WO2010150842A1 - 前処理装置及びそれを備えた質量分析装置 - Google Patents

前処理装置及びそれを備えた質量分析装置 Download PDF

Info

Publication number
WO2010150842A1
WO2010150842A1 PCT/JP2010/060727 JP2010060727W WO2010150842A1 WO 2010150842 A1 WO2010150842 A1 WO 2010150842A1 JP 2010060727 W JP2010060727 W JP 2010060727W WO 2010150842 A1 WO2010150842 A1 WO 2010150842A1
Authority
WO
WIPO (PCT)
Prior art keywords
cartridge
solid phase
pretreatment
transport means
solvent
Prior art date
Application number
PCT/JP2010/060727
Other languages
English (en)
French (fr)
Inventor
真 野上
勝弘 神田
泉 和氣
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to CN201080026060.0A priority Critical patent/CN102460107B/zh
Priority to JP2011519933A priority patent/JP5242787B2/ja
Priority to US13/377,154 priority patent/US9207152B2/en
Priority to EP10792160.3A priority patent/EP2447697B1/en
Publication of WO2010150842A1 publication Critical patent/WO2010150842A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4055Concentrating samples by solubility techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/025Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a carousel or turntable for reaction cells or cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4055Concentrating samples by solubility techniques
    • G01N2001/4061Solvent extraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N2030/009Extraction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes

Definitions

  • the present invention relates to a pretreatment apparatus that analyzes and examines components in a biological sample such as blood and serum, and a mass spectrometer including the same.
  • trace compounds such as drugs
  • biological samples such as blood and serum
  • solid phase extraction In order to carry out purification and concentration operations efficiently, automation using solid phase extraction is carried out, and a compact, more various analysis can be performed, and an apparatus having a high processing speed is desired.
  • solid phase extraction the substance to be measured is held in a small container (mini-column or cartridge) once filled with the solid phase (small beads or membranes), and the solid phase is washed and recovered from the solid phase -It is a purification and concentration method.
  • the solid phase recovery step includes (1) solid phase conditioning step in which the organic solvent is allowed to flow through the solid phase, (2) solid phase equilibration step in which the aqueous solvent is allowed to flow through the solid phase, and (3) sample The step of holding the measurement target substance on the solid phase by passing the solution through the solid phase, (4) the washing step of passing the water through the solid phase, and the step of passing the organic solvent through the solid phase (5) Eluting from the solid phase.
  • Patent Document 1 An example of an automatic solid phase extraction apparatus is described, for example, in Patent Document 1.
  • the apparatus described in this patent document 1 is a solid phase extraction apparatus equipped with a vacuum rack for mounting multiple solid phase extraction plates, and a dispensing head for performing liquid suction and ejection operations and a transfer means of the dispensing head. It is.
  • this makes it possible to automatically purify and concentrate components such as blood and serum by batch processing in a batch (96-well plate), and it is possible to use a solution containing the purified and concentrated substance to be measured.
  • a solution containing the purified and concentrated substance to be measured By subjecting it to liquid chromatography or mass spectrometry, qualitative and quantitative analysis of a substance to be measured contained in a small amount of biological sample such as blood and serum, such as a drug, is performed.
  • This technology is effective in that the measurer pre-processed by manual method and automated the mass spectrometric measurement promoted significant simplification of time and equalization of data dispersion. It is.
  • a plurality of solvents are used in each step of solid phase extraction, so for example, an organic solvent is used in the above step (1) and aqueous in step (2).
  • Use a solvent Therefore, it is necessary to replace the dispensing tip every time the type of solvent changes, and the disposal amount of the dispensing tip increases and the cost of consumables increases, and the dispensing head is in the tip mounting position, the solvent suction position and the solvent discharge Since it is necessary to move the position, there is a problem that the movement time becomes long, one cycle becomes long, and the processing capacity is lowered.
  • the dispensing head is a multi-channel device configuration that simultaneously performs a series of solid phase extraction operations for a plurality of samples of the same type simultaneously. For example, even in the case of solid phase extraction of one type of sample A plurality of chips will be attached to the dispensing head. For this reason, the solvent to be sucked and discharged is also consumed by the number of the dispensing tips, resulting in waste.
  • the object of the present invention is to use a pretreatment device capable of efficiently performing separation / purification of multiple measurement target substances with a series of solid phase extraction steps, with a small number of consumables used It is to realize a mass spectrometer.
  • the present invention is configured as follows.
  • a solid phase cartridge for purifying and concentrating a specific component from a biological sample In a biological sample pretreatment apparatus, a solid phase cartridge for purifying and concentrating a specific component from a biological sample, a cartridge holding portion for holding the solid phase cartridge, and a cartridge conveying means capable of conveying the cartridge holding portion on an endless track
  • a sample probe for discharging a biological sample to a solid phase cartridge held by the cartridge holding unit an aqueous solvent probe for discharging an aqueous solvent to the solid phase cartridge held by the cartridge holding unit, and an organic solvent for the cartridge
  • a pretreatment device and a mass spectrometer using the same which can perform efficiently separation and purification of multiple measurement target substances with a series of solid phase extraction processes with a small number of consumables used be able to.
  • FIG. 1 It is a schematic block diagram of an automatic analyzer to which an embodiment of the present invention is applied. It is a schematic enlarged view of the solid-phase extraction part of the automatic analyzer shown in FIG. It is a figure which shows the advancing pattern of the analysis process in the Example of this invention. It is a functional block diagram of a control part shown in FIG. It is a conceptual diagram of the probe for solvents in the example of the present invention. It is a conceptual diagram showing the timing of rotation among the progress patterns of the parallel analysis process in the Example of this invention. It is a modification of the Example in this invention, and a cartridge holding
  • maintenance part is 10 places
  • a pressure load part is an apparatus configuration conceptual diagram of five places. It is a modification of the Example in this invention, and is an apparatus configuration conceptual diagram in case a cartridge holding part becomes multiple connection.
  • MS / MS analysis or MS n analysis massifies both the substance to be measured and the fragmented substance to be measured. It is a technology that enables highly accurate identification of similar structural components by being able to be analyzed.
  • pretreatment purification and concentration
  • automation of all processes from sample pretreatment to analysis and inspection has become desirable ing.
  • the embodiment of the present invention is configured to be able to automate the whole process from sample pretreatment to analysis and inspection.
  • FIG. 1 is a schematic view (top view) of an automatic analyzer to which the present invention is applied
  • FIG. 2 is a schematic view of a solid phase extraction unit in the example shown in FIG.
  • Example 1 of the present invention the configuration of the solid phase extraction unit in Example 1 of the present invention will be described with reference to FIGS. 1 and 2.
  • the solid phase extraction unit of the present invention shown in FIG. 2 comprises a solid phase cartridge 3 for purifying and concentrating specific components from biological samples such as whole blood and serum, and a cartridge holding unit 4 for holding the solid phase cartridge 3
  • the cartridge transport means 1 capable of transporting the cartridge holding portion 4 on an endless track (in the illustrated example, on the rotation start), the pressure loading portion 7 which applies pressure to the cartridge holding portion 4, and elution from the solid phase cartridge 3
  • a water-based solvent probe 13 for discharging a water-based solvent, a probe 14 for organic solvent for discharging an organic solvent, and a pro for an elution solution for sucking and discharging the extracted extract to introduce into a mass spectrometer It consists Bed 23 and eluate probe 23 wash port 28 for cleaning the.
  • the cartridge holding portion 4 is formed on the annular cartridge conveying means 1 and has an opening on the upper surface into which the solid phase cartridge 3 is inserted, and the lower surface has an opening smaller than the diameter of the solid phase cartridge 3.
  • the solid-phase cartridge 3 is supported, and the solution or the like extracted from the solid-phase cartridge 3 drops downward from the lower surface portion of the cartridge holding unit 4.
  • the pressure load unit 7 is built in two cylinders, and the air pressure is directed downward, that is, toward the solid phase cartridge 3 held by the cartridge holding unit 4 by means for pressing each of these pistons Air pressure is applied.
  • the entire apparatus configuration of the automatic analyzer includes a cartridge storage unit 8 for storing the solid phase cartridge 3, a cartridge transfer arm 9 for transferring the solid phase cartridge 3 from the cartridge storage unit 8 to the cartridge holding unit 4, A receiver storage unit 10 for storing the receiver 5, a receiver transfer arm 11 for transferring the receiver 5 from the receiver storage unit 10 to the receiver holding unit 6, and a sample transfer for transferring the rack 20 for mounting the sample container 21 A mechanism 19, a reagent storage unit 15 for storing a reagent container 16 in which an internal standard substance corresponding to each substance to be measured is injected, a tip storage unit 17 for storing disposable dispensing tips 18, and a dispensing tip 18 And the waste port 22 for discarding the solid phase cartridge 3 and the receptor 5, and the flow path where the liquid is sent from the pump 24 to the mass analysis unit 27.
  • the cartridge transport means 1 and the receiver transport means 2 have the same rotation axis, the cartridge transport means 1 is disposed above, and the receiver transport means 2 is disposed below the cartridge transport means 1. Further, four cartridge holding portions 4 are formed in the cartridge conveying means 1, and four receiver holding portions 6 are formed in the receiver conveying means 2. Each of the four cartridge holding units 4 and each of the four receiver holding units 6 are disposed at mutually opposing positions, and the solution or the like extracted from or discharged from the solid phase cartridge 3 held by the cartridge holding unit 4 Are accommodated in the receiver 5 held by the receiver holder 6.
  • control unit 29 Next, the configuration of the control unit 29 will be described with reference to FIG.
  • the information output from the mass analysis unit 27 of the automatic analysis apparatus 101 passes through the A / D converter 103 and enters the computer 102 via the interface 109, and the concentration of the substance to be measured is calculated.
  • the analysis result of the substance to be measured based on the calculated concentration is printed out to the printer 104 through the interface 109 or displayed on the LCD with a touch panel 105 and stored in the memory 106.
  • the interface 109 is also connected to the syringe mechanism 107 and the pump mechanism 108, and can control suction and discharge of a solution or the like by the sample probe 12, the aqueous solvent probe 13, the organic solvent probe 14, and the elution solution probe 23.
  • the arm drive mechanism 110 of the cartridge transfer arm 9 and the receiver transfer arm 11, the drive mechanism 111 of the cartridge transfer means 1 and the receiver transfer means 2, and the drive mechanism 112 of the pressure load unit 7 are also computer 102 via the interface 109. , And these operations are controlled by the computer 102.
  • Example 1 of the present invention The procedure of analysis using the automatic analyzer in Example 1 of the present invention will be described with reference to FIG. The description will be made in the order of the five steps of solid phase extraction and the measurement steps in the mass spectrometric section.
  • FIG. 3 is a view showing the progress pattern of the analysis step.
  • the five steps of solid phase extraction are (1) conditioning of the solid phase which passes the organic solvent to the solid phase, and (2) aqueous system
  • the solid phase equilibration step in which the solvent is passed through the solid phase
  • (4) the washing step in which water is passed through the solid phase
  • the solid phase cartridge 3 and the receiver 5 stored in the cartridge storage unit 8 and the receiver storage unit 10 are respectively stored in the cartridge holding unit 4 and the receiver holding unit 6 by the cartridge transfer arm 9 and the receiver transfer arm 11. It is attached.
  • the solid phase cartridge 3 stored in the cartridge storage unit 8 is, for example, a plurality of solid phase cartridges filled with gel in which reverse phase, normal phase, ion exchange and size exclusion, or mixed modes are mixed,
  • the measurement conditions for each substance to be measured stored in the memory 106 are called up via the interface 109, and the appropriate solid phase cartridge 3 is selected.
  • the cartridge holding portion 4 holding the solid phase cartridge 3 to which methanol is added rotates to the position B shown in FIG.
  • the receiver transport unit 2 located below the cartridge transport unit 1 is coaxially rotated, and the cartridge holding unit 4 and the receiver holding unit 6 move while maintaining the relative position.
  • the pressure loading unit 7 located above the positions B and D shown in FIG. 2 descends toward the cartridge holding unit 4 at the position B, and the air pressure is applied to cause the methanol to enter the solid phase cartridge 3.
  • the solution is allowed to flow and conditioning of the solid phase is performed.
  • the drained methanol waste liquid will be collected in the receiver 5.
  • the cartridge transport unit 1 rotates the cartridge holding unit 4 holding the solid phase cartridge 3 to the position C shown in FIG. At this time, the cartridge holding portion 4 and the receiver holding portion 6 similarly move while maintaining the relative position.
  • the cartridge holding unit 4 in which the solid phase cartridge 3 is held rotates to the position A.
  • the cartridge holder 4 and the receiver holder 6 similarly move while maintaining their relative positions.
  • the sample probe 12 is moved to the upper side of the tip storage section 17 and the dispensing tip 18 is attached to the sample probe 12.
  • the sample probe 12 to which the dispensing tip 18 is attached moves to the upper side of the reagent container 16, sucks the internal standard substance from the reagent container 16, and discharges it to the solid phase cartridge 3 after equilibration.
  • the sample probe 12 moves to the upper side of the rack 20 transported by the sample transport mechanism 19, sucks the sample from the sample container 21, and discharges the sample to the solid phase cartridge 3 of the cartridge transport unit 1.
