成分を抽出する為の固相抽出処理、などの前処理および分離・抽出工程の記載がある。溶液のタンパク沈殿を除去する為には、遠心分離の他に、フィルタを通して強制的に液送通過させて、フィルタに付着したタンパク沈殿を除去する方法も、よく知られている。しかし、これらの前処理手法(a),(b),(c),(d)のそれぞれの工程専用の個別の装置は、一般的によく知られているものの、(a)〜(d)を全自動化した装置は無い。
例えば、(b)で発生するタンパク沈殿物は、そのまま残っていると、(d)の固相抽出の洗浄・溶出工程で、その沈殿物から夾雑物が再溶解してその後の質量分析測定の精度を大幅に劣化させる要因となる為、(c)の工程で沈殿物除去することが必須である。
これら工程間をまたぐ操作は、自動化が困難であり、従来は、用手法にて実施されている。その結果、工程間での溶液の一時回収、次工程への分注作業に使う容器、器具類の数が増大し、それらに微量成分が付着して、回収の損失やキャリーオーバが発生し、分析全体の感度、精度を低下させ、分析可能な試料の微量化への妨げとなっていた。
特許文献1は、処理対象試料から目的成分を分離・抽出する前処理としての、バッチ処理の固相抽出技術の例である。処理対象試料を収容する96個の固相抽出管が形成された固相抽出プレートを、水平及び上下方向に移動可能な機構に設けた上部バキュームラックに装着し、上部バキュームラックを下部バキュームラックに押圧した状態で下部バキュームラック側から真空ポンプによって吸引することにより、固相抽出管に設けたフィルタによって目的成分を吸着し、また、フィルタに吸着した目的成分を溶出し、目的の成分を抽出するものである。この際、試料の分注には、低キャリーオーバなディスポーザブルなピペット用ノズルチップを使うことを開示している。また、低キャリーオーバな攪拌の為に、上記のディスポーザブルなピペット・ノズルチップによる溶液の吸引吐出しによる攪拌方法も開示している。
特許文献1の自動固相抽出は、前処理・測定すべき試料の数が、バッチ処理であるが故、固相抽出プレートが保持可能なサンプル数(96)の整数倍の時は、効率的な前処理が可能である。しかしながら、実際の前処理を要する処理対象試料の数(検体数)は必ずしも一定であるとは限らない。したがって、上記従来技術のように、一定数(96個)の固相抽出管を用いる場合には、未使用のウェル(固相抽出管)が生じることが多く、相対的な分析コストの増大、および、廃棄物の増大、といった効率の低下を招いていた。
もしくは、時間的に逐次かつランダムに、分析すべき試料が発生する場合に、上記コストパフォーマンスの劣化の他に、既に開始した前処理の終了を待たないと、次ぎの試料の前処理を開始できない、という問題、うなわち、試料の前処理装置への連続投入ができない、という問題が存在した。すなわち、分析の結果を待つまでの時間(TAT, turn-around-time)の増大に繋がっていた。
また、多数(96個)のウェルを形成するウェルプレートは、それらのウェルに収容した検体を一度に移動できる反面、ウェルプレート自体の大きさが比較的大きく、ウェルプレートの収納・退避に必要なスペース、分注・攪拌・加圧・フィルタリングなどの作業を行うスペース、及び、各種処理作業や移動に用いる装置の設置スペースなどが必然的に大きくなってしまい、装置の小型化に対する障害となっていた。
特許文献2,3は、目的成分の分離・抽出の為に、磁気ビーズを含む反応試薬と反応させる前処理を実施して、分析対象分子を分離抽出した後に光測定する自動分析装置の公知例であり、キャリーオーバを低減する為のディスポーザブルな前処理用の分注ピペットの技術を開示している。これらの文献では、特許文献1と異なり、バッチ処理型ではなく、逐次処理型の前処理であるが故、特許文献1の欠点である、特定サンプル数(96)に達しない場合の分析コスト増大、廃棄部品増大、連続投入不可によるTATの増大の問題は、回避できている。しかしながら、これら公知技術では、特許文献3に記載のように、前処理における複数の反応工程ごとに、キャリーオーバを最小限に低減した分注・攪拌を実現しようとすると、(第1試薬、第2試薬の)反応工程ごとに新規のディスポーザブル部品に交換する必要があり、消費するディスポーザブル部品数の増大、および装置が保持すべきディスポーザル部品の数の増大に繋がっていた。
特開2006−007081号公報 特開2000−105248号公報 特開2000−235037号公報
Thomas M. Annesley, Larry Clayton: "Simple Extraction Protocol for Analysis of Immunosuppressant Drugs in Whole Blood", Clinical Chemistry, vol. 50, p.1845-1848(2004)
本発明が解決しようとする課題は、多数の試料を、逐次投入して前処理可能な、低キャリーオーバな分離・抽出・フィルタリング法を、最小限のディスポーザル部品数にて提供することである。これにより、試料の数が少なくとも、多くとも、バッチ処理のように無駄な廃棄部品を発生することもなく、コスト的に効率的で、TATの短い、迅速な低キャリーオーバな分離・抽出手法を提供する。
上記目的を達成するために、本発明は、環状に配置され、処理対象試料から目的物質を分離抽出する為の反応容器を搬送する手段と、前記搬送手段による反応容器の搬送路に沿って設けられ、前記反応容器に収容された処理対象試料に各種処理を施す複数の処理工程と、処理システムに供給される検体容器から前記の反応容器に試料を分注する吸引吐出手段、および、前記の反応容器を用いたフィルタリング手段とから構成される。
前記の吸引吐出手段は、試料の分注のみならず、複数の前処理工程において、反応容器に収容された処理対象試料に浸漬して該処理対象試料を部分的に吸引及び吐出することにより攪拌できるように、前記吸引吐出手段を移動させる駆動手段を備えるものとする。
さらに、前記の反応容器は、フィルタリング手段およびフィルタリング済みの回収容器を一体化することで、前処理液の工程間の損失やキャリーオーバを防止できる構造を特徴とする。さらに前記反応容器は、フィルタリング手段、および、その下流に位置した固相抽出部を連結した構成を取ることで、ろ液を効率的に固相抽出部に送ることを可能にする。
さらに、前記反応容器において、フィルタリング部と固相抽出部は、取外し可能に連結されているものとする。フィルタリング後にフィルタ部を固相抽出部から迅速に分離することで、フィルタ部に残った沈殿物等を迅速に効率的に除去でき、固相抽出の洗浄・溶出工程において、フィルタ沈殿物から夾雑物が再溶出することを簡便に防止できる。
これにより、試料分注と複数反応工程における攪拌の全工程において、一つのディスポーザブルな吸引吐出用ピペット・ノズルチップ部品を共用利用可能となり、また、フィルタリングとその後の溶液回収工程が一つのディスポーザブル容器にて可能となり、TATが短く、効率的で低キャリーオーバな前処理が可能となる。
本発明によれば、低キャリーオーバなディスポーザブル部品を利用しつつ、その部品数を低減し、コストパフォーマンスの低下を抑制しつつ、高い回収効率で、かつ、装置小型化した高速な前処理システムを実現することができる。
本発明の第1の実施の形態に係る試料処理システムの全体構成を概略的に示す平面図である。 図1に示すA部の拡大図である。 図2における各構成の位置関係を概略的に示す第1の側面図である。 図2における各構成の位置関係を概略的に示す第2の側面図である。 有機溶媒の濃度と目的成分のピーク面積の関係の一例を示す図である。 本発明の第2の実施の形態に係る試料処理システムの構成のうち、図1に示すA部に相当する構成を示す図である。 本発明の第3の実施の形態に係る試料前処理システムの全体構成を概略的に示す平面図である。 本発明の第4の実施の形態に係る試料前処理システムの全体構成を概略的に示す平面図である。 本発明の第5の実施の形態に係る試料前処理システムの全体構成を概略的に示す平面図である。 本発明の第3の実施の形態に係る試料前処理システムの工程を示すテーブルである。 本発明の第3の実施の形態に係る試料前処理システムの分注/撹拌機構の動作シーケンスを示すタイムテーブルである。 本発明の第4の実施の形態に係る試料前処理システムの分注/撹拌機構の動作シーケンスを示すタイムテーブルである。 本発明の第5の実施の形態に係る試料前処理システムの分注/撹拌機構の動作シーケンスを示すタイムテーブルである。 本発明の第1および第2の実施の形態に係る試料前処理システムの加圧部、および、反応容器、回収容器部を示す断面図である。 本発明の第3、第4および第5の実施の形態に係る試料前処理システムの加圧部、および、反応容器、回収容器部を示す断面図である。 停止位置での洗浄時の加圧部と、反応容器との関係を示す図である。 停止位置での溶出時の加圧部と、反応容器、および抽出液カップ、カップテーブルとの関係を示す図である。
本発明の実施の形態を図面を参照しつつ説明する。
本実施の形態においては、全血液中の免疫抑制剤の濃度を液体クロマトグラフィー質量分析法にて測定する場合に、前処理対象を全血試料とし、後段の液体クロマトグラフィー質量分析法を妨害する血球成分およびタンパク成分を凝集沈殿させた後にフィルタリング分離除去し、目的成分を抽出する試料処理システムの場合を例にとり説明する。
<第1の実施の形態>
本実施の形態は、検体分注および反応溶液撹拌を行う分注/撹拌機構が、反応容器が配置されるターンテーブルと同軸上であることを特徴とし、また、反応容器が1体化されかつ取外し可能なフィルタリング部と回収部から構成されることを特徴とする場合の実施の形態である。
図1は本実施の形態に係る試料処理システムの全体構成を概略的に示す平面図であり、図2は図1のA部の拡大図である。また、図3及び図4は図2における各構成の位置関係を概略的に示す側面図である。図14は、本実施例に使用する反応容器を図示する断面図である。
図1及び図2において、本実施の形態の試料処理システムは、処理対象試料として全血試料を収容した検体容器1と、処理対象試料(全血試料)に各種処理を施すための反応容器2とを有しており、検体容器1及び反応容器2を保持して搬送する搬送機構90と、検体容器1から反応容器2に処理対象試料(全血試料)を分注する分注処理部10と、カードリッジ2に収容された処理対象試料(全血試料)に溶血処理を施す溶血処理部20と、溶血処理を施した処理対象試料にタンパク沈澱処理を施すタンパク沈澱処理部30と、タンパク沈澱処理を施した処理対象試料が収容された反応容器2を回収する反応容器回収部40と、回収された反応容器2に収容された処理対象試料にタンパク沈殿除去処理を施す沈殿除去処理部50と、検体容器1及び反応容器2に収容された処理対象試料を吸引・吐出することにより分注や攪拌を行う分注/攪拌機構94(吸引/吐出手段)と、分注処理部10に検体容器1を供給する検体容器供給部62と、分注処理部10に反応容器2を供給する反応容器供給部63と、溶血処理部20から検体容器1を回収する検体容器回収部72と、試料処理システム全体の動作を制御する全体制御部88とを備えている。
