JPWO2009104582A1 - 受信装置、送信装置、通信システム及び通信方法 - Google Patents

受信装置、送信装置、通信システム及び通信方法 Download PDF

Info

Publication number
JPWO2009104582A1
JPWO2009104582A1 JP2009554314A JP2009554314A JPWO2009104582A1 JP WO2009104582 A1 JPWO2009104582 A1 JP WO2009104582A1 JP 2009554314 A JP2009554314 A JP 2009554314A JP 2009554314 A JP2009554314 A JP 2009554314A JP WO2009104582 A1 JPWO2009104582 A1 JP WO2009104582A1
Authority
JP
Japan
Prior art keywords
signal
data
unit
transmission
retransmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009554314A
Other languages
English (en)
Inventor
智造 野上
智造 野上
貴司 吉本
貴司 吉本
良太 山田
良太 山田
寿之 示沢
寿之 示沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Publication of JPWO2009104582A1 publication Critical patent/JPWO2009104582A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0026Interference mitigation or co-ordination of multi-user interference
    • H04J11/0036Interference mitigation or co-ordination of multi-user interference at the receiver
    • H04J11/004Interference mitigation or co-ordination of multi-user interference at the receiver using regenerative subtractive interference cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • H04L1/005Iterative decoding, including iteration between signal detection and decoding operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1835Buffer management
    • H04L1/1845Combining techniques, e.g. code combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/7103Interference-related aspects the interference being multiple access interference
    • H04B1/7107Subtractive interference cancellation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

送信装置と通信する受信装置であって、複数のデータ信号が多重された信号を送信装置から受信する受信部と、受信部で受信した受信信号からデータ信号毎に送信データの検出の成否を判定するデータ信号検出部とを備え、受信部は、多重された複数のデータ信号のうち送信データの検出に失敗したデータ信号の少なくともいずれかに対応する再送データ信号を更に送信装置から受信し、データ信号検出部は、受信信号と再送データ信号とから、多重された複数のデータ信号のうち再送データ信号に対応するデータ信号と少なくとも1つの再送データ信号に対応しないデータ信号とに含まれる送信データの再検出の成否を判定する。

