JPWO2009130956A1 - Euvリソグラフィ用反射型マスクブランク、および、euvリソグラフィ用反射型マスク - Google Patents

Euvリソグラフィ用反射型マスクブランク、および、euvリソグラフィ用反射型マスク Download PDF

Info

Publication number
JPWO2009130956A1
JPWO2009130956A1 JP2010509114A JP2010509114A JPWO2009130956A1 JP WO2009130956 A1 JPWO2009130956 A1 JP WO2009130956A1 JP 2010509114 A JP2010509114 A JP 2010509114A JP 2010509114 A JP2010509114 A JP 2010509114A JP WO2009130956 A1 JPWO2009130956 A1 JP WO2009130956A1
Authority
JP
Japan
Prior art keywords
absorber layer
euv
layer
substrate
reflective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010509114A
Other languages
English (en)
Other versions
JP5273143B2 (ja
Inventor
木下 健
健 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2010509114A priority Critical patent/JP5273143B2/ja
Publication of JPWO2009130956A1 publication Critical patent/JPWO2009130956A1/ja
Application granted granted Critical
Publication of JP5273143B2 publication Critical patent/JP5273143B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • H01L21/0275Photolithographic processes using lasers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

マスクパターン境界部での反射光のコントラストの低下、特にマスクパターン外縁の境界部での反射光のコントラストの低下が抑制されたEUVマスク、および、該EUVマスクの製造に用いるEUVマスクブランクを提供する。基板上に、EUV光を反射する反射層と、EUV光を吸収する吸収体層と、がこの順に形成されたEUVリソグラフィ用反射型マスクブランクであって、前記基板上の少なくとも一部において、パターニング時に前記吸収体層が除去される部位と、前記吸収体層が除去される部位に隣接する、パターニング時に前記吸収体層が除去されない部位と、の間に段差が設けられていることを特徴とするEUVリソグラフィ用反射型マスクブランク。