次に、図1及び図2に加え図3及び図4、図14を参照しながら本実施の形態の試処理システムの各構成の詳細を説明する。
本実施の形態の試料処理システムにおける複数の検体容器1、及び複数の反応容器2は、それぞれ、外形が同規格の試料容器ホルダー3に装填されている。試料容器ホルダー3は、外形の異なる検体容器1や反応容器2を安定装着し得る開口部(図示せず)を有しており、形状の異なる検体容器1、或いは反応容器2を用いる場合においても、試料容器ホルダー3に装着することにより同様の取り扱いができ、安定した搬送が可能となる。以下において、特に記載の無い場合は、検体容器1及び反応容器2(以下、これらを総称して試料容器と記載する)は試料容器ホルダー3に装填されているものとする。
反応容器2は、図14に示されるように、底部にフィルタ410aを有するフィルタリング容器部2bと、フィルタ410aを通過したろ液を回収して収容する回収容器部2aとが連結した構成である(図1〜図4において、回収容器部2aの符号は括弧内に示す)。
無加圧の状態において、フィルタリング容器部2bに収容された各種溶液、および処理対象試料は、フィルタ410aを通過速度が極めて遅く、事実上、フィルタリング容器部2bに留まっている。この状態で、除タンパク処理部50の加圧機構52により、フィルタリング容器部2b内を加圧する処理を施すことによって、所定の成分がフィルタ410aを通過し、回収容器部2aに収容される。以下、この処理をフィルタリングと称する。なお、フィルタリングは、フィルタリング容器部2b内を加圧する方法を用いる場合に限られず、例えば、回収容器部2a側を陰圧とする方法や反応容器2を遠心する方法を用いても良い。
この反応容器2は、フィルタリング終了後は、フィルタリング容器部2bは、回収容器部2aから切り離すことが可能な構造を有しており、これにより、効率的で低キャリーオーバなろ液の回収が可能となっている。
検体容器1及び反応容器2(試料容器)には、試料処理システムにおいて用いられる複数の試料容器を個別に識別するための個体識別標識(例えば、バーコードなど:図示せず)が設けられており、これら固体識別標識が設けられた試料容器内の処理対象試料の情報は固体識別標識と対応して、予め全体制御部88の記憶部(図示せず)に記憶されている。
搬送機構90は、上下方向に向けた回転軸を中心とする円状の外周を有するターンテーブル91と、ターンテーブル91の外周部に周方向に等間隔に設けられ、試料容器ホルダー3に装填された検体容器1及び反応容器2(試料容器)を保持する複数(例えば12個)の開口部101〜112(保持手段)と、開口部101〜112に保持された検体容器1又は反応容器2を装填した試料容器ホルダー3が上方向へ移動するのを抑制する試料容器ホルダー押さえ92と、検体容器1又は反応容器2を装填した試料容器ホルダー3がターンテーブル91の径方向外側に移動して落下するのを抑制する試料容器ホルダー落下防止ガード93と、ターンテーブル91を周方向に回転させる回転駆動機構97とを備えている。
開口部101〜112は、ターンテーブル91の外周部に、反時計回りに開口部101、・・・、開口部112の順に設けられており、開口部101と開口部112が隣り合う配置となっている。また、開口部101〜112は、試料容器ホルダー3を保持する構成となっており、試料容器ホルダー3を保持することにより検体容器1又は反応容器2を保持する。さらに、開口部101〜112のそれぞれには、試料容器ホルダー3を保持しているかどうか(試料容器ホルダー3の有無)を検出する図示しないセンサーが設けられており、各開口部101〜112における試料容器ホルダー3の有無を検出し、検出結果を全体制御部88に送る。
搬送機構90は、開口部101〜112に検体容器1や反応容器2を装填した試料容器ホルダー3を保持した状態で、回転駆動機構97によりターンテーブル91を周方向(図2中、反時計回り)に回転駆動することにより、検体容器1や反応容器2を各処理部に搬送する。つまり、ターンテーブル91の外周部に設けられた開口部101〜112は、円環状に配置され、処理対象試料を収容した試料容器(検体容器1、反応容器2)を搬送する搬送手段を構成する。
このような搬送手段による搬送経路に沿って、後に詳述する複数(例えば4つ)の処理部、つまり、分注処理部10、溶血処理部20、タンパク沈澱処理部30、及び反応容器回収部40が配置されている。これら処理部10〜40においては、それぞれ、隣り合う3つの開口部を1組として処理に用いる。また、開口部101〜112は、役割別に、ピペット・ノズルチップ14の処理に関係する開口部101,104,107,110と、検体容器1の処理に関係する開口部102,105,108,111と、反応容器2の処理に関する開口部103,106,109,112との3種類に分別される。つまり、隣り合う3つの開口部を1組とすると各役割の開口部がそれぞれ1つずつ含まれる構成となる。
ここで、図2に示す開口部101〜112の位置を初期位置とし、このとき開口部101〜112が配置されている位置に、それぞれ、停止位置101a〜112aを定義する。なお、図2中には停止位置101a〜112aの符号を括弧書きで示す。停止位置101a〜112aは、開口部101〜112と同様に、ターンテーブル91の外周部において、反時計回りに停止位置101a、・・・、停止位置112aの順に等間隔に設けられ、停止位置101aと停止位置112aが隣り合うように設けられる。ターンテーブル91が回転することにより、開口部101〜112が停止位置101a〜112aの順に移動する。また、隣り合う2つの停止位置の間を1ピッチと定義する。例えば、停止位置101a上の開口部101が停止位置102aに移動する場合は1ピッチの移動となる。
分注処理部10、溶血処理部20、タンパク沈澱処理部30、及び反応容器回収部40の各処理部にはそれぞれ同数の停止位置が設けられており、停止位置101a〜103aは分注処理部10の一部、停止位置104a〜106aは溶血処理部20の一部、停止位置107a〜109aはタンパク沈澱処理部30の一部、停止位置110a〜112aは反応容器回収部40の一部をそれぞれ構成している。
分注/攪拌機構94(吸引/吐出手段)は、搬送機構90の上方に設けられ、ターンテーブル91の回転軸と同軸上に回転軸を有する基部95と、基部95の回転軸の軸線周りに環状に配置され、開口部101〜112の動線の上方に、その先端を下側に向けて設けられた複数(例えば4つ)のノズル95a〜95dと、ノズル95a〜95dのそれぞれと図示しない管路によって接続され、ノズル95a〜95dを用いて処理対象試料を吸引又は吐出する吸引/吐出機構96と、ノズル95a〜95dの先端にそれぞれ着脱可能に設けられたディスポーザブルのノズルチップ14と、基部95を上下駆動および回転駆動する駆動機構98とを備えている。
基部95が駆動機構98によって回転駆動されると、ノズル95a〜95dは搬送機構90に保持される試料容器(検体容器1、反応容器2)の動線に沿って移動し、従って、試料容器(検体容器1、反応容器2)の動線の上方にノズル95a〜95dの動線が位置する。
分注/攪拌機構94に設けられるノズル95a〜95dの数は、搬送機構90の搬送路に沿って設けられた処理部と同数(本実施の形態においては4つ)となるように設けられている。ノズル95a〜95dは、基部95の回転方向に等間隔に配置されている。したがって、例えば、図2に示すように、ノズル95aが停止位置102aの上方に位置する場合、ノズル95b〜95dは停止位置105a,108a,111aの上方にそれぞれ位置する。
このように構成した分注/攪拌機構94は、次のように分注や攪拌処理を行う。まず、駆動機構98によって基部95を回転駆動し、ノズルチップ14を装着されたノズル95a〜95dを開口部101〜112に保持された試料容器(検体容器1、反応容器2)の上方に停止して試料容器の開口部と対向するように配置する。次に、駆動機構98によって基部95を下降させ、ノズルチップ14を試料容器に収容された処理対象試料に浸漬させ、吸引/吐出機構96によって処理対象試料をノズルチップ14内に吸引する(以下、吸引処理と称する)。ここで、処理対象試料の攪拌を行う場合には、ノズルチップ14において吐出と吸引を繰り返す(以下、攪拌処理と称する)。また、処理対象試料の分注を行う場合には、処理対象試料をノズルチップ14内に吸引した状態で駆動機構98によって基部95を上昇させ、開口部101〜112に保持された試料容器の上方に停止して試料容器の開口部と対向するように配置し、駆動機構98によって基部95を下降させ、ノズルチップ14内に吸引した処理対象試料を吸引/吐出機構96によって反応容器2内に吐出する(以下、吐出処理と称する)。
分注処理部10は、停止位置101aに設けられ、停止位置101aに停止したノズル95a〜95dに対してディスポーザブルのノズルチップ14を装着する(以下、ノズルチップ装着処理と称する)ノズルチップ供給部11と、停止位置102aに設けられ、停止位置102aに停止した開口部(例えば、図2では開口部102)に処理対象試料(全血試料)が収容された検体容器1を供給する(以下、検体容器供給処理と称する)検体容器供給路12と、停止位置103aに設けられ、停止位置103aに停止した開口部(例えば、図2では開口部103)に処理対象試料を収容して処理を施すための反応容器2を供給する(以下、反応容器供給処理と称する)反応容器供給路13とを備えている。
ノズルチップ供給部11は、ディスポーザブルのノズルチップ14を複数収納したノズルチップラック15と、ノズルチップラック15を水平方向及び垂直方向に駆動するノズルチップラック移動機構16とを備えている(図2及び図3参照)。ノズルチップラック移動機構16によって、ノズルチップラック15に収納された複数のノズルチップ14のうちの1つを停止位置101aに停止した開口部(例えば、図2では開口部101)の下部に配置し、ノズルチップ14が装着されていないノズル95a〜95dを停止位置101a上に配置した状態で、駆動装置98によって基部95を所定の高さまで下降させることにより、ノズルチップラック15のノズルチップ14をノズル95a〜95dに装着する。
検体容器供給路12は、試料容器ホルダー3に装填された検体容器1を検体容器供給部62(後述)から搬送機構90に搬送するベルトコンベア17と、ベルトコンベア17に対する試料容器ホルダー3の位置を決めるとともに滑りを抑制する試料容器ホルダー位置決め仕切り17aとを備えている。搬送機構90のターンテーブル91を回転させ、停止位置102aに所望の開口部(例えば、図2では開口部102)を停止させた状態で、ベルトコンベア17によって検体容器1を装填した試料容器ホルダー3を開口部に供給して保持させる。
反応容器供給路13は、試料容器ホルダー3に装填された反応容器2を反応容器供給部63(後述)から搬送するベルトコンベア18と、ベルトコンベア18に対するホルダー3の位置を決めるとともに滑りを抑制する試料容器ホルダー位置決め仕切り18aとを備えている。搬送機構90のターンテーブル91を回転させ、停止位置103aに所望の開口部(例えば、図2では開口部103)を停止させた状態で、ベルトコンベア18によって反応容器2を装填した試料容器ホルダー3を開口部に供給して保持させる。