Description

本発明は、受信装置、送信装置、通信システム及び通信方法に関する。
本願は、2008年2月21日に、日本に出願された特願2008−040228号に基づき優先権を主張し、その内容をここに援用する。
マルチキャリア伝送方式として、OFDM(Orthogonal Frequency Division Multiplexing:直交波周波数分割多重)、OFDMA(Orthogonal Frequency Division Multiple Access:直交周波数分割多元接続)などが知られている。マルチキャリア伝送方式では、送信装置においてガードインターバル(GI:Guard Interval)区間を付加することによって、マルチパス干渉の影響を低減する。
これらのアクセス方式において、ガードインターバル区間を越える到来波が存在すると、前のシンボルがFFT(Fast Fourier Transform:高速フーリエ変換)区間に入り込むことによって、シンボル間干渉(ISI:Inter Symbol Interference)や、キャリア間干渉(ICI:Inter Carrier Interference)が生じる。キャリア間干渉(ICI)は、高速フーリエ変換区間にシンボルの切れ目、つまり信号の不連続区間が入ることによって生じる。
ガードインターバル(GI)を超える到来波が存在する場合の、シンボル間干渉(ISI)、キャリア間干渉(ICI)による特性劣化を改善する方法が以下の特許文献1で提案されている。この従来技術では、受信装置が、復調動作を一度行った後、誤り訂正結果(MAP復号器の出力)を利用し、シンボル間干渉(ISI)成分、およびキャリア間干渉(ICI)成分を含む信号であって、所望以外のサブキャリアの複製信号(レプリカ信号)を作成する。そして、受信装置は、作成した複製信号を、受信信号から除去した信号に対し、再度復調動作を行う。これにより、シンボル間干渉(ISI)、キャリア間干渉(ICI)による特性劣化を防いでいる。
マルチキャリア伝送方式と、CDM(Code Division Multiplexing:符号分割多重)方式を組み合わせた方式として、MC−CDM(Multi Carrier−Code Division Multiplexing:マルチキャリア符号分割多重)方式、MC−CDMA(Multi Carrier−Code Division Multiple Access:マルチキャリア符号分割多元接続)、Spread−OFCDM(Orthogonal Frequency and Code Division Multiplexing:直交周波数・符号分割多重)などが提案されている。
これらのアクセス方式では、例えばWalsh−Hadamard符号等の直交符号を用いた周波数方向拡散によるコード多重が行われ、マルチパス環境を経て受信装置で信号が受信される。受信された信号は、直交符号の周期内で周波数変動がある場合、直交符号間の直交性が保たれない。そのため、コード間干渉(MCI:Multi Code Interference)が起こり、特性劣化の原因となる。
前記符号間の直交性の崩れによる特性劣化を改善する方法が、特許文献2及び非特許文献1に記載されている。これらの従来技術では、下りリンク、上りリンクの違いはあるが、双方ともMC−CDM通信時のコード多重によるコード間干渉を取り除く技術に関するものである。これらの従来技術では、誤り訂正後、または逆拡散後のデータを用いて、所望コード以外の信号を除去することにより、特性の改善を図っている。
上記技術に共通しているのは、シンボル間干渉(ISI)、キャリア間干渉(ICI)、コード間干渉(MCI)等の干渉をキャンセルするため、受信装置において、受信した信号を復調した後に生成するレプリカ信号を基に干渉信号を生成し、干渉キャンセルを行うことである。さらに、それらの処理を繰返し行うことにより、レプリカ信号の精度を向上させ、精度よく干渉をキャンセルする。
しかしながら、上記干渉キャンセラを用いた繰返し処理を行ったとしても、シンボル間干渉(ISI)、キャリア間干渉(ICI)、コード間干渉(MCI)等の干渉が多い場合、干渉を除去しきれない。そのため、所望のデータを正常に復調することができず、誤りが生じる。
一方、誤りに対する制御方法として、自動再送(ARQ:Automatic Repeat reQuest)と、ターボ符号化等の誤り訂正符号とを組み合わせたハイブリッド自動再送(HARQ)がある。特に、ハイブリッド自動再送(HARQ)として、チェース合成(CC:Chase Combining)と、インクリメンタルリダンダンシ(IR:Incremental Redundancy)とがよく知られている(非特許文献2および非特許文献3)。
例えば、チェース合成(CC)を用いるハイブリッド自動再送(HARQ)では、受信パケットに誤りが検出されると、受信装置は、全く同一のパケットの再送を送信装置に要求する。受信装置は、これらの2つの受信パケットを合成することにより、受信品質を高める。
また、インクリメンタルリダンダンシ(IR)を用いるハイブリッド自動再送(HARQ)では、冗長ビットを分割し、少しずつ順次再送する。そのため、再送回数が増えるにしたがって符号化率を低下させることができ、誤り訂正能力が強くなる。
しかしながら、ハイブリッド自動再送(HARQ)は、再送パケット数が増加すると再送パケットによるリンク容量へのオーバヘッドが増加するという問題があった。また、送信装置から受信装置に送信する信号の再送回数が増加し、エンドトゥエンドの遅延時間が大きくなるという問題もあった。
特開2004−221702号公報 特開2005−198223号公報 Y.Zhou、J.Wang、and M.Sawahashi、"Downlink Transmission of Broadband OFCDM Systems−Part I: Hybrid Detection、"IEEE Transaction on Communication、Vol.53、Issue 4、pp.718−729、April 2005. D.Chase、"Code combining−A maximum likelihood decoding approach for combing and arbitrary number of noisy packets、"IEEE Trans.Commun.、vol.COM−33、pp.385−393、May 1985. J.Hagenauer、"Rate−compatible punctured convolutional codes (RCPC codes) and their application、"IEEE Trans. Commun.、vol.36、pp.389−400、April 1988.
本発明は、上記事情に鑑みてなされたものであり、その目的は、送信装置から受信装置に送信する信号の再送回数を低減することができる受信装置、送信装置、通信システム及び通信方法を提供することにある。
(1) 本発明は、上記課題を解決するためになされたもので、本発明の一態様による受信装置は、送信装置と通信する受信装置であって、複数のデータ信号が多重された信号を前記送信装置から受信する受信部と、前記受信部で受信した受信信号から前記データ信号毎に送信データの検出の成否を判定するデータ信号検出部とを備え、前記受信部は、前記多重された複数のデータ信号のうち送信データの検出に失敗したデータ信号の少なくともいずれかに対応する再送データ信号を更に前記送信装置から受信し、前記データ信号検出部は、前記受信信号と前記再送データ信号とから、前記多重された複数のデータ信号のうち前記再送データ信号に対応するデータ信号と少なくとも1つの前記再送データ信号に対応しないデータ信号とに含まれる送信データの再検出の成否を判定する。
(2) また、本発明の一態様による受信装置の前記データ信号検出部は、各データ信号のレプリカであるデータ信号レプリカを生成するデータ信号レプリカ生成部と、前記データ信号レプリカから干渉信号レプリカを生成する干渉信号レプリカ生成部と、前記干渉信号レプリカを受信信号から減算する干渉除去部と、前記干渉信号レプリカを除去した受信信号を合成する信号合成部と、前記信号合成部が合成した信号から前記多重された複数のデータ信号に含まれる送信データの検出を行う判定部とを備える。
(3) また、本発明の一態様による受信装置の前記信号合成部は、前記干渉信号レプリカを除去した受信信号と前記再送信号を復調する復調部と、前記干渉信号レプリカを除去した受信信号の復調結果と前記再送信号の復調結果とを合成する合成部とを備える。
(4) また、本発明の一態様による受信装置の前記復調部は、前記干渉信号レプリカを除去した受信信号と前記再送信号に含まれる送信データの尤度情報を出力する。
(5) また、本発明の一態様による受信装置の前記復調部は、前記干渉信号レプリカを除去した受信信号と前記再送信号に含まれる送信データの対数尤度比を出力し、前記合成部は、前記干渉信号レプリカを除去した受信信号に含まれる送信データの対数尤度比と前記再送信号に含まれる送信データの対数尤度比とを加算して合成する。
(6) また、本発明の一態様による受信装置の前記干渉信号レプリカ生成部は、検出するデータ信号の各々に対する干渉信号レプリカを生成する。
(7) また、本発明の一態様による受信装置の前記干渉信号レプリカ生成部は、検出する複数のデータ信号うち最初に検出するデータ信号以外のデータ信号に対する干渉信号レプリカを生成する。
(8) また、本発明の一態様による受信装置は、前記データ信号検出部から出力された前記送信データ再検出の成否に基づいて、前記送信データの再検出が成功であるデータ信号に関する成否情報を前記送信装置に報告する報告送信部を備える。
(9) また、本発明の一態様による受信装置の前記報告送信部は、前記多重された各々の前記データ信号毎の送信データの検出の成否に基づいて、前記データ信号毎の成否情報を前記送信装置に報告し、前記送信データ再検出の成否に基づいて、前記送信データの再検出が成功であるデータ信号に関する成否情報のみを前記送信装置に報告する。
(10) また、本発明の一態様による受信装置は、前記データ信号検出部から出力された前記送信データ再検出の成否に基づいて、前記送信データの再検出が失敗であるデータ信号に関する成否情報を前記送信装置に報告する報告送信部を備える。
(11) また、本発明の一態様による受信装置の前記複数のデータ信号は、符号拡散多重されており、前記データ信号検出部は、受信信号に対して逆拡散処理を行う逆拡散部を備える。
(12) また、本発明の一態様による受信装置の前記複数のデータ信号は、空間多重されているストリームであり、前記データ信号検出部は、受信信号に対してストリーム分離を行うストリーム分離部を備える。
(13) また、本発明の一態様による送信装置は、受信装置と通信する送信装置であって、複数の送信データから複数のデータ信号が多重された信号を生成する送信信号生成部と、前記送信信号生成部で生成した信号を前記受信装置に送信する送信部と、前記受信装置から報告される前記データ信号毎の送信データ検出の成否を示す成否情報を受信する報告受信部とを備え、前記送信信号生成部はさらに、前記成否情報が送信データの検出の失敗を示す前記データ信号のうちの一部のデータ信号に対する再送信号を生成し、前記送信部はさらに、前記再送信号を前記受信装置に送信する。
(14) また、本発明の一態様による送信装置は、前記複数の送信データを記憶する送信データ記憶部を備え、前記送信信号生成部は、前記送信データ記憶部に記憶された前記送信データから前記再送信号を生成する。
(15) また、本発明の一態様による送信装置の前記報告受信部はさらに、前記受信装置から報告される送信データ再検出の成否を示す成否情報を前記受信装置から受信する。
(16) また、本発明の一態様による送信装置の前記送信データ記憶部は、前記送信データ再検出の成否を示す成否情報を報告された当該送信データを削除する。
(17) また、本発明の一態様による通信システムは、送信装置と受信装置とを備える通信システムであって、前記送信装置は、複数の送信データから複数のデータ信号が多重された信号を生成する送信信号生成部と、前記送信信号生成部で生成した信号を前記受信装置に送信する送信部と、前記受信装置から報告される前記データ信号毎の送信データ検出の成否を示す成否情報を受信する報告受信部とを備え、前記送信信号生成部はさらに、前記成否情報が送信データの検出の失敗を示す前記データ信号のうちの一部のデータ信号に対する再送信号を生成し、前記送信部はさらに、前記再送信号を前記受信装置に送信し、前記受信装置は、複数のデータ信号が多重された信号を前記送信装置から受信する受信部と、前記受信部で受信した受信信号から前記データ信号毎に送信データの検出の成否を判定するデータ信号検出部とを備え、前記受信部は、前記多重された複数のデータ信号のうち送信データの検出に失敗したデータ信号の少なくともいずれかに対応する再送データ信号を更に前記送信装置から受信し、前記データ信号検出部は、前記受信信号と前記再送データ信号とから、前記多重された複数のデータ信号のうち前記再送データ信号に対応するデータ信号と少なくとも1つの前記再送データ信号に対応しないデータ信号とに含まれる送信データの再検出の成否を判定する。
(18) また、本発明の一態様による通信方法は、送信装置と通信する受信装置を用いた通信方法であって、前記受信装置は、複数のデータ信号が多重された信号を前記送信装置から受信部が受信する第1のステップと、前記受信部で受信した受信信号から前記データ信号毎に送信データの検出の成否をデータ信号検出部が判定する第2のステップと、前記多重された複数のデータ信号のうち送信データの検出に失敗したデータ信号の少なくともいずれかに対応する再送データ信号を更に前記送信装置から前記受信部が受信する第3のステップと、前記受信信号と前記再送データ信号とから、前記多重された複数のデータ信号のうち前記再送データ信号に対応するデータ信号と少なくとも1つの前記再送データ信号に対応しないデータ信号とに含まれる送信データの再検出の成否を前記データ信号検出部が判定する第4のステップとを実行する。
(19) また、本発明の一態様による通信方法は、送信装置と通信する受信装置を用いた通信方法であって、前記送信装置は、複数の送信データから複数のデータ信号が多重された信号を送信信号生成部が生成する第1のステップと、前記送信信号生成部で生成した信号を前記受信装置に送信部が送信する第2のステップと、前記受信装置から報告される前記データ信号毎の送信データ検出の成否を示す成否情報を報告受信部が受信する第3のステップと、前記成否情報が送信データの検出の失敗を示す前記データ信号のうちの一部のデータ信号に対する再送信号を前記送信信号生成部が生成する第4のステップと、前記再送信号を前記受信装置に前記送信部が送信する第5のステップとを実行する。
本発明の受信装置、送信装置、通信システム及び通信方法では、送信装置から受信装置に送信する信号の再送回数を低減することができる。
本発明の実施形態の概要を示す図である。 本発明の第1の実施形態による送信装置100の構成を示す概略ブロック図である。 本発明の第1の実施形態による送信装置100(図2)の符号部114の構成を示す概略ブロック図である。 本発明の第1の実施形態による送信装置100(図2)のレートマッチ部115におけるパンクチャリング処理の一例を示した図である。 図4とは異なるパンクチャパターン(パンクチャパターンA2)を用いた場合のパンクチャリング処理を示す図である。 本発明の第1の実施形態による受信装置500の構成を示す概略ブロック図である。 本発明の第1の実施形態による繰返し並列型MCI干渉キャンセラ部510の構成の要部510aを示す概略ブロック図である。 本発明の第1の実施形態によるMCIレプリカ生成部604(図7)の構成を示す概略ブロック図である。 図4に示したパンクチャリング処理が行われた信号に対するデパンクチャリング処理の一例を示した図である。 図9とは異なるパンクチャパターン(図5のパンクチャパターンA2)を用いた場合のデパンクチャリング処理を示す図である。 本発明の第1の実施形態による合成部609におけるビットLLR合成の一例を示す図である。 受信装置500において受信信号に含まれる初送パケットから情報ビットを抽出する処理と受信パケット管理部509が行う制御の一例を示したフローチャートである。 再送パケットに対応する初送パケットを含む過去の受信信号に含まれる初送パケットから情報ビットを抽出する処理と受信パケット管理部509(図6)が行う制御の一例を示したフローチャートである。 受信データの検出と成否情報の報告、および再送と受信データの再検出の一連の処理の流れの一例を示す図である。 受信データの検出と成否情報の報告、および再送と受信データの再検出の一連の処理の流れの他の一例を示す図である。 受信データの検出と成否情報の報告、および再送と受信データの再検出の一連の処理の流れの他の一例を示す図である。 本発明の第2の実施形態による受信装置1600の構成を示す概略ブロック図である。 本発明の第2の実施形態による受信装置1600の干渉キャンセラ部1610の構成を示す概略ブロック図である。 本発明の第3の実施形態による送信装置1800の構成を示す概略ブロック図である。 本発明の第3の実施形態による受信装置1900の構成を示す概略ブロック図である。 本発明の第3の実施形態による受信装置1900の干渉キャンセラ部1911の構成を示す概略ブロック図である。 受信装置1900において受信信号に含まれる初送パケットから情報ビットを抽出する処理と受信パケット管理部1910が行う制御の一例を示したフローチャートである。 再送パケットに対応する初送パケットを含む過去の受信信号に含まれる初送パケットから情報ビットを抽出する処理と受信パケット管理部1910が行う制御の一例を示したフローチャートである。
符号の説明
100・・・送信装置、101−1〜101−N・・・コードチャネル信号生成部、102・・・コード多重部、103・・・インタリーバ部、104・・・IFFT部、105・・・パイロット信号生成部、106・・・多重部、107・・・GI挿入部、108・・・無線送信部、109・・・アンテナ、110・・・無線受信部、111・・・分離部、112・・・再送制御部、113・・・再送制御信号生成部、500・・・受信装置、501・・・アンテナ、502・・・無線受信部、503・・・分離部、504・・・伝搬路推定部、505・・・伝搬路推定値記憶部、506・・・GI除去部、507・・・FFT部、508・・・受信信号記憶部、509・・・受信パケット管理部、510・・・干渉キャンセラ部、511−1〜511−N・・・コードチャネルレプリカ生成部、512・・・ビットLLR記憶部、513・・・成否情報信号生成部、514・・・多重部、515・・・無線送信部、1600・・・受信装置、1601・・・アンテナ、1602・・・無線受信部、1603・・・分離部、1604・・・伝搬路推定部、1605・・・伝搬路推定値記憶部、1606・・・GI除去部、1607・・・FFT部、1608・・・受信信号記憶部、1609・・・受信パケット管理部、1610・・・干渉キャンセラ部、1612・・・ビットLLR記憶部、1613・・・成否情報信号生成部、1614・・・多重部、1615・・・無線送信部、1800・・・送信装置、1801−1〜1801−N・・・ストリーム信号生成部、1809−1〜1809−N・・・アンテナ、1810・・・無線受信部、1811・・・分離部、1812・・・再送制御部、1813・・・再送制御信号生成部、1900・・・受信装置、1901−1〜1901―M・・・アンテナ、1903・・・無線受信部、1904・・・分離部、1905・・・伝搬路推定部、1906・・・伝搬路推定値記憶部、1907・・・GI除去部、1908・・・FFT部、1909・・・受信信号記憶部、1910・・・受信パケット管理部、1911・・・干渉キャンセラ部、1912・・・ビットLLR記憶部、1913・・・成否情報信号生成部、1914・・・多重部、1915・・・無線送信部
以下、図面を参照し、本発明の実施形態について説明する。
図1は、本発明の実施形態の概要を示す図である。図1において、横軸は時間軸である。
まず、送信装置である基地局が、下りリンクを介して初送パケットであるデータ信号PとPを多重し、下りリンクデータ信号として、移動局である端末に送信する(ステップS101)。伝送に要する時間を経て信号を受信した端末は、信号Pと信号Pが多重された受信信号を記憶し、干渉キャンセル処理とデータ検出処理を行う(ステップS102)。
なお、多重された他の信号が、干渉成分となる。すなわち、コード間干渉においては、信号Pにとっては信号Pが干渉成分であり、信号Pにとっては信号Pが干渉成分である。干渉キャンセル処理とは、受信信号から干渉信号を再生した信号(レプリカ)を除去する処理である。例えば信号Pを検出する際には、受信信号から、信号Pのレプリカを除去した信号を用いる。