Description

本発明は、半導体製造等に使用されるEUV(Extreme Ultra Violet:極端紫外)リソグラフィ用反射型マスクブランク(以下、本明細書において、「EUVマスクブランク」という。)、および、該EUVマスクブランクをパターニングしてなるEUVリソグラフィ用反射型マスク(以下、本明細書において、「EUVマスク」という。)に関する。
従来、半導体産業において、Si基板等に微細なパターンからなる集積回路を形成する上で必要な微細パターンの転写技術として、可視光や紫外光を用いたフォトリソグラフィ法が用いられてきた。しかし、半導体デバイスの微細化が加速している一方で、従来のフォトリソグラフィ法の限界に近づいてきた。フォトリソグラフィ法の場合、パターンの解像限界は露光波長の1/2程度であり、液浸法を用いても露光波長の1/4程度と言われており、ArFレーザ(193nm)の液浸法を用いても45nm程度が限界と予想される。そこで45nm以降の露光技術として、ArFレーザよりさらに短波長のEUV光を用いた露光技術であるEUVリソグラフィが有望視されている。本明細書において、EUV光とは、軟X線領域または真空紫外線領域の波長の光線をさし、具体的には波長10〜20nm程度、特に13.5nm±0.3nm程度の光線を指す。
EUV光は、あらゆる物質に対して吸収されやすく、かつこの波長で物質の屈折率が1に近いため、従来の可視光または紫外光を用いたフォトリソグラフィのような屈折光学系を使用することができない。このため、EUV光リソグラフィでは、反射光学系、すなわち反射型フォトマスクとミラーとが用いられる。
マスクブランクは、フォトマスク製造用に用いられるパターニング前の積層体である。
EUVマスクブランクの場合、ガラス等の基板上にEUV光を反射する反射層と、EUV光を吸収する吸収体層とがこの順で形成された構造を有している(特許文献1参照)。
EUVマスクブランクでは、吸収体層の膜厚を小さくする必要がある。EUVリソグラフィでは、露光光はEUVマスクに対して垂直方向から照射されるのではなく、垂直方向より数度、通常は6°傾斜した方向から照射される。吸収体層の厚さが大きいと、EUVリソグラフィの際に、該吸収体層の一部をパターニングにより除去して形成したマスクパターンに露光光による影が生じてしまい、該EUVマスクを用いてSiウェハなどの基板上レジストに転写されるマスクパターン(以下、「転写パターン」という。)の形状精度や寸法精度が悪化する。この問題は、EUVマスク上に形成されるマスクパターンの線幅が小さくなるほど顕著となるため、EUVマスクブランクの吸収体層の膜厚をより小さくすることが常に求められている。
特開2004−6798号公報(米国特許公報第7390596号公報)
EUVマスクブランクの吸収体層には、EUV光に対する吸収係数の高い材料が用いられ、その膜厚は該吸収体層表面にEUV光を照射した際に、照射したEUV光が吸収体層で全て吸収されるような膜厚とすることが理想である。しかし、上記したように、吸収体層の膜厚を小さくすることが求められているため、照射されたEUV光を吸収体層ですべて吸収することはできず、その一部は反射光となる。
EUVリソグラフィにより、基板上レジストに転写パターンを形成する際に要求されるのは、EUVマスクでの反射光のコントラスト、すなわち、パターニングにより吸収体層が除去され、反射層が露出した部位からの反射光と、パターニング時に吸収体層が除去されなかった部位からの反射光と、のコントラストであるため、反射光のコントラストが十分確保できる限り、照射されたEUV光が吸収体層で全て吸収されなくても全く問題ないと考えられていた。
しかしながら、垂直方向より数度傾斜した方向から露光光を照射するというEUVリソグラフィでの露光光の照射形態を取る以上、マスクパターン境界部での反射光のコントラストの低下、および、それによる転写パターンの形状精度や寸法精度の悪化が、従来のEUVマスクでは不可避であることを本願発明者らは見出した。この点について、以下、図面を用いて説明する。なお、本明細書において、マスクパターン境界部とは、パターニングにより吸収体層が除去されて反射層が露出している部位(吸収体層除去部位)と、該吸収体層除去部位に隣接するパターニング時に吸収体層が除去されなかった部位(吸収体層非除去部位)と、の境界を意味する。
図7(a)は、EUVマスクの一構成例を示した模式図であり、EUVマスクに露光光、すなわち、EUV光を照射した状態を示している。図7(a)に示すEUVマスク10は、基板12上にEUV光を反射する反射層13と、EUV光を吸収する吸収体層14と、がこの順に形成されている。反射層13は、高屈折層と低屈折層とが交互に積層された多層反射膜として示されている。なお、図示されていないが、上記構成以外に、反射層13と吸収体層14との間には、吸収体層14をパターニングする際に反射層13を保護するための保護層が通常形成されており、吸収体層14上にはマスクパターンの検査光に対する低反射層が通常形成されている。
図7(a)に示すEUVマスク10において、図中右側は吸収体層14が除去されて、反射層13が露出した吸収体層除去部位であり、図中左側が吸収体層14が除去されていない吸収体層非除去部位である。
EUVリソグラフィを実施する際、EUVマスク10に対して、垂直方向より数度傾斜した方向からEUV光30a,b,cが照射される。EUVマスクでの反射光のコントラストとして本来意図しているのは、図中右側の吸収体層除去部位からの反射光31cと、図中左側の吸収体層非除去部位からの反射光31aと、のコントラストである。吸収体層非除去部位からの反射光31aは吸収体層14を通過する過程で十分減衰されているので反射光のコントラストに悪影響をおよぼすことはない。図7(c)は、反射光31aおよび反射光31cのみが存在する理想的なEUVマスクの各部位における反射光強度を示すグラフである。
しかしながら、EUVマスク10に対して垂直方向より数度傾斜した方向からEUV光を照射するため、EUV光30bのように、吸収体層14の一部のみを通過したEUV光が反射光31bとして生じることとなる。このような反射光31bは十分減衰されていないので、EUVマスクの各部位における反射光強度は、図7(b)に示すようになだらかな曲線を描くこととなる。
図7(b)、(c)の比較から明らかなように、従来のEUVマスクではマスクパターン境界部における反射光のコントラストの低下が不可避であった。このような反射光のコントラストの低下は、マスクパターンの各境界部で生じるが、マスクパターンの外縁の境界部、すなわち、吸収体層除去部位のうちマスクパターンの外縁となる部位と、該マスクパターンの外縁となる吸収体層除去部位に対して外側に隣接する吸収体非除去部位と、の境界部での反射光のコントラストの低下は、以下の理由から特に問題となる。
EUVリソグラフィを実施する場合、マスクパターンの外縁が同一の形状をしたEUVマスクを複数枚、転写位置を重ね合わせて露光を行う。この際、マスクパターンの外縁の位置は一定であるので、該マスクパターン外縁の境界部での反射光のコントラストの低下は、全てのEUVマスクにおいて常に同一箇所において繰り返し発生することになる。このため、マスクパターン外縁の境界部での反射光のコントラストの低下の抑制が特に要求される。
本発明は、上記した従来技術の問題点を解決するため、マスクパターン境界部での反射光のコントラストの低下、特にマスクパターン外縁の境界部での反射光のコントラストの低下が抑制されたEUVマスク、および、該EUVマスクの製造に用いるEUVマスクブランクを提供することを目的とする。
上記の目的を達成するため、本発明は、基板上に、EUV光を反射する反射層と、EUV光を吸収する吸収体層と、がこの順に形成されたEUVリソグラフィ用反射型マスクブランクであって、
前記基板上の少なくとも一部において、パターニング時に前記吸収体層が除去される部位と、前記吸収体層が除去される部位に隣接する、パターニング時に前記吸収体層が除去されない部位と、の間に段差が設けられていることを特徴とするEUVリソグラフィ用反射型マスクブランクを提供する。
また、本発明は、基板上に、EUV光を反射する反射層と、EUV光を吸収する吸収体層と、がこの順に形成されたEUVリソグラフィ用反射型マスクブランクであって、
前記基板上において、パターニング時に前記吸収体層が除去される部位のうちマスクパターンの外縁となる部位と、が前記マスクパターンの外縁となる部位の外側に隣接する、パターニング時に前記吸収体層が除去されない部位と、の間に段差が設けられていることを特徴とするEUVリソグラフィ用反射型マスクブランクを提供する。
本発明のEUVマスクブランクにおいて、前記段差の高さが2〜10nmであることが好ましい。
本発明のEUVマスクブランクにおいて、前記基板の表面の一部に薄膜を形成することにより、前記段差が形成されていることが好ましい。
本発明のEUVマスクブランクにおいて、前記基板の表面の一部を除去することにより、前記段差が形成されていることが好ましい。
本発明のEUVマスクブランクにおいて、前記吸収体層上に、マスクパターンの検査に使用する検査光における低反射層が形成されていることが好ましい。
本発明のEUVマスクブランクにおいて、前記反射層と前記吸収体層との間に、パターニング時に前記反射層を保護するための保護層が形成されていてもよい。
本発明のEUVマスクブランクにおいて、パターニング時の露光領域外に位置決め用のマークが形成されていることが好ましい。
また、本発明は、上記した本発明のEUVマスクブランクをパターニングしてなるEUVリソグラフィ用反射型マスクを提供する。
本発明のEUVマスクでは、マスクパターン境界部での反射光のコントラストの低下が抑制されるため、該EUVマスクを用いて基板上レジストに形成される転写パターンが形状精度や寸法精度に優れている。
本発明のEUVマスクは、本発明のEUVマスクブランクを用いることで好ましく作製することができる。