検体容器供給部62は、処理対象試料(全血試料)を収容した検体容器1を試料容器ホルダー3に装填して収納した1つ以上の試料容器ラック4と、試料容器ラック4に収容された検体容器1を試料容器ホルダー3と一体的にベルトコンベア12に送り出す送り出し機構62aとを備えている。
試料容器ラック4には、それぞれ試料容器ホルダー3に装填された複数(例えば5つ)の検体容器1が一列に収納されており、その試料容器ラック4をベルトコンベア12の検体容器供給部側の一端に配置した状態で、送り出し機構62aによりベルトコンベア12側に1つずつ送り出す。収容した検体容器1を全て搬出して空となった試料容器ラック4は、図示しない搬送路を介して沈殿除去処理部50に搬送される。また、検体容器供給部62には、処理対象試料が収容された検体容器1を試料容器ホルダー3に装填して収納された新たな試料容器ラック4が逐次追加される。なお、空の試料容器ラック4の搬送先は沈殿除去処理部50に限られず、例えば、空の試料容器ラック4を使用する検体容器回収部72(後述)であっても良い。
反応容器供給部63は、処理対象試料(全血試料)を収容して各種処理を施すための反応容器2を試料容器ホルダー3に装填して収納した1つ以上の試料容器ラック4と、試料容器ラック4に収容された反応容器2を試料容器ホルダー3と一体的にベルトコンベア13に送り出す送り出し機構63aとを備えている。
試料容器ラック4には、それぞれ試料容器ホルダー3に装填された複数(例えば5つ)の反応容器2が一列に収納されており、その試料容器ラック4をベルトコンベア13の反応容器供給部側の一端に配置した状態で、送り出し機構63aによりベルトコンベア13側に1つずつ送り出す。収容した反応容器2を全て搬出して空となった試料容器ラック4は、図示しない搬送路を介して検体容器回収部72に搬送される。また、反応容器供給部63には、反応容器2を試料容器ホルダー3に装填して収納された新たな試料容器ラック4が逐次追加される。なお、空の試料容器ラック4の搬送先は検体容器回収部72に限られず、例えば、空のラック4を使用する除タンパク質処理部50(後述)であっても良い。また、検体や測定項目の種類によって用いるべき反応容器2の種類が異なる場合は、全体制御部88からの指示に基づいて、検体や測定項目に適合する反応容器2を供給するように構成しても良い。
溶血処理部20は、停止位置105aに設けられ、停止位置105aに停止した開口部(例えば、図2では開口部105)に保持された検体容器1を回収する(以下、検体容器回収処理と称する)検体容器回収路22と、停止位置106aに設けられ、停止位置106aに停止した開口部(例えば、図2では開口部106)に保持された反応容器2に第1試薬としての溶血処理液を注入する(以下、溶血処理液注入処理と称する)溶血処理液注入器23とを備えている。また、停止位置104aは、試料容器ホルダー3を保持していない開口部の待機位置となっている。
検体容器回収路22は、試料容器ホルダー3に装填された検体容器1を搬送機構90から検体容器回収部72に搬送するベルトコンベア24と、ベルトコンベア24に対する試料容器ホルダー3の位置を決めるとともに滑りを抑制する試料容器ホルダー位置決め仕切り24aとを備えている。搬送機構90のターンテーブル91を回転させ、停止位置105aに所望の開口部(例えば、図2では開口部105)を停止させた状態で、ベルトコンベア24によって検体容器1を装填した試料容器ホルダー3を回収する。
溶血処理液注入器23は、反応容器2に収容された処理対象試料(全血試料)に溶血処理を行うための溶血処理液を収容した溶液タンク25を備えている。
処理対象試料(全血試料)に注入する溶血処理液は、例えば、水やZTT(Zinc sulfate Turbidity Test:硫酸亜鉛混濁試験)にも用いられる硫酸亜塩水溶液などである。溶血の為に水を用いる場合、処理対象試料(全血試料)の濃度を0.35〜0.5%NaCl相当(一般的な生理食塩水の濃度は0.9%NaCl相当である)まで希釈することにより溶血現象を生じさせる。これは、低張化による血球バーストの原理に基づいた手法であり、血液の塩濃度を希釈することにより血球周囲の浸透圧を下げ、血球内に過剰に水分を取り込ませることにより細胞膜を破裂させて溶血現象を生じさせる手法である。この手法を用いると、高脂血症患者から採取した血液のように粘性が著しく高い検体に対しては、溶血効果だけではなく、検体の粘性緩和の効果もあり、溶血処理後の成分抽出プロセスの容易化が期待できる。また、溶血処理液には、水溶性の除タンパク剤である硫酸亜鉛を含んだ水溶液を用いてもよい。この場合の溶血効果は、前記の水の場合と同じ浸透圧による血球バースト原理による。さらに、硫酸亜鉛は、亜鉛のキレーティング効果により、γグロブリンのような血液中に多量に存在する主要タンパク質を凝集させ、沈殿させることが出来るので、溶血と同時に除タンパク質も併せて行うことができる。
タンパク沈澱処理部30は、停止位置109aに設けられ、停止位置109aに停止した開口部(例えば、図2では開口部109)に保持された反応容器2に第2試薬としてのタンパク沈澱処理液を注入する(以下、タンパク沈澱処理液注入処理と称する)タンパク沈澱処理液注入器33を備えている。また、停止位置107aおよび停止位置108aは、試料容器ホルダー3を保持していない開口部の待機位置となっている。
タンパク沈澱処理液注入器33は、反応容器2に収容された処理対象試料(全血試料)にタンパク沈澱処理を行うためのタンパク沈澱処理液を収容した溶媒タンク34を備えている。
処理対象試料(全血試料)に注入するタンパク沈澱処理液は、例えば、メタノールなどの有機溶媒である。溶血処理を施した処理対象試料に有機溶媒を添加する事により、処理対象試料中(血液中)のタンパク質に吸着している目的成分を有機溶媒側に抽出するとともに、タンパク質を変性(凝集)沈殿させる。凝集されたタンパク質沈殿物411は後述する除タンパク質処理部50で除去(除タンパク質)される。
目的成分の有機溶媒への溶解し易さは、その有機溶媒の濃度による。例えば、タクロリムス、シロリムス(ラパマイシン)、エベロリムス、シクロスポリンのような免疫抑制剤は疎水性が高く、水系の溶液には溶解し難い性質を有しており、有機溶媒としてメタノールを用いた場合の溶解性を検討したところ、50%以上のメタノール存在下でなければ安定して溶解しない傾向が認められた。図5は、有機溶媒の濃度と目的成分のピーク面積の関係の一例を示す図であり、目的成分の一例としてエベロリムス及びシクロスポリンを、有機溶媒の一例としてメタノールをそれぞれ用いた場合の関係をしめしている。図5に示すように、エベロリムス及びシクロスポリンは、50%以上のメタノール存在下でなければ安定して溶解しない傾向がある。したがって、これら薬剤を抽出の目的成分とする場合は、メタノール濃度が50%以上であることが望ましいといえる。
反応容器回収部40は、停止位置110aに設けられ、停止位置110aに停止したノズル95a〜95dに装着されたディスポーザブルのノズルチップ14を取り外して廃棄する(以下、ノズルチップ廃棄処理と称する)ノズルチップ廃棄部41と、停止位置112aに設けられ、停止位置112aに停止した開口部(例えば、図2では開口部112)に保持された反応容器2を回収する(以下、反応容器回収処理と称する)反応容器回収路43とを備えている。また、停止位置111aは、試料容器ホルダー3を保持していない開口部の待機位置となっている。
ノズルチップ廃棄部41においては、ノズルチップ14が装着されたノズル95a〜95dを停止位置112a上に配置した状態で、所定の機構によりノズル95a〜95dからノズルチップ14を離脱させ、停止位置110aに停止した開口部(例えば、図2では開口部110)を通して廃棄する。
反応容器回収路43は、試料容器ホルダー3に装填された反応容器2を搬送機構90から除タンパク質処理部50に搬送するベルトコンベア26と、ベルトコンベア26に対する試料容器ホルダー3の位置を決めるとともに滑りを抑制する試料容器ホルダー位置決め仕切り26aとを備えている。搬送機構90のターンテーブル91を回転させ、停止位置112aに所望の開口部(例えば、図2では開口部112)を停止させた状態で、ベルトコンベア26によって反応容器2を装填した試料容器ホルダー3を回収して除タンパク質処理部50に搬送する。
除タンパク質処理部50は、反応容器回収部40からベルトコンベア26によって搬送された反応容器2を受け取って搬送する搬送機構51と、搬送機構51によって搬送された反応容器2に対して加圧処理を行う加圧機構52と、加圧処理を行った反応容器2のフィルタリング容器部2bを回収して破棄するフィルタ廃棄部53と、反応容器2の回収容器部2aを回収して、収容されたろ液を回収する抽出物回収部54とを備えている。
加圧機構52は、処理対象試料が収容された反応容器2のフィルタリング容器部2bの内部を加圧し、フィルタリングを行うことにより、所定の成分がフィルタを通過し回収容器部2aに収容される。また、タンパク沈澱処理部30において、処理対象試料中で凝集されたタンパク質沈殿物411は反応容器2のフィルタにより除去(除タンパク質)され、フィルタリング容器部とともにフィルタ廃棄部53に回収される。
加圧機構52は、図14に示されるように、加圧部ホルダ400a、および 加圧用シリンジ400b、加圧基部から構成される加圧部400を備える。加圧部ホルダ400aは、フィルタ部2bの上部に隙間無く装着される。
抽出物回収部54に回収された回収容器部2a中の抽出物(目的成分)、つまり、タンパク沈澱処理後の回収上清は、精製や測定操作を行う工程55に供試され、必要に応じて液量の低減や目的成分の濃縮を目的としたドライアップ及び溶解液による再溶解が施され、さらに、液体クロマトグラフィー質量分析計(Liquid Chromatograph Mass Spectrometer, LCMS)等に供試されることにより、目的成分の分離精製と検出を行い、目的成分の同定や定量解析が実施される。
全体制御部88は、試料処理システム全体の動作を制御するものであり、図示しない入力手段、記憶手段、表示手段などを備えている。全体制御部88は、入力手段により各装置の設定パラメータが設定されたら、記憶手段に記憶したソフトウェアに従って各構成装置の動作を制御し、処理対象試料の前処理を実行する。また、各処理部10,20,30,40,50,62,63、72において正常とは異なる事態が生じた場合、即時に試料処理システム全体の一時停止を行い、図示しない表示装置にアラームの提示を行う。
次に、本実施の形態の試料処理システムにおける処理手順を説明する。前処理開始時において開口部101〜112は、図2に示す初期位置にあるものとする。
まず、オペレータは、処理対象試料を収容した検体容器1を試料容器ホルダー3に装填し、試料容器ラック4に収納して検体容器供給部62に設置する。また、反応容器2を試料容器ホルダー3に装填し、試料容器ラック4に収納して反応容器供給部63に設置する。この状態で、全体制御部88の図示しない入力手段により、前処理開始の指示を行う。