  • the solution is agitated by repeating aspiration and discharge of the solution in which the internal sample and the internal standard substance are mixed several times.
  • the sample probe 12 moves to a position above the waste port 22 and discards the used tip 18. Then, the cartridge transport unit 1 rotates so that the cartridge holding unit 4 in which the solid phase cartridge 3 is held is at the position B. At this time, similarly, the cartridge holding portion 4 and the receiver holding portion 6 move while maintaining their relative positions.
  • the pressure loading unit 7 located above the positions B and D descends toward the cartridge holding unit 4 at the position B, and the sample and the internal standard substance pass through the solid phase cartridge 3 by applying the air pressure.
  • the solution is kept to hold the substance to be measured on the solid phase.
  • the sample solution passed through will be collected in the receiver 5.
  • the cartridge transport means 1 is rotated until the cartridge holding portion 4 holding the solid phase cartridge 3 is at the position C. At this time, similarly, the cartridge holding portion 4 and the receiver holding portion 6 move while maintaining their relative positions. Then, water is discharged from the aqueous solvent probe 13 to the solid phase cartridge 3 in which the substance to be measured is held.
  • the cartridge transport unit 1 is rotated until the cartridge holding unit 4 holding the solid phase cartridge 3 is at the D position.
  • the cartridge holding portion 4 and the receiver holding portion 6 similarly move while maintaining the relative position.
  • the pressure load unit 7 located above the positions B and D descends toward the cartridge holding unit 4 at the position D, and water is flowed into the solid phase cartridge 3 by applying air pressure to solidify the solid phase cartridge 3. The phase is washed. The passed water will be collected in the receiver 5.
  • the cartridge transport means 1 is rotated until the cartridge holding portion 4 holding the solid phase cartridge 3 is at the position A. At this time, similarly, the cartridge holding portion 4 and the receiver holding portion 6 move while maintaining their relative positions.
  • the receiver 5 in which waste liquid is collected by the receiver transfer arm 11 is moved to the upper side of the waste port 22 and discarded. Then, the receiver transfer arm 11 moves above the receiver storage unit 10 and mounts the new receiver 5 on the receiver holding unit 6.
  • the pressure loading unit 7 located above the positions B and D descends toward the cartridge holding unit 4 at the position B and loads the air pressure, whereby methanol is flowed into the solid phase cartridge 3 to be measured. Elution of the substance takes place.
  • the eluted target substance is accommodated in the receptor 5.
  • the organic solvent is added to the solid phase 3 at the position A (one step), and the pressure is applied to the organic solvent at the position B by the pressure load.
  • the aqueous solvent is added to the solid phase at position C (3 steps), and the aqueous solvent is allowed to flow through the solid phase at position D by pressure load (4 steps).
  • the transport means 1 is rotated from position D to position A, the reagent and the sample are added to the solid phase 3 at the position A (5 steps) and the sample is held on the solid phase by the pressure load at the position B (6 Step), the aqueous solvent is added to the solid phase at position C (step 7), the aqueous solvent is passed through the solid phase by pressure load at position D, and washed (step 8).
  • the transport means 1 rotates from position D to position A, the organic solvent is added to the solid phase 3 at position A (step 9), and the pressure solid phase elutes the measurement object of the solid phase at position B ( 10), housed in the receiver 5;
  • the cartridge holding unit 1, the rotation operation of the receiver conveyance means 2, the probes 12 to 14, and the pressure loading unit 7 are performed at four positions A to D. .
  • the cartridge transport means 1 is rotated until the cartridge holding portion 4 holding the solid phase cartridge 3 is at the position C. At this time, similarly, the cartridge holding portion 4 and the receiver holding portion 6 move while maintaining their relative positions.
  • the elution solution containing the substance to be measured in the receptor 5 is aspirated by the elution solution probe 23, and the elution solution is injected into the elution solution inlet 25.
  • the eluate inlet 25 is located on the flow path where the liquid is sent from the pump 24, and the substance to be measured that has reached the ionization unit 26 by the flow injection analysis (FIA) method is ionized by high temperature and high voltage and mass spectrometry It is introduced to the part 27.
  • FIA flow injection analysis
  • the FIA is a method of introducing a sample onto the flow path from the pump 24, and the time is greatly shortened compared to a conventional high performance liquid chromatography / mass spectrometer (LC / MS). Since sample separation is not performed, sample components will be introduced into MS simultaneously.
  • LC / MS liquid chromatography / mass spectrometer
  • the solvent was sent at a flow rate of 100 microliters / minute using a 70% methanol solution containing 10 mM ammonium formate.
  • the MS mode was set to an analysis time of 2 minutes using the MRM (Multiple Reaction Monitoring) mode of the triple quadrupole mass spectrometer with high selectivity.
  • the MRM passes only the precursor signal in the first stage quadrupole, cleaves the signal in the next collision cell, and monitors only the product signal specific to the generated compound with the second stage quadrupole. is there. In this method, identification is possible with specific mass information of the compound.
  • the mass analysis unit 27 may use an ion trap mass spectrometer, a time of flight mass spectrometer, a quadrupole mass spectrometer, and a Fourier transform mass spectrometer in addition to the triple quadrupole mass spectrometer. .
  • the cartridge transport means 1 is rotated until the cartridge holding portion 4 holding the solid phase cartridge 3 is at the position D, and the air pressure is loaded by the pressure loading portion 7. Then, the cartridge transport means 1 is moved until the cartridge holding portion 4 in which the solid phase cartridge 3 is held is at the position A. Then, the cartridge transport arm 9 and the receiver transport arm 11 move the solid phase cartridge 3 and the receiver 5 to the upper side of the disposal port 22 and discard each.
  • the cartridge transfer arm 9 and the receiver transfer arm 11 move to the upper side of the cartridge storage unit 9 and the receiver storage unit 10, and the new solid phase cartridge 3 and the receiver 5 move to the cartridge holding unit 4 and the receiver holding unit 6. Each will be worn.
  • the cartridge holding parts 4 and two pressure loading parts 7 are provided, and pressure loading positions at position B and position D, sample at position A and position C, and solvent addition position ( Since the cartridge holding unit 4) which is not located under the pressure load unit 7 is alternately disposed on the circumference on the cartridge conveying unit 1 which is a rotating body, the sample is rotated by the cartridge conveying unit 1 It is possible to switch the position where the addition, the solvent addition and the pressure load operation are performed. As a result, the sample addition, the solvent addition, and the pressure load operation can be continuously performed, the movement distance of the probe or arm is short, the access efficiency is good, and the mechanism can be simplified.
  • the organic solvent is always added at the solvent addition position of position B and the aqueous solvent is always added at the solvent addition position of position D according to the process progress pattern of solvent extraction. It is possible to provide the aqueous solvent probe 13 for the aqueous solvent and the organic solvent probe 14 for the organic solvent, and it is necessary for the probes 13 and 14 to move other than rotation and vertical movement for suction and discharge operations. There is no
  • the aqueous solvent probe 13 and the organic solvent probe 14 are, as shown in FIG. 5, a storage tank 205 for storing the solvent, a pump 204 for feeding the solvent, a water supply valve 203, and a syringe for sucking an appropriate amount of solvent.
  • a mechanism 202 and a probe 201 for discharging a solvent are provided.
  • the probes 13 and 14 do not need to move, and since the solvent is dedicated for each of the probes 13 and 14, there is no need to replace a non-dedicated tip, the components are simple and the device is compact. And cost reduction is possible.
  • the solvent addition position and the pressure load part are alternately arranged, four operations can be simultaneously processed in parallel, and the throughput is improved. Specifically, as shown in FIG. 6, for the first sample processing, after the solid phase cartridge 3 and the receiver 5 are mounted, methanol is added, and the cartridge transport means 1 is rotated to position B, You can start the second sample process.
  • the third sample process can begin after the first sample is at position C and the second sample is at position B.
  • the fourth sample is similar.
  • simultaneous parallel processing as shown in FIG. 6, the timing of rotation of the cartridge transfer step 1 is rotated after the steps up to the rotation of all the samples being processed in parallel have been completed.
  • the amount of solution used is small, and cost reduction can be achieved.
  • 400 microliters (200 microliters ⁇ 2), 400 microliters (water ⁇ 200 microliters) of water, 100 microliters of sample, and 10 microliters of internal standard substance per sample Even if the total of the liter and mass spectrometry processes are combined, the amount of the solution used can be reduced to about 1 milliliter, so cost reduction can be realized, and since the amount of waste liquid is small, the cost of waste liquid treatment can be reduced.
  • the number of the cartridge holding unit 4 and the number of the pressure loading units 7 are four and two, respectively, but the number of the cartridge holding unit 4 and the pressure loading unit 7 is opposite to that of the opposite device. It becomes a factor of compactification and throughput improvement.
  • an apparatus configuration provided with two cartridge holding portions 4 and one pressure loading portion 7 as shown in FIG. 7 is appropriate. In this configuration, parallel processing can not be performed, so the throughput is inferior, and the position for adding the reagent and the solvent is one, and it is necessary to prevent the operating positions of the probe and the arms from interfering with each other.
  • an apparatus configuration provided with ten cartridge holding parts 4 and five pressure loading parts 7 is appropriate.
  • a series of solid phase extraction steps are completed while the cartridge transfer means 1 makes a round, but a large number of receiver storage units 10, receiver transfer arms 11 and waste ports 22 are required.
  • the addition positions of water and methanol are not fixed, the solvent addition positions of the aqueous solvent probe 13 and the organic solvent probe 14 become movable, and the apparatus area becomes large, and the apparatus configuration and the configuration of individual parts are complicated. become.
  • the cartridge holding unit 4 When priority is given to throughput, as shown in FIG. 9, the cartridge holding unit 4 according to the first embodiment of the present invention may be configured to have multiple connections (three connections in the illustrated example). In the case shown in FIG. 9, the throughput can be improved without increasing the device area, and the solvent addition positions of the water solvent probe 13 and the organic solvent probe 14 can be fixed. Although FIG. 9 shows an example of the case of triples, the case of at least two or more can be considered.
  • extraction is performed a plurality of times with the solid phase cartridge 3 of different modes, for example, in the first stage, in the ion exchange mode, and in the second stage, in the reverse phase mode.
  • the degree of purification is improved, and data reliability is improved even for samples with individual differences.
  • the process progress pattern is different from the normal process progress pattern, the normal process progress pattern ends when the cartridge transport means 2 makes three turns, but in this case, it makes six turns.
  • the four cartridge holding parts 4 are positioned at equal intervals on the cartridge conveyance means 1 capable of conveying on an endless track, and the two pressure load parts 7 of the cartridge conveyance means 1 face each other. Being positioned above the holding unit 4, the five steps of solid phase extraction are repeatedly performed to reduce the cost of consumables, and a series of solid phase extraction steps are performed to separate and purify multiple measurement target substances. It is possible to provide an automatic analyzer that can be performed efficiently and that is compact and has a high processing speed.
  • the circular cartridge transport means 1 and the circular receiver transport means 2 rotate around the same rotation axis, and the cartridge holding portion 4 and the receiver holding portion 6 move in the vertical direction.
  • the configuration is made to rotate opposite to each other, the circular cartridge transport means 1 and the circular receiver transport means 2 can also be configured to rotate around different rotational axes.
  • the circular cartridge transport means 1 and the circular receiver transport means 2 are arranged so as to be offset from each other, and at the position B of the cartridge transport means 1 the receptacles of the cartridge holder 4 and the receptacle transport means 2
  • the holding portions 6 may be configured to face each other in the vertical direction, and may be configured not to face each other at the other positions A, C, and D.
  • the receptor 5 held in the receptor holding unit 6 of the receptor conveyance means 2 accommodates the eluate of the object to be measured from the solid phase cartridge 3 held in the cartridge holding unit 4 and is used in solid phase conditioning.
  • the solvent and the like may be contained in another container.
  • the space above the receptor conveyance means 2 can be made an open space, and the design freedom of the eluate removal probe 23 can be increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