図1(a)は、本発明のEUVマスクの1実施形態を示す模式図であり、図1(b)は図1(a)に示すEUVマスクの各部位における反射光強度を示すグラフであり、図1(c)は図1(a)に示すEUVマスクの段差部の拡大図である。 図2は、EUVマスクの一例を示した平面図である。 図3は実施例で求めた反射光強度を示すグラフである。 図4は実施例で求めた反射光強度を示すグラフである。 図5は実施例で求めた反射光強度を示すグラフである。 図6は実施例で求めた反射光強度を示すグラフである。 図7(a)はEUVマスクの一構成例を示した模式図であり、図7(b)は図7(a)に示すEUVマスクの各部位における反射光強度を示すグラフであり、図7(c)は反射光31aおよび反射光31cのみが存在する理想的なEUVマスクの各部位における反射光強度を示すグラフである。
符号の説明
1:EUVマスク
2:基板
3:反射層
4:吸収体層
5:薄膜
6:マスクパターン
7,8:吸収体非除去部
10:EUVマスク
12:基板
13:反射層
14:吸収体層
20:段差
22:段差の高さ
24:段差の端面
以下、図面を参照して本発明のEUVマスクについて説明する。
図1(a)は、本発明のEUVマスクの1実施形態を示す模式図である。図1(a)に示すマスク1は、基板2上にEUV光を反射する反射層3と、EUV光を吸収する吸収体層4とがこの順に形成されている点、および、図中右側が吸収体層4が除去されて反射層3が露出した吸収体層除去部位であり、図中左側が吸収体層4が除去されていない吸収体層非除去部位である点は、図7(a)に示した従来のEUVマスクと同様である。但し、図1(a)に示すEUVマスクでは、基板2上において、図中右側の吸収体層除去部位と、図中左側の吸収体層非除去部位と、の間に段差が設けられている。より具体的には、吸収体層非除去部位に相当する基板2上の部位に薄膜5を形成することで、吸収体層除去部位に相当する基板2上の部位と、吸収体層非除去部位に相当する基板2上の部位と、の間に段差が形成されている。以下、本明細書において、吸収体層除去部位に相当する基板2上の部位と、当該部位に隣接する吸収体層非除去部位に相当する基板2上の部位と、の間に段差が形成されていることを「基板上のマスクパターン境界部に段差が形成されている。」という。また、基板上のマスクパターン境界部に設ける段差のことを単に「段差」という場合もある。
本発明のEUVマスクでは、基板上のマスクパターン境界部に段差を設けることにより、マスクパターン境界部での反射光のコントラストの低下を抑制することができる。
図1(a)に示す本発明のEUVマスク1では、基板2上のマスクパターン境界部に段差が設けられているため、該基板2上に形成される反射層3が段差に沿って形成されることとなり、反射層3が段差に沿った変形部を有する構造となる。このような構造のEUVマスク1に対して、垂直方向より数度傾斜した方向からEUV光20a,b,cを照射した場合、吸収体層4の一部のみを通過したEUV光20bが反射光21bを生じる過程で、該反射光21bが反射層3に存在する変形部によって散乱されて弱められる。この結果、図1(b)に示すように、マスクパターン境界部での反射光のコントラストの低下が抑制される。なお、図1(b)はEUVマスク1の各部位における反射光強度を示すグラフである。
マスクパターン境界部での反射光のコントラストの低下を抑制する効果を発揮させるために必要となる段差の高さは、EUVマスク1を構成する各層の膜厚、すなわち、反射層3および吸収体層4の膜厚、さらには、EUVマスク1に通常形成される他の層、例えば、反射層3と吸収体層4との間に通常形成される保護層や、吸収体層4上に通常形成される低反射層の膜厚にも影響を受ける。段差の高さが2nm以上であれば、EUVマスク1を構成するこれらの層の膜厚が通常の範囲である場合に、マスクパターン境界部での反射光のコントラストの低下を抑制する効果が発揮される。
一方、段差の高さが大きすぎる場合、吸収体層をパターニングしてEUVマスク1とする前のEUVマスクブランクの表面、すなわち、EUVマスクブランクの吸収体層の表面(吸収体層上に低反射層が形成されている場合は該低反射層の表面)に段差が現れないようにするために、吸収体層または低反射層の膜厚を大きくすることが必要となるため好ましくない。この観点から、段差の高さは10nm以下であることが好ましい。
なお、EUVマスクブランクの吸収体層の表面(吸収体層上に低反射層が形成されている場合は該低反射層の表面)に段差が現れると、吸収体層に形成されるマスクパターンが変形するおそれがある。また、後述するように、吸収体層非除去部に相当する基板2上の部位を研削またはエッチングして凹部を形成することでマスクパターンの境界部に段差を形成した場合にEUVマスクブランクの吸収体層の表面(吸収体層上に低反射層が形成されている場合は該低反射層の表面)に段差が現れると、EUVリソグラフィの際に、マスクパターンに露光光による影が生じる領域が増加する。
段差の高さは2〜7nmであることがより好ましく、3〜5nmであることがさらに好ましい。
本発明のEUVマスクにおいて、基板上のマスクパターン境界部に段差を設ける理由は、該EUVマスクに対して垂直方向より数度傾斜した方向からEUV光を照射することに起因するマスクパターン境界部での反射光のコントラストの低下を抑制するためであることから、図1(a)に示すように、段差の端部がマスクパターン境界部と一致することは必ずしも必要ではない。例えば、図1(a)のEUVマスク1の場合、段差の端部がマスクパターン境界部よりも図中右側に位置している方向(吸収体層除去部位側に位置している方向)のほうが、吸収体層4の一部のみを通過したEUV光20bが反射光21bを生じる過程で、該反射光21bが反射層3に存在する変形部によって散乱されて弱められる効果が高くなるとも考えられる。ここで、段差の端部とは、図1(c)に示すように基板2上に段状に形成される段差20の端面24を指し、また同図において22が段差20の高さを示す。この観点でみた場合、EUVマスク1に対するEUV光20a,20b,20cの入射角をα(°)とし、吸収体層4の膜厚(吸収体層4上に低反射層が形成されている場合、吸収体層と低反射層の合計膜厚)をt(mm)、段差の高さをh(nm)とするとき、段差の端部とマスクパターンの境界部との距離Lが下記式(1)を満たすように段差を設ければ、マスクパターン境界部での反射光の低下を抑制する効果に優れる。
L = (t + h) × tanα − h (1)
なお、段差の端部とマスクパターン境界部との位置関係や、段差の高さはシミュレーションにより最適化することができる。通常、αは数°、あるいは6〜8°程度であることが好ましい。また、tが20〜100nmであることが好ましく、25〜90nmであることがより好ましく、30〜80nmであることがさらに好ましい。hは、2〜7nmであることがより好ましく、3〜5nmであることがさらに好ましい。なお、Lは、上記式より求めた値±4nm以内、特に±2nm以内であることが好ましい。
図2は、EUVマスクの一例を示した平面図であり、EUVマスク1上にはマスクパターン6が形成されている。
上記したように、反射光のコントラストの低下は、マスクパターン6の各境界部で生じるが、マスクパターンの外縁の境界部での反射光のコントラストの低下が特に問題となる。すなわち、図2に示すEUVマスク1の場合、マスクパターン6を構成する吸収体層除去部位のうち、最も外側に形成された吸収体層除去部位と、該吸収体層除去部位の外側に隣接する吸収体層非除去部位、すなわち、マスクパターン6の外側に位置する吸収体層非除去部位7と、の間で生じる反射光のコントラストの低下は特に問題となる。
したがって、図2に示す本発明のEUVマスク1において、吸収体層非除去部位7に相当する基板2上の部位に薄膜を形成して、マスクパターン6と吸収体層非除去部位7との境界部に段差を形成すれば、マスクパターン境界部での反射光のコントラストの低下を抑制する効果が十分発揮されることとなる。これを本発明のEUVマスクの第1態様という。
本発明のEUVマスクの第1態様に加えて、EUVマスク1に形成された各マスクパターン6間に存在する吸収体層非除去部位8に相当する基板2上の部位に薄膜を形成して、マスクパターン6と吸収体層非除去部位8との境界部に段差を設ければ、マスクパターン境界部での反射光のコントラストの低下を抑制する効果がさらに向上する。これを本発明のEUVマスクの第2態様という。
本発明のEUVマスクの第2態様に加えて、マスクパターン6を構成する個々の吸収体層非除去部位に相当する基板2上の部位に薄膜を形成して、マスクパターン6に含まれる個々のマスクパターン境界部に段差を設けることにより、反射光のコントラストの低下を抑制する効果がさらに向上する。これを本発明のEUVマスクの第3態様という。なお、本発明のEUVマスクの第3態様は、マスクパターン6に含まれる全てのマスクパターン境界部に段差を設けること、すなわち、マスクパターン6を構成する全ての吸収体層非除去部位に相当する基板2上の部位に薄膜を形成することを必ずしも意図するものではない。例えば、マスクパターン6に含まれるマスクパターン境界部のうち、特に形状精度や寸法精度が問題となる部位に段差を設ければ、マスクパターン境界部での反射光のコントラストの低下を抑制する効果は十分発揮される。
本発明のEUVマスクの第1態様において、図2に示す吸収体層非除去部位7に相当する基板2上の部位に薄膜を形成する場合、吸収体層非除去部位7に相当する基板2上の部位のうち、マスクパターン6との境界部近傍に薄膜を形成すればよく、EUVマスク1の外縁まで薄膜を形成する必要はない。この場合、マスクパターンの境界部との距離Lが上記式(1)を満たす部位まで薄膜を形成すればよい。EUV光の入射角αを6°、段差の高さhを7nm、吸収体層の膜厚tを70nmとした場合、マスクパターン6との境界部との距離Lが7nm程度となる範囲、特に距離Lが10nm程度となる範囲まで薄膜を形成すれば、マスクパターン境界部での反射光のコントラストの低下を抑制する効果が十分発揮される。この点については、本発明のEUVマスクの第2態様および第3態様についても同様である。