(手順1)ノズル95aを停止位置101aに移動する。このとき、ノズル95b〜95dは停止位置104a,107a,110aに移動する。この状態で、処理部10,20,30,40では以下の処理を同時に行う。
分注処理部10では、停止位置101aにおけるノズルチップ装着処理、停止位置102aにおける開口部102への検体容器供給処理、及び、停止位置103aにおける開口部103への反応容器供給処理を同時に行う。
溶血処理部20では、停止位置105aにおける開口部105への検体容器回収処理、及び、停止位置106aにおける開口部106に保持された反応容器2への溶血処理液注入処理を行う。なお、停止位置104aのノズル95bは、ノズル95aと同様の動きをするのみである。
タンパク沈澱処理部30では、停止位置109aにおける開口部109に保持された反応容器2へのタンパク沈澱処理液注入処理を行う。なお、停止位置107aのノズル95cは、ノズル95aと同様の動きをするのみである。
反応容器回収部40では、停止位置110aにおけるノズル95dへのノズルチップ廃棄処理、及び、停止位置112aにおける開口部112への反応容器回収処理を行う。回収され除タンパク質処理部50に搬送された反応容器2に対しては、順次、加圧処理が施され、抽出物回収部54に回収される。
(手順2)ノズル95aを停止位置102aに移動する。このとき、ノズル95b〜95dは停止位置105a,108a,111aに移動する。この状態で、処理部10,20,30,40では以下の処理を同時に行う。
分注処理部10では、停止位置102aにおける開口部102に保持された検体容器1への攪拌処理、及び吸引処理を行う。
溶血処理部20では、停止位置105aのノズル95bは、ノズル95aと同様の動きをするのみである。
タンパク沈澱処理部30では、停止位置108aのノズル95cは、ノズル95aと同様の動きをするのみである。
反応容器回収部40では、停止位置111aのノズル95dは、ノズル95aと同様の動きをするのみである。
(手順3)ノズル95aを停止位置103aに移動する。このとき、ノズル95b〜95dは停止位置106a,109a,112aに移動する。この状態で、処理部10,20,30,40では以下の処理を同時に行う。
分注処理部10では、停止位置103aにおける開口部103に保持された反応容器2への吐出処理、及び攪拌処理を行う。
溶血処理部20では、停止位置106aにおける開口部106に保持された反応容器2への攪拌処理を行う。
タンパク沈澱処理部30では、停止位置109aにおける開口部109に保持された反応容器2への攪拌処理を行う。
反応容器回収部40では、停止位置112aのノズル95dは、ノズル95aと同様の動きをするのみである。
(手順4)ノズル95aを停止位置104aに移動する。このとき、ノズル95b〜95dは停止位置107a,110a,101aに移動する。また、ノズル95a〜95dの移動と同時に、開口部101〜112を、反時計回り方向に3ピッチ移動する。これにより、開口部110〜112は停止位置101a〜103aに移動するとともに、開口部101〜109は停止位置104a〜112aに移動する。
手順4の後の状態において、ノズル95dをノズル95aと、開口部110〜112を開口部101〜103と読み換え、その他のノズル95a〜95c及び開口部101〜109においても同様に読み換えて、手順1〜手順4と同様の処理を繰り返す。このように、手順1〜手順4と同様の処理を繰り返すことにより、処理対象試料に対して連続して処理を行う。
以上のように構成した本実施の形態においては、1つの処理対象試料に対して1つの反応容器2を用いるので、従来技術のように一定数(96個)の固相抽出管を常に用いる必要が無く、未使用の固相抽出管が生じることが無い。また、処理対象試料を収容した試料容器(検体容器1、反応容器2)を搬送する搬送手段を円環状に配置し、搬送手段による試料容器の搬送路に沿って、試料容器に収容された処理対象試料に各種処理を施す複数の処理部10,20,30,40を配置するとともに、搬送手段による試料容器の搬送路に沿って処理対象試料を吸引及び吐出する複数のノズル95a〜95dを有する分注/攪拌機構94を備え、回転駆動機構98によって分注/攪拌機構94を周方向に回転駆動してノズル95a〜95dを移動するように構成したので、従来技術のように、ウェルプレートの収納・退避に必要なスペース、分注・攪拌・加圧などの作業を行うスペース、及び、各種処理作業や移動に用いる装置の設置スペースなどを抑制することができる。
また、反応容器2を構成するフィルタリング部2bと回収容器部2aが一体化された状態でフィルタリングされた後、次の分離精製・測定工程に移れるので、目的成分の損失が無く、効率のよいフィルタリングをランダム連続投入なシステムとして可能にする。
また、1つの処理対象試料に対して、複数の処理部10,20,30,40による処理を行う過程で通して1つのノズルを用いるように構成したので、処理部10,20,30,40によってノズル95a〜95dに装着するノズルチップ14を交換する必要が無く、処理に用いるノズルチップ14の数を削減することができる。
すなわち、本実施の形態においては、不要なディスポーザブル部品を最小限に抑えコストパフォーマンスの低下を抑制することができ、かつ、装置の小型化を実現することができる。
<第2の実施の形態>
本実施の形態は、上記第1の実施の形態における搬送機構90の搬送経路に沿って配置された、分注処理部10、溶血処理部20、タンパク沈澱処理部30、及び反応容器回収部40に加え、加圧処理部250を配置した場合の実施の形態である。図6は、本発明の第2の実施の形態に係る試料処理システムの構成のうち、搬送機構90Aとその周辺構成を拡大して示す図である。図6中、図1〜図4に示した部材と同等の部材には同じ符号を付し、説明を省略する。
図6において搬送機構90Aは、上下方向に向けた回転軸を中心とする円状の外周を有するターンテーブル91Aと、ターンテーブル91Aの外周部に周方向に等間隔に設けられ、試料容器ホルダー3に装填された検体容器1及び反応容器2(試料容器)を保持する複数(例えば15個)の開口部101〜115(保持手段)と、開口部101〜115に保持された検体容器1又は反応容器2を装填した試料容器ホルダー3が上方向へ移動するのを抑制する試料容器ホルダー押さえ92と、検体容器1又は反応容器2を装填した試料容器ホルダー3がターンテーブル91の径方向外側に移動して落下するのを抑制する試料容器ホルダー落下防止ガード93と、ターンテーブル91を周方向に回転させる回転駆動機構97(図3等参照)とを備えている。
開口部101〜115は、ターンテーブル91の外周部に、反時計回りに開口部101、・・・、開口部115の順に設けられており、開口部101と開口部115が隣り合う配置となっている。また、開口部101〜115は、試料容器ホルダー3を保持する構成となっており、試料容器ホルダー3を保持することにより検体容器1又は反応容器2を保持する。さらに、開口部101〜115のそれぞれには、試料容器ホルダー3を保持しているかどうか(試料容器ホルダー3の有無)を検出する図示しないセンサーが設けられており、各開口部101〜115における試料容器ホルダー3の有無を検出し、検出結果を全体制御部88に送る。
搬送機構90Aは、開口部101〜115に検体容器1や反応容器2を装填した試料容器ホルダー3を保持した状態で、回転駆動機構97(図3等参照)によりターンテーブル91Aを周方向(図6中、反時計回り)に回転駆動することにより、検体容器1や反応容器2を各処理部に搬送する。つまり、ターンテーブル91Aの外周部に設けられた開口部101〜115は、円環状に配置され、処理対象試料を収容した試料容器(検体容器1、反応容器2)を搬送する搬送手段を構成する。
このような搬送手段による搬送経路に沿って、複数(例えば5つ)の処理部、つまり、分注処理部10、溶血処理部20、タンパク沈澱処理部30、加圧処理部250、及び反応容器回収部40が配置されている。これら処理部10,20,30,250,40においては、それぞれ、隣り合う3つの開口部を1組として処理に用いる。また、開口部101〜115は、役割別に、ノズルチップ14の処理に関係する開口部101,104,107,110,113と、検体容器1の処理に関係する開口部102,105,108,111,114と、反応容器2の処理に関する開口部103,106,109,112,115との3種類に分別される。つまり、隣り合う3つの開口部を1組とすると各役割の開口部がそれぞれ1つずつ含まれる構成となる。
ここで、図6に示す開口部101〜115の位置を初期位置とし、このとき開口部101〜115が配置されている位置に、それぞれ、停止位置101a〜115aを定義する(図6中、括弧書きで示す)。停止位置101a〜115aは、開口部101〜115と同様に、ターンテーブル91Aの外周部において、反時計回りに停止位置101a、・・・、停止位置115aの順に等間隔に設けられ、停止位置101aと停止位置115aが隣り合うように設けられる。ターンテーブル91Aが回転することにより、開口部101
〜115が停止位置101a〜115aの順に移動する。
分注処理部10、溶血処理部20、タンパク沈澱処理部30、加圧処理部250、及び反応容器回収部40の各処理部にはそれぞれ同数の停止位置が設けられており、停止位置101a〜103aは分注処理部10の一部、停止位置104a〜106aは溶血処理部20の一部、停止位置107a〜109aはタンパク沈澱処理部30の一部、停止位置110a〜112aは加圧処理部250の一部、停止位置113a〜115aは反応容器回収部40の一部をそれぞれ構成している。
分注/攪拌機構294(吸引/吐出手段)は、搬送機構90Aの上方に設けられ、ターンテーブル91Aの回転軸と同軸上に回転軸を有する基部295と、基部295の回転軸の軸線周りに環状に配置され、開口部101〜115の動線(つまり、搬送路)の上方に、その先端を下側に向けて設けられた複数(例えば5つ)のノズル295a〜295eと、ノズル295a〜295eのそれぞれと図示しない管路によって接続され、ノズル295a〜295eを用いて処理対象試料を吸引又は吐出する吸引/吐出機構96(図3等参照)と、ノズル295a〜295eの先端にそれぞれ着脱可能に設けられたディスポーザブルのノズルチップ14と、基部295を上下駆動および回転駆動する駆動機構98(図3等参照)とを備えている。
基部295が駆動機構98によって回転駆動されると、ノズル295a〜295eは搬送機構90Aに保持される試料容器(検体容器1、反応容器2)の動線に沿って移動するので、従って、試料容器(検体容器1、反応容器2)の動線の上方にノズル295a〜295eの動線が位置する。