 消耗品の使用点数が少なく、多項目の測定対象物質の分離・精製を一連の固相抽出工程により、高効率に行うことが可能な、前処理装置及びそれを用いた質量分析装置を実現する。カートリッジ搬送手段(1)の位置Aで有機溶媒が固相(3)に添加され位置Bで圧力負荷部(7)により有機溶媒が固相(3)に通液され位置Cで水系溶媒が固相(3)に添加され位置Dで圧力負荷部(7)により水系溶媒が固相(3)に通液される。搬送手段(1)は位置DからAに回転し試薬及びサンプルが固相(3)に添加され位置Bで圧力負荷部(7)により試料が固相(3)に保持され位置Cで水系溶媒が固相に添加され位置Dで圧力負荷部(7)により水系溶媒で洗浄される。搬送手段(1)は位置DからAに回転し有機溶媒が固相(3)に添加され位置Bで圧力負荷により測定対象物が溶出され受容器(5)に収容される。

Description

前処理装置及びそれを備えた質量分析装置
 本発明は、血液および血清等の生体サンプル中の成分を分析・検査する前処理装置及びそれを備えた質量分析装置に関する。
 血液および血清等の生体サンプルに含まれる微量化合物、例えば薬物等を分析する場合、測定する成分が微量であるため精製・濃縮する必要がある。
 精製・濃縮作業を効率的に行うために、固相抽出を用いた自動化が行われており、コンパクトでより多種類の分析ができ、かつ処理速度の高い装置が望まれている。固相抽出は、測定対象物質を、いったん固相(小径の複数のビーズまたは膜状)を充填した小容器(ミニカラムやカートリッジ)に保持させ、固相を洗浄し、そして固相から回収する分離・精製・濃縮方法である。
 固相の回収工程は、(1)有機溶媒を固相に通液させる固相のコンディショニング工程と、(2)水系溶媒を固相に通液させる固相の平衡化工程と、(3)サンプルを固相に通液させる測定対象物質の固相への保持工程と、(4)水を固相に通液させる洗浄工程と、(5)有機溶媒を固相に通液させ測定対象物質を固相から溶出させる工程とからなる。
 自動固相抽出装置の例は、例えば特許文献1に記載されている。この特許文献1に記載された装置は、多連の固相抽出プレートを装着するバキュームラックと、液体の吸引及び吐出動作を行う分注ヘッドと分注ヘッドの移送手段が備わった固相抽出装置である。
 すなわち、これは一括にバッチ処理すること(96穴プレート)で血液や血清等の成分を自動的に精製・濃縮することを可能としており、精製・濃縮された測定対象物質が含まれた溶液を液体クロマトグラフィーや質量分析装置に供試することによって、血液および血清等の生体サンプル微量に含まれる測定対象物質、例えば薬剤等の定性および定量解析が行われる。
 この技術は、それまで測定者が用手法で前処理を行い、質量分析測定を行っていたものを自動化することで大幅な時間の簡略化とデータのばらつきの均一化を促進させた点で有効である。
特開2006-7081号公報
 しかしながら、特許文献1に記載の装置構成では各工程で使用する溶媒を吸引・吐出する場合、分注ヘッドを移送手段により分注チップ容器まで移動し、分注チップを交換していた。
 このため、従来技術の方式では、固相抽出の各工程では複数種類の溶媒(水系溶媒、有機溶媒)を用いるため、例えば、上記工程(1)では有機溶媒を用い、工程(2)では水系溶媒を用いる。したがって、溶媒の種類が変わるごとに分注チップを交換する必要があり、分注チップの廃棄量が増え消耗品のコストが増大するとともに、分注ヘッドがチップ装着位置、溶媒吸引位置および溶媒吐出位置を移動する必要があるため、移動時間が長くなり、1サイクルが長くなって、処理能力が低下してしまうという問題があった。
 また、分注ヘッドは多連になっており一連の固相抽出操作を、同一種類のサンプルで複数個同時に行う装置構成になっており、例えば、1種類のサンプルを固相抽出する場合にも分注ヘッドには複数個のチップが装着されることとなる。このため、吸引・吐出される溶媒もその分注チップの数だけ消費され無駄が生じていた。
 加えて、固相抽出プレート上の試薬の吸引・吐出工程で一度に同種類の溶媒のみしか選択できず、同時に複数の溶媒をウェル内に充填することができないため、異なる溶媒を用いる多項目の抽出処理を行うことができない。
 さらに、固相抽出プレートにバキュームラックを装着し吸引している間は、他の操作が行えず一度処理を開始した後の次の処理依頼サンプルは実行中の処理が終了するまで開始できないことなど、臨機応変な処理をすることが難しい。
 本発明の目的は、消耗品の使用点数が少なく、多項目の測定対象物質の分離・精製を一連の固相抽出工程により、高効率に行うことが可能な、前処理装置及びそれを用いた質量分析装置を実現することである。
 上記目的を達成するため、本発明は次のように構成される。
 生体試料前処理装置において、生体試料から特定の成分を精製・濃縮する固相カートリッジと、前記固相カートリッジを保持するカートリッジ保持部と、前記カートリッジ保持部を無限軌道上で搬送できるカートリッジ搬送手段と、生体試料を上記カートリッジ保持部に保持された固相カートリッジに吐出するサンプルプローブと、水系溶媒を上記カートリッジ保持部に保持された固相カートリッジに吐出する水系溶媒プローブと、有機系溶媒を上記カートリッジ保持部に保持された固相カートリッジに吐出する有機系溶媒プローブと、前記カートリッジ保持部に保持された固相カートリッジに空気圧力を負荷する圧力負荷部と、前記カートリッジ搬送手段、サンプルプローブ、水系溶媒プローブ、有機系溶媒プローブ及び圧力負荷部の動作を制御するコントロール部とを備える。
 消耗品の使用点数が少なく、多項目の測定対象物質の分離・精製を一連の固相抽出工程により、高効率に行うことが可能な、前処理装置及びそれを用いた質量分析装置を実現することができる。
本発明の実施例が適用される自動分析装置の概略構成図である。 図1に示した自動分析装置の固相抽出部の概略拡大図である。 本発明の実施例における分析工程の進行パターンを示す図である。 図1に示したコントロール部の機能ブロック図である。 本発明の実施例における溶媒用プローブの概念図である。 本発明の実施例における同時並行分析工程の進行パターンのうち、回転のタイミングを表す概念図である。 本発明における実施例の変形例であり、カートリッジ保持部が2箇所および圧力負荷部が1箇所の装置構成概念図である。 本発明における実施例の変形例であり、カートリッジ保持部が10箇所および圧力負荷部が5箇所の装置構成概念図である。 本発明における実施例の変形例であり、カートリッジ保持部が多連になっている場合の装置構成概念図である。
 近年、質量分析法を臨床に応用する動きが広まっている。これは、従来技術である抗原-抗体反応を利用する免疫法を用いた自動分析装置では、交差反応によりデータ精度の信頼性の問題があるのに対して、質量分析法では測定対象物質の質量に基づいて測定するので交差反応なく、高精度識別を可能にする技術であるためである。
 例えば、代謝物等の類似構造分子との識別が可能な測定技術であり、特に、MS/MS解析やMS解析の手法は、測定対象物質および測定対象物質をフラグメント化した物質の両方を質量分析可能なことにより、類似構造成分どうしの高精度識別を可能にする技術である。質量分析法を臨床応用する場合、固相抽出等を用いたサンプルの前処理(精製・濃縮)は必須であり、サンプル前処理から分析・検査までの全工程の自動化が望まれるようになってきている。
 このため、本発明の実施例は、サンプル前処理から分析・検査までの全工程の自動化が可能な構成となっている。
 以下、本発明に係る自動分析装置の実施例を、添付図面を参照しながら詳細に説明する。なお、以下に説明する実施例は発明の一例を示したものであって、本発明はこれに限定されるものではない。
 図1は、本発明が適用される自動分析装置の概念図(上面図)であり、図2は、図1に示した例における、特に固相抽出部の概念図である。
 まず、本発明の実施例1における固相抽出部の構成について、図1、図2を参照して説明する。
 なお、ビーズの種類を異ならせた、複数モードの固相カートリッジが存在し、抽出する試料の物性に応じてモードを変え、複数回、固相抽出工程を行い、分析精度を向上することができる。
 図2に示した、本発明の固相抽出部は、全血および血清等の生体サンプルから特定の成分を精製・濃縮する固相カートリッジ3と、固相カートリッジ3を保持するカートリッジ保持部4と、カートリッジ保持部4を無限軌道上(図示した例では、回転起動上)で搬送できるカートリッジ搬送手段1と、カートリッジ保持部4に圧力を負荷する圧力負荷部7と、固相カートリッジ3から溶出された抽出液を受ける受容器5と、受容器5を保持する受容器保持部6と、受容器保持6を搬送する受容器搬送手段2と、サンプルおよび試薬を吸引・吐出するサンプルプローブ12と、水系溶媒を吐出する水系溶媒プローブ13と、有機溶媒を吐出する有機溶媒用プローブ14と、溶出された抽出液を吸引・吐出し質量分析計に導入する溶出液用プローブ23および溶出液用プローブ23を洗浄する洗浄ポート28から構成される。
 カートリッジ保持部4は、円環状のカートリッジ搬送手段1に形成され,上面部に固相カートリッジ3が挿入される開口部を有し、下面部は、固相カートリッジ3の径より小の開口部を有し、固相カートリッジ3を支持し、固相カートリッジ3から抽出された溶液等が、カートリッジ保持部4の下面部から下部方向に落下する構成となっている。
 また、圧力負荷部7は、2つのシリンダー内に内蔵されており、これらピストンのそれぞれを押圧する手段により、空気圧を下方向、つまり、カートリッジ保持部4に保持された固相カートリッジ3に向けて空気圧力が印加される。
 次に、図2に示した固相抽出部以外の自動分析装置全体の装置構成について図1に基づいて説明する。
 図1において、自動分析装置の全体の装置構成は、固相カートリッジ3を保管するカートリッジ保管部8と、カートリッジ保管部8から固相カートリッジ3をカートリッジ保持部4へ搬送するカートリッジ搬送アーム9と、受容器5を保管する受容器保管部10と、受容器保管部10から受容器5を受容器保持部6へ搬送する受容器搬送アーム11と、サンプル容器21を載せるラック20を搬送するサンプル搬送機構19と、各測定対象物質に対応した内部標準物質が注入されている試薬容器16を保管する試薬保管部15と、ディスポーザブルの分注チップ18を保管するチップ保管部17と、分注チップ18と固相カートリッジ3および受容器5を廃棄する廃棄口22と、ポンプ24から質量分析部27へ送液が行われている流路上に溶出液を導入する溶出液注入部25と、測定対象物質をイオン化するイオン化部26と、イオン化された測定対象物質を質量/荷数(m/z)に基づいて分析する質量分析部27および前述した固相抽出部等の動作を制御するコントロール部29とを備えている。