但し、薄膜を形成しやすさという点では、図2に示すEUVマスク1では、該EUVマスク1の外縁までの、吸収体層非除去部7に相当する基板2上の部位全体に薄膜を形成することが好ましい。
なお、基板2上に薄膜を形成する手順は、パターニングによりEUVマスクとする前のEUVマスクブランクの段階、より具体的には、EUVマスクブランクを製造する際に実施する必要がある。
本発明のEUVマスクブランクは、パターニングにより本発明のEUVマスクとする前の積層体である。図1(a)に示すEUVマスク1との関係でみた場合、該EUVマスク1の図中右側の吸収体層が除去されていない状態がEUVマスクブランクである。したがって、上述したEUVマスクに関する説明中、「吸収体層除去部位」を「パターニング時に吸収体層が除去される部位」と、「吸収体層非除去部位」を「当該吸収体層が除去される部位に隣接するパターニング時に吸収体層が除去されない部位」と読み替えることで本発明のEUVマスクブランクについての説明となる。以下に述べる本発明のEUVマスクブランクについての説明においても、上記と同様に読み替えることとする。
本発明のEUVマスクブランクにおいて、第1態様〜第3態様に応じた吸収体層非除去部に相当する基板2上の部位に薄膜を形成する方法としては、所望の形状のマスクを用いて第1態様〜第3態様に応じた吸収体層非除去部に相当する基板2上の部位のみに薄膜を形成する方法、および基板2の反射層を形成する側の表面に、すなわち基板2の成膜面全体に薄膜を形成した後、該薄膜の一部をエッチングして除去することで、第1態様〜第3態様に応じた吸収体層非除去部に相当する基板2上の部位のみに薄膜を形成する方法が挙げられる。
基板2上に形成する薄膜の材料は、薄膜形成後に該薄膜を所望の形状に加工することが可能である限り特に限定されない。但し、基板2の成膜面全体に薄膜を形成した後、該薄膜の一部をエッチングして除去することで、第1態様〜第3態様に応じた吸収体層非除去部に相当する基板2上の部位のみに薄膜を形成する場合、薄膜と基板2の材料との間で十分なエッチング選択比が得られることが必要となる。
以上の点から、薄膜材料としては、CrN、Si、SiO2、Ta、Moが好ましい。
これらの中でも、CrN、Si、SiO2が、加工性が良いという理由からより好ましく、CrN、Siが特に好ましい。
これらの材料を用いて基板2上に薄膜を形成する方法は特に限定されず、公知の成膜方法、例えば、マグネトロンスパッタリング法、イオンビームスパッタリングといったスパッタリング法、CVD法、真空蒸着法、電解メッキ法を用いて形成することができる。これらの中でも、大面積の基板に均一な膜厚で成膜できるという観点から、マグネトロンスパッタリング法、イオンビームスパッタリングが好ましい。
基板2上に薄膜としてCrN膜を形成する場合、例えば以下の条件でマグネトロンスパッタリング法を実施すればよい。
ターゲット:Crターゲット
スパッタガス:ArとN2の混合ガス(N2ガス濃度3〜45vol%、好ましくは5〜40vol%、より好ましくは10〜35vol%。ガス圧1.0×10-1Pa〜50×10-1Pa、好ましくは1.0×10-1Pa〜40×10-1Pa、より好ましくは1.0×10-1Pa〜30×10-1Pa。)
投入電力:30〜1000W、好ましくは50〜750W、より好ましくは80〜500W
成膜速度:2.0〜60nm/min、好ましくは3.5〜45nm/min、より好ましくは5〜30nm/min
基板2上に形成する薄膜の厚さは、マスクパターン境界部に設ける段差の高さとなるので、薄膜の厚さは2〜10nmであることが好ましく、2〜7nmであることがより好ましく、3〜5nmであることがさらに好ましい。厚さが大きすぎると、影の部分(Shadowing)をおおきくしてしまう結果、コントラストが十分に改善できない可能性がある。
基板2上に形成する薄膜の表面性状は、後述する基板2の成膜面に要求される表面性状を満たすことが好ましい。
上述した態様では、第1態様〜第3態様に応じた吸収体層非除去部に相当する基板2上の部位に薄膜を形成することで、マスクパターンの境界部に段差を形成しているが、マスクパターンの境界部に段差を形成する方法はこれに限定されない。例えば、吸収体層非除去部に相当する基板2上の部位を研削して凹部を形成することにより、または、当該部位をエッチングして凹部を形成することにより、マスクパターンの境界部に段差を形成してもよい。この場合、上述した説明において、「吸収体層非除去部に相当する基板2上の部位に薄膜を形成する」と記載した個所を、「吸収体層非除去部に相当する基板2上の部位を部分的に研削して凹部を形成する」、または、「吸収体層非除去部に相当する基板2上の部位をエッチングして凹部を形成する」と読み替えることとする。
なお、吸収体層非除去部に相当する基板2上の部位を部分的に研削して凹部を形成する場合、公知の装置、例えばnm 450(RAVE LLC製)を用いて実施することができる。
吸収体層非除去部に相当する基板2上の部位をエッチングして凹部を形成する場合、エッチング法としては、ウェットエッチング法、ドライエッチング法のいずれも用いることができるが、高精度の加工ができること、および、加工面の表面性状が優れることからドライエッチング法を用いることが好ましい。
なお、ドライエッチング法としては、イオンビームエッチング、ガスクラスターイオンビームエッチング、プラズマエッチング等の各種ドライエッチング法を用いることができる。
基板2上に形成する凹部の深さは、マスクパターン境界部に設ける段差の高さとなるので、凹部の深さは2〜10nmであることが好ましく、2〜7nmであることがより好ましく、3〜5nmであることがさらに好ましい。深さが大きすぎると、影の部分(Shadowing)をおおきくしてしまう結果、コントラストが十分に改善できない可能性がある。
凹部の表面性状は、後述する基板2の成膜面に要求される表面性状を満たすことが好ましい。
以下、本発明のEUVマスクブランクの各構成要素について説明する。
基板2は、EUVマスクブランク用の基板としての特性を満たすことが要求される。
そのため、基板2は、低熱膨張係数(具体的には、20℃における熱膨張係数が0±0.05×10-7/℃であることが好ましく、特に好ましくは0±0.03×10-7/℃)を有し、平滑性、平坦度、およびEUVマスクブランクまたはパターニング後のEUVマスクの洗浄等に用いる洗浄液への耐性に優れたものが好ましい。基板2としては、具体的には低熱膨張係数を有するガラス、例えばSiO2−TiO2系ガラス等を用いるが、これに限定されず、β石英固溶体を析出した結晶化ガラスや石英ガラスやシリコンや金属などの基板を用いることもできる。
基板2は、表面粗さ(rms)0.15nm以下の平滑な表面と100nm以下の平坦度を有していることがパターニング後のEUVマスクにおいて高反射率および転写精度が得られるために好ましい。
基板2の大きさや厚みなどはEUVマスクの設計値等により適宜決定されるものであるが、一例を挙げると外形6インチ(152mm)角で、厚さ0.25インチ(6.3mm)である。
基板2の成膜面には欠点が存在しないことが好ましい。しかし、存在している場合であっても、凹状欠点および/または凸状欠点によって位相欠点が生じないように、凹状欠点の深さおよび凸状欠点の高さが2nm以下であり、かつこれら凹状欠点および凸状欠点の半値幅が60nm以下であることが好ましい。
反射層3は、EUVマスクブランクの反射層として所望の特性を有するものである限り特に限定されない。ここで、反射層3に特に要求される特性は、高EUV光線反射率であることである。具体的には、EUV光の波長領域の光線を入射角6度で反射層3表面に照射した際に、波長13.5nm付近の光線反射率の最大値が60%以上であることが好ましく、65%以上であることがより好ましい。また、反射層3の上に保護層や低反射層を設けた場合であっても、波長13.5nm付近の光線反射率の最大値が60%以上であることが好ましく、65%以上であることがより好ましい。
反射層3は、高EUV光線反射率を達成できることから、通常は高屈折層と低屈折率層を交互に複数回積層させた多層反射膜が反射層3として用いられる。反射層3をなす多層反射膜において、高屈折率層には、Moが広く使用され、低屈折率層にはSiが広く使用される。すなわち、Mo/Si多層反射膜が最も一般的である。但し、多層反射膜はこれに限定されず、Ru/Si多層反射膜、Mo/Be多層反射膜、Mo化合物/Si化合物多層反射膜、Si/Mo/Ru多層反射膜、Si/Mo/Ru/Mo多層反射膜、Si/Ru/Mo/Ru多層反射膜も用いることができる。
反射層3をなす多層反射膜を構成する各層の膜厚および層の繰り返し単位の数は、使用する膜材料および反射層に要求されるEUV光線反射率に応じて適宜選択することができる。Mo/Si反射膜を例にとると、EUV光線反射率の最大値が60%以上の反射層3とするには、多層反射膜は膜厚2.3±0.1nmのMo層と、膜厚4.5±0.1nmのSi層とを繰り返し単位数が30〜60になるように積層させればよい。
なお、反射層3をなす多層反射膜を構成する各層は、マグネトロンスパッタリング法、イオンビームスパッタリング法など、周知の成膜方法を用いて所望の厚さになるように成膜すればよい。例えば、イオンビームスパッタリング法を用いてSi/Mo多層反射膜を形成する場合、ターゲットとしてSiターゲットを用い、スパッタガスとしてArガス(ガス圧1.3×10-2Pa〜2.7×10-2Pa)を使用して、イオン加速電圧300〜1500V、成膜速度0.03〜0.30nm/secで厚さ4.5nmとなるようにSi膜を成膜し、次に、ターゲットとしてMoターゲットを用い、スパッタガスとしてArガス(ガス圧1.3×10-2Pa〜2.7×10-2Pa)を使用して、イオン加速電圧300〜1500V、成膜速度0.03〜0.30nm/secで厚さ2.3nmとなるようにMo膜を成膜することが好ましい。これを1周期として、Si膜およびMo膜を40〜50周期積層させることによりSi/Mo多層反射膜が成膜される。