分注/攪拌機構294に設けられるノズル295a〜295eの数は、搬送機構90Aの搬送路に沿って設けられた処理部と同数(本実施の形態においては5つ)となるように設けられている。ノズル295a〜295eは、基部295の回転方向に等間隔に配置されている。したがって、例えば、図6に示すように、ノズル295aが停止位置102aの上方に位置する場合、ノズル295b〜295eは停止位置105a,108a,111a,114aの上方にそれぞれ位置する。
加圧処理部250は、停止位置112aに設けられ、停止位置112aに停止した開口部(例えば、図6では開口部112)に保持された反応容器2に加圧処理を行う加圧機構52Aを備えている。
また、停止位置110aおよび停止位置111aは、試料容器ホルダー3を保持していない開口部の待機位置となっている。
加圧機構52Aは、第1の実施の形態の加圧機構52と同様の処理を行うものであり、処理対象試料が収容された反応容器2のフィルタリング容器部2bの内部を加圧し、フィルタリングを行うことにより、所定の成分がフィルタを通過し回収容器部2aに収容させるものである。また、加圧機構52Aは、図示しない移動機構により搬送機構90Aの搬送路から退避することができる構成となっている。
反応容器回収部40は、停止位置113aに設けられ、停止位置113aに停止したノズル295a〜295eに装着されたディスポーザブルのノズルチップ14を取り外して廃棄する(廃棄処理を行う)ノズルチップ廃棄部41と、停止位置115aに設けられ、停止位置115aに停止した開口部(例えば、図6では開口部115)に保持された反応容器2を回収する(反応容器回収処理を行う)反応容器回収路43とを備えている。また、停止位置114aは、試料容器ホルダー3を保持していない開口部の待機位置となっている。
反応容器回収路43は、試料容器ホルダー3に装填された反応容器2を搬送機構90Aから抽出物回収部54に搬送するベルトコンベア26と、ベルトコンベア26に対する試料容器ホルダー3の位置を決めるとともに滑りを抑制する試料容器ホルダー位置決め仕切り26aとを備えている。搬送機構90Aのターンテーブル91Aを回転させ、停止位置115aに所望の開口部(例えば、図6では開口部115)を停止させた状態で、ベルトコンベア26によって反応容器2を装填した試料容器ホルダー3を回収して、図示していないフィルタ廃棄部53を経由して、(やはり図示していない)抽出物回収部54に搬送する。フィルタ廃棄部53では、なお、加圧処理を行った反応容器2のフィルタリング容器部2bを取り外して破棄し、残った回収容器部2aを、抽出物回収部54に搬送する。
抽出物回収部54にて回収された回収容器部2aの抽出物(目的成分)、つまり、タンパク沈澱処理後の回収上清は、精製や測定操作を行う工程55に供試され、必要に応じて液量の低減や目的成分の濃縮を目的としたドライアップ及び溶解液による再溶解が施され、さらに、液体クロマトグラフィー質量分析計(Liquid Chromatograph Mass Spectrometer, LCMS)等の精製・測定操作に供試されることにより、目的成分の分離精製と検出を行い、目的成分の同定や定量解析が実施される。
全体制御部88は、試料処理システム全体の動作を制御するものであり、図示しない入力手段、記憶手段、表示手段などを備えている。全体制御部88は、入力手段により各装置の設定パラメータが設定されたら、記憶手段に記憶したソフトウェアに従って各構成装置の動作を制御し、処理対象試料の前処理を実行する。また、各処理部10,20,30,250,40,62,63、72において正常とは異なる事態が生じた場合、即時に試料処理システム全体の一時停止を行い、図示しない表示装置にアラームの提示を行う。
次に、本実施の形態の試料処理システムにおける処理手順を説明する。前処理開始時において開口部101〜115は、図6に示す初期位置にあるものとする。
まず、オペレータは、処理対象試料を収容した検体容器1を試料容器ホルダー3に装填し、試料容器ラック4に収納して検体容器供給部62に設置する。また、反応容器2を試料容器ホルダー3に装填し、試料容器ラック4に収納して反応容器供給部63に設置する。この状態で、全体制御部88の図示しない入力手段により、前処理開始の指示を行う。
(手順1)ノズル295aを停止位置101aに移動する。このとき、ノズル295b〜295eは停止位置104a,107a,110a,113aに移動する。この状態で、処理部10,20,30,250,40では以下の処理を同時に行う。
分注処理部10では、停止位置101aにおけるノズルチップ装着処理、停止位置102aにおける開口部102への検体容器供給処理、及び、停止位置103aにおける開口部103への反応容器供給処理を同時に行う。
溶血処理部20では、停止位置105aにおける開口部105への検体容器回収処理、及び、停止位置106aにおける開口部106に保持された反応容器2への第1試薬としての溶血処理液注入処理を行う。なお、停止位置104aのノズル95bは、ノズル295aと同様の動きをするのみである。
タンパク沈澱処理部30では、停止位置109aにおける開口部109に保持された反応容器2への第2試薬としてのタンパク沈澱処理液注入処理を行う。なお、停止位置107aのノズル95cは、ノズル95aと同様の動きをするのみである。
加圧処理部250では、停止位置112aにおける開口部112に保持された反応容器2への加圧処理を行う。加圧機構52Aは、加圧処理後に速やかに搬送路から退避する。なお、停止位置110aのノズル295dは、ノズル295aと同様の動きをするのみである。
反応容器回収部40では、停止位置113aにおけるノズル295eへのノズルチップ廃棄処理、及び、停止位置115aにおける開口部115への反応容器回収処理を行う。
(手順2)ノズル295aを停止位置102aに移動する。このとき、ノズル295b〜295eは停止位置105a,108a,111a,114aに移動する。この状態で、処理部10,20,30,250,40では以下の処理を同時に行う。
分注処理部10では、停止位置102aにおける開口部102に保持された検体容器1への攪拌処理、及び吸引処理を行う。
溶血処理部20では、停止位置105aのノズル295bは、ノズル295aと同様の動きをするのみである。
タンパク沈澱処理部30では、停止位置108aのノズル295cは、ノズル295aと同様の動きをするのみである。
加圧処理部250では、停止位置111aのノズル295dは、ノズル295aと同様の動きをするのみである。
反応容器回収部40では、停止位置114aのノズル295eは、ノズル295aと同様の動きをするのみである。
(手順3)ノズル295aを停止位置103aに移動する。このとき、ノズル295b〜295eは停止位置106a,109a,112a,115aに移動する。この状態で、処理部10,20,30,250,40では以下の処理を同時に行う。
分注処理部10では、停止位置103aにおける開口部103に保持された反応容器2への吐出処理、及び攪拌処理を行う。
溶血処理部20では、停止位置106aにおける開口部106に保持された反応容器2への攪拌処理を行う。
タンパク沈澱処理部30では、停止位置109aにおける開口部109に保持された反応容器2への攪拌処理を行う。
加圧処理部250では、停止位置112aのノズル295dは、ノズル295aと同様の動きをするのみである。
反応容器回収部40では、停止位置115aのノズル295dは、ノズル295aと同様の動きをするのみである。
(手順4)ノズル295aを停止位置104aに移動する。このとき、ノズル295b〜295eは停止位置107a,110a,113a,101aに移動する。また、ノズル295a〜295eの移動と同時に、開口部101〜115を、反時計回り方向に3ピッチ移動する。これにより、開口部113〜115は停止位置101a〜103aに移動するとともに、開口部101〜112は停止位置104a〜115aに移動する。
手順4の後の状態において、ノズル295eをノズル295aと、開口部113〜115を開口部101〜103と読み換え、その他のノズル295a〜295d及び開口部101〜112においても同様に読み換えて、手順1〜手順4と同様の処理を繰り返す。このように、手順1〜手順4と同様の処理を繰り返すことにより、処理対象試料に対して連続して処理を行う。
以上のように構成した本実施の形態においても、第1の実施の形態と同様の効果を得ることができる。
<第3の実施の形態>
本実施の形態は、検体分注および反応溶液撹拌を行う分注/撹拌機構が、反応容器が配置されるターンテーブルと同軸上ではないこと、および、反応容器が一体化されたフィルタリング部と固相抽出部から構成されることを特徴とする場合の実施の形態である。
図7に、第3の実施の形態として、全血中の免疫抑制剤を質量分析装置により定量測定をする為の、溶血処理、除タンパク処理、固相抽出処理から質量分析測定するまでを全自動で実施するシステムの場合の実施例概略図を図示する。
本実施例の分注/撹拌機構94は、ターンテーブル91の外周に位置することを特徴とする。ターンテーブル91の周辺には、第1および第2の実施の形態と同様に、各停止位置301a〜310a、および311a において各種処理機構が配置される。
ターンテーブル91は、第1、第2の実施例同様に、各工程に応じて、反時計周りに、一つの停止位置の単位で回転して移動する。各停止位置ごとの工程と各動作は、図10に示される。
分注/撹拌機構94は、ターンテーブル91の外周に位置するが、そのノズル395aの先端に装着されるディスポーザブルなノズルチップ14が描く軌道は、ターンテーブル91の軌道の一つの停止位置311aでターンテーブル91上の反応容器の軌道と交差する。この交点の停止位置311aにおいて、1つの反応容器につきディスポーザブルなノズルチップ1本で検体の分注した後、第1試薬の反応液を同停止位置にて第1試薬分注機構323を用いて注入し、前記と同じディスポーザブルなノズルチップで吸引吐出しにより攪拌する。その後、第2試薬の反応液を同停止位置311aにて第2試薬分注機構333を用いて注入し、前記と同じディスポーザブルなノズルチップで吸引吐出しにより攪拌する。すなわち、同じディスポーザブルなノズルチップ1本にて、試料の反応溶液への分注、および第1試薬、第2試薬という2種の反応溶液の撹拌、すなわち全3種の工程を処理する。
このように、ディスポーザブルなノズルチップ14で検体分注および複数の反応溶液工程の撹拌操作を行うことにより、全血処理時の試料分注ピペット洗浄機構、撹拌機構、および攪拌部品の洗浄機構の搭載を回避できる。このことは、無限軌道上に配置される反応容器を用いて分離・抽出すべき試料をランダムな時間間隔で連続して前処理する構成で、ディスポーザル部品の消耗コストを低減しつつ、かつ、低キャリーオーバに分離・抽出もしくは、分離抽出の為の前処理を実施することを可能にする。
分注/撹拌機構94の軌道上には、ノズルチップ廃棄部41、ノズルチップ供給部11、検体供給部62が配置される。また、分注/撹拌機構94の同軸あるいは別軸上に、第1試薬(溶血処理液)の分注機構323および第2試薬(タンパク沈殿処理液)分注機構333が配置される(図7は、別軸上での配置の実施例を図示している)。また、必要に応じて質量分析法での定量の為の内部標準物質液等の分注機構を配置しても構わない。そして、溶血処理液、タンパク沈澱処理液、内部標準物質液等の各種試薬の分注は、分注機構と試薬容器が直結したディスペンサー方式であっても構わないし、分注機構とは別に試薬容器を配置することで、分注機構が試薬容器から試薬を吸引した後、反応処理溶液に吐出する方式であっても構わない。