ここでは、信号Pと信号Pの両方のパケットにおいて誤りが生じた場合について説明する。端末は、信号Pと信号Pのパケットにおいて誤りが生じたことを基地局に報告するための成否情報(NACK、NACK)を含む信号を生成し、上りリンク成否情報信号として、上りリンクを介して基地局に送信する(ステップS103)。
上りリンク成否情報信号を受信した基地局は、NACKを返されたパケットである信号Pに対する再送パケットである信号PN+1を生成する(ステップS104)。そして、基地局は、信号PN+1を下りリンクデータ信号として、端末に再送する(ステップS105)。
ここで、本発明の実施形態に係る基地局は、端末からNACKを返された複数のパケットのうち、一部のパケットに対する再送パケットを生成して、端末に送信する。
下りリンクデータ信号を受信した端末は、再送パケットである信号PN+1を復調し、信号PN+1の復調結果と、記憶してある信号Pと信号Pが多重された受信信号とを用いて、干渉キャンセル処理とデータ検出処理を行う(ステップS106)。
ここで、前述したように、干渉キャンセル処理では、多重された他のパケットのレプリカを除去することにより、検出精度を向上させる。一般にハイブリッド自動再送(HARQ)の方式による再送を行うと、初送パケットのみを用いてデータ検出するより、初送パケットと再送パケットを合成した信号を用いてデータ検出する方が良好な検出精度を得ることができる。すなわち、再送パケットを合成することにより、初送の検出時より信号Pの検出精度が向上し、信号Pのレプリカの精度の向上に伴って、信号Pの検出精度も向上する。
このように、再送したパケットである信号PN+1に対応する初送パケットである信号Pのみならず、信号Pに多重された信号Pの品質(例えば誤り率)が改善し、信号Pの成否結果が初送の結果とは異なる可能性がある。ここでは、信号Pと信号Pの両方のパケットにおいて誤りが無い場合について説明する。
端末は、信号Pと信号Pのパケットにおいて誤りが無いことを基地局に報告するための成否情報(ACK、ACK)を含む信号を生成し、上りリンクを介して、上りリンク成否情報信号として、基地局に送信する(ステップS107)。
ACK、ACKを受信した基地局は、それ以降、信号Pと信号Pに対応する再送を行う必要がなくなる。結果的に、信号Pに対応する信号PN+1を再送することにより、信号Pと信号P両方における誤りを改善し、信号Pに対応する再送を行うことなく、信号Pと信号Pにおけるデータ検出が可能となる。
このように、送信装置(基地局とも称する)から受信装置(端末とも称する)へ複数の初送パケットを多重して送信し、受信装置において干渉(多重された他のパケット)を除去しながらデータを検出する。そして、データ検出に失敗した場合に、送信装置から受信装置へハイブリッド自動再送(HARQ)方式を用いて再送パケットを送信する。そして、多重された複数の初送パケットの検出に、受信装置が失敗し、その一部のパケットに対応する再送パケットが送信装置から送信された際に、一部のパケットのみでなく初回に検出に失敗した他の初送パケットにおいても再度検出する。検出に成功すれば、検出成功を示す情報を受信装置から送信装置に送信する。これにより、下りリンクの再送パケット数を抑制することができるため、スループットを向上させることができる。
[第1の実施形態]
第1の実施形態では、受信装置側で繰り返し並列型MCIキャンセラを用いる。繰り返しMCIキャンセラは受信側でMCIレプリカを生成し、そのMCIレプリカを受信信号から減算することでコード間干渉MCIの抑圧を行う。
図2は、本発明の第1の実施形態による送信装置100の構成を示す概略ブロック図である。送信装置100は、コードチャネル信号生成部101−1〜101−N(ただし、Nはコード多重数)、コード多重部102、インタリーバ部103、IFFT(Inverse Fast Fourier Transform:逆高速フーリエ変換)部104、パイロット信号生成部105、多重部106、GI(Guard Interval:ガードインターバル)挿入部107、無線送信部108、アンテナ109、無線受信部110、分離部111、再送制御部112、再送制御信号生成部113を備えている。
コードチャネル信号生成部101−1〜101−Nはそれぞれ、符号部114、レートマッチ部115、変調部116、拡散部117、符号化ビット記憶部118を備えている。
始めに、送信装置100から受信装置500(図6参照)への下りリンク信号の送信処理について説明する。
コードチャネル信号生成部101−1〜101−N(送信信号生成部とも称する)は、情報ビット(送信データ)からコードチャネル毎のデータ信号を生成する。
まず、符号部114は、情報ビット系列に対してチャネル符号化処理を行い、符号化ビット系列を、レートマッチ部115と符号化ビット記憶部118とに出力する。ここで、符号部114は、チャネル符号化として、畳み込み符号化、リードソロモン符号化などの誤り訂正能力を有する符号化を用いることが好ましい。より好ましくは、符号部114は、ターボ符号化、LDPC(Low Density Parity Check:低密度パリティ検査)符号化などの高い誤り訂正能力を有する符号化を用いると良い。
レートマッチ部115は、符号部114から出力された符号化ビットあるいは符号化ビット記憶部118から出力された符号化ビットに対して、再送制御部112から出力される再送回数に応じたパンクチャリング(ビット除去)、ビットパディング(ビット挿入)あるいはビットリピティション(ビット繰り返し)処理を行い、変調部116に出力する。好ましくは、レートマッチ部115は、さらにビットインタリーブ処理を行うと良い。なお、レートマッチングの例としてパンクチャリングに関する一例を後述する。
符号化ビット記憶部118(送信データ記憶部とも称する)は、符号部114の出力である符号化ビット系列を記憶する。また、符号化ビット記憶部118は、再送制御部112の制御に基づいて、記憶している符号化ビット系列を消去する。これらの処理の詳細については後述する。なお、符号化ビット記憶部118は、符号部114の出力を記憶するのではなく、情報ビット自体を記憶しても良い。
変調部116は、レートマッチ部115から出力された符号化ビット(パンクチャド符号化ビット)系列に対して変調処理を行い、変調シンボル系列を、拡散部117に出力する。このとき、変調部116は、変調方式として、PSK(Phase Shift Keying:位相偏移変調)、QAM(Quadrature Amplitude Modulation:直交振幅変調)などの変調方式を用いる。好ましくは、変調部116は、送信装置100と受信装置500との間の伝搬路に応じた変調方式を用いると良い。
拡散部117は、変調部116から出力されたシンボル系列を、拡散率分だけ複製し、コードチャネル毎の拡散符号(C、n=1〜N)を乗算する。これにより、拡散部117は、チップ系列(コードチャネル毎のデータ信号)を生成し、コード多重部102に出力する。
コード多重部102は、コードチャネル信号生成部101−1〜101−Nの出力であるコードチャネル毎のデータ信号を多重して、インタリーバ部103に出力する。
インタリーバ部103は、コード多重部102から出力された信号に、チップインタリーブやシンボルインタリーブなどのインタリーブ処理を行い、IFFT部104に出力する。
IFFT部104は、周波数方向に並べられた信号に対して、IFFT処理を行うことにより、時間領域の信号に変換し、多重部106に出力する。
パイロット信号生成部105は、受信装置500(図6参照)において伝搬路推定に用いるためのパイロット信号を生成し、多重部106に出力する。
再送制御信号生成部113は、再送制御部112から通知される各コードチャネルの信号の再送回数を受信装置500に通知するための信号(再送制御信号)を生成し、多重部106に出力する。
多重部106は、IFFT部104から出力されたデータ信号と、パイロット信号生成部105から出力されたパイロット信号と、再送制御信号生成部113から出力された再送制御信号とを多重し、GI挿入部107に出力する。
多重部106から出力された信号は、GI挿入部107においてガードインターバルを付加され、無線送信部108に出力する。
無線送信部108(送信部とも称する)は、GI挿入部107が出力する信号に対して、アップコンバートなどの処理を行い、アンテナ109を介して受信装置500に信号を送信する。
図3は、本発明の第1の実施形態による送信装置100(図2)の符号部114の構成を示す概略ブロック図である。符号部114は、内部符号器201、内部インタリーバ202、内部符号器203を備えている。なお、ここではチャネル符号化として符号化率が3であるターボ符号化を用いる場合について説明する。
符号部114に情報ビット系列が入力されると、情報ビット系列、第1パリティビット系列、第2パリティビット系列の3種類のビット系列が出力される。情報ビット系列は、入力された情報ビット系列そのものである。第1パリティビットは、情報ビット系列を内部符号器201に入力して符号化処理を行った出力結果である。第2パリティビットは、情報ビット系列を、内部インタリーバ202においてインタリーブ処理し、インタリーブ処理した結果を内部符号器203に入力して符号化処理を行った出力結果である。
ここで、内部符号器201と内部符号器203は、同様の符号器でも良いし、異なる符号器でも良い。好ましくは、内部符号器201、内部符号器203ともに再帰的畳み込み符号器を用いると良い。なお、図3では、符号部114が、3つの系列をそれぞれ出力しているが、並直列変換を行うことによって1つの系列として出力しても良い。
図4は、本発明の第1の実施形態による送信装置100(図2)のレートマッチ部115におけるパンクチャリング処理の一例を示した図である。b 、bp1 、bp2 、b k+1、bp1 k+1、bp2 k+1、b k+2、bp1 k+2、bp2 k+2、b k+3、bp1 k+3、bp2 k+3、・・・は、符号化ビットD1である。b はk番目の情報ビットであり、bp1 はk番目の第1パリティビットであり、bp2 はk番目の第2パリティビットである。
パンクチャパターンA1は、符号化ビットのそれぞれに対して、パンクチャリング(ビット除去)をするかどうかを示すパターンである。図4中の白抜きの四角形は、ビット除去しないことを示し、黒塗りの四角形は、ビット除去することを示している。
図4の上段の符号化ビットD1に対して、図4の中段のパンクチャパターンA1を用いたパンクチャリング処理を行うと、図4下段のような符号化ビットであるパンクチャド符号化ビットB1(b 、bp1 、b k+1、bp2 k+1、b k+2、bp1 k+2、b k+3、bp2 k+3、・・・)が得られる。
図5は、図4とは異なるパンクチャパターン(パンクチャパターンA2)を用いた場合のパンクチャリング処理を示す図である。図5の上段に示す符号化ビットD2は、図4の上段に示した符号化ビットD1と同じものである。
このようにレートマッチ部115は、異なるパンクチャパターンを用いることにより、異なるパンクチャド符号化ビットB1を出力する。つまり、レートマッチ部115は、符号化ビットD2(b 、bp1 、bp2 、b k+1、bp1 k+1、bp2 k+1、b k+2、bp1 k+2、bp2 k+2、b k+3、bp1 k+3、bp2 k+3、・・・)に対して、パンクチャパターンA2を用いたパンクチャリング処理を行い、パンクチャド符号化ビットB2(b 、bp2 、b k+1、bp1 k+1、b k+2、bp2 k+2、b k+3、bp1 k+3、・・・)を出力する。
レートマッチ部115は、再送制御部112の制御に基づいて、符号部114からの出力である符号化ビットあるいは、符号化ビット記憶部118からの出力である符号化ビットに対して、上述したようなパンクチャド処理などを行う。好ましくは、レートマッチ部115は、符号部115からの出力である符号化ビットに適用するパンクチャパターンと、符号化ビット記憶部118からの出力である符号化ビットに適用するパンクチャパターンとが異なるようにパンクチャリングすると良い。さらに好ましくは、符号部114からの出力である符号化ビットに適用するパンクチャパターンは、情報ビットを除去しないようなパターンを用い、符号化ビット記憶部118からの出力である符号化ビットに適用するパンクチャパターンは、符号部115からの出力である符号化ビットに適用するパンクチャパターンにおいて除去したビットを除去しないようなパターンを用いると良い。
なお、ここでは、必ずビット除去する場合について説明したが、必ずしもビットを除去しなくても良い。すなわち、ビットを除去しないようなパンクチャパターンを用いても良い。
図6は、本発明の第1の実施形態による受信装置500の構成を示す概略ブロック図である。受信装置500は、アンテナ501、無線受信部502、分離部503、伝搬路推定部504、伝搬路推定値記憶部505、GI除去部506、FFT部507、受信信号記憶部508、受信パケット管理部509、干渉キャンセラ部510、コードチャネルレプリカ生成部511−1〜511−N、ビットLLR(Log Likelihood Ratio:対数尤度比)記憶部512、成否情報信号生成部513、多重部514、無線送信部515を備えている。なお、伝搬路推定部504〜ビットLLR記憶部512をまとめて、データ信号検出部とも称する。
コードチャネルレプリカ生成部511−1〜511−Nはそれぞれ、シンボルレプリカ生成部516、拡散部517を備えている。
まず、無線受信部502(受信部とも称する)は、アンテナ501を介して、送信装置100から信号を受信し、ダウンコンバートなどの処理を行い、分離部503に出力する。分離部503は、無線受信部502が出力する信号を、パイロット信号と再送制御情報信号とデータ信号とに分離する。
伝搬路推定部504は、分離部503において分離されたパイロット信号を用いて、送信装置100と受信装置500の間の伝搬路特性を推定し、伝搬路推定値を、伝搬路推定値記憶部505と干渉キャンセラ510とに出力する。
伝搬路推定値記憶部505は、伝搬路推定部504の出力である伝搬路推定値を記憶する。
GI除去部506は、分離部503で分離されたデータ信号からガードインターバルを除去し、FFT部207に出力する。
FFT部507は、GI除去部505の出力信号に対して、FFT処理を行うことにより、周波数領域の信号に変換し、受信信号記憶部508と干渉キャンセラ510とに出力する。
受信信号記憶部508は、FFT部507の出力である周波数領域の信号を記憶する。
受信パケット管理部509は、分離部503において分離された再送制御情報信号と、干渉キャンセラ部510から出力される成否情報に基づいて、干渉キャンセラ部510、ビットLLR記憶部512、受信信号記憶部508、伝搬路推定値記憶部505に対して各種指示する。また、受信パケット管理部509は、成否情報信号生成部513に対して、成否情報信号の生成を指示する。なお、受信パケット管理部509の詳細な動作については後述する。
干渉キャンセラ部510は、受信パケット管理部509の指示に基づき、伝搬路推定部504から出力された伝搬路推定値を参照しながら、FFT部507が出力する信号から情報ビット系列を検出する。また、干渉キャンセラ部510は、符号化ビットLLRをコードチャネルレプリカ生成部511−1〜511−Nに出力するとともに、成否情報を受信パケット管理部509に出力する。
また、ビットLLR記憶部512からビットLLRが出力された場合は、受信信号記憶部508が出力する受信信号から当該ビットLLRと、伝搬路推定値記憶部505の出力である伝搬路推定値とを用いて、情報ビットの検出を行う。なお、干渉キャンセラ部510の動作の詳細な例については後述する。
コードチャネルレプリカ生成部511−1〜511−N(データ信号レプリカ生成部とも称する)は、拡散符号C〜Cに対応するコードチャネルにおけるレプリカを生成する。詳しくは、シンボルレプリカ生成部516が、干渉キャンセラ部510から出力された符号化ビットLLRに基づいてシンボルレプリカを生成する。
シンボルレプリカ生成部516から出力されたシンボルレプリカは、拡散部517において、拡散率分だけ複製され、各コードチャネルにおける拡散符号C〜Cが乗算され、コードチャネルレプリカ(データ信号レプリカ)が生成される。
ビットLLR記憶部512は、受信パケット管理部509の指示に基づいて、干渉キャンセラ部510から出力されるビットLLRを記憶する。また、受信信号に再送パケットが多重されていた場合は、ビットLLR記憶部512は、記憶しておいたビットLLRを干渉キャンセラ部510に出力し、干渉キャンセラ部510から出力されるビットLLRを再び記憶する。つまり、ビットLLR記憶部512は、記憶しておいたビットLLRを、新たに出力されたビットLLRに置き換える。
成否情報信号生成部513は、受信パケット管理部509の指示に基づいて、成否情報信号を生成し、多重部514に出力する。
多重部514は、成否情報信号生成部513の出力である成否情報信号と、上りリンクデータ信号とを多重して無線送信部515に出力する。無線送信部515(報告送信部とも称する)は、多重部514が出力した信号に対して、アップコンバートなどの処理を行い、アンテナ501を介して送信装置100(図2)へと送信する。
図7は、本発明の第1の実施形態による繰返し並列型MCI干渉キャンセラ部510の構成の要部510aを示す概略ブロック図である。なお、ここでは、一つの拡散符号Cに対応するコードチャネルの信号を検出する場合について説明する。他の拡散符号に対応するコードチャネルの信号の検出も同様である。干渉キャンセラ部510における一連の処理は、初回にすべての情報ビットを誤り無く検出できた場合を除いて繰り返し実行される。
干渉キャンセラ部510の要部510aは、伝搬路補償部601、デインタリーバ部602、コード分離部603、MCIレプリカ生成部604、減算部605(干渉除去部とも称する)を備えている。
コード分離部603は、逆拡散部606、復調部607、レートマッチ部608、合成部609、復号部610(判定部とも称する)を備えている。
MCIレプリカ生成部604(干渉信号レプリカ生成部とも称する)には、コードチャネルレプリカ生成部511−1〜511−Nから出力されたコードチャネルレプリカSr,1〜Sr,k−1、Sr,k+1〜Sr,Nの中で、Sr、k以外のコードチャネルレプリカが入力される。また、MCIレプリカ生成部604には、伝搬路推定部504(あるいは伝搬路推定値記憶部505)から出力された伝搬路推定値が入力される。MCIレプリカ生成部604は、これらのコードチャネルレプリカと伝搬路推定値とに基づいて、MCIレプリカ(干渉レプリカ)を生成して、減算部605に出力する。
図8は、本発明の第1の実施形態によるMCIレプリカ生成部604(図7)の構成を示す概略ブロック図である。MCIレプリカ生成部604は、コード多重部701、インタリーバ部702、伝達関数乗算部703を備えている。
コード多重部701は、MCIレプリカ生成部604に入力されたコードチャネルレプリカSr,1、Sr,k−1、Sr,k+1、Sr,Nを多重し、インタリーバ部702に出力する。インタリーバ部702は、コード多重部701が出力する信号を、インタリーブし、伝達関数乗算部703に出力する。伝達関数乗算部703は、インタリーバ部702が出力する信号に対して、伝搬路推定値から算出される(あるいは伝搬路推定値そのものである)伝達関数を乗算し、MCIレプリカを生成する。なお、インタリーバ部702はインタリーバ部103と同様の処理を行うため、同様の回路で実現することができる。また、初回においては、MCIレプリカ生成部604はMCIレプリカを生成する必要はない。
図7に戻り、減算部605は、FFT部507(あるいは受信信号記憶部508)の出力からMCIレプリカを減算し、伝搬路補償部601に出力する。
伝搬路補償部601は、伝搬路推定部504(あるいは伝搬路推定値記憶部505)の出力である伝搬路推定値に基づいて、減算部605の出力に対して伝搬路補償を行い、デインタリーバ部602に出力する。具体的には、伝搬路補償部601は、伝搬路の影響で生じた位相回転等を再現する処理を行う。好ましくは、伝搬路補償部601は、伝搬路推定値からMRC重みやORC重み、あるいはMMSE(Minimum Mean Squared Error)重みを算出し、算出した重みを減算部605の出力に対して乗算すると良い。
デインタリーバ部602は、伝搬路補償部601からの出力に対して、デインタリーブ処理を行い、逆拡散部606に出力する。このデインタリーブ処理は、インタリーバ部103におけるインタリーブ処理により並べ替えられた順を、元に戻すように並べ替える。
逆拡散部606は、拡散符号Cを用いた逆拡散処理を行うことにより、拡散符号Cに対応するコードチャネルの信号を抽出し、逆拡散された信号を、復調部607に出力する。拡散係数Cは、拡散係数C、C〜Cの中の任意の一つである。この拡散係数Cの選択により逐次型干渉キャンセラの検出順を変えることができる。