 カートリッジ搬送手段1と受容器搬送手段2とは、同一の回転軸を有し、カートリッジ搬送手段1が上方に配置され、受容器搬送手段2がカートリッジ搬送手段1の下方に配置されている。そして、カートリッジ搬送手段1には4つのカートリッジ保持部4が形成され、受容器搬送手段2には、4つの受容器保持部6が形成されている。4つのカートリッジ保持部4のそれぞれと4つの受容器保持部6のそれぞれとは、互いに対向する位置に配置され、カートリッジ保持部4に保持された固相カートリッジ3からの抽出又は排出された溶液等が、受容器保持部6に保持された受容器5に収容される。
 次に、コントロール部29の構成について図4を参照して説明する。
 図4において、自動分析装置101の質量分析部27から出力された情報は、A/D変換器103を経由しインターフェース109を介してコンピュータ102に入り、測定対象物質の濃度が計算される。計算された濃度に基づく測定対象物質の分析結果は、インターフェース109を介してプリンタ104に印字出力するか、またはタッチパネル付LCD105に画面出力すると共に、メモリ106に格納される。インターフェース109はシリンジ機構107およびポンプ機構108にも接続され、サンプルプローブ12、水系溶媒プローブ13、有機溶媒プローブ14、溶出液用プローブ23による溶液等の吸引・吐出を制御することができる。
 また、カートリッジ搬送アーム9及び受容器搬送アーム11のアーム駆動機構110、カートリッジ搬送手段1及び受容器搬送手段2の駆動機構111、圧力負荷部7の駆動機構112も、インターフェース109を介してコンピュータ102に接続され、これらの動作がコンピュータ102により制御される。
 本発明の実施例1における自動分析装置を用いた分析の手順について、図3を参照して、説明する。説明は、固相抽出の5つの工程および質量分析部での測定工程の順番に従って行なうこととする。
 図3は分析工程の進行パターンを示す図であり、固相抽出の5つの工程は、具体的には、(1)有機溶媒を固相に通液させる固相のコンディショニング工程、(2)水系溶媒を固相に通液させる固相の平衡化工程、(3)サンプルを固相に通液させる測定対象物質の固相への保持工程、(4)水を固相に通液させる洗浄工程、(5)有機溶媒を固相に通液させ測定対象物質を固相から溶出させる工程である。
 まず、有機溶媒を固相に通液させる固相のコンディショニング工程について説明する。
なお、以下の動作は、主にコントロール部29により制御される。
 カートリッジ保管部8および受容器保管部10に、それぞれ保管されている固相カートリッジ3および受容器5が、カートリッジ搬送アーム9および受容器搬送アーム11によりカートリッジ保持部4および受容器保持部6にそれぞれ装着される。
 そして、カートリッジ保持部4に装着された固相カートリッジ3へ有機溶媒用プローブ14からメタノールが吐出される。この工程は図2に示した位置Aで行われる。カートリッジ保管部8に保管されている固相カートリッジ3は、例えば逆相、順相、イオン交換およびサイズ排除、または複数のモードをミックスしたゲルが充填された固相カートリッジが複数用意されており、ユーザーがタッチパネル付LCD105に測定対象物質を入力するとインターフェース109を介してメモリ106に格納されている測定対象物質ごとの測定条件が呼び出され、適切な固相カートリッジ3が選択される。
 次に、カートリッジ搬送手段1はメタノールを添加した固相カートリッジ3が保持されているカートリッジ保持部4が、図2に示したBの位置まで回転する。このとき、カートリッジ搬送手段1の下方に位置する受容器搬送手段2は同軸上で回転することとなり、カートリッジ保持部4と受容器保持部6は相対位置を保ったまま移動する。
 そして、図2に示した位置BおよびDの上方に位置する圧力負荷部7が、位置Bのカートリッジ保持部4に向かって降下し、空気圧力を負荷することで固相カートリッジ3内へメタノールが通液され、固相のコンディショニングが行われる。通液したメタノールの廃液は、受容器5に溜まることになる。
 次に、水系溶媒を固相に通液させる固相の平衡化工程について説明する。カートリッジ搬送手段1は、固相カートリッジ3が保持されているカートリッジ保持部4が、図2に示したCの位置まで回転する。このとき、同様にカートリッジ保持部4と受容器保持部6とは相対位置を保ったまま移動する。
 そして、コンディショニング後の固相カートリッジ3へ水系溶媒用プローブ13から水が吐出される。続いて、カートリッジ搬送手段1は固相カートリッジ3が保持されているカートリッジ保持部4がDの位置まで回転する。このとき、同様にカートリッジ保持部4と受容器保持部6とは相対位置を保ったまま移動する。そして、位置BおよびDの上方に位置する圧力負荷部7が、位置Dのカートリッジ保持部4に向かって降下し、空気圧力を負荷することで固相カートリッジ3内へ水が通液され、固相の平衡化が行われる。通液した水の廃液は、受容器5に溜まることになる。
 次に、サンプルを固相に通液させる測定対象物質の固相への保持工程について説明する。カートリッジ搬送手段1は、固相カートリッジ3が保持されているカートリッジ保持部4がAの位置まで回転する。このとき、同様にカートリッジ保持部4と受容器保持部6は互いの相対位置を保ったまま移動する。そして、サンプルプローブ12がチップ保管部17の上方まで移動し分注チップ18が、サンプルプローブ12に装着される。そして、分注チップ18が装着されたサンプルプローブ12が、試薬容器16の上方まで移動し、試薬容器16から内部標準物質の吸引を行い、平衡化後の固相カートリッジ3へ吐出する。
 そして、サンプルプローブ12は、サンプル搬送機構19により搬送されてきたラック20の上方に移動し、サンプル容器21からサンプルの吸引を行い、カートリッジ搬送手段1の固相カートリッジ3へ吐出すると同時に、カートリッジ3内のサンプル及び内部標準物質が混合した溶液の吸引・吐出を複数回繰り返すことで溶液を攪拌する。
 次に、サンプルプローブ12は、廃棄口22の上方まで移動し使用済みのチップ18を廃棄する。そして、カートリッジ搬送手段1は、固相カートリッジ3が保持されているカートリッジ保持部4がBの位置となるように回転する。このとき、同様にカートリッジ保持部4と受容器保持部6とは、互いに相対位置を保ったまま移動する。
 そして、位置BおよびDの上方に位置する圧力負荷部7が、位置Bのカートリッジ保持部4に向かって降下し、空気圧力を負荷することで固相カートリッジ3内へサンプルおよび内部標準物質が通液され、測定対象物質の固相への保持が行われる。通液したサンプル溶液は、受容器5に溜まることになる。
 次に、水を固相に通液させる洗浄工程について説明する。カートリッジ搬送手段1は固相カートリッジ3が保持されているカートリッジ保持部4がCの位置になるまで回転する。このとき、同様にカートリッジ保持部4と受容器保持部6とは互いに相対位置を保ったまま移動する。そして、測定対象物質が保持された固相カートリッジ3へ水系溶媒用プローブ13から水が吐出される。
 続いて、カートリッジ搬送手段1は、固相カートリッジ3が保持されているカートリッジ保持部4がDの位置となるまで回転する。このとき、同様にカートリッジ保持部4と受容器保持部6とは相対位置を保ったまま移動する。そして、位置BおよびDの上方に位置する圧力負荷部7が、位置Dのカートリッジ保持部4に向かって降下し、空気圧力を負荷することで固相カートリッジ3内へ水が通液され、固相の洗浄が行われる。通液した水は、受容器5に溜まることになる。
 次に、有機溶媒を固相に通液させ測定対象物質を固相から溶出させる工程について説明する。カートリッジ搬送手段1は固相カートリッジ3が保持されているカートリッジ保持部4がAの位置となるまで回転する。このとき、同様にカートリッジ保持部4と受容器保持部6とは互いに相対位置を保ったまま移動する。
 そして、受容器搬送アーム11により廃液が溜まっている受容器5が廃棄口22の上方まで移動され、廃棄される。そして、受容器搬送アーム11が受容器保管部10の上方に移動し、新しい受容器5を受容器保持部6に装着する。
 次に、上述したようにして洗浄が行われた固相カートリッジ3へ有機溶媒用プローブ14からメタノールが吐出される。そして、カートリッジ搬送手段1は固相カートリッジ3が保持されているカートリッジ保持部4がBの位置となるまで回転する。このとき、同様にカートリッジ保持部4と受容器保持部6とは互いに相対位置を保ったまま移動する。
 そして、位置BおよびDの上方に位置する圧力負荷部7が、位置Bのカートリッジ保持部4に向かって降下し空気圧力を負荷することで固相カートリッジ3内へメタノールが通液され、測定対象物質の溶出が行われる。溶出された測定対象物質は、受容器5に収容される。
 以上の工程について、簡略化して説明すると、固相コンディショニングにおいては、位置Aで有機溶媒が、固相3に添加され(1工程)、位置Bで圧力負荷により有機溶媒が固相に通液され(2工程)、位置Cで水系溶媒が固相に添加され(3工程)、位置Dで圧力負荷により水系溶媒が固相に通液される(4工程)。
 続いて、搬送手段1は、位置Dから位置Aに回転し、位置Aで試薬及びサンプルが固相3に添加され(5工程)、位置Bで圧力負荷により試料が固相に保持され(6工程)、位置Cで水系溶媒が固相に添加され(7工程)、位置Dで圧力負荷により水系溶媒が固相に通液され、洗浄される(8工程)。
 続いて、搬送手段1は、位置Dから位置Aに回転し、位置Aで有機溶媒が固相3に添加され(9工程)、位置Bで圧力負荷により固相の測定対象物が溶出され(10工程)、受容器5に収容される。
 上述したように、10工程について、A~Dの4つの位置で、カートリッジ保持部1、受容器搬送手段2の回転動作、プローブ12~14、圧力負荷部7が動作することにより実行されている。
 次に、質量分析部27での測定工程について説明する。カートリッジ搬送手段1は固相カートリッジ3が保持されているカートリッジ保持部4がCの位置となるまで回転する。このとき、同様にカートリッジ保持部4と受容器保持部6とは互いに相対位置を保ったまま移動する。