以下に、分注/撹拌機構94に関わる各種機構の動作を示す。また、各工程のタイムテーブルは図11に示す。
まず、分注/撹拌機構94は、ノズルチップ供給部11でディスポーザブルなノズルチップ14をノズル395aに装着する。
次に、分注/撹拌機構94は、軌道を描いて検体供給部62に移動し、検体を吸引する。
次に、分注/撹拌機構94は、軌道を描いてターンテーブルとの交点311aに移動し、そこに位置する反応容器2に検体を吐出する。
次に、必要に応じて、分注/撹拌機構94は、軌道を描いてターンテーブル91との交点311aから退避する。
次に、第1試薬(溶血処理液)分注機構323は、反応容器に必要量の溶血処理液を吐出した後、ターンテーブル91との交点311aから退避する。
次に、分注/撹拌機構94は、軌道を描いてターンテーブル91との交点311aに移動し、そこに位置する反応容器2中の反応用液を撹拌する。
次に、必要に応じて、分注/撹拌機構94は、軌道を描いてターンテーブル91との交点311aから退避する。
次に、第2試薬(タンパク沈殿処理液)分注機構333は、反応容器2に必要量のタンパク沈殿処理液を吐出した後、ターンテーブル91との交点311aから退避する。
次に、分注/撹拌機構は、軌道を描いてターンテーブル91との交点311aに移動し、そこに位置する反応容器2中の反応用液を撹拌する。
次に、分注/撹拌機構は、軌道を描いてノズルチップ廃棄部に移動し、ノズル395aから使用済みのディスポーザブルなノズルチップ14を廃棄する。
以上が、分注/撹拌機構の軌道とターンテーブル91の軌道の交点が1点の場合における、機構動作である。このプロセスの間、ターンテーブル91は静止した状態を保っており、上記操作が完了後、ターンテーブル91は1区画分移動する。これにより、分注/撹拌機構の軌道とターンテーブ91の軌道の交点に位置していた反応容器は次の停止位置301aに移り、そこでのフィルタリング加圧の工程に移るとともに、次の停止位置310aに停止していた新しい反応容器2が分注/撹拌機構94の軌道とターンテーブル91の軌道の交点311aに移動して停止することになり、その容器に対して引き続き上記同様の操作が繰り返されることになる。
また、必要に応じて、内部標準物質液用分注機構を設ける場合は、前記の検体吐出工程と溶血溶液吐出工程との間に、内部標準物質液の分注および反応容器への吐出工程を設置するのが好適である。
加圧機構52C〜52F、および、加圧機構/フィルタ脱離機構52Bは、図15〜図17に示されるように、加圧部ホルダ400a、および加圧用シリンジ400bから構成される加圧部400を備える。
反応容器2は、図15に示されるように、底部にフィルタ410aを有するフィルタリング容器部2bと、フィルタ410aを通過したろ液を直接に受ける固相抽出充填材420を備える固相抽出部2cとから構成される。固相抽出充填材420は、上下のフィルタ410b,410cにて所定の位置に収められている。
無加圧な状態において、フィルタリング容器部2bに収容された各種溶液、および処理対象試料は、フィルタ410aを通過速度が極めて遅く、事実上、フィルタリング容器部2bに留まっている。フィルタリング容器部2b内を加圧するなどの処理を施すことによって、所定の成分がフィルタ410aを通過し、固相抽出部2cに各種溶液、試料が進入する。
図15は、停止位置308a,310a,301aでの加圧部400と、反応容器2との関係を示す。ただし、停止位置308a,310aでは、タンパク沈殿物411は存在しない。これら停止位置での加圧操作により、各種溶液および試料は、フィルタ410aを通過し、固相抽出部2cに進入し、固相抽出充填材420に吸着されない成分は、固相抽出部2cを通過し、下部の廃液路450に導かれる。
停止位置301aでは、試料溶液を加圧するので、目的成分が固相抽出充填材420に吸着される。301aでの加圧は、加圧機構/フィルタ部脱離機構52Bにより実施される。加圧後、夾雑物の沈殿物が溜まったフィルタリング容器部2bは、加圧機構/フィルタ部脱離機構52Bにより反応容器2より取り外され、廃棄される。反応容器2には、固相抽出部2cが残り、これが、次の停止位置302aに進む。
図16は、停止位置303aでの洗浄時の加圧部400と、反応容器2との関係を示す。この配置での加圧により、固相抽出充填材420に吸着された目的成分以外の夾雑物が洗浄されて、廃液路450に導かれる。
図17は、停止位置305aでの溶出時の加圧部400と、反応容器2、および抽出液カップ2d、カップテーブル360との関係を示す。カップテーブル360上には、固相抽出された溶液(抽出液)を受ける容器である抽出液カップ2dが、複数配置されている。この位置での加圧により、目的成分が固相抽出充填材420から脱離され、抽出液カップ2d内の抽出液内に溶出される。
抽出液カップ2dに収められた抽出液は、カップテーブル360の回転移動により、イオン源430近傍にまで移動し、前処理試料導入機構320によって、イオン源430に投入される。前処理試料導入機構320としては、通常の液体クロマトグラフィー分析法などで用いられるオートサンプラーによる試料導入機構を用いる。イオン源430でイオン化された試料は、質量分析部440で定量測定されて、全体制御部88に測定データが送付される。
このように、反応容器2は、フィルタリング容器部と、固相抽出部が、一体に連結されておりながら、フィルタリング終了後に固相抽出部から取り外し可能な構造となっている。その為、フィルタリング時は、自動的に損失なしに効率よく、ろ液を固相抽出部に送ることが可能で、かつ、フィルタリング終了後は、固相抽出の洗浄・溶出時に夾雑物が溶解して測定を妨害するタンパク沈殿物を、高速、簡便に撤去することが可能である。
<第4の実施の形態>
図8に示される本実施例は、第3の実施の形態と同様に、検体分注および反応溶液撹拌を行う分注/撹拌機構が、反応容器が配置されるターンテーブルと同軸上ではないことを特徴とする場合の実施の形態である。第3の実施の形態と異なる点は、分注/撹拌機構94上のノズル395aの軌道とターンテーブル91上の反応容器2の軌道の交点が2点あることである。この2つの交点上で、反応容器内への検体試料、溶血処理液、タンパク沈殿処理液の分注を行うとともに、各反応溶液の撹拌を行う。
以下、第3の実施例と動作が異なる点を中心に説明する。
分注/撹拌機構の軌道上には、ノズルチップ廃棄部、ノズルチップ供給部、検体供給部が配置される。また、分注/撹拌機構の同軸あるいは別軸上に、溶血処理液およびタンパク沈殿処理液の分注機構が配置される(図8は、別軸での配置の例である)。また、必要に応じて内部標準物質液等の分注機構を配置しても構わない。そして、溶液処理液、タンパク沈殿処理液、内部標準物質液等の各種試薬の分注は、分注機構と試薬容器が直結したディスペンサー方式であっても構わないし、分注機構とは別に試薬容器を配置することで、分注機構が試薬容器から試薬を吸引した後、反応処理溶液に吐出する方式であっても構わない。
交点が2点の場合、ターンテーブル91の回転移動の上流側の第1の交点311bは回転移動の下流側の第2の交点312bよりも、一連の処理プロセスの上流側の処理を実施する位置とすることが望ましい。例えば、全血処理の場合は、第1の交点で溶血処理、第2の交点でタンパク沈殿処理を行う。ただし、溶血処理およびタンパク沈殿処理は、各々が各種分注操作や撹拌操作で構成されるため、その一連の操作順序を遵守する限り、どの段階で第1の交点から第2の交点に切り換わっても構わない。
図8の実施例では、第1の交点で溶血処理が完了した後に、第2の交点でタンパク沈殿処理を行う場合であり、以下に、その具体的な各種機構の動作を示す。また、各工程のタイムテーブルは図11に示す。
まず、分注/撹拌機構94は、ノズルチップ供給部11でディスポーザブルなノズルチップ14をノズル395aに装着する。
次に、分注/撹拌機構94は、軌道を描いて検体供給部62に移動し、検体を吸引する。
次に、分注/撹拌機構94は、軌道を描いてターンテーブル91との第1の交点311bに移動し、そこに位置する反応容器2に検体を吐出する。
次に、必要に応じて、分注/撹拌機構94は、軌道を描いてターンテーブル91との第1の交点311bから退避する。
次に、第1試薬(溶血処理液)分注機構323は、第1の交点311bでの反応容器2に必要量の溶血処理液を吐出した後、ターンテーブル91との第1の交点311bから退避する。
次に、分注/撹拌機構94は、軌道を描いてターンテーブル91との第1の交点311bに移動し、そこに位置する反応容器2中の反応用液を撹拌する。
次に、必要に応じて、分注/撹拌機構94は、軌道を描いてターンテーブル91との第1の交点311bから退避する。
次に、ターンテーブルは1停止位置分だけ移動し、第1の交点311bにおいて溶血処理を行った反応容器は、第2の交点312bに移動し、第1の交点311bには、それまで停止位置310aに停止していた次の新しい反応容器2が停止することになる。
次に、第2試薬(タンパク沈殿処理液)分注機構333は、ターンテーブルとの第2の交点312bに移動した反応容器に必要量のタンパク沈殿処理液を吐出した後、その交点312bから退避する。
次に、分注/撹拌機構94は、軌道を描いてターンテーブル91との第2の交点312bに移動し、そこに位置する反応容器2中の反応用液を撹拌する。
次に、分注/撹拌機構94は、軌道を描いてノズルチップ廃棄部41に移動し、ノズル395aから使用済みのディスポーザブルなノズルチップ14を外して廃棄する。
次に、分注/撹拌機構94は、引き続きノズルチップ供給部11でディスポーザブルなノズルチップ14をノズル395aに装着し、次の検体容器1から検体溶液を吸引した後、第1の交点311bに配置されている反応容器2に対して、上記に示した一連の溶血処理操作を繰り返す。
また、必要に応じて、内部標準物質液用分注機構を設ける場合は、前記の交点311bでの検体吐出工程と溶血溶液吐出工程との間に、交点311bでの内部標準物質液の分注および反応容器への吐出工程を設置するのが好適である。
<第5の実施の形態>
図9に示される実施例は、第3、第4の実施の形態と同様に、検体分注および反応溶液撹拌を行う分注/撹拌機構が、反応容器が配置されるターンテーブルと同軸上ではないことを特徴とする場合の実施の形態である。第4の実施の形態と同様に、分注/撹拌機構94上のノズル395aの軌道とターンテーブル91上の反応容器2の軌道の交点が2点あることを特徴とするが、2つの交点での作業効率を上げるために、分注/撹拌機構が同軸上で独立稼動する2本のノズル395a,395bを有することで、ターンテーブル91上の2交点311b,312bに位置するそれぞれの反応容器2に対する処理の並行同時操作を可能にする実施例である。そのときの各工程のタイムテーブルを図12に示す。この並行処理操作により、全血からの免疫抑制剤成分の分離・抽出操作を、高速に、短TATにて、低キャリーオーバにて、かつ、検体をランダムに随時前処理開始可能な状態で、実施できる前処理システムが実現される。