反射層3表面が酸化されるのを防止するため、反射層3をなす多層反射膜の最上層は酸化されにくい材料の層とすることが好ましい。酸化されにくい材料の層は反射層3のキャップ層として機能する。キャップ層として機能する酸化されにくい材料の層の具体例としては、Si層を例示することができる。反射層3をなす多層反射膜がSi/Mo膜である場合、最上層をSi層とすることによって、該最上層をキャップ層として機能させることができる。その場合キャップ層の膜厚は、11±2nmであることが好ましい。
反射層3と吸収体層4との間に保護層を設けてもよい。保護層は、エッチングプロセス、通常はドライエッチングプロセスにより吸収体層4をパターニングする際に、反射層3がエッチングプロセスによるダメージを受けないよう、反射層3を保護することを目的として設けられる。したがって保護層の材質としては、吸収体層4のエッチングプロセスによる影響を受けにくい、つまりこのエッチング速度が吸収体層4よりも遅く、しかもこのエッチングプロセスによるダメージを受けにくい物質が選択される。この条件を満たす物質としては、たとえばCr、Al、Ta及びこれらの窒化物、Ru及びRu化合物(RuB、RuSi等)、ならびにSiO2、Si34、Al23やこれらの混合物が例示される。これらの中でも、Ru及びRu化合物(RuB、RuSi等)、CrNおよびSiO2が好ましく、Ru及びRu化合物(RuB、RuSi等)が特に好ましい。
保護層を設ける場合、その厚さは1〜60nmであることが好ましい。
保護層を設ける場合、マグネトロンスパッタリング法、イオンビームスパッタリング法など周知の成膜方法を用いて成膜する。マグネトロンスパッタリング法によりRu膜を成膜する場合、ターゲットとしてRuターゲットを用い、スパッタガスとしてArガス(ガス圧1.0×10-2Pa〜10×10-1Pa)を使用して投入電力30〜1500V、成膜速度0.02〜1.0nm/secで厚さ2〜5nmとなるように成膜することが好ましい。
吸収体層4に特に要求される特性は、反射層3との関係で(該反射層3上に保護層が形成されている場合は該保護層との関係で)、反射光のコントラストが十分高くなることである。
本明細書において、反射光のコントラストは下記式を用いて求めることができる。
反射光のコントラスト(%)=((R2−R1)/(R2+R1))×100
ここで、R2はEUV光の波長に対する反射層3表面(該反射層3上に保護層が形成されている場合は保護層表面)での反射率であり、R1はEUV光の波長に対する吸収体層4表面(該吸収体層4上に検査光の波長に対する低反射層が形成されている場合は該低反射層表面)での反射率である。なお、上記R1およびR2は、図1(a)に示すEUVマスク1のように、吸収体層の一部をパターニングにより除去した状態で測定する。なお、吸収体層上に低反射層が形成されている場合は、EUVマスクブランクの吸収体層および低反射層の一部をパターニングにより除去した状態で測定する。上記R2は、パターニングによって吸収体層4(吸収体層4上に低反射層が形成されている場合は吸収体層4および低反射層)が除去され、外部に露出した反射層3表面(反射層3上に保護層が形成されている場合は保護層表面)で測定した値、すなわち、図1(a)に示すEUVマスク1でみた場合、図中右側の吸収体層除去部で測定した値である。上記R1は、パターニングによって除去されずに残った吸収体層4表面(吸収体層4上に低反射層が形成されている場合は低反射層表面)で測定した値、すなわち、図1(a)に示すEUVマスク1でみた場合、図中左側の吸収体層非除去部で測定した値である。
本発明のEUVマスクブランクおよびEUVマスクは、上記式で表される反射光のコントラストが60%以上であることがより好ましく、65%以上であることがさらに好ましく、70%以上であることが特に好ましい。
上記の反射光のコントラストを達成するため、吸収体層4は、EUV光線反射率が極めて低いことが好ましい。具体的には、EUV光の波長領域の光線を吸収体層4表面に照射した際に、波長13.5nm付近の最大光線反射率が0.5%以下であることが好ましく、0.1%以下であることがより好ましい。
なお、吸収体層上に低反射層が形成されている場合、EUV光の波長領域の光線を低反射層表面に照射した際にも、波長13.5nm付近の最大光線反射率が0.5%以下であることが好ましく、0.1%以下であることがより好ましい。
上記の特性を達成するため、吸収体層4は、EUV光の吸収係数が高い材料で構成される。EUV光の吸収係数が高い材料としては、タンタル(Ta)を主成分とする材料を用いることが好ましい。本明細書において、タンタル(Ta)を主成分とする材料と言った場合、当該材料中Taを40at%(原子%)以上、好ましくは、50at%以上、より好ましくは55at%以上含有する材料を意味する。
吸収体層4に用いるTaを主成分とする材料は、Ta以外にハフニウム(Hf)、珪素(Si)、ジルコニウム(Zr)、ゲルマニウム(Ge)、硼素(B)および窒素(N)から選ばれる少なくとも一つの元素を含んでも良い。Ta以外の上記の元素を含有する材料の具体例としては、例えば、TaN、TaHf、TaHfN、TaBSi、TaBSiN、TaB、TaBN、TaSi、TaSiN、TaGe、TaGeN、TaZr、TaZrNなどが挙げられる。
ただし、吸収体層4中には、酸素(O)を含まないことが好ましい。具体的には、吸収体層4中のOの含有率が25at%未満であることが好ましい。吸収体層4をパターニングする際には、通常はドライエッチングプロセスが用いられ、エッチングガスとしては、塩素系ガス(あるいは塩素系ガスを含む混合ガス)あるいはフッ素系ガス(あるいはフッ素系ガスを含む混合ガス)が通常に用いられる。エッチングプロセスにより反射層がダメージを受けるのを防止する目的で、反射層上に保護層としてRuまたはRu化合物を含む膜が形成されている場合、保護層のダメージが少ないことから、エッチングガスとして主に塩素系ガスが使われる。しかしながら、塩素系ガスを用いてドライエッチングプロセスを実施する場合に、吸収体層4が酸素を含有していると、エッチング速度が低下し、レジストダメージが大きくなり好ましくない。吸収体層4中の酸素の含有率は、15at%以下であることが好ましく、特に10at%以下であることがより好ましく、5at%以下であることがさらに好ましい。
吸収体層4の厚さは、20〜100nmであることが好ましく、25〜90nmであることがより好ましく、30〜80nmであることがさらに好ましい。
上記した構成の吸収体層4は、公知の成膜方法、例えば、マグネトロンスパッタリング法またはイオンビームスパッタリング法を実施することにより形成することができる。
例えば、吸収体層4として、マグネトロンスパッタリング法を用いてTaHf膜を形成する場合、以下の条件で実施すればよい。
スパッタリングターゲット:TaHf化合物ターゲット(Ta=30〜70at%、Hf=70〜30at%)
スパッタガス:Arガス等の不活性ガス(ガス圧1.0×10-1Pa〜50×10-1Pa、好ましくは1.0×10-1Pa〜40×10-1Pa、より好ましくは1.0×10-1Pa〜30×10-1Pa)
成膜前真空度:1×10-4Pa以下、好ましくは1×10-5Pa以下、より好ましくは10-6Pa以下
投入電力:30〜1000W、好ましくは50〜750W、より好ましくは80〜500W
成膜速度:2.0〜60nm/min、好ましくは3.5〜45nm/min、より好ましくは5〜30nm/min
吸収体層4上に検査光における低反射層を形成してもよい。低反射層を形成する場合、該低反射層はマスクパターンの検査に使用する検査光において、低反射となるような膜で構成される。EUVマスクを作製する際、吸収体層にパターンを形成した後、このパターンが設計通りに形成されているかどうか検査する。このマスクパターンの検査では、検査光として通常257nm程度の光を使用した検査機が使用される。つまり、この257nm程度の波長域の反射光のコントラストによって検査される。EUVマスクブランクの吸収体層4は、EUV光線反射率が極めて低く、EUVマスクブランク1の吸収体層として優れた特性を有しているが、検査光の波長について見た場合、光線反射率が必ずしも十分低いとは言えない。この結果、検査時のコントラストが十分得られない可能性がある。検査時のコントラストが十分得られないと、マスク検査においてパターンの欠陥を十分判別できず、正確な欠陥検査を行えないことになる。
吸収体層4上に検査光における低反射層を形成することにより、検査時のコントラストが良好となる、別の言い方をすると、検査光の波長での光線反射率が極めて低くなる。具体的には、検査光の波長域の光線を低反射層表面に照射した際に、該検査光の波長の最大光線反射率が15%以下であることが好ましく、10%以下であることがより好ましく、5%以下であることがさらに好ましい。
低反射層における検査光の波長の光線反射率が15%以下であれば、該検査時のコントラストが良好である。具体的には、上記式で求められる検査光の波長域の反射光のコントラストが、30%以上となる。
吸収体層4上に検査光における低反射層を形成する場合、吸収体層4と低反射層の合計厚が20〜100nmであることが好ましく、25〜90nmであることがより好ましく、30〜80nmであることがさらに好ましい。
なお、本発明のEUVマスクブランク1において、吸収体層4上に低反射層を形成することが好ましいのは、パターンの検査光の波長とEUV光の波長とが異なるからである。