復調部607は、逆拡散部606からの出力信号である逆拡散された変調シンボル系列に対して復調処理を行い、ビット毎の信号を抽出する。そして、復調部607は、ビット毎の対数尤度比(LLR)を、レートマッチ部608に出力する。なお、伝搬路補償部601、復調部607、レートマッチ部608をまとめて、復調部と称することもある。
以下では復調部607における復調結果として、ビットLLR(ビット毎のLLR)が出力される場合について説明する。ここで、ビットLLRを求める一例として、QPSK(Quadrature Phase Shift Keying:4値位相偏移変調)変調の場合について説明する。受信信号S’が送信された際のビット系列をb、b(b、bは、1または−1)とすると、ビット系列b、bをQPSK変調した送信信号Sは、式(1)のように表せる。
Figure 2009104582
ただし、jは虚数単位を表す。これよりbのビットLLRであるλ(b)は、式(2)となる。
Figure 2009104582
また、bのビットLLRは、式(2)の実部と虚数部を入れ替えたものである。ただし、Re(x)は複素数xの実部を表し、μは受信信号の等価振幅、すなわち受信信号の振幅の基準となる値である。
なお、この場合、シンボルレプリカ生成部516の処理としては、シンボルレプリカS’を式(3)にて算出する。
Figure 2009104582
ただし、シンボルレプリカS’を構成するビットLLRが、λ(b)、λ(b)の場合を示している。ここで、λ()は、復号部607の出力である。
レートマッチ部608は、送信装置100内のレートマッチ部115(図2)において行われたパンクチャリング(ビット除去)、ビットパディング(ビット挿入)あるいはビットリピティション(ビット繰り返し)処理とは、逆の処理を行う。すなわち、レートマッチ部608は、パンクチャリングされたビットに対してはビットデパンクチャリング(ビットLLR挿入)処理を行い、ビットパディング(ビット挿入)されたビットに対してはビット除去処理を行い、ビットリピティション(ビット繰り返し)されたビットに対してはビットLLR合成を行う。
図9は、図4に示したパンクチャリング処理が行われた信号に対するデパンクチャリング処理の一例を示した図である。d 、d p1 、d k+1、d p2 k+1、d k+2、d p1 k+2、d k+3、d p2 k+3、・・・はビットLLR・D3である。d はk番目の情報ビットのビットLLRである。d p1 はk番目の第1パリティビットのビットLLRである。d p2 はk番目の第2パリティビットのビットLLRである。
パンクチャパターンA1は符号化ビットのそれぞれに対して、パンクチャリング(ビット除去)をするかどうかを示すパターンである。図9中の白抜きの四角形はビットが除去されていないことを示し、黒塗りの四角形はビットが除去されていることを示している。
除去されたビットにおけるビットLLRとして0を挿入する。図9の上段のビットLLR・D3に対して、図9の中段のパンクチャパターンA1を用いたデパンクチャリング処理を行うと、図9下段のようなビットLLRであるデパンクチャドビットLLR・E3(d 、d p1 、0、d k+1、0、d p2 k+1、d k+2、d p1 k+2、0、d k+3、0、d p2 k+3、・・・)が得られる。
図10は、図9とは異なるパンクチャパターンA2(図5のパンクチャパターンA2)を用いた場合のデパンクチャリング処理を示す図である。図9の場合と同様に、除去されたビットにおけるビットLLRとして0を挿入する。このようにレートマッチ部608は、除去されたビットにおけるビットLLRとして0を挿入する。これにより、レートマッチ部608は、すべての符号化ビットにおけるビットLLR(0であるものも含む)を出力する。つまり、レートマッチ部608は、ビットLLR・D4(d 、d p2 、d k+1、d p1 k+1、d k+2、d p2 k+2、d k+3、d p1 k+3、・・・)に対して、パンクチャパターンA2を用いたデパンクチャリング処理を行い、デパンクチャドビットLLR・E4(d 、0、d p2 、d k+1、d p1 k+1、0、d k+2、0、d p2 k+2、d k+3、d p1 k+3、0、・・・)を出力する。
合成部609は、初送パケットあるいは1度目の再送パケットである場合、レートマッチ部608の出力であるビットLLRをそのまま出力する。なお、伝搬路補償部601、復調部607、レートマッチ部608、合成部609をまとめて、信号合成部と称することもある。
一方、2度目以降の再送パケットである場合、合成部609は、ビットLLR記憶部512に記憶してあるビットLLR(対応する初送パケットにおけるビットLLR)とレートマッチ部608の出力であるビットLLRを合成して出力する。
合成部609から出力されたビットLLRは、復号部610に入力される。また、再送パケットである場合は、出力されたビットLLRがビットLLR記憶部512に出力される。
図11は、本発明の第1の実施形態による合成部609におけるビットLLR合成の一例を示す図である。図11は、図9および図10に示したデパンクチャドビットLLRを合成する場合について示したものである。
異なるパンクチャパターンでパンクチャリングとデパンクチャリングされたデパンクチャドビットLLR・E5(d 、d p1 、0、d k+1、0、d p2 k+1、d k+2、d p1 k+2、0、d k+3、0、d p2 k+3、・・・)と、デパンクチャドビットLLR・E6(d 、0、d p2 、d k+1、d p1 k+1、0、d k+2、0、d p2 k+2、d k+3、d p1 k+3、0・・・)は、同じ長さ(符号化ビットの長さ)の系列である。合成部609は、合成後のビットLLR・F5を、デパンクチャドビットLLR・E5とデパンクチャドビットLLR・E6を、ビット毎に加算することにより算出する。
復号部610は、合成部609から出力されたビットLLRを用いて復号処理を行い、復号結果である情報ビットと、情報ビットに誤りが含まれるかどうかを示す成否情報と、符号化ビットLLRとを出力する。なお、復号部610は、誤りが含まれる場合は情報ビットを出力せずに符号化ビットLLRを出力し、誤りが無い場合は符号化ビットLLRを出力せずに情報ビットを出力するようにしても良い。
なお、情報ビットの誤り検出は、例えば、送信装置100側で情報ビットにCRC(Cyclic Redundancy Check:巡回冗長検査)を付加し、受信装置500側で誤り検出を行えば良い。
次に、図2を用いて、受信装置500から送信装置100への上りリンク信号の送信処理に関して説明する。
受信装置500から送信された信号は、アンテナ109を介して無線受信部110(報告受信部とも称する)で受信される。
分離部111は、受信信号に多重された上りリンクデータと成否情報とを分離する。
再送制御部112は、分離部111で上りリンクデータから分離された成否情報に基づいて、再送パケット(再送データ信号)を送信する準備を行う。成否情報が受信失敗を表す情報(NACK)であった場合、再送制御部112は符号化ビット記憶部118に対して、NACKを返されたパケットに対応する符号化ビット系列を出力するように指示する。また、再送制御部112は、レートマッチ部115に対して、符号化ビット記憶部118から出力された符号化ビット系列に対してレートマッチング処理を行うように指示する。
なお、レートマッチ処理は初送時と同様の処理であっても良いが、再送回数に応じてレートマッチ処理を変更することが好ましい。さらに、再送制御部112は、多重するパケットの再送回数を示す情報を再送制御信号生成部113に通知する。再送制御信号生成部113は、再送制御部112から通知された情報を示す信号(再送制御信号)を生成して、多重部106に出力する。
なお、多重するパケットの再送回数を示す情報としては、回数そのものを示す情報であることが好ましいが、単に初送か再送かを示す情報など、再送回数を加工した情報であっても良い。成否情報が受信成功を表す情報(ACK)であった場合、再送制御部112は符号化ビット記憶部118に対して、ACKを返されたパケットに対応する符号化ビット系列を記憶した記憶領域を解放するように指示する。
図12は、受信装置500において受信信号に含まれる初送パケットから情報ビットを抽出する処理と受信パケット管理部509が行う制御の一例を示したフローチャートである。
まず、無線受信部502で、送信装置100が送信した信号が受信される(ステップS1101)。そして、受信された信号は、分離部503、GI除去部506、FFT部507で処理が行われ、受信信号記憶部508に記憶される(ステップS1102)。また、伝搬路推定部504において推定された伝搬路推定値を用いて、伝搬路補償部601で伝搬路補償が行われる(ステップS1103)。
次に、受信信号に含まれるそれぞれのパケットに対する処理が行われる。つまり、受信信号に含まれるパケットに関するループL1の処理(ステップS1104〜S1108)が行われる。ステップS1103で伝搬路補償された信号は、デインタリーバ部602、逆拡散部606で処理される。その後、復調部607およびレートマッチ部608において復調処理とレートマッチング処理が行われる(ステップS1105)。そして、受信パケット管理部509において初送であるかどうかが判定される(ステップS1106)。初送であれば(ステップS1106でYes)、復調およびレートマッチング処理が行われた結果であるビットLLRを用いて、復号部610で復号が行われる(ステップS1107)。
次に、繰り返し干渉キャンセル処理に関するループL2の処理(ステップS1109〜S1119)が行われる。まず、受信信号に含まれるそれぞれの初送パケットに対する処理が行われる。つまり、受信信号に含まれる初送パケットに関するループL3の処理(ステップS1110〜S1112)が行われる。始めに、コードチャネルレプリカ生成部511で、符号化ビットLLRからそれぞれの初送パケットのコードチャネルレプリカが生成される(ステップS1111)。
次に、受信信号に含まれるそれぞれの初送パケットに対する2回目以降の検出処理が行われる。つまり、受信信号に含まれる初送パケットに関するループL4の処理(ステップS1113〜S1118)が行われる。すなわち、ステップS1111で生成した自コードチャネル以外のコードチャネルにおけるコードチャネルレプリカ(MCIレプリカ)を、減算部605においてキャンセルする(ステップS1114)。そして、残った信号に対して伝搬路補償部601で伝搬路補償する(ステップS1115)。そして、復調部607およびレートマッチ部608において復調およびレートマッチング処理を行う(ステップS1116)。そして、復号部610において復号し(ステップS1117)、受信信号に含まれる初送パケットからの情報ビットの抽出を行う。ただし、ステップS1114におけるコードチャネルレプリカのキャンセルでは、再送パケットのレプリカもキャンセルすることが好ましい。
一方、再送パケットに関しては(ステップS1106でNo)、まず受信パケット管理部509において1度目の再送であるか2度目以降の再送であるかを判定する(ステップS1120)。1度目の再送ならば(ステップS1120でNo)、復調およびレートマッチング処理されたビットLLRをビットLLR記憶部512において記憶する(ステップS1122)。2度目以降の再送ならば(ステップS1120でYes)、復調およびレートマッチング処理されたビットLLRと、ビットLLR記憶部512において記憶されていたビットLLRとを合成部609において合成する(ステップS1121)。そして、合成後のビットLLRを、ビットLLR記憶部512に記憶する(ステップS1122)。
なお、ここでは再送であるとき、復調およびレートマッチング処理されたビットLLRを、ビットLLR記憶部512において記憶する場合について説明したが、これに限定されるものではない。例えば、繰り返し干渉キャンセル後の復調およびレートマッチング処理されたビットLLR(ステップS1116の後段のビットLLR)を、ビットLLR記憶部512において記憶するようにしても良い。
また、再送パケットのみで復号が可能である場合は、図12に示すようにステップS1122の後、ビットLLRをステップS1107において復号しても良いし、ステップS1107における復号処理を省略しても良い。再送パケットのみで復号が可能でない場合は、ステップS1107における復号処理を省略すれば良い。
ビットLLR記憶部512に記憶されたビットLLRは、再送パケットに対応する初送パケットを含む過去の受信信号に含まれる初送パケットから、情報ビットを抽出する処理において用いられる。
図13は、再送パケットに対応する初送パケットを含む過去の受信信号に含まれる初送パケットから情報ビットを抽出する処理と受信パケット管理部509(図6)が行う制御の一例を示したフローチャートである。
まず、干渉キャンセラ部510は、再送パケットに対応する初送パケットを含む過去の受信信号を、受信信号記憶部508から取得する(ステップS1201)。そして、伝搬路推定値記憶部505に記憶された当該受信信号受信時の伝搬路推定値を用いて、伝搬路補償部601で伝搬路補償を行う(ステップS1202)。なお、伝搬路補償された受信信号を記憶しておいても良い。その場合、ここでの伝搬路補償は行わなくても良い。
次に、再送パケットに対応する初送パケットに関するループL5の処理(ステップS1203〜S1207)が行われる。初送パケットについては、まず、伝搬路補償された信号が、デインタリーバ部602、逆拡散部606で処理される。そして、復調部607およびレートマッチ部608において復調およびレートマッチング処理され(ステップS1204)、符号化ビットLLRが求められる。
次に、ステップS1204で求めた符号化ビットLLRと、この初送パケットに対応する再送パケットの符号化ビットLLR(図12のステップS1122において記憶されたビットLLR)とを、合成部609において合成する(ステップS1205)。そして、合成して得られた符号化ビットLLRを用いて復号部610で復号する(ステップS1206)。
次に、過去の受信信号を用いた繰り返し干渉キャンセル処理を行う。つまり、ループL6の処理(ステップS1208〜S1219)が行われる。まず、過去の受信信号に含まれるそれぞれの初送パケットに対する処理が行われる。つまり、受信信号に含まれる初送パケットに関するループL7の処理(ステップS1209〜S1211)が行われる。始めに、コードチャネルレプリカ生成部511で符号化ビットLLR(ステップ1205で合成された場合は、その符号化ビットLLR)からそれぞれの初送パケットのコードチャネルレプリカを生成する。
次に、過去の受信信号に含まれるそれぞれの初送パケットに対する2回目以降の検出処理を行う。つまり、受信信号に含まれる初送パケットに関するループL8の処理(ステップS1212〜S1218)が行われる。すなわち、ステップS1210で生成した自コードチャネル以外のコードチャネルにおけるコードチャネルレプリカを減算部605においてキャンセルする(ステップS1213)。そして、残った信号に対して伝搬路補償部601で伝搬路補償を行う(ステップS1214)。そして、復調部607およびレートマッチ部608で復調およびレートマッチング処理し(ステップS1215)、符号化ビットLLRを算出する。
次に、算出した符号化ビットLLRと再送パケットの符号化ビットLLR(図12のステップS1122において記憶された符号化ビットLLR)とを、合成部609で合成する(ステップS1216)。そして、合成した符号化ビットLLRを用いて復号部610で復号する(ステップS1217)。これにより、過去の受信信号に含まれる初送パケットからの情報ビットの抽出を行う。ただし、ステップS1213におけるコードチャネルレプリカのキャンセルは、過去の受信信号に含まれる再送パケットのレプリカもキャンセルすることが好ましい。
図14は、受信データの検出と成否情報の報告、および再送と受信データの再検出の一連の処理の流れの一例を示す図である。
まず、送信装置である基地局が、下りリンクを介して初送パケットである信号P〜Pを多重して、受信装置である端末に、下りリンクデータ信号として送信する(ステップS201)。信号を受信した端末は、信号P〜Pが多重された受信信号を記憶し、干渉キャンセル処理とデータ検出処理を行う(ステップS202)。ここでは、信号P〜Pのすべてのパケットにおいて誤りが生じた場合について説明する。端末は信号P〜Pのパケットにおいて誤りが生じたことを基地局に報告するための成否情報(NACK〜NACK)を含む信号を生成する。そして、端末は、生成した信号を、上りリンク成否情報信号として、上りリンクを介して基地局に送信する(ステップS203)。
成否情報信号を受信した基地局は、NACKを返されたパケット(信号P)に対する再送パケット(信号PN+1)を生成する(ステップS204)。そして、基地局は、生成した再送パケット(信号PN+1)を、下りリンクの他のパケット(信号PN+2~P2N)と多重して、下りリンクデータ信号として端末に送信する(ステップS205、S206)。基地局は、NACKを返されたパケットのうち、一部のパケットに対する再送パケットを生成して送信するだけで良い。
下りリンクデータ信号を受信した端末は、信号PN+2~P2Nに対して、干渉キャンセル処理とデータ検出処理を行う。ここでは、信号PN+2~P2Nのすべてのパケットにおいて誤りが無い場合について説明する。
端末は信号PN+2~P2Nのパケットにおいて誤りが無いことを基地局に報告するための成否情報(ACKN+2〜ACK2N)を含む信号を生成する(ステップS207)。そして、端末は、生成した信号を、上りリンク成否情報信号として、上りリンクを介して基地局に送信する(ステップS208)。なお、ACKを報告しないようなシステムでは、ACKを送信しなくても良い。
端末は、再送パケット(信号PN+1)の復調結果と、記憶してある信号P〜Pが多重された受信信号とを用いて、干渉キャンセル処理とデータ検出処理を行う(ステップS209)。
ここで、上記の干渉キャンセル処理では、以前に多重された他のパケットのレプリカを予め除去しておくことにより、検出精度を向上させる。すなわち、再送パケットを合成することにより(信号パケットである信号Pと、再送パケットである信号PN+1とを合成することにより)初送の検出時より信号Pの検出精度が向上し、信号Pのレプリカの精度の向上に伴って、信号P〜Pの検出精度も向上する。
このように、再送したパケット(信号PN+1)に対応する初送パケット(信号P)のみならず、信号Pに多重された信号の品質(例えば誤り率)が改善し、成否結果が初送の結果とは異なる可能性がある。ここでは、信号P〜Pのすべてのパケットにおいて誤りが無い場合について説明する。
端末は信号P〜Pのパケットにおいて誤りが無いことを基地局に報告するための成否情報(ACK〜ACK)を含む信号を生成し、上りリンク成否情報信号として、上りリンクを介して基地局に送信する(ステップS210)。
ACK〜ACKを受信した基地局は、それ以降、パケット(信号P〜P)に対応する再送を行う必要がなくなる。結果的に、信号Pに対応するPN+1を再送することにより、パケット(信号P〜P)における誤りを改善し、パケット(信号P〜P)に対応する再送を行うことなく、パケット(信号P〜P)におけるデータ検出が可能となる。
図15は、受信データの検出と成否情報の報告、および再送と受信データの再検出の一連の処理の流れの他の一例を示す図である。
まず、基地局が下りリンクを介して、初送パケットである信号P〜Pを多重して、下りリンクデータ信号として、端末に送信する(ステップS301)。信号を受信した端末は、信号P〜Pが多重された受信信号を記憶する。そして、端末は、干渉キャンセル処理とデータ検出処理を行う。ここでは、信号P〜Pのすべてのパケットにおいて誤りが生じた場合について説明する。端末は信号P〜Pのパケットにおいて誤りが生じたことを基地局に報告するための成否情報(NACK〜NACK)を含む信号を生成する(ステップS302)。そして、端末は、生成した信号を、上りリンク成否情報信号として、上りリンクを介して基地局に送信する(ステップS303)。
上りリンク成否情報信号を受信した基地局は、NACKを返されたパケット(信号P)に対する再送パケット(信号PN+1)を生成する(ステップS304)。そして、基地局は、生成した信号を、下りリンクデータ信号として、下りリンクの他のパケットと多重して端末に送信する(ステップS305)。基地局は、NACKを返されたパケットのうち、一部のパケットに対する再送パケットを生成して送信するだけで良い。なお、多重する他のパケットに関しては、図14の説明と同様であるため、ここでは説明を省略する。
下りリンクデータ信号を受信した端末は、再送パケット(信号PN+1)の復調結果を記憶する。また、端末は、信号PN+1の復調結果と、記憶してある信号P〜Pが多重された受信信号とを用いて、干渉キャンセル処理とデータ検出処理を行う。ここでは、信号P〜Pのすべてのパケットにおいて誤りが生じた場合について説明する。
端末は信号P〜Pのパケットにおいて誤りが生じたことを基地局に報告するための成否情報(NACK〜NACK)を含む信号を生成する(ステップS306)。そして、端末は、生成した信号を、上りリンク成否情報信号として、上りリンクを介して基地局に送信する(ステップS307)。なお、ここでは成否情報(NACK〜NACK)を再度送る場合について説明した。しかし、すでに初送パケットに対する成否情報を端末が基地局に報告しているため、必ずしも2度目以降の成否情報を基地局に送信しなくても良い。
この場合、送信装置である基地局は、ACKが返されない限りNACKを受信したものとして処理を行えば良い。2度目以降の成否情報を基地局に送信しない場合は、上りリンクのオーバヘッドを軽減することができる。
上りリンク成否情報信号を受信した基地局は、NACKを返されたパケット(信号P)に対する2度目の再送パケット(信号PN+2)を生成する(ステップS308)。そして、基地局は、生成した信号を、下りリンクの他のパケットと多重して端末に送信する(ステップS309)。
下りリンク信号を受信した端末は、再送パケット(信号PN+2)の復調結果と、記憶してある(信号PN+1)の復調結果の結果を合成する。そして、端末は、合成した結果と、記憶してある信号P〜Pが多重された受信信号とを用いて、干渉キャンセル処理とデータ検出処理を行う。ここでは、信号P〜Pのすべてのパケットにおいて誤りが無い場合について説明する。
端末は信号P〜Pのパケットにおいて誤りが無いことを基地局に報告するための成否情報(ACK〜ACK)を含む信号を生成する(ステップS310)。そして、端末は、生成した信号を、上りリンク成否情報信号として、上りリンクを介して基地局に送信する(ステップS311)。
ACK〜ACKを受信した基地局は、それ以降、パケット(信号P〜P)に対応する再送を行う必要がなくなる。結果的に、信号Pに対応する信号PN+1および信号PN+2を基地局から端末に再送することにより、パケット(信号P〜P)における誤りを改善することができる。そして、パケット(信号P〜P)に対応する再送を行うことなく、パケット(信号P〜P)におけるデータ検出が可能となる。
図16は、受信データの検出と成否情報の報告、および再送と受信データの再検出の一連の処理の流れの他の一例を示す図である。
まず、基地局が下りリンクを介して初送パケットである信号P〜Pを多重して、下りリンクデータ信号として端末に送信する(ステップS401)。信号を受信した端末は、信号P〜Pが多重された受信信号を記憶する。そして、端末は、干渉キャンセル処理とデータ検出処理を行う。ここでは、信号P〜Pのすべてのパケットにおいて誤りが生じた場合について説明する。
端末は信号P〜Pのパケットにおいて誤りが生じたことを基地局に報告するための成否情報(NACK〜NACK)を含む信号を生成する(ステップS402)。そして、端末は、生成した信号を、上りリンク成否情報信号として、上りリンクを介して基地局に送信する(ステップS403)。
上りリンク成否情報信号を受信した基地局は、NACKを返されたパケット(信号P)に対する再送パケット(信号PN+1)を生成する(ステップS404)。そして、基地局は、生成した信号を、下りリンクの他のパケットと多重して、下りリンクデータ信号として、端末に送信する(ステップS405)。基地局は、NACKを返されたパケットのうち、一部のパケットに対する再送パケットを生成して送信するだけで良い。なお、多重する他のパケットに関しては、図14の説明と同様であるため、ここでは説明を省略する。
下りリンク信号を受信した端末は、再送パケット(信号PN+1)の復調結果を記憶する。また、端末は、信号PN+1の復調結果と、記憶してある信号P〜Pが多重された受信信号とを用いて、干渉キャンセル処理とデータ検出処理を行う。ここでは、信号P〜Pのすべてのパケットにおいて誤りが生じた場合について説明する。
端末は信号P〜Pのパケットにおいて誤りが生じたことを基地局に報告するための成否情報(NACK〜NACK)を含む信号を生成する(ステップS406)。そして、端末は、生成した信号を、上りリンク成否情報信号として、上りリンクを介して基地局に送信する(ステップS407)。なお、ここでは成否情報(NACK〜NACK)を再度、端末から基地局に送信する場合について説明した。しかし、端末は基地局に対して、ステップS402で、すでに初送パケットに対する成否情報を報告しているため、必ずしも2度目以降の成否情報を送信しなくても良い。
基地局は、再送パケット(信号PN+1)を端末に送信した後、NACKを返されたパケット(信号P)に対する再送パケット(信号PN+2)を生成する(ステップS408)。そして、基地局は、生成した信号を、下りリンクの他のパケットと多重して、下りリンクデータ信号として、端末に送信する(ステップS409)。
下りリンク信号を受信した端末は、再送パケット(信号PN+2)の復調結果と、記憶してある信号PN+1と、記憶してある信号P〜Pが多重された受信信号とを用いて、干渉キャンセル処理とデータ検出処理を行う。ここでは、信号P〜Pのすべてのパケットにおいて誤りが無い場合について説明する。
端末は信号P〜Pのパケットにおいて誤りが無いことを基地局に報告するための成否情報(ACK〜ACK)を含む信号を生成する(ステップS410)。そして、端末は、生成した信号を、上りリンクを介して、上りリンク成否情報信号として、基地局に送信する(ステップS411)。
ACK〜ACKを受信した基地局は、それ以降、パケット(信号P〜P)に対応する再送を行う必要がなくなる。結果的に、信号Pに対応する信号PN+1および信号Pに対応する信号PN+2を再送することにより、パケット(信号P〜P)における誤りを改善することができる。そして、パケット(信号P〜P)に対応する再送を行うことなく、パケット(信号P〜P)におけるデータ検出が可能となる。
次に、受信パケット管理部509において管理するパケット情報について説明する。
受信パケット管理部509は、それぞれの受信タイミングで受信した受信信号(受信フレーム)を指定する情報(例えば受信フレームに対応する番号)と、各受信信号に含まれるパケットを指定する情報(例えばパケットに対応する番号)と、各パケットの再送回数を示す情報と、各パケットに対応する再送パケットのビットLLRを指定する情報とを記憶している。
受信装置500が受信信号を受信すると、受信パケット管理部509は受信信号を指定する情報を受信信号記憶部508と伝搬路推定値記憶部505に通知する。受信信号記憶部508は、受信信号を指定する情報に関連付けて受信信号自体を記憶する。また、伝搬路推定値記憶部505は、受信信号を指定する情報に関連付けて、受信信号に対応する伝搬路推定値を記憶する。
再送パケット受信時に記憶した受信信号に含まれるパケットを再検出する際、受信パケット管理部509は再送パケットに対応する初送パケットを含む受信信号を指定する情報を受信信号記憶部508と伝搬路推定値記憶部505に通知する。
受信信号記憶部508は、受信パケット管理部509から受信信号を指定する情報が通知されると、その情報に関連付けられた受信信号を、干渉キャンセラ部510に出力する。また、伝搬路推定値記憶部505は、受信パケット管理部509から受信信号を指定する情報が通知されると、その情報に関連付けられた伝搬路推定値を、干渉キャンセラ部510に出力する。
また、受信装置500が受信信号を受信すると、受信パケット管理部509は、受信信号に含まれるパケットの再送回数を参照する。そして、受信パケット管理部509は、再送回数が2回以上であるパケットがある場合には、ビットLLR記憶部512に対して、そのパケットに対応する再送パケットのビットLLRを指定する情報を通知する。
ビットLLR記憶部512は、通知された情報に基づいて、記憶しておいたビットLLRを、干渉キャンセラ部510に出力する。さらに、再送回数が1回であるパケットがある場合には、受信パケット管理部509は、そのパケットに対応する再送パケットのビットLLRを指定する情報を生成し、ビットLLR記憶部512に通知する。ビットLLR記憶部512は、通知された情報に関連付けて、干渉キャンセラ部510から出力されるビットLLRを記憶する。
また、受信パケット管理部509は、受信信号に含まれるパケットを指定する情報と各パケットの再送回数を示す情報とを干渉キャンセラ部510に通知する。
干渉キャンセラ部510は、受信信号に含まれるパケットを指定する情報と各パケットの再送回数を示す情報から、レートマッチ部608におけるデパンクチャ処理に用いるパターンを決定する。
また、再送回数が0(すなわち初送)の場合は、合成部609は合成を行わず、レートマッチ部608から出力された信号を、そのまま復号部610に出力する。再送回数が1の場合は、合成部609は合成を行わず、レートマッチ部608から出力された信号を、そのままビットLLR記憶部512に出力する。
再送回数が2以上の場合は、合成部609は、レートマッチ部608が出力する信号と、ビットLLR記憶部512が記憶している信号とを合成し、ビットLLR記憶部512に出力する。
再送パケット受信時に記憶した受信信号に含まれるパケットを再検出する際、受信パケット管理部509は、ビットLLR記憶部512に対して、そのパケットに対応する再送パケットのビットLLRを指定する情報を通知する。ビットLLR記憶部512は、通知された情報に関連付けられたビットLLRを、干渉キャンセラ部510に出力する。
また、再送パケット受信時に記憶した受信信号に含まれるパケットを再検出する際、受信パケット管理部509は、再検出する受信信号に含まれるパケットを指定する情報と再送回数を指定する情報とを干渉キャンセラ部510に通知する。
干渉キャンセラ部510は、再送回数が1回以上のパケットについては合成部609においてビットLLRの合成を行い、再送回数が0のパケットについては合成を行わない。
このように、本実施形態では、送信装置100から受信装置500へ複数の初送パケットを多重して送信し、受信装置500において干渉(多重された他のパケット)を除去しながらデータを検出し、かつデータ検出に失敗した場合に、送信装置100から受信装置500へ再送パケットを送信する。そして、多重された複数の初送パケットの検出に失敗し、その一部のパケットに対応する再送パケットが送信された際に、一部のパケットのみでなく初回に検出に失敗した他の初送パケットにおいても再度検出し、検出に成功すれば、検出成功を示す情報を送信装置100に送信する。これにより、下りリンクの再送パケット数を抑制することができるため、スループットが向上する。
[第2の実施形態]
第1の実施形態では受信装置500側で繰り返し並列型MCIキャンセラを用いる場合について説明した。第2の実施形態では受信装置側で繰り返し逐次型MCIキャンセラを用いる場合について説明する。
図17は、本発明の第2の実施形態による受信装置1600の構成を示す概略ブロック図である。なお、送信装置は図2に示す送信装置100と同様の構成で実現することができるため、説明を省略する。
受信装置1600は、アンテナ1601、無線受信部1602、分離部1603、伝搬路推定部1604、伝搬路推定値記憶部1605、GI除去部1606、FFT部1607、受信信号記憶部1608、受信パケット管理部1609、干渉キャンセラ部1610、ビットLLR記憶部1612、成否情報信号生成部1613、多重部1614、無線送信部1615を備えている。
なお、干渉キャンセラ部1610以外の各ブロックは、図6に示した同名のブロックと同様のブロックを用いることができるため、以下では干渉キャンセラ部1610で行われる処理に関して説明する。
図18は、本発明の第2の実施形態による受信装置1600の干渉キャンセラ部1610の構成を示す概略ブロック図である。なお、ここでは、拡散符号C〜Cに対応するコードチャネルの信号をC、C、C〜Cの順に逐次検出する場合について説明する。
干渉キャンセラ部1610における一連の処理は、繰り返し実行される。繰り返し数は1回以上である。
干渉キャンセラ部1610は、伝搬路補償部1701−1、1701−2〜1701−N、デインタリーバ部1702−1、1702−2〜1702−N、コード分離部1703−1、1702−3〜1703−N、MCIレプリカ生成部1704−1、1704−2、1704−3〜1704−N、コードチャネルレプリカ生成部1705−1、1705−2〜1705−N(図示省略)、減算部1706−1、1706−2〜1706−Nを備えている。
コード分離部1703−1は、逆拡散部1707−1、復調部1708−1、レートマッチ部1709−1、合成部1710−1、復号1711−1を備えている。コード分離部1703−2〜1703−Nもコード分離部1703−1と同様の構成を有する。
なお、説明の便宜上、同様の機能を持つ複数のブロックを重複して記載しているが、一つのブロックのみを備えるようにし、そのブロックの機能を複数回使用する構成にしても良い。
干渉キャンセラ部1610内の各ブロックは、図7に示した干渉キャンセラ部510内の同名の各ブロックと同様の処理を行う。また、コードチャネルレプリカ生成部1705−1〜1705−Nは、受信装置500内のコードチャネルレプリカ生成部511と同様の処理を行う。そのため、ここでは干渉キャンセラ部1610の処理で干渉キャンセラ部510の処理と異なる点について説明する。
第1の実施形態では、干渉キャンセラ部510で拡散符号C〜Cに対応する各コードチャネルの信号検出を行い、コードチャネルレプリカ生成部511において拡散符号C〜Cに対応する各コードチャネルレプリカを生成していた。そして、生成されたコードチャネルレプリカを、干渉キャンセラ部510における次回繰り返し時の干渉キャンセルに用いていた。
これに対して、本実施形態における干渉キャンセラ部1610は、コードチャネルレプリカ生成部1705−1〜1705−Nを具備する。そして、拡散符号C〜Cに対応するいずれかのコードチャネルの信号検出が終わるごとに、コードチャネルレプリカ生成部1705−1〜1705−Nにおいてコードチャネルレプリカを生成または更新する。そして、次に検出するコードチャネルにおける干渉除去に、この生成または更新したコードチャネルレプリカを用いる。
すなわち、第1の実施形態では、拡散符号C〜Cのすべてのコードチャネルの信号検出後にコードチャネルレプリカを更新する。これに対して、本実施形態では1つのコードチャネルの信号検出後にコードチャネルレプリカを更新する。よって、高精度のコードチャネルレプリカを生成することができる。
受信装置1600において、このような干渉キャンセル処理を行うシステムであっても、第1の実施形態と同様のHARQ処理を行うことができる。
このように、本実施形態では、送信装置100(図2)から受信装置1600(図17)へ複数の初送パケットを多重して送信する。そして、受信装置1600において干渉(多重された他のパケット)を除去しながらデータを検出する。そして、データ検出に失敗した場合に、送信装置100から受信装置1600へ再送パケットを送信する。そして、多重された複数の初送パケットの検出に失敗し、その一部のパケットに対応する再送パケットが、送信装置100から受信装置1600に送信された際に、一部のパケットのみでなく初回に検出に失敗した他の初送パケットにおいても受信装置1600が再度検出する。そして、検出に成功すれば、検出成功を示す情報を送信装置100に送信する。これにより、下りリンクの再送パケット数を抑制することができるため、スループットが向上する。
[第3の実施形態]
第1および第2の実施形態では、パケットが拡散符号によって多重され、コード間干渉(MCI)をキャンセラによって除去する場合について説明した。本実施形態では、パケットがMIMO(Multiple Input Multiple Output:多入力多出力)を用いて空間多重され、他ストリームの信号を干渉キャンセラによって除去する場合について説明する。なお、干渉キャンセラとして繰り返しSIC(Successive Interference Canceller:逐次型干渉キャンセラ)を用いる場合について説明する。
図19は、本発明の第3の実施形態による送信装置1800の構成を示す概略ブロック図である。送信装置1800は、ストリーム信号生成部1801−1〜1801−N(ただし、Nはストリーム数)、アンテナ1809−1〜1809−N、無線受信部1810、分離部1811、再送制御部1812、再送制御信号生成部1813を備えている。
ストリーム信号生成部1801−1〜1801−Nはそれぞれ、符号部1814、レートマッチ部1815、変調部1816、インタリーバ部1803、IFFT部1804、パイロット信号生成部1805、多重部1806、GI挿入部1807、無線送信部1808、符号化ビット記憶部1818を備えている。
ストリーム信号生成部1801−1は、情報ビットからストリーム毎の送信データ信号を生成する。まず、符号部1814は、情報ビット系列に対してチャネル符号化処理を行い、符号化ビット系列を、レートマッチ部1815と符号化ビット記憶部1818とに出力する。ここで、符号部1814は、チャネル符号化として、畳み込み符号化、リードソロモン符号化などの誤り訂正能力を有する符号化を用いることが好ましい。より好ましくは、符号部1814は、ターボ符号化、LDPC符号化などの高い誤り訂正能力を有する符号化を用いると良い。
レートマッチ部1815は、符号部1814から出力された符号化ビットあるいは符号化ビット記憶部1818から出力された符号化ビットに対して、再送制御部1812から出力される再送回数に応じたパンクチャリング(ビット除去)、ビットパディング(ビット挿入)あるいはビットリピティション(ビット繰り返し)処理を行う。レートマッチ部1815は、さらにビットインタリーブ処理を行うと良い。なお、レートマッチングの例としてパンクチャリングに関する一例を後述する。
符号化ビット記憶部1818は、符号部1814の出力である符号化ビット系列を記憶する。また、再送制御部1812の制御に基づいて、記憶している符号化ビット系列を消去する。
変調部1816は、レートマッチ部1815から出力された符号化ビット(パンクチャド符号化ビット)系列に対して変調処理を行い、変調シンボル系列を、インタリーバ部1803に出力する。変調部1816は、変調方式として、PSK、QAMなどの変調方式を用いることができる。さらに好ましくは、送信装置1800と受信装置1900(図20参照)との間の伝搬路に応じた変調方式を用いる。
インタリーバ部1803は、変調部1816から出力された信号に、シンボルインタリーブ(周波数インタリーブ)などのインタリーブ処理を行い、IFFT部1804に出力する。
IFFT部1804は、周波数方向に並べられた信号に対して、IFFT処理を行うことにより、時間領域の信号に変換し、多重部1806に出力する。
パイロット信号生成部1805は、受信装置1900において伝搬路推定に用いるためのパイロット信号を生成し、多重部1806に出力する。好ましくは、パイロット信号生成部1805は、ストリーム毎に直交したパイロット信号を生成する。
再送制御信号生成部1813は、再送制御部1812から通知される各ストリームのデータ信号の再送回数を受信装置1900に通知するための信号(再送制御信号)を生成し、多重部1806に出力する。なお、ここでは再送制御信号はストリーム信号生成部1801−1におけるストリームに多重される構成となっているが、これに限るものではない。いずれのストリーム(複数も可能)に多重されても良い。
多重部1806は、IFFT部1804から出力されたデータ信号と、パイロット信号生成部1805から出力されたパイロット信号と、再送制御信号生成部1813から出力された再送制御信号とを多重し、GI挿入部1807に出力する。
GI挿入部1807は、多重部1806から出力された信号に、ガードインターバルを付加し、無線送信部1808に出力する。
無線送信部1808は、GI挿入部1807から出力された信号に対して、アップコンバートなどの処理を行い、アンテナ1809−1を介して受信装置1900に送信する。他のストリーム信号生成部1801−2〜1801−Nおよびアンテナ1809−2〜1809−Nにおいても、ストリーム信号生成部1801−1およびアンテナ1809−1と同様の処理が行われる。
図20は、本発明の第3の実施形態による受信装置1900の構成を示す概略ブロック図である。受信装置1900は、アンテナ1901−1〜1901―M(ただし、Mは受信アンテナ数)、アンテナ毎受信処理部1902−1〜1902−M、受信パケット管理部1910、干渉キャンセラ部1911、ビットLLR記憶部1912、成否情報信号生成部1913、多重部1914、無線送信部1915を備えている。
アンテナ毎受信処理部1902−1〜1902−Mはそれぞれ、無線受信部1903、分離部1904、伝搬路推定部1905、伝搬路推定値記憶部1906、GI除去部1907、FFT部1908、受信信号記憶部1909を備えている。
なお、伝搬路推定部1905〜ビットLLR記憶部1912をまとめて、データ信号検出部とも称する。
アンテナ1901−1〜1901−Mを介して受信された信号は、アンテナ毎受信処理部1902−1〜1902−Mにおいて受信処理が行われる。まず、無線受信部1903(受信部とも称する)は、アンテナ1901−1〜1901−Mが受信した信号に対して、ダウンコンバートなどの処理を行い、分離部1904に出力する。
分離部1904は、無線受信部1903から出力された信号を、パイロット信号と再送制御情報信号とデータ信号とに分離する。
伝搬路推定部1905は、分離部1904において分離されたパイロット信号を用いて、送信装置1800の各アンテナ1809−1〜1809−Nと受信装置1900のアンテナ1901−1〜1901−Mとの間の伝搬路特性を推定し、伝搬路推定値を、伝搬路推定値記憶部1906と干渉キャンセラ部1911とに出力する。
伝搬路推定値記憶部1906は、伝搬路推定部1905の出力である伝搬路推定値を記憶する。
GI除去部1907では、分離部1904で分離されたデータ信号から、ガードインターバルを除去し、FFT部1908に出力する。
FFT部1908は、GI除去部1907の出力信号に対して、FFT処理を行うことにより、周波数領域の信号に変換し、受信信号記憶部1909と干渉キャンセラ部1911とに出力する。
受信信号記憶部1909は、FFT部1909の出力である周波数領域の信号を記憶する。
受信パケット管理部1910は、分離部1904において分離された再送制御情報信号と、干渉キャンセラ部1911から出力される成否情報に基づいて、干渉キャンセラ部1911、ビットLLR記憶部1912、受信信号記憶部1909、伝搬路推定値記憶部1906に対して各種指示をする。また、受信パケット管理部1910は、成否情報信号生成部1913に対して、成否情報信号の生成を指示する。なお、受信パケット管理部1910の詳細な動作については後述する。
干渉キャンセラ部1911は、受信パケット管理部1910の指示に基づき、伝搬路推定部1905から出力された伝搬路推定値を参照しながら、各アンテナごとに受信処理部1902−1〜1902−Mから出力される信号から情報ビット系列を検出するとともに、成否情報を受信パケット管理部1910に出力する。また、ビットLLR記憶部1912からビットLLRが出力された場合は、干渉キャンセラ部1911は、受信信号記憶部1909から出力される受信信号から当該ビットLLRと伝搬路推定値記憶部1906の出力である伝搬路推定値とを用いて、情報ビットの検出を行う。なお、干渉キャンセラ部1911の動作の詳細な例については後述する。
ビットLLR記憶部1912は、受信パケット管理部1910の指示に基づいて、干渉キャンセラ部1911から出力されるビットLLRを記憶する。また、受信信号に再送パケットが多重されていた場合は、ビットLLR記憶部1912は、記憶しておいたビットLLRを干渉キャンセラ部1911に出力し、干渉キャンセラ部1911から出力されるビットLLRを再び記憶する。つまり、ビットLLR記憶部1912は、記憶しておいたビットLLRを、新たに出力されたビットLLRに置き換える。
成否情報信号生成部1913は、受信パケット管理部1910の指示に基づいて、成否情報信号を生成し、多重部1914に出力する。
多重部1914は、成否情報信号生成部1913の出力である成否情報信号と、上りリンクデータ信号とを多重して無線送信部1915に出力する。
無線送信部1915(報告送信部とも称する)は、多重部1914から出力された信号に対して、アップコンバートなどの処理を行い、アンテナ1901−1を介して送信装置1800へと送信する。なお、ここでは上りリンクの信号はアンテナ1901−1のみから送信される構造を例に挙げて説明するが、これに限るものではない。上りリンクの信号を、複数のアンテナを用いて送信しても良い。
図21は、本発明の第3の実施形態による受信装置1900の干渉キャンセラ部1911の構成を示す概略ブロック図である。なお、ここでは、1番目のストリームから逐次N番目のストリームまでを検出する場合について説明する。干渉キャンセラ部1911における一連の処理は、初回にすべての情報ビットを誤り無く検出できた場合を除いて繰り返し実行される。
干渉キャンセラ部1911は、ストリーム検出部2001−1、2001−2〜2001−N、受信レプリカ生成部2002−1、2002−2、2002−3〜2002−N、減算部2003−1、2003−2〜2003−N、シンボルレプリカ生成部2004−1、2004−2〜2004―N(図示省略)を備えている。
ストリーム検出部2001−1は、MIMO分離部2005−1(ストリーム分離部とも称する)、デインタリーバ部2006−1、復調部2007−1、レートマッチ部2008−1、合成部2009−1、復号部2010−1を備えている。ストリーム検出部2001−2〜2001−Nも、ストリーム検出部2001−1と同様の構成を有する。
受信レプリカ生成部2002−1〜2002−N(干渉信号レプリカ生成部とも称する)は、シンボルレプリカ生成部2004−1〜2004−Nから出力されたシンボルチャネルレプリカSr,1〜Sr,Nの中で、Sr、k以外のシンボルレプリカと、伝搬路推定部1905(あるいは伝搬路推定値記憶部1906)から出力された伝搬路推定値とに基づいて、ストリームレプリカ(干渉レプリカ)を生成して、減算部2003−1〜2003−Nに出力する。
なお、初回においては、受信レプリカ生成部2002−1〜2002−Nは、受信レプリカを生成する必要はない。また、繰り返し中における各シンボルレプリカは、最後に生成または更新されたものを用いる。
減算部2003−1〜2003−Nは、FFT部1908(あるいは受信信号記憶部1909)の出力からストリームレプリカを減算し、MIMO分離部2005−1〜2005−Nに出力する。
MIMO分離部2005−1〜2005−Nは、伝搬路推定部1905(あるいは伝搬路推定値記憶部1906)の出力である伝搬路推定値に基づいて、減算部2003−1〜2003−Nの出力に対してMIMOストリーム分離を行い、デインタリーバ部2006−1〜2006−Nに出力する。具体的には、MIMO分離部2005−1〜2005−Nは、最尤推定によりストリームのデータ信号を再現する。あるいは、MIMO分離部2005−1〜2005−Nは、減算部2003−1〜2003−Nの出力に対するMMSE重みを算出し、算出した重みを減算部2003−1〜2003−Nの出力に対して乗算するなどの分離方法を用いる。
デインタリーバ部2006−1〜2006−Nは、MIMO分離部2005−1〜2005−Nからの出力に対して、デインタリーブ処理を行い、復調部2007−1〜2007−Nに出力する。このデインタリーブ処理は、インタリーバ部1803におけるインタリーブ処理により並べ替えられた順序を、元に戻すような並べ替えであることが好ましい。
復調部2007−1〜2007−Nは、デインタリーバ部2006−1〜2006−Nからの出力信号である変調シンボル系列に対して復調処理を行い、ビット毎の信号を抽出する。好ましくは、復調部2007−1〜2007−Nは、ビット毎の対数尤度比(LLR)を、レートマッチ部2008−1〜2008−Nに出力する。
なお、MIMO分離部2005−1〜2005−N、デインタリーバ部2006−1〜2006−N、復調部2007−1〜2007−N、レートマッチ部2008−1〜2008−Nをまとめて、復調部と称することもある。
レートマッチ部2008−1〜2008−Nは、送信装置1800内のレートマッチ部1815において行われたパンクチャリング(ビット除去)、ビットパディング(ビット挿入)あるいはビットリピティション(ビット繰り返し)処理に対して逆の処理を行い、合成部2009−1〜2009−Nに出力する。すなわち、レートマッチ部2008−1〜2008−Nは、パンクチャリングされたビットに対してはビットデパンクチャリング(ビットLLR挿入)処理を行い、ビットパディング(ビット挿入)されたビットに対してはビット除去処理を行い、ビットリピティション(ビット繰り返し)されたビットに対してはビットLLR合成を行う。
合成部2009−1〜2009−Nは、初送パケットあるいは1度目の再送パケットである場合、レートマッチ部2008−1〜2008−Nの出力であるビットLLRをそのまま、復号部2010−1〜2010−Nに出力する。
なお、MIMO分離部2005−1〜2005−N、デインタリーバ部2006−1〜2006−N、復調部2007−1〜2007−N、レートマッチ部2008−1〜2008−N、合成部2009−1〜2009−Nをまとめて、信号合成部と称することもある。
一方、合成部2009−1〜2009−Nは、2度目以降の再送パケットである場合、ビットLLR記憶部1812に記憶してあるビットLLR(対応する初送パケットにおけるビットLLR)と、レートマッチ部2008−1〜2008−Nの出力であるビットLLRを合成して出力する。
合成部2009−1〜2009−Nから出力されたビットLLRは、復号部2010−1〜2010−Nに入力される。また、合成部2009−1〜2009−Nは、再送パケットである場合は、出力されたビットLLRをビットLLR記憶部1812に出力する。
次に、受信装置1900から送信装置1800への上りリンク信号の送信処理に関して説明する。
受信装置1900から送信された信号は、送信装置1800(図19)のアンテナ1809−1〜1809−Nを介して無線受信部1810(報告受信部とも称する)で受信される。なお、ここではアンテナ1809−1のみを介して受信する構成について説明するが、これに限るものではない。いずれのアンテナ(複数も可能)を介して受信しても良い。
無線受信部1810は、アンテナ1809−1が受信した信号に対して、ダウンコンバートなどの処理を行い、分離部1811に出力する。
分離部1811は、受信信号に多重された上りリンクデータと成否情報とを分離する。
再送制御部1812は、分離部1811で上りリンクデータから分離された成否情報に基づいて、再送パケット(再送データ信号)を送信する準備を行う。
成否情報が受信失敗を表す情報(NACK)であった場合、再送制御部1812は符号化ビット記憶部1818に対して、NACKを返されたパケットに対応する符号化ビット系列を出力するように指示する。また、再送制御部1812は、レートマッチ部1815に対して、符号化ビット記憶部1818から出力された符号化ビット系列に対してレートマッチング処理を行うように指示する。
なお、レートマッチ処理は初送時と同様の処理であっても良いが、再送回数に応じてレートマッチ処理を変更することが好ましい。さらに、再送制御部1812は、多重するパケットの再送回数を示す情報を再送制御信号生成部1813に通知する。再送制御信号生成部1813は、再送制御部1812から通知された情報を示す信号(再送制御信号)を生成して、多重部1806に出力する。
なお、多重するパケットの再送回数を示す情報としては、回数そのものを示す情報であることが好ましいが、単に初送か再送かを示す情報など、再送回数を加工した情報であっても良い。成否情報が受信成功を表す情報(ACK)であった場合、再送制御部1812は符号化ビット記憶部1818に対して、ACKを返されたパケットに対応する符号化ビット系列を記憶した記憶領域を解放するように指示する。
図22は、受信装置1900において受信信号に含まれる初送パケットから情報ビットを抽出する処理と受信パケット管理部1910が行う制御の一例を示したフローチャートである。
まず、送信装置1800から送信された信号が、無線受信部1903で受信される(ステップS2101)。そして、無線受信部1903で受信は、分離部1904、GI除去部1907、FFT部1908で処理され、受信信号記憶部1909に記憶される(ステップS2102)。
次に、受信信号に含まれるそれぞれのパケット(ストリーム)に対する処理が行われる。つまり、受信信号に含まれるパケットに関するループL9の処理(ステップS2103〜S2110)が行われる。まず、伝搬路推定部1905において推定された伝搬路推定値を用いて、MIMO分離部2005でMIMOストリーム分離される(ステップS2104)。
MIMO分離された信号は、デインタリーバ部2006での処理が行われる。そして、復調部2007およびレートマッチ部2008において復調処理とレートマッチング処理が行われる(ステップS2105)。そして、受信パケット管理部1910において初送であるかどうかが判定される(ステップS2106)。初送であれば(ステップS2106でYes)、復調およびレートマッチング処理を行った結果であるビットLLRを用いて復号部2010で復号する(ステップS2107)。
さらに、復号部2010の出力である符号化ビットLLRを用いて生成されたストリームレプリカ(干渉信号レプリカ)を生成する(ステップS2108)。そして、干渉信号レプリカを用いて受信信号から干渉(次に検出するストリームに対する干渉)を除去する(ステップS2109)。
次に、繰り返し干渉キャンセル処理が行われる。つまり、ループL10の処理(ステップS2111〜S2119)が行われる。その繰り返し処理の中で、受信信号に含まれるそれぞれの初送パケットに対する処理が行われる。つまり、受信信号に含まれる初送パケットに関するループL11の処理(ステップS2112〜S2118)が行われる。始めに、逐次的に送信データの検出と、次の検出対照である送信データを含むストリームにおける干渉除去が繰り返し行われる。
すなわち、MIMO分離が行われる(ステップ2113)。そして、復号およびレートマッチング処理が行われる(ステップ2114)。そして、得られたビットLLRを用いて復号が行われる(ステップS2115)。そして、復号部2010の出力である符号化ビットLLRを用いて、ストリームレプリカが生成される(ステップS2116)。そして、ストリームレプリカを用いて干渉が除去される(ステップS2117)。なお、ステップS2117におけるストリームレプリカのキャンセルでは、再送パケットのレプリカもキャンセルすることが好ましい。
一方、再送パケットに関しては(ステップS2106でNo)、まず受信パケット管理部1910において1度目の再送であるか2度目以降の再送であるかが判定される(ステップS2120)。、1度目の再送ならば(ステップS2120でNo)、復調およびレートマッチング処理されたビットLLRをビットLLR記憶部1812に記憶させる(ステップS2122)。2度目以降の再送ならば(ステップS2120でYes)、復調およびレートマッチング処理されたビットLLRと、ビットLLR記憶部1812において記憶されていたビットLLRとを合成部2009において合成する(ステップS2121)。そして、合成後のビットLLRをビットLLR記憶部1812に記憶させる(ステップS2122)。
なお、ここでは再送であるとき、復調およびレートマッチング処理されたビットLLRをビットLLR記憶部1812において記憶する場合について説明する。しかし、繰り返し干渉キャンセル後の復調およびレートマッチング処理されたビットLLR(ステップS2114の後段のビットLLR)をビットLLR記憶部1812において記憶するようにしても良い。
また、再送パケットのみで復号が可能である場合は、ステップS2122の後、ビットLLRをステップS2107において復号しても良い。
記憶されたビットLLRは、再送パケットに対応する初送パケットを含む過去の受信信号に含まれる初送パケットから情報ビットを抽出する処理において用いられる。
図23は、再送パケットに対応する初送パケットを含む過去の受信信号に含まれる初送パケットから情報ビットを抽出する処理と受信パケット管理部1910が行う制御の一例を示したフローチャートである。
まず、再送パケットに対応する初送パケットを含む過去の受信信号を受信信号記憶部1909から取得する(ステップS2201)。次に、再送パケットに対応する初送パケットに関するループL12の処理(ステップS2202〜S2211)が行われる。
さらにその繰り返し処理の中で、送信データの検出と、次の送信データを含むデータ信号における干渉の除去が繰り返し行われる。つまり、ループL13の処理(ステップS2203〜S2210)が行われる。
初送パケットは、まず、伝搬路推定値記憶部1806に記憶された当該受信信号受信時の伝搬路推定値を用いて、MIMO分離部2005でMIMOストリーム分離が行われる(ステップS2204)。
MIMO分離された信号はデインタリーバ部2006での処理が行われる。そして、復調部2007およびレートマッチ部2008において復調およびレートマッチング処理されて(ステップS2205)、符号化ビットLLRが求められる。
次に、ステップS2205で求めた符号化ビットLLRと、この初送パケットに対応する再送パケットの符号化ビットLLR(図22のステップS2122において記憶されたビットLLR)とを合成部2009において合成する(ステップS2206)。そして、合成して得られた符号化ビットLLRを用いて復号部2010で復号する(ステップS2206)。
さらに、復号部2010の出力である符号化ビットLLRを用いて、シンボルレプリカ生成部2004および受信レプリカ生成部2002の処理によりストリームレプリカが生成される(ステップS2208)。そして、減算部2003において減算することにより干渉を除去する(ステップS2209)。ただし、ステップS2209におけるストリームレプリカのキャンセルでは、過去の受信信号に含まれる再送パケットのレプリカもキャンセルすることが好ましい。
MIMO通信を行う受信装置1900において、このようなストリーム間干渉キャンセル処理を行うシステムであっても、第2の実施形態と同様のHARQ処理を行うことができる。
このように、本実施形態では、送信装置1800から受信装置1900へ複数の初送パケットを多重して送信する。そして、受信装置1900において干渉(多重された他のパケット)を除去しながらデータを検出する。そして、データ検出に失敗した場合に、送信装置1800から受信装置1900へ再送パケットを送信する。そして、多重された複数の初送パケットの検出に失敗し、その一部のパケットに対応する再送パケットが送信された際に、一部のパケットのみでなく初回に検出に失敗した他の初送パケットにおいても再度検出する。検出に成功すれば、検出成功を示す情報を基地局に送信する。これにより、下りリンクの再送パケット数を抑制することができるため、スループットが向上する。
なお、上記の各実施形態では、復調部の出力であるビットLLRを合成部において合成する場合について説明したが、これに限定されるものではない。例えば、送信装置において初送パケットと再送パケットに対して同様のレートマッチング処理を行う場合に限り、復調前の変調シンボル系列を合成しても良い。この場合、復調後のビットLLRを記憶する代わりに、変調シンボル系列を記憶すれば良い。
なお、上記の各実施形態では、送信データ検出に成功するか否かに係らず、データ信号のレプリカを生成する際に、復号部の出力である符号化ビットLLRを用いる場合について説明したが、これに限るものではない。好ましくは、送信データ検出に成功したデータ信号のレプリカは、復号部の出力である情報ビットを用いて生成する。これにより、レプリカ生成の精度を向上することができる。
なお、上記の各実施形態では、再送パケットを合成して、初送パケットに含まれる送信データを再検出した後、送信データ再検出に成功した場合はACKを送信装置に報告し、送信データ再検出に失敗した場合はNACKを送信装置に報告する場合について説明したが、これに限るものではない。例えば、送信データ再検出に成功した場合はACKを送信装置に報告し、送信データ再検出に失敗した場合は何も報告しないなど、成功したかどうかにより、異なる報告処理を行えば良い。この例の場合、送信装置は、一定時間ACKが報告されない場合は、NACKが報告された場合と同様の処置を行えば良い。
なお、上記の各実施形態では、ハイブリッド自動再送(HARQ)を用いる場合について説明したが、ARQ(初送パケットと再送パケットを合成しない場合)においても本実施形態を適用することは可能である。初送パケットと再送パケットを合成する代わりに、再送パケットの復号結果(あるいは復調結果)を用いてシンボルレプリカを生成し、このシンボルレプリカと初送時の伝搬路推定結果とを用いて干渉信号レプリカを生成すれば良い。この場合、初送パケットに比べて再送パケット送信時の伝搬路特性が良好であるか、あるいは再送パケットの方が低伝送レートで送信されるなど、再送パケットの送信データ検出精度が初送パケットに比べて良好であれば、効果が得られる。
なお、以上説明した実施形態において、送信装置の各部や受信装置の各部の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより送信装置や受信装置の制御を行っても良い。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含む。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も特許請求の範囲に含まれる。
本発明は、送信装置から受信装置に送信する信号の再送回数を低減することができる受信装置、送信装置、通信システム及び通信方法などに適用できる。

Claims (19)

  1. 送信装置と通信する受信装置であって、
    複数のデータ信号が多重された信号を前記送信装置から受信する受信部と、
    前記受信部で受信した受信信号から前記データ信号毎に送信データの検出の成否を判定するデータ信号検出部とを備え、
    前記受信部は、前記多重された複数のデータ信号のうち送信データの検出に失敗したデータ信号の少なくともいずれかに対応する再送データ信号を更に前記送信装置から受信し、
    前記データ信号検出部は、前記受信信号と前記再送データ信号とから、前記多重された複数のデータ信号のうち前記再送データ信号に対応するデータ信号と少なくとも1つの前記再送データ信号に対応しないデータ信号とに含まれる送信データの再検出の成否を判定する受信装置。
  2. 前記データ信号検出部は、各データ信号のレプリカであるデータ信号レプリカを生成するデータ信号レプリカ生成部と、
    前記データ信号レプリカから干渉信号レプリカを生成する干渉信号レプリカ生成部と、
    前記干渉信号レプリカを受信信号から減算する干渉除去部と、
    前記干渉信号レプリカを除去した受信信号を合成する信号合成部と、
    前記信号合成部が合成した信号から前記多重された複数のデータ信号に含まれる送信データの検出を行う判定部と、
    を備える請求項1に記載の受信装置。
  3. 前記信号合成部は、前記干渉信号レプリカを除去した受信信号と前記再送信号を復調する復調部と、
    前記干渉信号レプリカを除去した受信信号の復調結果と前記再送信号の復調結果とを合成する合成部と、
    を備える請求項2に記載の受信装置。
  4. 前記復調部は、前記干渉信号レプリカを除去した受信信号と前記再送信号に含まれる送信データの尤度情報を出力する請求項3に記載の受信装置。
  5. 前記復調部は、前記干渉信号レプリカを除去した受信信号と前記再送信号に含まれる送信データの対数尤度比を出力し、
    前記合成部は、前記干渉信号レプリカを除去した受信信号に含まれる送信データの対数尤度比と前記再送信号に含まれる送信データの対数尤度比とを加算して合成する請求項4に記載の受信装置。
  6. 前記干渉信号レプリカ生成部は、検出するデータ信号の各々に対する干渉信号レプリカを生成する請求項2に記載の受信装置。
  7. 前記干渉信号レプリカ生成部は、検出する複数のデータ信号うち最初に検出するデータ信号以外のデータ信号に対する干渉信号レプリカを生成する請求項2に記載の受信装置。
  8. 前記データ信号検出部から出力された前記送信データ再検出の成否に基づいて、前記送信データの再検出が成功であるデータ信号に関する成否情報を前記送信装置に報告する報告送信部を備える請求項1に記載の受信装置。
  9. 前記報告送信部は、前記多重された各々の前記データ信号毎の送信データの検出の成否に基づいて、前記データ信号毎の成否情報を前記送信装置に報告し、
    前記送信データ再検出の成否に基づいて、前記送信データの再検出が成功であるデータ信号に関する成否情報のみを前記送信装置に報告する請求項8に記載の受信装置。
  10. 前記データ信号検出部から出力された前記送信データ再検出の成否に基づいて、前記送信データの再検出が失敗であるデータ信号に関する成否情報を前記送信装置に報告する報告送信部を備える請求項1に記載の受信装置。
  11. 前記複数のデータ信号は、符号拡散多重されており、
    前記データ信号検出部は、受信信号に対して逆拡散処理を行う逆拡散部を備える請求項1に記載の受信装置。
  12. 前記複数のデータ信号は、空間多重されているストリームであり、
    前記データ信号検出部は、受信信号に対してストリーム分離を行うストリーム分離部を備える請求項1に記載の受信装置。
  13. 受信装置と通信する送信装置であって、
    複数の送信データから複数のデータ信号が多重された信号を生成する送信信号生成部と、
    前記送信信号生成部で生成した信号を前記受信装置に送信する送信部と、
    前記受信装置から報告される前記データ信号毎の送信データ検出の成否を示す成否情報を受信する報告受信部とを備え、
    前記送信信号生成部はさらに、前記成否情報が送信データの検出の失敗を示す前記データ信号のうちの一部のデータ信号に対する再送信号を生成し、
    前記送信部はさらに、前記再送信号を前記受信装置に送信する送信装置。
  14. 前記複数の送信データを記憶する送信データ記憶部を備え、
    前記送信信号生成部は、前記送信データ記憶部に記憶された前記送信データから前記再送信号を生成する請求項13に記載の送信装置。
  15. 前記報告受信部はさらに、前記受信装置から報告される送信データ再検出の成否を示す成否情報を前記受信装置から受信する請求項14に記載の送信装置。
  16. 前記送信データ記憶部は、前記送信データ再検出の成否を示す成否情報を報告された当該送信データを削除する請求項15に記載の送信装置。
  17. 送信装置と受信装置とを備える通信システムであって、
    前記送信装置は、
    複数の送信データから複数のデータ信号が多重された信号を生成する送信信号生成部と、
    前記送信信号生成部で生成した信号を前記受信装置に送信する送信部と、
    前記受信装置から報告される前記データ信号毎の送信データ検出の成否を示す成否情報を受信する報告受信部とを備え、
    前記送信信号生成部はさらに、前記成否情報が送信データの検出の失敗を示す前記データ信号のうちの一部のデータ信号に対する再送信号を生成し、
    前記送信部はさらに、前記再送信号を前記受信装置に送信し、
    前記受信装置は、
    複数のデータ信号が多重された信号を前記送信装置から受信する受信部と、
    前記受信部で受信した受信信号から前記データ信号毎に送信データの検出の成否を判定するデータ信号検出部とを備え、
    前記受信部は、前記多重された複数のデータ信号のうち送信データの検出に失敗したデータ信号の少なくともいずれかに対応する再送データ信号を更に前記送信装置から受信し、
    前記データ信号検出部は、前記受信信号と前記再送データ信号とから、前記多重された複数のデータ信号のうち前記再送データ信号に対応するデータ信号と少なくとも1つの前記再送データ信号に対応しないデータ信号とに含まれる送信データの再検出の成否を判定する通信システム。
  18. 送信装置と通信する受信装置を用いた通信方法であって、
    前記受信装置は、
    複数のデータ信号が多重された信号を前記送信装置から受信部が受信する第1のステップと、
    前記受信部で受信した受信信号から前記データ信号毎に送信データの検出の成否をデータ信号検出部が判定する第2のステップと、
    前記多重された複数のデータ信号のうち送信データの検出に失敗したデータ信号の少なくともいずれかに対応する再送データ信号を更に前記送信装置から前記受信部が受信する第3のステップと、
    前記受信信号と前記再送データ信号とから、前記多重された複数のデータ信号のうち前記再送データ信号に対応するデータ信号と少なくとも1つの前記再送データ信号に対応しないデータ信号とに含まれる送信データの再検出の成否を前記データ信号検出部が判定する第4のステップと、
    を実行する通信方法。
  19. 送信装置と通信する受信装置を用いた通信方法であって、
    前記送信装置は、
    複数の送信データから複数のデータ信号が多重された信号を送信信号生成部が生成する第1のステップと、
    前記送信信号生成部で生成した信号を前記受信装置に送信部が送信する第2のステップと、
    前記受信装置から報告される前記データ信号毎の送信データ検出の成否を示す成否情報を報告受信部が受信する第3のステップと、
    前記成否情報が送信データの検出の失敗を示す前記データ信号のうちの一部のデータ信号に対する再送信号を前記送信信号生成部が生成する第4のステップと、
    前記再送信号を前記受信装置に前記送信部が送信する第5のステップと、
    を実行する通信方法。
JP2009554314A 2008-02-21 2009-02-17 受信装置、送信装置、通信システム及び通信方法 Pending JPWO2009104582A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008040228 2008-02-21
JP2008040228 2008-02-21
PCT/JP2009/052650 WO2009104582A1 (ja) 2008-02-21 2009-02-17 受信装置、送信装置、通信システム及び通信方法

Publications (1)

Publication Number Publication Date
JPWO2009104582A1 true JPWO2009104582A1 (ja) 2011-06-23

Family

ID=40985462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009554314A Pending JPWO2009104582A1 (ja) 2008-02-21 2009-02-17 受信装置、送信装置、通信システム及び通信方法

Country Status (5)

Country Link
US (1) US20110007729A1 (ja)
EP (1) EP2247016A4 (ja)
JP (1) JPWO2009104582A1 (ja)
CN (1) CN101946443A (ja)
WO (1) WO2009104582A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101946442A (zh) * 2008-02-21 2011-01-12 夏普株式会社 发送装置、接收装置、通信系统和通信方法
JP4854091B2 (ja) * 2008-04-30 2012-01-11 シャープ株式会社 通信システム、受信装置及び通信方法
US8514984B2 (en) * 2009-09-02 2013-08-20 Qualcomm Incorporated Iterative decoding architecture with HARQ combining and soft decision directed channel estimation
US8976903B2 (en) * 2009-09-02 2015-03-10 Qualcomm Incorporated Unified iterative decoding architecture using joint LLR extraction and a priori probability
US8989320B2 (en) * 2009-09-02 2015-03-24 Qualcomm Incorporated Hardware simplification of sic-MIMO decoding by use of a single hardware element with channel and noise adaptation for interference cancelled streams
US8199034B2 (en) 2010-04-20 2012-06-12 Qualcomm Incorporated Method and apparatus for soft symbol determination
CN103001738B (zh) * 2012-11-23 2016-03-02 华为技术有限公司 接收机及数据处理的方法
JP2015207816A (ja) * 2014-04-17 2015-11-19 富士通株式会社 受信装置、受信方法、及び、無線通信システム
KR102214101B1 (ko) * 2014-09-05 2021-02-09 삼성전자주식회사 반복 검출 및 복호 수신 방법 및 장치
JP2020182191A (ja) * 2019-04-26 2020-11-05 日本電気株式会社 無線伝送システム、無線伝送装置、無線伝送方法及び無線伝送プログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005050885A1 (ja) * 2003-11-21 2005-06-02 Matsushita Electric Industrial Co., Ltd. マルチアンテナ受信装置、マルチアンテナ受信方法、マルチアンテナ送信装置及びマルチアンテナ通信システム
WO2006064857A1 (ja) * 2004-12-17 2006-06-22 Matsushita Electric Industrial Co., Ltd. マルチアンテナ伝送における再送方法及び送信方法
JP2006238423A (ja) * 2005-01-26 2006-09-07 Matsushita Electric Ind Co Ltd 無線基地局装置及び端末装置
WO2007061016A1 (ja) * 2005-11-24 2007-05-31 Matsushita Electric Industrial Co., Ltd. 再送データ検出方法
WO2009066406A1 (ja) * 2007-11-22 2009-05-28 Panasonic Corporation 無線通信装置、無線通信システム及び無線通信方法
WO2009104574A1 (ja) * 2008-02-21 2009-08-27 シャープ株式会社 送信装置、受信装置、通信システム及び通信方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US113147A (en) * 1871-03-28 Improvement in carbureting-machines
US20020150038A1 (en) * 2000-07-10 2002-10-17 Atsushi Sumasu Multi-carrier communication device and peak power suppressing method
KR100520655B1 (ko) * 2001-11-10 2005-10-13 삼성전자주식회사 직교 주파수 분할 다중 이동 통신 시스템에서 주파수다이버시티를 이용하는 재전송 장치 및 방법
JP4189477B2 (ja) 2003-01-10 2008-12-03 国立大学法人東京工業大学 Ofdm(直交周波数分割多重)適応等化受信方式及び受信機
JP4291673B2 (ja) * 2003-11-11 2009-07-08 株式会社エヌ・ティ・ティ・ドコモ Ofdm受信機
JP2005198223A (ja) 2004-01-07 2005-07-21 Satoshi Suyama マルチキャリアにおけるパケット伝送用マルチユーザ検出受信機
US7839940B2 (en) * 2004-11-22 2010-11-23 Nokia Corporation Ordered retransmissions for ARQ in multicarrier systems
JP2007116637A (ja) * 2005-10-24 2007-05-10 Fujitsu Ltd 無線通信方法及び無線通信システム並びに受信装置及び送信装置
KR100966043B1 (ko) * 2005-10-31 2010-06-25 삼성전자주식회사 저밀도 패리티 검사 부호를 사용하는 통신 시스템에서 신호 송수신 장치 및 방법
EP2020158B1 (en) * 2006-04-25 2016-11-02 LG Electronics Inc. A method of configuring multiuser packet and a structure thereof in a wireless communication system
EP3780450A1 (en) * 2006-10-31 2021-02-17 Telefonaktiebolaget LM Ericsson (publ) Method and apparatus for error control in telecommunications systems
JPWO2010005037A1 (ja) * 2008-07-09 2012-01-05 シャープ株式会社 通信装置、通信システム、受信方法及び通信方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005050885A1 (ja) * 2003-11-21 2005-06-02 Matsushita Electric Industrial Co., Ltd. マルチアンテナ受信装置、マルチアンテナ受信方法、マルチアンテナ送信装置及びマルチアンテナ通信システム
WO2006064857A1 (ja) * 2004-12-17 2006-06-22 Matsushita Electric Industrial Co., Ltd. マルチアンテナ伝送における再送方法及び送信方法
JP2006238423A (ja) * 2005-01-26 2006-09-07 Matsushita Electric Ind Co Ltd 無線基地局装置及び端末装置
WO2007061016A1 (ja) * 2005-11-24 2007-05-31 Matsushita Electric Industrial Co., Ltd. 再送データ検出方法
WO2009066406A1 (ja) * 2007-11-22 2009-05-28 Panasonic Corporation 無線通信装置、無線通信システム及び無線通信方法
WO2009104574A1 (ja) * 2008-02-21 2009-08-27 シャープ株式会社 送信装置、受信装置、通信システム及び通信方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6012027239; 安達 宏一 他: '繰り返し変形QRD-M信号分離法を用いるOFDM MIMO のHARQスループット特性' 電子情報通信学会技術研究報告 , 200707, p.47-52, 社団法人電子情報通信学会 *
JPN7009002225; Haitao Zheng, et al.: 'Multiple ARQ Processes for MIMO Systems' EURASIP Journal on Applied Signal Processing Volume 2004 (2004), Issue 5, 200401, p.772-782 *

Also Published As

Publication number Publication date
EP2247016A4 (en) 2011-02-23
WO2009104582A1 (ja) 2009-08-27
EP2247016A1 (en) 2010-11-03
US20110007729A1 (en) 2011-01-13
CN101946443A (zh) 2011-01-12

Similar Documents

Publication Publication Date Title
WO2009104582A1 (ja) 受信装置、送信装置、通信システム及び通信方法
JP5213271B2 (ja) 通信装置、通信システム、受信方法およびプログラム
US20110126072A1 (en) Communication device, communication system, reception method and communication method
JP5376243B2 (ja) 通信装置、通信システム、受信方法および通信方法
US8381060B2 (en) Communication device, communication system, reception method, and communication method
WO2009131094A1 (ja) 通信装置、通信システム、受信方法およびプログラム
JP2009253548A (ja) 送信装置、受信装置、通信システム、送信方法および受信方法
WO2009104574A1 (ja) 送信装置、受信装置、通信システム及び通信方法
WO2012081535A1 (ja) 通信システム、送信装置、受信装置、及び、プロセッサ
JP5013617B2 (ja) 通信装置、通信システムおよび受信方法
WO2011136033A1 (ja) 通信システム、送信装置、受信装置、プログラム、及びプロセッサ
JP5376244B2 (ja) 通信装置、通信システム、受信方法及び通信方法
EP1724959A1 (en) Multiple access communication system with ARQ and interference cancellation
JP5036062B2 (ja) 通信装置、通信システムおよび通信方法
JP2010219747A (ja) 送信装置、通信システム、通信装置、送信方法、受信方法、送信制御プログラム、及び受信制御プログラム
JP2010050716A (ja) 通信装置、通信システム及び通信方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140107