なお、本実施の形態においては、処理対象を生体試料(全血試料)とした試料処理システムを示して説明したが、これに限られず、環境や食品等の多岐にわたる分野における試料処理システムに対しても適用可能であることは言うまでもない。
1 検体容器、
2 反応容器
2a 回収容器部
2b フィルタリング容器部
2c 固相抽出部
2d 抽出液カップ
3 試料容器ホルダー
4 試料容器ラック
10 分注処理部
11 ノズルチップ供給部
12 検体容器供給路
13 反応容器供給路
14 ノズルチップ
15 ノズルチップラック
16 ノズルチップラック移動機構
17 ベルトコンベア
17a 試料容器ホルダー位置決め仕切り
18 ベルトコンベア
18a 試料容器ホルダー位置決め仕切り
20 溶血処理部
22 検体容器回収路
23 第1試薬(溶血処理液)注入器
24 ベルトコンベア
24a 試料容器ホルダー位置決め仕切り
25 溶液・溶媒タンク
30 タンパク沈澱処理部
33 第2試薬(タンパク沈澱処理液)注入器
34 溶液・溶媒タンク
40 反応容器回収部
41 ノズルチップ廃棄部
43 反応容器回収路
50 沈殿除去部
51 搬送機構
52,52A,52C,52D,52E,52F 加圧機構
52B 加圧機構/フィルタ部脱離機構
53 フィルタ廃棄部
54 抽出物回収部
55 精製/測定工程
62 検体容器供給部
63 反応容器供給部
72 検体容器回収部
88 全体制御部
90,90A 搬送機構
91,91A ターンテーブル
92 試料容器ホルダー押さえ
93 試料容器ホルダー落下防止ガード
94,294 分注/攪拌機構
95,295 基部
95a〜95d,295a〜295e ノズル
96 吸引/吐出機構
97 回転駆動機構
98 駆動機構
101〜115 開口部
101a〜115a 停止位置
250 加圧処理部
301a,303a,305a,308a,310a 停止位置(固相抽出の加圧)
302a 停止位置(固相抽出の洗浄液分注)
304a 停止位置(固相抽出の溶出液分注)
306a 停止位置(固相抽出の反応容器搭載/回収)
307a 停止位置(固相抽出のコンディショニング液A分注)
309a 停止位置(固相抽出のコンディショニング液B分注)
311a 停止位置(検体分注、第1試薬分注、反応溶液撹拌)
311b 停止位置(検体分注、第1試薬分注、反応溶液撹拌、第2試薬分注、反応溶液撹拌)
312b 停止位置(第2試薬分注、反応溶液撹拌)
320 反応容器搭載/回収機構
323 第1試薬(溶血処理液)分注機構、
333 第2試薬(タンパク沈澱処理液)分注機構
340 分注機構
350 前処理試料導入機構
360 カップテーブル
395a,395b ノズル
400 加圧部
400a 加圧部ホルダ
400b 加圧シリンジ
400c 加圧ベース
410a,410b,410c フィルタ
411 タンパク沈殿物
420 固相抽出充填材
430 イオン源
440 質量分析部
450 廃液路
460 洗浄液
470 溶出液

Claims (12)

  1. 溶液試料を分離、精製、もしくはフィルタリングする為の処理システムであって、
    環状に配置され、処理対象試料から目的物質を分離抽出する為の反応容器を搬送する手段と、
    前記搬送手段による反応容器の搬送路に沿って設けられ、前記反応容器に収容された処理対象試料に各種処理を施す複数の処理工程と、
    処理システムに供給される検体容器から前記反応容器に試料を分注する吸引吐出手段を備え、
    前記吸引吐出手段は、環状に移動する軌道を備え、その軌道上の異なる複数の点において、前記反応容器に収容された処理対象試料を吸引及び吐出する吸引吐出部を配置したことを特長とする試料処理システム。
  2. 円環状に配置され、周方向に回転して処理対象試料を収容した試料容器を搬送する搬送手段と、
    前記搬送手段に搬送される試料容器の搬送軌道の上方に前記試料容器に収容された処理対象試料を吸引及び吐出する複数の吸引吐出部を円環状に配置した吸引吐出手段とを備えたことを特長とする試料処理システム。
  3. 請求項1記載の試料処理システムにおいて、
    前記吸引吐出手段は、前記吸引吐出部が予め定めた前記試料容器の移動に対応して移動
    するように回転することを特徴とする試料処理システム。
  4. 請求項2記載の試料処理システムにおいて、
    前記搬送手段に沿って等間隔に配置された複数の処理部と、
    前記搬送手段に周方向に等間隔に配置され、前記試料容器を保持する複数の保持手段とを備え、
    前記吸引吐出手段の吸引吐出部の数は前記処理部と同数であり、前記保持手段の数は、
    前記処理部の数の整数倍であることを特長とする試料処理システム。
  5. 請求項1記載の試料処理システムにおいて、
    前記搬送手段に沿って配置された複数の処理部を備え、
    前記複数の処理部の少なくとも1つは、試料容器に収容した処理対象試料を試料容器に分注する分注処理部と、前記試料容器に分注された試料に溶血処理を行う溶血処理部と、
    溶血処理が行われた試料にタンパク沈澱処理を行うタンパク沈澱処理部の何れかであることを特徴とする試料処理システム。
  6. 請求項1記載の試料処理システムにおいて、
    前記吸引吐出手段は、処理対象試料に対して吸引と吐出を交互に繰り返し、処理対象試
    料を攪拌することを特徴とする試料処理システム。
  7. 請求項1記載の試料処理システムにおいて、
    前記吸引吐出部に着脱可能に設けられたノズルチップを備えたことを特徴とする試料処理シス
    テム。
  8. 請求項7記載の試料処理システムにおいて、一つの検体試料に対し、一つのノズルチップにて、複数の攪拌工程を実施する前処理システム。
  9. 請求項1記載の試料処理システムにおいて、反応容器は、フィルタリング部とフィルタリング後のろ液を保持する手段とを兼ね備えた1体化容器であり、フィルタリング後に、フィルタリング部とろ液保持手段とが、取り外し可能な構造となっていることを特徴とする試料処理システム。
  10. 請求項1記載の試料処理システムにおいて、吸引吐出手段の軌道と反応容器を搬送する手段の軌道の実質的な交点が2点となり、その2つの交点において、検体分注および反応溶液撹拌を行うことを特徴とする試料処理システム。
  11. 請求項10記載の試料処理システムにおいて、吸引吐出手段が同軸上で独立稼動する2本のノズルを有し、反応容器を搬送する手段の軌道との2交点に位置する反応容器の操作を担うことを特徴とする試料処理システム。
  12. 溶液試料をフィルタリングおよび抽出処理する為の抽出精製容器であって、該容器が、フィルタリング部とフィルタリング後のろ液を抽出充填材に保持する手段とを兼ね備えた1体化容器であり、フィルタリング後に、フィルタリング部と抽出充填材保持手段とが、取り外し可能な構造となっていることを特徴とするフィルタリング容器。
JP2011526765A 2009-08-10 2010-08-10 試料処理システム Expired - Fee Related JP5611951B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011526765A JP5611951B2 (ja) 2009-08-10 2010-08-10 試料処理システム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009186001 2009-08-10
JP2009186001 2009-08-10
JP2011526765A JP5611951B2 (ja) 2009-08-10 2010-08-10 試料処理システム
PCT/JP2010/063536 WO2011019032A1 (ja) 2009-08-10 2010-08-10 試料処理システム

Publications (2)

Publication Number Publication Date
JPWO2011019032A1 true JPWO2011019032A1 (ja) 2013-01-17
JP5611951B2 JP5611951B2 (ja) 2014-10-22

Family

ID=43586207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011526765A Expired - Fee Related JP5611951B2 (ja) 2009-08-10 2010-08-10 試料処理システム

Country Status (5)

Country Link
US (1) US9176037B2 (ja)
EP (1) EP2466289B1 (ja)
JP (1) JP5611951B2 (ja)
CN (1) CN102472692B (ja)
WO (1) WO2011019032A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20115785A0 (fi) 2011-08-08 2011-08-08 Thermo Fisher Scientific Oy Menetelmä ja laite automaattiseen analyysiin
WO2013021101A1 (en) 2011-08-08 2013-02-14 Thermo Fisher Scientific Oy Method and apparatus for automated analysis
KR101411711B1 (ko) * 2012-03-08 2014-06-25 엘지전자 주식회사 로봇 청소기
EP2878953B1 (en) * 2012-07-25 2017-05-03 Hitachi High-Technologies Corporation Analysis device
US9623411B1 (en) * 2013-06-19 2017-04-18 Theranos, Inc. Methods and devices for small volume liquid containment
CN104344985B (zh) * 2013-08-09 2018-04-03 英芮诚生化科技(上海)有限公司 一种磁性分离装置
FR3022025B1 (fr) * 2014-06-04 2018-03-16 Commissariat A L'energie Atomique Et Aux Energies Alternatives Ensemble de prelevement et de transport de nano-objets contenus dans des aerosols, a cassette a ouverture securisee lors du prelevement.