したがって、パターンの検査光としてEUV光(13.5nm付近)を使用する場合、吸収体層4上に低反射層を形成する必要はないと考えられる。検査光の波長は、パターン寸法が小さくなるに伴い短波長側にシフトする傾向があり、将来的には193nm、さらには13.5nmにシフトすることも考えられる。検査光の波長が13.5nmである場合、吸収体層4上に低反射層を形成する必要はないと考えられる。
本発明のEUVマスクブランク1は、反射層3および吸収体層4、ならびに、随意に形成される保護層および低反射層以外に、EUVマスクブランクの分野において公知の機能膜を有していてもよい。このような機能膜の具体例としては、例えば、特表2003−501823号公報に記載されているもののように、基板の静電チャッキングを促すために、基板の裏面側に施される高誘電性コーティングが挙げられる。ここで、基板の裏面とは、図1に示すEUVマスク1についてみた場合、基板2の反射層3が形成されている側とは反対側の面を指す。このような目的で基板の裏面に施す高誘電性コーティングは、シート抵抗がJIS k7194にて測定したとき100Ω以下となるように、構成材料の電気伝導率と厚さを選択する。高誘電性コーティングの構成材料としては、公知の文献に記載されているものから広く選択することができる。例えば、特表2003−501823号公報に記載の高誘電率のコーティング、具体的には、シリコン、TiN、モリブデン、クロム、またはTaSiからなるコーティングを適用することができる。高誘電性コーティングの厚さは、例えば10〜1000nmとすることができる。
高誘電性コーティングは、公知の成膜方法、例えば、マグネトロンスパッタリング法、イオンビームスパッタリング法といったスパッタリング法、CVD法、真空蒸着法、電解メッキ法を用いて形成することができる。
本発明では、EUVマスクブランクを作製する際に、基板上に薄膜を形成することによって設けた段差、または、基板上に凹部を形成することによって設けた段差が、該EUVマスクブランクをパターニングすることによって形成されるマスクパターン境界部と一致する必要がある。このため、作製されたEUVマスクブランクをパターニングする際には、該EUVマスクブランクを正確に位置決めする必要がある。このため、本発明のEUVマスクブランクは、露光領域外に位置決め用のマークが設けられていることが好ましい。
EUVマスクブランク用の基板では、該基板の成膜面全体がマスクパターンの形成に用いられるわけではない。例えば、152mm角の基板の場合、レジスト膜が形成される領域はそのうち142mm角の領域であり、マスクパターンが形成される露光領域はそのうち132×104mmの領域である。EUVマスクブランク上の露光領域外に位置決め用のマークを設けることで、該EUVマスクをパターニングする際の位置精度が向上し、基板上に薄膜を形成することによって設けた段差、または、基板上に凹部を形成することによって設けた段差を、該EUVマスクブランクをパターニングすることによって形成されるマスクパターン境界部と一致させることが容易になる。
本発明のEUVマスクブランクにおいて、露光領域外に設ける位置決め用のマークの形状、大きさ、数等は特に限定されないが、例えば、形状については、マークの向きを特定しやすいことから十字型が好ましい。大きさについては、十字型の場合、その一辺の長さを1000μm程度とすることが好ましい。数については、マーク間の相対位置から位置決めを行うことができることから3箇所が好ましい。
本発明のEUVマスクブランクにおいて、位置決め用のマークが必要となるのは、該EUVマスクブランクをパターニングする際であること、および、EUVマスクブランクを構成する各層(反射層、保護層、吸収体層および低反射層)は通常基板の成膜面全体に形成されることから、露光領域外に形成する位置決め用のマークは、反射層を形成する際に基板上に薄膜を形成することによって設けた段差、または、基板上に凹部を形成することによって設けた段差が、該EUVマスクブランクをパターニングすることによって形成されるマスクパターン境界部と一致する必要がある。このため、作製されたEUVマスクブランクをパターニングする際には、該EUVマスクブランクを正確に位置決めする必要がある。このため、本発明のEUVマスクブランクは、露光領域外に位置決め用のマークが設けられていることが好ましい。
本発明のマスクブランクの吸収体層を少なくともパターニングすることで、マスクを製造することが可能となる。吸収体層のパターニング方法は特に限定されず、例えば、吸収体層上にレジストを塗布してレジストパターンを形成し、これをマスクとして吸収体層をエッチングする方法を採用できる。レジストの材料やレジストパターンの描画法は、吸収体層の材質等を考慮して適宜選択すればよい。吸収体層のエッチング方法も特に限定されず、反応性イオンエッチング等のドライエッチングまたはウエットエッチングが採用できる。吸収体層をパターニングした後、レジストを剥離液で剥離することにより、EUVマスクが得られる。
本発明に係るEUVマスクを用いた半導体集積回路の製造方法について説明する。本発明は、EUV光を露光用光源として用いるフォトリソグラフィ法による半導体集積回路の製造方法に適用できる。具体的には、レジストを塗布したシリコンウェハ等の基板をステージ上に配置し、反射鏡を組み合わせて構成した反射型の露光装置に上記EUVマスクを設置する。そして、EUV光を光源から反射鏡を介してEUVマスクに照射し、EUV光をEUVマスクによって反射させてレジストが塗布された基板に照射する。このパターン転写工程により、回路パターンが基板上に転写される。回路パターンが転写された基板は、現像によって感光部分または非感光部分をエッチングした後、レジストを剥離する。半導体集積回路は、このような工程を繰り返すことで製造される。
以下、実施例を用いて本発明をさらに説明する。
(例1)
例1では、図1(a)に示す構成のEUVマスクにEUV光を、該EUVマスクに対する入射角が6°となるように照射した場合を想定したシミュレーションを実施して、図1(b)に示すようなEUVマスクの各部位における反射光強度を示すグラフを求める。結果を図3に示す。なお、図3に示す結果は、以下に示す条件でシミュレーションを実施することで得られるものである。
反射層3、吸収体層4:反射光のコントラストが1000:1となる想定反射層、吸収体層である。
吸収体層の厚さ:70nm
段差の高さ:7nm
段差の端部とマスクパターン境界部との距離:0nm
散乱光強度:反射層に存在する変形部によって散乱された散乱光強度の全方位総和。標準偏差が、段差の端から吸収体層の影の端までの距離の約1/5となる、任意の正規分布関数をとると仮定。
反射光強度I:散乱がなかった場合の反射光強度。吸収体層を通過した光がランバート=ベールの法則に従い減衰すると仮定。
反射光強度S:散乱の影響を加味した反射光強度。吸収体層を通過した光が段差により引き起こされる散乱により減衰されると仮定。
なお、反射光強度I、Sは、反射層表面でEUV光が通常に反射された場合の反射光強度を1とした場合の相対強度として示す。
図3から明らかなように、マスクパターン境界部に段差を設けた結果、吸収体層の一部のみを通過したEUV光が反射光を生じる過程で、該反射光が反射層に存在する変形部によって散乱されることで、マスクパターン境界部での反射光のコントラストの低下が抑制されることが確認される。
(例2)
例2では、段差の高さを4nmとし、段差の端部とマスクパターン境界部との距離が4nmとなるように、図1(a)における段差5の端部の位置を図中右側にずらした条件で例1と同様のシミュレーションを実施する。図4は、シミュレーションによって得られるEUVマスクの各部位における反射光強度を示すグラフである。
図4から明らかなように、マスクパターン境界部に段差を設けた結果、吸収体層の一部のみを通過したEUV光が反射光を生じる過程で、該反射光が反射層に存在する変形部によって散乱されることで、マスクパターン境界部での反射光のコントラストが向上することが確認される。なお、図3および図4の比較から明らかなように、例2は、例1よりも反射光のコントラストを抑制する効果が高い。
(例3)
例3では、反射層3、吸収体層4を反射光のコントラストが100:1となる想定反射層、吸収体層とし、段差の高さを7nmとし、段差の端部とマスクパターン境界部との距離が1nmとなるように、図1(a)における段差5の端部の位置を図中右側にずらした条件で例1と同様のシミュレーションを実施する。図5は、シミュレーションによって得られるEUVマスクの各部位における反射光強度を示すグラフである。
図5から明らかなように、マスクパターン境界部に段差を設けた結果、吸収体層の一部のみを通過したEUV光が反射光を生じる過程で、該反射光が反射層に存在する変形部によって散乱されることで、マスクパターン境界部での反射光のコントラストが向上することが確認される。
(例4)
例4では、反射層3、吸収体層4を反射光のコントラストが100:1となる想定反射層、吸収体層とし、段差の高さを15nmとし、段差の端部とマスクパターン境界部との距離が0nmとなる条件で例1と同様のシミュレーションを実施する。図6は、シミュレーションによって得られるEUVマスクの各部位における反射光強度を示すグラフである。
図6から明らかなように、マスクパターン境界部に段差を設けた結果、吸収体層の一部のみを通過したEUV光が反射光を生じる過程で、該反射光が反射層に存在する変形部によって散乱されることで、マスクパターン境界部での反射光のコントラストが向上する。
但し、反射光の上昇は、段差の高さが10nm以下の例1〜3のほうが例4よりも優れている。段差が大きすぎると、影の部分(Shadowing)をおおきくしてしまう結果、コントラストが十分に改善できない可能性がある。
本発明は、EUVマスクとして高精細の半導体製造等に利用できる。
なお、2008年4月23日に出願された日本特許出願2008−112763号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (13)

  1. 基板上に、EUV光を反射する反射層と、EUV光を吸収する吸収体層と、がこの順に形成されたEUVリソグラフィ用反射型マスクブランクであって、
    前記基板上の少なくとも一部において、パターニング時に前記吸収体層が除去される部位と、前記吸収体層が除去される部位に隣接する、パターニング時に前記吸収体層が除去されない部位と、の間に段差が設けられていることを特徴とするEUVリソグラフィ用反射型マスクブランク。
  2. 前記段差の端部が、吸収体層が除去される部位と前記吸収体層が除去されない部位との境界部よりも、前記吸収体層が除去される部位の方向に位置している請求項1に記載のEUVリソグラフィ用反射型マスクブランク。
  3. 基板上に、EUV光を反射する反射層と、EUV光を吸収する吸収体層と、がこの順に形成されたEUVリソグラフィ用反射型マスクブランクであって、
    前記基板上において、パターニング時に前記吸収体層が除去される部位のうちマスクパターンの外縁となる部位と、前記マスクパターンの外縁となる部位の外側に隣接する、パターニング時に前記吸収体層が除去されない部位と、の間に段差が設けられていることを特徴とするEUVリソグラフィ用反射型マスクブランク。
  4. 前記段差の端部が、前記マスクパターンの外縁となる部位と前記吸収体層が除去されない部位との境界部よりも、前記マスクパターンの外縁となる部位の方向に位置している請求項3に記載のEUVリソグラフィ用反射型マスクブランク。
  5. 前記段差の端部とマスクパターンの境界部との距離Lが、EUVマスクに対するEUV光の入射角をα(°)とし、吸収体層の膜厚(吸収体層上に低反射層が形成されている場合、吸収体層と低反射層の合計膜厚)をt(mm)、段差の高さをh(nm)とするとき、下記式(1)を満たしている請求項2ないし4のいずれかに記載のEUVリソグラフィ用反射型マスクブランク。
    L = (t + h) × tanα − h (1)
  6. 前記段差の高さが2〜10nmであることを特徴とする請求項1ないし5のいずれかに記載のEUVリソグラフィ用反射型マスクブランク。
  7. 前記基板の表面の一部に薄膜を形成することにより、前記段差が形成されていることを特徴とする請求項1ないし6のいずれかに記載のEUVリソグラフィ用反射型マスクブランク。
  8. 前記基板の表面の一部を除去することにより、前記段差が形成されていることを特徴とする請求項1ないし6のいずれかに記載のEUVリソグラフィ用反射型マスクブランク。
  9. 前記吸収体層上に、マスクパターンの検査に使用する検査光における低反射層が形成されている請求項1ないし8のいずれかに記載のEUVリソグラフィ用反射型マスクブランク。
  10. 前記反射層と前記吸収体層との間に、パターニング時に前記反射層を保護するための保護層が形成されている請求項1ないし9のいずれかに記載のEUVリソグラフィ用反射型マスクブランク。
  11. パターニング時の露光領域外に位置決め用のマークが形成されている請求項1ないし10のいずれかに記載のEUVリソグラフィ用反射型マスクブランク。
  12. 請求項1ないし11のいずれかに記載のEUVリソグラフィ用反射型マスクブランクをパターニングしてなるEUVリソグラフィ用反射型マスク。
  13. 請求項12に記載のEUVリソグラフィ用反射型マスクを用いて、被露光体に露光を行うことにより半導体集積回路を製造する半導体集積回路の製造方法。
JP2010509114A 2008-04-23 2009-03-13 Euvリソグラフィ用反射型マスクブランク、および、euvリソグラフィ用反射型マスク Expired - Fee Related JP5273143B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010509114A JP5273143B2 (ja) 2008-04-23 2009-03-13 Euvリソグラフィ用反射型マスクブランク、および、euvリソグラフィ用反射型マスク

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008112763 2008-04-23
JP2008112763 2008-04-23
PCT/JP2009/054942 WO2009130956A1 (ja) 2008-04-23 2009-03-13 Euvリソグラフィ用反射型マスクブランク、および、euvリソグラフィ用反射型マスク
JP2010509114A JP5273143B2 (ja) 2008-04-23 2009-03-13 Euvリソグラフィ用反射型マスクブランク、および、euvリソグラフィ用反射型マスク

Publications (2)

Publication Number Publication Date
JPWO2009130956A1 true JPWO2009130956A1 (ja) 2011-08-18
JP5273143B2 JP5273143B2 (ja) 2013-08-28

Family

ID=41216697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010509114A Expired - Fee Related JP5273143B2 (ja) 2008-04-23 2009-03-13 Euvリソグラフィ用反射型マスクブランク、および、euvリソグラフィ用反射型マスク

Country Status (6)

Country Link
US (1) US8105735B2 (ja)
JP (1) JP5273143B2 (ja)
KR (1) KR20110002829A (ja)
CN (1) CN102016717B (ja)
TW (1) TWI437360B (ja)
WO (1) WO2009130956A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017058666A (ja) * 2015-09-17 2017-03-23 旭硝子株式会社 反射型マスクブランク、及び反射型マスクブランクの製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5970901B2 (ja) * 2012-03-26 2016-08-17 凸版印刷株式会社 反射型マスクおよび反射型マスクの製造方法
US8765331B2 (en) 2012-08-17 2014-07-01 International Business Machines Corporation Reducing edge die reflectivity in extreme ultraviolet lithography
JP2014127630A (ja) 2012-12-27 2014-07-07 Asahi Glass Co Ltd Euvリソグラフィ用反射型マスクブランクおよびその製造方法
JP2014160752A (ja) 2013-02-20 2014-09-04 Asahi Glass Co Ltd Euvリソグラフィ用反射型マスクブランクおよび該マスクブランク用反射層付基板
IL239577B (en) * 2015-06-22 2020-10-29 Zeiss Carl Smt Gmbh Correction of variation in critical dimension in extreme ultraviolet lithography
JP2017075997A (ja) * 2015-10-13 2017-04-20 旭硝子株式会社 反射型マスクブランク、及び反射型マスクブランクの製造方法
KR20210088582A (ko) * 2018-11-15 2021-07-14 도판 인사츠 가부시키가이샤 반사형 포토마스크 블랭크 및 반사형 포토마스크
KR20210120512A (ko) 2020-03-27 2021-10-07 삼성전자주식회사 극자외선 노광 장치의 노광 마스크

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06120125A (ja) * 1991-11-12 1994-04-28 Hitachi Ltd 光学素子およびそれを用いた投影露光装置
US5485497A (en) * 1991-11-12 1996-01-16 Hitachi, Ltd. Optical element and projection exposure apparatus employing the same
JP3806702B2 (ja) 2002-04-11 2006-08-09 Hoya株式会社 反射型マスクブランクス及び反射型マスク及びそれらの製造方法並びに半導体の製造方法
EP1498936B1 (en) * 2002-04-11 2012-11-14 Hoya Corporation Reflection type mask blank and reflection type mask and production methods for them
JP3683261B2 (ja) * 2003-03-03 2005-08-17 Hoya株式会社 擬似欠陥を有する反射型マスクブランクス及びその製造方法、擬似欠陥を有する反射型マスク及びその製造方法、並びに擬似欠陥を有する反射型マスクブランクス又は反射型マスクの製造用基板
JP2005101399A (ja) * 2003-09-26 2005-04-14 Sony Corp 露光用マスクおよびマスク製造方法
US7094507B2 (en) * 2004-10-29 2006-08-22 Infineon Technologies Ag Method for determining an optimal absorber stack geometry of a lithographic reflection mask
CN100454485C (zh) * 2004-12-10 2009-01-21 凸版印刷株式会社 反射型光掩模坯料、反射型光掩模及半导体装置的制造方法
JP4622504B2 (ja) * 2004-12-21 2011-02-02 凸版印刷株式会社 極端紫外線露光用マスクブランク及びマスク並びにパターン転写方法
JP4926522B2 (ja) * 2006-03-31 2012-05-09 Hoya株式会社 反射型マスクブランクス及び反射型マスク並びに半導体装置の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017058666A (ja) * 2015-09-17 2017-03-23 旭硝子株式会社 反射型マスクブランク、及び反射型マスクブランクの製造方法

Also Published As

Publication number Publication date
JP5273143B2 (ja) 2013-08-28
WO2009130956A1 (ja) 2009-10-29
TWI437360B (zh) 2014-05-11
US8105735B2 (en) 2012-01-31
CN102016717B (zh) 2012-10-10
CN102016717A (zh) 2011-04-13
KR20110002829A (ko) 2011-01-10
US20100330470A1 (en) 2010-12-30
TW201003303A (en) 2010-01-16

Similar Documents

Publication Publication Date Title
JP5273143B2 (ja) Euvリソグラフィ用反射型マスクブランク、および、euvリソグラフィ用反射型マスク
JP6060636B2 (ja) Euvリソグラフィ用反射型マスクブランク、および、euvリソグラフィ用反射型マスク
US8329361B2 (en) Reflective mask blank, method of manufacturing a reflective mask blank and method of manufacturing a reflective mask
JP5590044B2 (ja) Euvリソグラフィ用光学部材
US8389184B2 (en) Reflective mask blank and method of manufacturing a reflective mask
WO2011108470A1 (ja) Euvリソグラフィ用反射型マスクブランクおよびその製造方法
KR102239726B1 (ko) 다층 반사막을 구비한 기판, euv 리소그래피용 반사형 마스크 블랭크, euv 리소그래피용 반사형 마스크 및 그 제조 방법과 반도체 장치의 제조 방법
KR20140085350A (ko) Euv 리소그래피용 반사형 마스크 블랭크 및 그 제조 방법
JPWO2010110237A1 (ja) 反射型マスク用多層反射膜付基板及び反射型マスクブランク並びにそれらの製造方法
KR20140104375A (ko) Euv 리소그래피용 반사형 마스크 블랭크 및 그 마스크 블랭크용 반사층 형성 기판
JP6502143B2 (ja) マスクブランク、位相シフトマスク、位相シフトマスクの製造方法および半導体デバイスの製造方法
US11262647B2 (en) Substrate with multilayer reflective film, reflective mask blank, reflective mask, and semiconductor device manufacturing method
JP5258368B2 (ja) 多層反射膜付基板の製造方法、反射型マスクブランクの製造方法、及び反射型マスクの製造方法
JPWO2018016262A1 (ja) マスクブランク、位相シフトマスク、位相シフトマスクの製造方法及び半導体デバイスの製造方法
KR20210056343A (ko) 마스크 블랭크, 전사용 마스크 및 반도체 디바이스의 제조 방법
JP2017075997A (ja) 反射型マスクブランク、及び反射型マスクブランクの製造方法
JP5333016B2 (ja) Euvリソグラフィ用反射型マスクブランク
JP2021105727A (ja) 反射型マスク、並びに反射型マスクブランク及び半導体装置の製造方法
JP2011222887A (ja) Euvリソグラフィ用反射型マスクブランク、および該マスクブランク用の機能膜付基板
JP5568158B2 (ja) 多層反射膜付基板の製造方法、反射型マスクブランクの製造方法、及び反射型マスクの製造方法
JP2012124196A (ja) Euv露光用反射型位相シフトマスクの製造方法
US20200310239A1 (en) Substrate equipped with multi-layer reflection film, reflection-type mask blank, reflection-type mask, and semiconductor device manufacturing process
JP2009252788A (ja) Euvリソグラフィ用反射型マスクブランク
WO2012114980A1 (ja) Euvリソグラフィ用反射型マスクブランク

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130429

LAPS Cancellation because of no payment of annual fees