 そして、溶出液用プローブ23により受容器5内の測定対象物質を含む溶出液が吸引され、溶出液注入口25に溶出液が注入される。溶出液注入口25は、ポンプ24から送液が行われる流路上に位置し、Flow Injection Analysis(FIA)法でイオン化部26まで到達した測定対象物質は、高温、高電圧化でイオン化され質量分析部27へ導入される。
 FIAは、ポンプ24から送液が行われている流路上にサンプルを導入する方法であり、通常の高速液体クロマトグラフィー/質量分析計(LC/MS)に比べて時間は大幅に短縮されるが、カラムによる分離は行わないため、サンプル成分が同時にMSに導入されることになる。
 溶媒は、10mMのギ酸アンモニウムを含む70%メタノール溶液を用いて、流速100マイクロリットル/分で送液を行った。質量分析部27においては、MSモードは、選択性の高い三連四重極質量分析計のMRM(Multiple Reaction Monitoring)モード用い、分析時間2分に設定した。
 MRMは、一段目の四重極でプリカーサ信号のみを通し、その信号を次のコリジョンセルで開裂させ、生成した化合物に特異的なプロダクト信号のみを二段目の四重極でモニターする方法である。この方法では、化合物の特異的な質量情報で同定が可能となる。質量分析部27は、三連四重極質量分析計のほかにイオントラップ型質量分析計、飛行時間型質量分析計、四重極質量分析計およびフーリエ変換質量分析計を用いることも可能である。
 次に、カートリッジ搬送手段1は固相カートリッジ3が保持されているカートリッジ保持部4がDの位置となるまで回転し、圧力負荷部7により空気圧力が負荷される。そして、カートリッジ搬送手段1は固相カートリッジ3が保持されているカートリッジ保持部4がAの位置となるまで移動する。そして、カートリッジ搬送アーム9および受容器搬送アーム11により固相カートリッジ3および受容器5が廃棄口22の上方まで移動され、それぞれ廃棄される。
 そして、カートリッジ搬送アーム9および受容器搬送アーム11がカートリッジ保管部9および受容器保管部10の上方に移動し、新しい固相カートリッジ3および受容器5がカートリッジ保持部4および受容器保持部6にそれぞれ装着される。
 この実施例1においては、4箇所のカートリッジ保持部4および2箇所の圧力負荷部7を備え、位置Bと位置Dにある圧力負荷位置と、位置Aと位置Cにあるサンプルおよび溶媒添加位置(圧力負荷部7の下部に位置しないカートリッジ保持部4)とが、回転体であるカートリッジ搬送手段1に、円周上に交互に配置されているため、カートリッジ搬送手段1が回転することで、サンプル添加、溶媒添加、圧力負荷動作が行なわれる位置を切り換えることができる。これによって、これらサンプル添加、溶媒添加、圧力負荷動作を連続して行なうことができ、プローブやアームの移動距離が短くアクセス効率が良く、機構の簡素化が図れる。
 また、位置Aと位置Cの溶媒添加位置において、溶媒抽出の工程進行パターンから有機溶媒は常に位置Bの溶媒添加位置で添加され、水系溶媒は常に位置Dの溶媒添加位置で添加されるため、水系溶媒専用の水系溶媒用プローブ13と有機溶媒専用の有機溶媒用プローブ14を設けることができ、かつ、プローブ13、14が、吸引・吐出動作のための回転や上下移動以外には移動する必要がない。
 水系溶媒用プローブ13と有機溶媒用プローブ14は、図5に示すように溶媒を貯めておく貯留タンク205と、溶媒を送液するポンプ204と、給水バルブ203と、適量の溶媒を吸引するシリンジ機構202と、溶媒を吐出するプローブ201とを備える。
 吐出位置は固定でありプローブ13、14は移動する必要なく、またプローブ13、14ごとに溶媒は専用であるため、専用以外のチップの交換も必要なく、構成要素が単純であり装置のコンパクト化および低コスト化が可能である。
 また、本発明の実施例1では、溶媒添加位置と圧力負荷部とを交互に配置していることで、4つの動作を同時に並列処理可能となり、スループットが向上する。具体的には、図6に示すように、1つめのサンプル処理のために、固相カートリッジ3および受容器5を装着し、メタノールが添加され、カートリッジ搬送手段1が位置Bまで回転した後に、2つめのサンプル処理を始めることができる。
 同様に、3つめのサンプル処理は1つめのサンプルが位置Cに位置し、2つめのサンプルが位置Bに位置した後に始めることができる。4つめのサンプルも同様である。同時並列処理をする場合、カートリッジ搬送工程1の回転のタイミングは、図6に示すように、並行処理しているサンプル全ての回転までの工程が完了した後に回転することになる。
 また、使用する溶液量も少なく、低コスト化を図ることができる。例えば、1サンプルあたり、固相抽出工程ではメタノールが、400マイクロリットル(200マイクロリットル掛ける2)、水が400マイクロリットル(200マイクロリットル掛ける2)、サンプルが100マイクロリットル、内部標準物質が10マイクロリットル、質量分析工程を合わせても1mリットル程度の溶液使用量で抑えられるため低コスト化が実現でき、廃液量も少ないので廃液処理コストも低減できる。
 本発明の実施例1では、カートリッジ保持部4および圧力負荷部7の数はそれぞれ4箇所および2箇所である構成であるが、カートリッジ保持部4および圧力負荷部7の数は、相反する装置のコンパクト化とスループット向上の要因となる。コンパクト化を優先する場合は、例えば、図7に示したように2箇所のカートリッジ保持部4および1箇所の圧力負荷部7を備えた装置構成が適当である。この構成では、並列処理はできないためスループットの点では劣り、また、試薬および溶媒を添加する位置が一箇所になってしまい、それぞれプローブおよびアーム類の稼動位置が干渉しないようにする必要が生じる。
 一方、スループットを優先する場合は、例えば図8に示すように10箇所のカートリッジ保持部4および5箇所の圧力負荷部7を備えた装置構成が適当である。この構成では、カートリッジ搬送手段1が一周する間に固相抽出の一連の工程が終了することになるが、受容器保管部10、受容器搬送アーム11および廃棄口22が多数箇所必要となる。また、水およびメタノールの添加位置は固定されないので、水溶媒用プローブ13および有機溶媒用プローブ14の溶媒添加位置は可動式となり、装置面積が大きくなるとともに、装置構成および個々のパーツの構成が複雑になる。
 また、スループットを優先する場合、図9に示すように、本発明の実施例1のカートリッジ保持部4を多連(図示した例では3連)の構成とすることも考えられる。図9に示した場合であれば、装置面積を大きくすることなしにスループットの向上が望め、水溶媒用プローブ13および有機溶媒用プローブ14の溶媒添加位置は固定できる。図9には、3連の場合の例を示したが少なくとも2連以上の場合が考えられる。
 また、本発明の実施例においては、サンプルの精製度を高めるためにモードの異なる固相カートリッジ3で複数回、例えば一段目ではイオン交換モードで抽出を、2段目では逆相モードで抽出を行うことで精製度が向上し、個体差があるサンプル等でもデータ信頼性が向上する。この場合は通常の工程進行パターンとは異なるが、通常の工程進行パターンはカートリッジ搬送手段2が3周することで終了するが、この場合は6周することとなる。
 以上に示したように、4箇所のカートリッジ保持部4が無限軌道上で搬送できるカートリッジ搬送手段1に等間隔で位置し、2箇所の圧力負荷部7がカートリッジ搬送手段1の、互いに対向するカートリッジ保持部4の上方に位置することで、固相抽出の5つの工程を繰り返し実行し、消耗品のコストを抑え、多項目の測定対象物質を分離・精製する場合に一連の固相抽出工程が効率良く行うことができ、かつ、コンパクトで処理速度の高い自動分析装置を提供することが可能である。
 なお、上述した例においては、円形カートリッジ搬送手段1と円形受容器搬送手段2とが、同一の回転軸を中心にして回転し、カートリッジ保持部4と受容器保持部6とが、上下方向に対外に対向して回転するように構成したが、円形カートリッジ搬送手段1と円形受容器搬送手段2とは、互いに異なる回転軸を中心にして回転するように構成することもできる。
 この場合、円形カートリッジ搬送手段1と円形受容器搬送手段2とは、互いにオフセット状態となるように配置され、カートリッジ搬送手段1の位置Bにおいて、カートリッジ保持部4と受容器搬送手段2の受容器保持部6とが、上下方向に互いに対向する構成とし、他の位置A、C、Dでは、互いに対向しない構成とすることもできる。
 つまり、受容器搬送手段2の受容器保持部6に保持された受容器5は、カートリッジ保持部4に保持された固相カートリッジ3からの測定対象物の溶出液を収容し,固相コンディショニングにおける溶媒等は、他の容器に収容する構成とすることもできる。
 このようなオフセット構成とすれば、受容器搬送手段2の上方空間を開放空間とすることができ、溶出液取り出しプローブ23の設計自由度を大きくすることができる。
 1・・・カートリッジ搬送手段、2・・・受容器搬送手段、3・・・固相カートリッジ、4・・・カートリッジ保持部、5・・・受容器、6・・・受容器保持部、7・・・圧力負荷部、8・・・カートリッジ保管部、9・・・カートリッジ搬送アーム、10・・・受容器保管部、11・・・受容器搬送アーム、12・・・サンプルプローブ、13・・・水系溶媒用プローブ、14・・・有機溶媒用プローブ、15・・・試薬保管部、16・・・試薬容器、17・・・チップ保管部、18・・・分注チップ、19・・・サンプル搬送機構、20・・・ラック、21・・・サンプル容器、22・・・廃棄口、23・・・溶出液用プローブ、24・・・ポンプ、25・・・溶出液注入部、26・・・イオン化部、27・・・質量分析部、28・・・洗浄ポート、29・・・コントロール部、101・・・自動分析装置、102・・・コンピュータ、103・・・A/D変換器、104・・・プリンタ、105・・・タッチパネル付LCD、106・・・メモリ、107・・・シリンジ機構、108・・・ポンプ機構、109・・・インターフェース、110・・・アーム駆動機構、111・・・搬送手段駆動機構、112・・・圧力負荷部駆動機構、201・・・プローブ、202・・・分注機構、203・・・給水バルブ、204・・・ポンプ、205・・・タンク

Claims (14)

  1.  生体試料から特定の成分を精製・濃縮する固相カートリッジ(3)と、
     前記固相カートリッジ(3)を保持するカートリッジ保持部(4)と、
     前記カートリッジ保持部(4)を無限軌道上で搬送できるカートリッジ搬送手段(1)と、
     生体試料を上記カートリッジ保持部(4)に保持された固相カートリッジ(3)に吐出するサンプルプローブ(12)と、
     第一の溶媒を上記カートリッジ保持部(4)に保持された固相カートリッジ(3)に吐出する第一の溶媒プローブ(13)と、
     第二の溶媒を上記カートリッジ保持部(4)に保持された固相カートリッジ(3)に吐出する第二の溶媒プローブ(14)と、
     前記カートリッジ保持部(4)に保持された固相カートリッジ(3)に空気圧力を負荷する圧力負荷部(7)と、
     前記カートリッジ搬送手段(1)、サンプルプローブ(12)、溶媒プローブ(13、14)及び圧力負荷部(7)の動作を制御するコントロール部(29)と、
     を備えることを特徴とする生体試料前処理装置。
  2.  請求項1に記載の生体試料の前処理装置において、
     前記固相カートリッジ(13)から溶出された抽出液を受ける受容器(5)と、前記受容器(5)を保持する受容器保持部(6)と、前記受容器保持部(6)を搬送する受容器搬送手段(2)とを備え、前記受容器搬送手段(2)の上方に、前記カートリッジ搬送手段(1)が位置し、前記コントロール部(29)は、一対の前記カートリッジ保持部(4)と前記受容器保持部(6)とが相対位置を保ったまま、前記カートリッジ搬送手段(1)と前記受容器搬送手段(2)とを駆動することを特徴とする生体試料の前処理装置。
  3.  請求項2に記載の生体試料前処理装置において、前記コントロール部(29)は、前記カートリッジ搬送手段(1)を回転させ、前記サンプルプローブ(12)により吐出された試料が添加された固相カートリッジ(3)を、前記圧力負荷部(7)が位置する近辺まで移動させ、前記圧力負荷部(7)により前記固相カートリッジ(3)に空気圧力を負荷して、前記試料を固相カートリッジ(3)の固相に保持させ、前記第一の溶媒プローブ(13)が位置する近辺まで、前記固相カートリッジ(3)を移動させ、前記第一の溶媒プローブ(13)により前記固相カートリッジ(3)の固相に所定の溶媒を吐出させ、前記固相カートリッジ(3)を、前記圧力負荷部(7)が位置する近辺まで移動させ、前記圧力負荷部(7)により前記固相カートリッジ(3)に空気圧力を負荷して洗浄し、前記第二の溶媒プローブ(14)が位置する近辺まで、前記固相カートリッジ(3)を移動させ、第二の溶媒プローブ(14)により前記固相カートリッジ(3)の固相に所定の溶媒を吐出させ、前記固相カートリッジ(3)を、前記圧力負荷部(7)が位置する近辺まで移動させ、前記圧力負荷部(7)により前記固相カートリッジ(3)に空気圧力を負荷して前記特定成分を溶出させることを特徴とする生体試料の前処理装置。
  4.  請求項1に記載の生体試料の前処理装置から溶出された生体試料の特定の成分を導入する溶出液注入部(25)と、この溶出液注入部(25)に注入された溶出液を質量分析する質量分析部(27)とを備えることを特徴とする質量分析装置。
  5.  請求項2に記載の生体試料の前処理装置において、2箇以上の前記カートリッジ保持部(4)が無限軌道上で搬送できるカートリッジ搬送手段(1)に等間隔で位置し、少なくとも1箇の前記圧力負荷部(7)が前記カートリッジ保持部(4)が移動する無限軌道上の上方に位置することを特徴とする生体試料の前処理装置。
  6.  請求項5に記載の生体試料の前処理装置において、前記受容器搬送手段(2)は、前記カートリッジ保持部(4)と上下対となる少なくとも2箇の受容器保持部(6)を備えることを特徴とする生体試料の前処理装置。
  7.  請求項2に記載の生体試料の前処理装置において、4箇の前記カートリッジ保持部(4)が無限軌道上で搬送できるカートリッジ搬送手段(1)に等間隔で位置し、2箇の前記圧力負荷部(7)は、前記カートリッジ保持部(4)が移動する無限軌道上の上方に位置することを特徴とする生体試料の前処理装置。
  8.  請求項7に記載の生体試料の前処理装置において、前記受容器搬送手段(2)は、前記カートリッジ保持部(4)と上下対となる4箇の受容器保持部(6)を備えたことを特徴とする生体試料の前処理装置。
  9.  請求項2に記載の生体試料の前処理装置において、10箇の前記カートリッジ保持部(4)が無限軌道上で搬送できるカートリッジ搬送手段(1)に等間隔で位置し、5箇の前記圧力負荷部(7)は、前記カートリッジ搬送手段(1)の上方に位置することを特徴とする前処理装置。
  10.  請求項9に記載の生体試料の前処理装置において、前記受容器搬送手段(2)は、前記カートリッジ保持部(4)と上下対となる10箇所の受容器保持部(6)を備えたことを特徴とする生体試料の前処理装置。
  11.  請求項2に記載の生体試料の前処理装置において、前記カートリッジ保持部(4)が無限軌道上で搬送できるカートリッジ搬送手段(1)に等間隔で位置し、かつ少なくとも2箇以上の固相カートリッジ(3)からなる多連の構成になっていることを特徴とする生体試料の前処理装置。
  12.  請求項2に記載の生体試料の前処理装置において、前記カートリッジ搬送手段(1)は円形であり、複数回の周回後に一連の工程が終了することを特徴とする生体試料の前処理装置。
  13.  請求項1に記載の装置において、複数の固相カートリッジ(3)で複数回、固相抽出工程を行うことを特徴とする生体試料の前処理装置。
  14.  請求項1に記載の装置において、モードの異なる固相カートリッジ(3)を固相抽出工程に使用することを特徴とする生体試料の前処理装置。
PCT/JP2010/060727 2009-06-25 2010-06-24 前処理装置及びそれを備えた質量分析装置 WO2010150842A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080026060.0A CN102460107B (zh) 2009-06-25 2010-06-24 前处理装置以及具有前处理装置的质量分析装置
JP2011519933A JP5242787B2 (ja) 2009-06-25 2010-06-24 前処理装置及びそれを備えた質量分析装置
US13/377,154 US9207152B2 (en) 2009-06-25 2010-06-24 Pretreatment apparatus and mass analyzing apparatus equipped with the same
EP10792160.3A EP2447697B1 (en) 2009-06-25 2010-06-24 Preprocessing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-151442 2009-06-25
JP2009151442 2009-06-25

Publications (1)

Publication Number Publication Date
WO2010150842A1 true WO2010150842A1 (ja) 2010-12-29

Family

ID=43386611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060727 WO2010150842A1 (ja) 2009-06-25 2010-06-24 前処理装置及びそれを備えた質量分析装置

Country Status (5)

Country Link
US (1) US9207152B2 (ja)
EP (1) EP2447697B1 (ja)
JP (1) JP5242787B2 (ja)
CN (1) CN102460107B (ja)
WO (1) WO2010150842A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012251937A (ja) * 2011-06-06 2012-12-20 Hitachi High-Technologies Corp 前処理装置及びそれを用いた自動分析装置
WO2016035139A1 (ja) * 2014-09-02 2016-03-10 株式会社島津製作所 前処理装置及びこれを備えた分析システム
WO2016035142A1 (ja) * 2014-09-02 2016-03-10 株式会社島津製作所 前処理装置及びこれを備えた分析システム
CN113030341A (zh) * 2021-04-14 2021-06-25 南芯芯仪(广州)制造有限公司 制备液相串联质谱样本的系统

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112010000843T5 (de) * 2009-01-29 2012-09-20 Hitachi High-Technologies Corporation Vorrichtung zur Vorbehandlung von Proben undMassenspektrometer mit einer solchen Vorrichtung
JP5242532B2 (ja) * 2009-10-16 2013-07-24 株式会社日立ハイテクノロジーズ 検査装置
FI20115785A0 (fi) * 2011-08-08 2011-08-08 Thermo Fisher Scientific Oy Menetelmä ja laite automaattiseen analyysiin
CN104520717B (zh) * 2012-07-25 2015-11-25 株式会社日立高新技术 分析装置
DE102012016830B4 (de) * 2012-08-24 2021-08-26 Bruker Daltonics GmbH & Co. KG Präparationsvorrichtung für massenspektrometrische Proben
CN104749159A (zh) * 2013-12-30 2015-07-01 同方威视技术股份有限公司 农药残留检测方法
WO2016002032A1 (ja) * 2014-07-02 2016-01-07 株式会社島津製作所 前処理装置
KR101700624B1 (ko) 2014-12-24 2017-02-14 나노바이오시스 주식회사 핵산 추출 장치 및 그 동작 방법
WO2016149180A1 (en) 2015-03-13 2016-09-22 The Cleveland Clinic Foundation Sterile and/or purified fluid and/or solution delivery system
CN105067401B (zh) * 2015-07-24 2017-12-19 宁波大学 一种快速回收透明土中孔隙溶液的装置及操作方法
JP6798446B2 (ja) * 2017-08-03 2020-12-09 株式会社島津製作所 前処理装置及びその前処理装置を備えた分析システム
CN109376816B (zh) * 2018-09-11 2022-04-01 广州金域医学检验中心有限公司 一种病理切片质量监控方法及其装置
WO2020170335A1 (ja) * 2019-02-19 2020-08-27 株式会社島津製作所 質量分析装置
CN110197786A (zh) * 2019-05-10 2019-09-03 无锡瑞生医疗科技有限公司 全自动单细胞质谱检测进样器
CN111157325A (zh) * 2020-01-07 2020-05-15 沈丹 一种用于生态环境检测的有机物提取装置
CN113655154B (zh) * 2020-05-12 2023-07-14 国家烟草质量监督检验中心 一种适用于烟气中水分测定的原位萃取仪及测试方法
CN111855344B (zh) * 2020-06-29 2023-09-15 河南广电计量检测有限公司 一种用于农药残留检测的前处理装置
CN111948277B (zh) * 2020-07-03 2021-08-10 中国地质大学(武汉) 一种多功能连续式在线气体制备和导入装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0580059A (ja) * 1991-09-20 1993-03-30 Hitachi Ltd 自動分析装置
JPH11201953A (ja) * 1998-01-14 1999-07-30 Toyota Central Res & Dev Lab Inc 固相抽出装置用カートリッジ
JP2001074719A (ja) * 1999-09-02 2001-03-23 Sakushiyon Gas Kikan Seisakusho:Kk 容器移動装置およびクロマトグラフ装置
JP2004093194A (ja) * 2002-08-29 2004-03-25 Ngk Insulators Ltd カラム処理装置
JP2006007081A (ja) 2004-06-25 2006-01-12 Hitachi Koki Co Ltd 自動固相抽出装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01174968A (ja) 1987-12-29 1989-07-11 Shimadzu Corp 自動化学分析装置
US5585068A (en) * 1990-02-20 1996-12-17 Biochemical Diagnostics, Inc. Apparatus for automatically separating a compound from a plurality of discrete liquid specimens
US5660727A (en) * 1994-06-14 1997-08-26 Dionex Corporation Automated analyte supercritical fluid extraction apparatus
JP2002202316A (ja) * 2000-11-01 2002-07-19 Jeol Ltd 分析システムおよび分析方法
JP4712033B2 (ja) * 2005-04-01 2011-06-29 三菱化学メディエンス株式会社 生体サンプルの複合自動分析装置、自動分析方法、及び反応キュベット
JP5530609B2 (ja) * 2008-09-05 2014-06-25 株式会社日立ハイテクノロジーズ 前処理装置及びそれを備えた質量分析装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0580059A (ja) * 1991-09-20 1993-03-30 Hitachi Ltd 自動分析装置
JPH11201953A (ja) * 1998-01-14 1999-07-30 Toyota Central Res & Dev Lab Inc 固相抽出装置用カートリッジ
JP2001074719A (ja) * 1999-09-02 2001-03-23 Sakushiyon Gas Kikan Seisakusho:Kk 容器移動装置およびクロマトグラフ装置
JP2004093194A (ja) * 2002-08-29 2004-03-25 Ngk Insulators Ltd カラム処理装置
JP2006007081A (ja) 2004-06-25 2006-01-12 Hitachi Koki Co Ltd 自動固相抽出装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012251937A (ja) * 2011-06-06 2012-12-20 Hitachi High-Technologies Corp 前処理装置及びそれを用いた自動分析装置
WO2016035139A1 (ja) * 2014-09-02 2016-03-10 株式会社島津製作所 前処理装置及びこれを備えた分析システム
WO2016035142A1 (ja) * 2014-09-02 2016-03-10 株式会社島津製作所 前処理装置及びこれを備えた分析システム
JPWO2016035142A1 (ja) * 2014-09-02 2017-04-27 株式会社島津製作所 前処理装置及びこれを備えた分析システム
JPWO2016035139A1 (ja) * 2014-09-02 2017-04-27 株式会社島津製作所 前処理装置及びこれを備えた分析システム
US11162924B2 (en) 2014-09-02 2021-11-02 Shimadzu Corporation Preprocessing device and analysis system provided with same
CN113030341A (zh) * 2021-04-14 2021-06-25 南芯芯仪(广州)制造有限公司 制备液相串联质谱样本的系统
CN113030341B (zh) * 2021-04-14 2022-09-16 南芯芯仪(广州)制造有限公司 制备液相串联质谱样本的系统

Also Published As

Publication number Publication date
CN102460107B (zh) 2014-10-08
EP2447697A4 (en) 2017-11-15
JP5242787B2 (ja) 2013-07-24
EP2447697B1 (en) 2019-01-30
US20120079875A1 (en) 2012-04-05
US9207152B2 (en) 2015-12-08
CN102460107A (zh) 2012-05-16
EP2447697A1 (en) 2012-05-02
JPWO2010150842A1 (ja) 2012-12-10

Similar Documents

Publication Publication Date Title
WO2010150842A1 (ja) 前処理装置及びそれを備えた質量分析装置
US9176037B2 (en) Specimen processing system
EP2490019B1 (en) Examination device and examination method
JP5530609B2 (ja) 前処理装置及びそれを備えた質量分析装置
JP5519538B2 (ja) サンプルの前処理装置、及びそれを備えた質量分析装置
CN110832299B (zh) 自动化临床诊断系统和方法
WO2010087109A1 (ja) 生体サンプルの前処理装置、及びそれを備えた質量分析装置
CN110333364B (zh) 一种全自动生物评价和化学分析一体机及方法
WO2016002032A1 (ja) 前処理装置
WO2011108177A1 (ja) 分析装置
JP2002202316A (ja) 分析システムおよび分析方法
JP2024023491A (ja) ウラシルおよびジヒドロウラシルの分析方法
JP5707264B2 (ja) 試料導入装置
US11326990B2 (en) Autonomous preprocessing device and analysis system provided with the autonomous preprocessing device
JPH03205559A (ja) 生体試料のクロマトグラフイー分析法および液体クロマトグラフ装置
JP7026138B2 (ja) 自動分析装置および分析方法
CN117783393A (zh) 一种全自动液相色谱检测设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080026060.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10792160

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011519933

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010792160

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13377154

Country of ref document: US