US11441975B2 (en) 2014-07-02 2022-09-13 Shimadzu Corporation Controlling method of preprocessing apparatus
JP6332449B2 (ja) * 2014-07-11 2018-05-30 株式会社島津製作所 前処理装置
US10473630B2 (en) 2014-07-28 2019-11-12 Shimadzu Corporation Preprocessing kit, preprocessing apparatus using said preprocessing kit to preprocess sample, and analysis system provided with said preprocessing apparatus
US20170284981A1 (en) * 2014-09-02 2017-10-05 Shimadzu Corporation Preprocessing device and analysis system provided with same
WO2016035140A1 (ja) * 2014-09-02 2016-03-10 株式会社島津製作所 前処理装置及びこれを備えた分析システム
CN104297033B (zh) * 2014-10-20 2017-03-29 浙江海洋学院 非水相液体土壤污染物浓度配制装置及方法
WO2016170994A1 (ja) * 2015-04-24 2016-10-27 株式会社日立ハイテクノロジーズ 自動分析装置及び方法
JP6784196B2 (ja) 2017-03-03 2020-11-11 株式会社島津製作所 前処理装置及びその前処理装置を備えた分析システム
JP6948158B2 (ja) * 2017-05-29 2021-10-13 シスメックス株式会社 試料処理装置及び試料処理方法
CN107091760B (zh) * 2017-06-20 2020-02-11 中国水利水电科学研究院 一种室内土槽试验径流泥沙连续取样测量保存系统和方法
CN110756241A (zh) * 2019-12-19 2020-02-07 百奥森(江苏)食品安全科技有限公司 一种食品检测用移液装置
CN111157325A (zh) * 2020-01-07 2020-05-15 沈丹 一种用于生态环境检测的有机物提取装置
CN114295559B (zh) * 2021-12-31 2022-12-13 江苏福拉特自动化设备有限公司 一种流体成分浓度在线检测仪
WO2024101257A1 (ja) * 2022-11-08 2024-05-16 株式会社日立ハイテク 自動分析装置

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3594129A (en) * 1969-09-03 1971-07-20 American Hospital Supply Corp Single-channel analyzer
US4186187A (en) * 1972-07-24 1980-01-29 California Institute Of Technology Sample processor for the automatic extraction of families of compounds from liquid samples and/or homogenized solid samples suspended in a liquid
US3912456A (en) * 1974-03-04 1975-10-14 Anatronics Corp Apparatus and method for automatic chemical analysis
JPS63118665A (ja) 1986-11-06 1988-05-23 Toshiba Corp 自動化学分析装置のサンプル希釈方法
GB2232599A (en) 1989-06-08 1990-12-19 Summers Dr Julie Andrea One-step blood to plasma device
DE3923833C2 (de) * 1989-07-19 1998-07-02 Boehringer Mannheim Gmbh Analysegerät für heterogene immunologische Tests
US5585068A (en) * 1990-02-20 1996-12-17 Biochemical Diagnostics, Inc. Apparatus for automatically separating a compound from a plurality of discrete liquid specimens
JPH04106472A (ja) 1990-08-28 1992-04-08 Shimadzu Corp 自動化学分析装置
JPH03170046A (ja) 1990-11-05 1991-07-23 Olympus Optical Co Ltd 化学分析用検液の作成方法
JPH04372859A (ja) * 1991-06-21 1992-12-25 Shimadzu Corp 自動分析装置
JP2795564B2 (ja) 1991-10-08 1998-09-10 アロカ 株式会社 高粘性液体の希釈方法
JP2705471B2 (ja) 1992-06-30 1998-01-28 株式会社島津製作所 自動分析装置
DE69305947T2 (de) 1992-09-18 1997-03-13 Amersham Int Plc Vorrichtung und Methode zur Affinitätstrennung
JPH06289031A (ja) 1993-03-31 1994-10-18 Shimadzu Corp 生化学分析方法及び装置
US5660727A (en) * 1994-06-14 1997-08-26 Dionex Corporation Automated analyte supercritical fluid extraction apparatus
US5895631A (en) 1995-03-20 1999-04-20 Precision System Science Co., Ltd. Liquid processing method making use of pipette device and apparatus for same
JPH10267936A (ja) * 1997-03-25 1998-10-09 Olympus Optical Co Ltd 自動分析装置
JP3391734B2 (ja) 1998-07-27 2003-03-31 株式会社日立製作所 生体サンプルの取扱い方法及び分析装置
JP2000235037A (ja) 1999-02-16 2000-08-29 Hitachi Ltd 試料分析装置
GB9909630D0 (en) 1999-04-28 1999-06-23 Zeneca Ltd Reactor
ATE407359T1 (de) * 2001-04-20 2008-09-15 Gl Sciences Inc Verfahren und gerät zur spurenelementextraktion in der festphase
US7776615B2 (en) 2001-04-20 2010-08-17 Gl Sciences, Inc. Method for solid-phase micro extraction and apparatus therefor
JP3972062B2 (ja) 2001-10-12 2007-09-05 日本碍子株式会社 懸濁物質を含む水試料中の内分泌攪乱化学物質の捕捉・抽出方法及びこれに用いられる固相抽出カラム
US6723236B2 (en) * 2002-03-19 2004-04-20 Waters Investments Limited Device for solid phase extraction and method for purifying samples prior to analysis
JP4102739B2 (ja) * 2003-11-25 2008-06-18 株式会社日立ハイテクノロジーズ 自動分析装置
JP2006007081A (ja) 2004-06-25 2006-01-12 Hitachi Koki Co Ltd 自動固相抽出装置
JP4490328B2 (ja) * 2005-05-13 2010-06-23 アロカ株式会社 自動分注装置
JP4813140B2 (ja) * 2005-09-29 2011-11-09 シスメックス株式会社 試料調製容器および試料調製キット
JP2009025167A (ja) * 2007-07-20 2009-02-05 Hitachi High-Technologies Corp 自動分析装置

Also Published As

Publication number Publication date
WO2011019032A1 (ja) 2011-02-17
US20120134895A1 (en) 2012-05-31
CN102472692A (zh) 2012-05-23
JP5611951B2 (ja) 2014-10-22
CN102472692B (zh) 2015-01-07
EP2466289B1 (en) 2019-01-23
US9176037B2 (en) 2015-11-03
EP2466289A4 (en) 2018-02-21
EP2466289A1 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
JP5611951B2 (ja) 試料処理システム
US9448246B2 (en) Integrated sequential sample preparation system
JP5242532B2 (ja) 検査装置
US20060110296A1 (en) Automatic separator/extractor and method of controlling same
WO2010150842A1 (ja) 前処理装置及びそれを備えた質量分析装置
EP3165916B1 (en) Preprocessing apparatus
EP2584337A1 (en) Biological sample pretreatment method and apparatus
JP2002090374A (ja) 検体前処理装置および検体搬送方法
CN103890589A (zh) 自动分析装置
WO2018181718A1 (ja) 核酸分離装置
CN111638276A (zh) 全自动磁分离提取-固相萃取联用一体机
JP2010151551A (ja) 試料前処理装置
US6815215B2 (en) Method of recovering a plurality of nucleic acids by an identical stationary phase and an apparatus thereof
JP4060468B2 (ja) 分注機を利用した磁性体の脱着制御方法及びこの方法によって処理される各種装置
JPWO2017199432A1 (ja) 前処理装置及びその前処理装置を備えた分析システム
WO2001038882A1 (en) Apparatus and method for processing sample materials contained in a plurality of sample tubes
WO2024062751A1 (ja) 自動分析装置
WO2024214443A1 (ja) 自動分析装置及び洗浄方法
JP2018171028A (ja) 核酸分離装置
JP7333569B2 (ja) 検査試料の自動前処理装置
CN210199030U (zh) 全自动磁分离提取-固相萃取联用一体机
KR100211129B1 (ko) 분주기를 이용한 액체처리방법 및 그 장치
CN114062101A (zh) 一种样本处理方法及装置
JP2002243746A (ja) 自動分離抽出装置
JP2001318094A (ja) 複数の核酸を同一固相で回収する方法及び装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140624

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140903

R150 Certificate of patent or registration of utility model

Ref document number: 5611951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees