WO2009104574A1 - 送信装置、受信装置、通信システム及び通信方法 - Google Patents

送信装置、受信装置、通信システム及び通信方法 Download PDF

Info

Publication number
WO2009104574A1
WO2009104574A1 PCT/JP2009/052632 JP2009052632W WO2009104574A1 WO 2009104574 A1 WO2009104574 A1 WO 2009104574A1 JP 2009052632 W JP2009052632 W JP 2009052632W WO 2009104574 A1 WO2009104574 A1 WO 2009104574A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
data
unit
transmission
success
Prior art date
Application number
PCT/JP2009/052632
Other languages
English (en)
French (fr)
Inventor
智造 野上
貴司 吉本
良太 山田
寿之 示沢
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US12/918,254 priority Critical patent/US20100325510A1/en
Priority to CN2009801054241A priority patent/CN101946442A/zh
Priority to JP2009554311A priority patent/JPWO2009104574A1/ja
Priority to EP09713026A priority patent/EP2247017A1/en
Publication of WO2009104574A1 publication Critical patent/WO2009104574A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/7103Interference-related aspects the interference being multiple access interference
    • H04B1/7107Subtractive interference cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/70703Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation using multiple or variable rates
    • H04B2201/70705Rate detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0026Interference mitigation or co-ordination of multi-user interference
    • H04J11/0036Interference mitigation or co-ordination of multi-user interference at the receiver

Definitions

  • the present invention relates to a transmission device, a reception device, a communication system, and a communication method.
  • This application claims priority based on Japanese Patent Application No. 2008-040229 filed in Japan on February 21, 2008, the contents of which are incorporated herein by reference.
  • GI Guard Interval
  • Examples of the multicarrier transmission scheme include OFDM (Orthogonal Frequency Division Multiplexing) and OFDMA (Orthogonal Frequency Division Multiple Access).
  • ISI intersymbol interference
  • ICI intercarrier interference
  • ISI Intersymbol interference
  • FFT Fast Fourier Transform
  • MC-CDM Multi Carrier Code Division Multiplexing
  • MC-CDMA Multi Carrier Coder Multiplexing
  • CDM Code Division Multiplexing
  • Division Multiple Access Multi-carrier code division multiple access
  • Spread-OFCDM Orthogonal Frequency and Code Division Multiplexing
  • Non-Patent Document 1 describe one method for improving characteristic deterioration due to the loss of orthogonality between codes.
  • the signal is generated after demodulating the received signal in the receiver to cancel interference such as inter-symbol interference (ISI), inter-carrier interference (ICI), and inter-code interference (MCI).
  • ISI inter-symbol interference
  • ICI inter-carrier interference
  • MCI inter-code interference
  • An interference signal is generated based on the replica signal to be performed, and interference cancellation is performed. Furthermore, by repeating these processes, the accuracy of the replica signal is improved and interference is canceled with high accuracy.
  • ISI intersymbol interference
  • ICI intercarrier interference
  • MCI intercode interference
  • Non-Patent Document 2 Non-Patent Document 3
  • HARQ hybrid ARQ
  • ARQ Automatic Repeat reQuest
  • CC Chase Combining
  • IR incremental redundancy
  • HARQ using chase combining if an error is detected in a received packet, retransmission of the same packet is requested. By combining these two received packets, the reception quality can be improved.
  • HARQ using incremental redundancy redundant bits are divided and sequentially retransmitted little by little, so that the coding rate can be lowered as the number of retransmissions increases, and the error correction capability can be enhanced.
  • the present invention has been made in view of the above circumstances, and a purpose thereof is to suppress the number of downlink retransmission packets from the transmission apparatus to the reception apparatus and improve the throughput, the transmission apparatus, the reception apparatus, and the communication. It is to provide a system and a communication method.
  • a transmission device is a transmission device that communicates with a reception device, and a plurality of data signals are transmitted from a plurality of transmission data.
  • a transmission signal generation unit that generates a multiplexed signal, a transmission unit that transmits the signal generated by the transmission signal generation unit to the reception device, and the success or failure of transmission data detection for each data signal reported from the reception device
  • a report receiving unit that receives success / failure information indicating, the transmission signal generation unit further selects a part of the data signal in which the success / failure information indicates transmission data detection failure, and the selected A retransmission signal for the data signal is generated, and the transmission unit further transmits the retransmission signal to the reception device.
  • the transmission signal generation unit of the transmission device acquires the priority of transmission data included in each of the data signals, and the part of the transmission signal based on the acquired priority Select the data signal.
  • the transmission signal generation unit of the transmission device stores the number of retransmissions of transmission data included in each of the data signals, and the partial data based on the number of retransmissions Select a signal.
  • the transmission signal generation unit of the transmission device stores the coding rate of each data signal, and selects the partial data signal based on the coding rate To do.
  • the transmission apparatus by 1 aspect of this invention is provided with the transmission data memory
  • the said transmission signal generation part is based on the said transmission data memorize
  • the retransmission signal is generated.
  • the report reception unit of the transmission device further receives success / failure information indicating success / failure of transmission data re-detection reported from the reception device.
  • the transmission data storage unit of the transmission device deletes the transmission data for which the success / failure information indicating the success / failure of the transmission data re-detection is reported.
  • the transmission signal generation unit of the transmission device includes a spreading unit that performs code spreading of the plurality of data signals.
  • the transmission unit of the transmission device spatially multiplexes and transmits the plurality of data signals.
  • a receiving device is a receiving device that communicates with a transmitting device, and includes a receiving unit that receives a signal in which a plurality of data signals are multiplexed from the transmitting device, and the receiving unit.
  • the transmission data included in the plurality of data signals is detected from the received signals received, the detected transmission data, and a data signal detection unit that outputs success / failure of transmission data detection for each of the data signals, and the multiplexed
  • a success / failure information signal generation unit that generates one success / failure information
  • a report transmission unit that reports the success / failure information to the transmission device.
  • a receiving device is a receiving device that communicates with a transmitting device, and includes a receiving unit that receives a signal obtained by multiplexing a plurality of data signals from the transmitting device, and the receiving unit.
  • the transmission data included in the plurality of data signals is detected from the received signals received, the detected transmission data, and a data signal detection unit that outputs success / failure of transmission data detection for each of the data signals, and the multiplexed
  • a selection unit that selects a part of the data signals among the plurality of data signals that have failed to detect transmission data, and generation of success / failure information for the data signals that have successfully detected transmission data and the selected data signals.
  • a success / failure information signal generation unit, and a report transmission unit that reports the success / failure information to the transmission device.
  • the selection unit of the reception device acquires the priority of transmission data included in each of the data signals, and the partial data based on the acquired priority Select a signal.
  • the selection unit of the reception device acquires the number of retransmissions of transmission data included in each data signal, and the partial data signal is acquired based on the number of retransmissions. select.
  • the selection unit of the reception device acquires a coding rate of each of the data signals, and selects the partial data signal based on the coding rate.
  • the selection unit of the reception device acquires reception quality of each of the data signals, and selects the partial data signal based on the reception quality.
  • the reception unit further receives a retransmission data signal corresponding to any of the multiplexed data signals
  • the data signal detection unit receives the reception Re-detect transmission data contained in a data signal corresponding to the retransmission data signal and at least one data signal not corresponding to the retransmission data signal from among the multiplexed data signals from the signal and the retransmission data signal To do.
  • the data signal detection unit of the receiving device includes a data signal replica generation unit that generates a data signal replica that is a replica of each data signal, and an interference signal replica from the data signal replica.
  • An interference signal replica generating unit to generate, an interference removing unit for subtracting the interference signal replica from the received signal, a signal combining unit for combining the received signal from which the interference signal replica has been removed, and the multiplexing from the output of the signal combining unit And a determination unit that re-detects transmission data included in the plurality of data signals.
  • the signal synthesis unit of the reception device includes a reception signal from which the interference signal replica is removed, a demodulation unit that demodulates the retransmission signal, and a reception signal from which the interference signal replica is removed.
  • a combining unit configured to combine the demodulation result and the demodulation result of the retransmission signal;
  • the demodulation unit of the receiving device outputs the received signal from which the interference signal replica is removed and the likelihood information of the transmission data included in the retransmission signal.
  • the demodulation unit of the reception device outputs a log likelihood ratio between the reception signal from which the interference signal replica is removed and the transmission data included in the retransmission signal, Then, the log likelihood ratio of the transmission data included in the reception signal from which the interference signal replica is removed and the log likelihood ratio of the transmission data included in the retransmission signal are added and combined.
  • the interference signal replica generation unit of the reception device generates an interference signal replica for each of the data signals to be detected.
  • the interference signal replica generation unit of the reception device generates an interference signal replica for a data signal other than the data signal detected first among the plurality of data signals to be detected.
  • the report transmission unit of the reception device has successfully re-detected the transmission data based on success or failure of the transmission data re-detection output from the data signal detection unit. Report success / failure information on the data signal to the transmitter.
  • the plurality of data signals of the receiving device are code spread multiplexed, and the data signal detection unit includes a despreading unit that performs a despreading process on the received signal. .
  • the plurality of data signals are spatially multiplexed streams
  • the data signal detection unit includes a stream separation unit that performs stream separation on the reception signal.
  • a communication system is a communication system including a transmission device and a reception device, and the transmission device generates a transmission signal generation unit that generates a signal in which a plurality of data signals are multiplexed.
  • the reception device receives a signal transmitted from the transmission device, detects the plurality of data signals from the reception signal received by the reception unit, and detects the detected data signal A data signal detection unit for outputting success / failure of signal detection; and a report transmission unit for reporting success / failure information indicating success / failure of the signal detection to the transmission device, wherein the reception unit further includes the plurality of multiplexed data signals.
  • the data signal detection unit receives a retransmission data signal corresponding to any one of the data signals, and the data signal detection unit, from the received signal and the retransmission data signal, a data signal whose signal detection result is a failure among the plurality of multiplexed data signals Rediscover.
  • the communication system is a communication system including a transmission device and a reception device, and the transmission device generates a transmission signal generation unit that generates a signal in which a plurality of data signals are multiplexed.
  • a transmission unit that transmits the signal generated by the transmission signal generation unit to the reception device, and a report reception unit that receives success / failure information reported from the reception device, and the transmission signal generation unit further includes: The success / failure information generates a retransmission signal for the data signal indicating detection failure, the transmission unit further transmits the retransmission signal to the reception device, and the reception device receives the signal transmitted from the transmission device.
  • the reception unit and the reception signal received by the reception unit detect the plurality of data signals, and output the detected data signals and success / failure of transmission data detection for each of the data signals.
  • a data signal detection unit a selection unit that selects a part of the data signal from among the multiplexed data signals that failed to detect transmission data, a data signal that successfully detected transmission data, and the A success / failure information signal generation unit that generates success / failure information in the selected data signal; and a report transmission unit that reports the success / failure information to the transmission device; and the reception unit further includes the plurality of multiplexed data signals.
  • the data signal detection unit receives a retransmission data signal corresponding to any one of the plurality of multiplexed data signals, and the data signal detection unit receives a data signal whose signal detection result is unsuccessful from the received signal and the retransmission data signal. Rediscover.
  • a communication method is a communication method using a transmission device that communicates with a reception device, and generates a signal in which a plurality of data signals are multiplexed from a plurality of transmission data.
  • Generation process transmission process for transmitting the signal generated in the transmission signal generation process to the receiving apparatus, and report reception for receiving success / failure information indicating success / failure of transmission data detection for each data signal reported from the receiving apparatus
  • the transmission signal generation step further selects a part of the data signals whose success / failure information indicates transmission data detection failure, and generates a retransmission signal for the selected data signal.
  • the retransmission signal is further transmitted to the receiving device.
  • a communication method is a communication method using a reception device that communicates with a transmission device, and includes a reception process of receiving a signal in which a plurality of data signals are multiplexed from the transmission device.
  • a data signal detection step of detecting transmission data included in the plurality of data signals from the reception signals received in the reception step, and outputting the detected transmission data and success or failure of detection of transmission data for each of the data signals A selection process of selecting a part of the data signals among the multiplexed data signals among which the transmission data detection has failed, a data signal that has succeeded in detecting transmission data, and the selected data signal, And a success / failure information signal generation process for generating success / failure information, and a report transmission process for reporting the success / failure information to the transmission apparatus.
  • the number of downlink retransmission packets from the transmission apparatus to the reception apparatus can be suppressed, and the throughput can be improved.
  • Timing chart which shows a series of processes of detection of reception data, report of success / failure information, and retransmission and redetection of reception data.
  • 10 is another timing chart showing a series of processes of detection of received data, report of success / failure information, and retransmission and redetection of received data.
  • It is a timing chart which shows the communication method by the 3rd Embodiment of this invention.
  • It is a schematic block diagram which shows the structure of the transmitter 1000 by the 4th Embodiment of this invention.
  • It is a schematic block diagram which shows the structure of the receiver 1100 by the 4th Embodiment of this invention.
  • It is a schematic block diagram which shows the structure of the receiver 1200 by the 5th Embodiment of this invention.
  • 200, 1000, 1400... Transmitting device 201-1 to 201-N, 1001-1 to 1001-N, 1401-1 to 1401-N... Code channel signal generation unit, 202, 1002.
  • Multiplexer 203, 1003, 1403 ... Interleaver, 204, 1004, 1404 ... IFFT unit, 205, 1005, 1405 ... Pilot signal generator, 206, 1006, 1406 ... Multiplexer, 207, 1007, 1407 ... GI insertion unit, 208, 1008, 1408 ... wireless transmission unit, 209, 1009, 1409-1 to 1409-N ... antenna unit, 210, 1010, 1410 ... wireless Receiving units 211, 1011, 1411... Separating units 212, 1012, 1412.
  • GI removal unit 307, 1107, 1207 1508: FFT unit, 308, 1108, 1208, 1509 ... received signal storage unit, 309, 1109, 1209, 1510 ... received packet management unit, 310, 1110, 1210, 1511 ... interference canceller unit 311-1 to 311-N, 1111-1 to 1111-N, code channel replica generation unit, 312, 1112, 1212, 1512 ... bit LLR storage unit, 313, 1113, 1213, 1513 ... Success / failure information signal generation unit, 314, 1114, 1214, 1514 ... multiplexing unit, 315, 1115, 1215, 1515 ... wireless transmission unit, 316, 1116 ... symbol replica generation unit, 317, 1117 ...
  • Spreading unit 401 ... Propagation path compensation unit 402 ... Deinterleaver unit 403 ... Co , 1304,... MCI replica generation unit, 405, 1306, 1603... Subtraction unit, 406, 1307-1 to 1307-N ... Despreading unit, 407, 1308, 1607.
  • Propagation path compensation unit, 1302, 1606 Deinterleaver unit, 1303-1 to 1303-N.
  • 1305-N Code channel replica generation unit, 1502-1 to 1502-M: Reception processing unit for each antenna, 1602 ... Reception replica generation unit, 601-1 ⁇ 1601-N ... stream detection unit, 1604-1,1604-2 ... symbol replica generation unit, 1605 ... MIMO separation unit
  • FIG. 1 is a timing chart showing a communication method according to the first embodiment of the present invention.
  • the base station transmits the multiplexed packet P 1 and the packet P 2 is an initial transmission packets over the downlink to a terminal (reception called device both) (step S101).
  • the terminal that has received the signal stores the received signal in which the packet P 1 and the packet P 2 are multiplexed, and performs interference cancellation processing and data detection processing.
  • Interference means other multiplexed signals. That is, the packet P 2 is an interference component for the packet P 1, the packet P 1 is an interference component for the packet P 2.
  • the interference cancellation process is a process for removing interference using a signal (replica) obtained by reproducing an interference signal from a received signal. In the interference cancellation process, for example, when detecting the packet P 2 is used a signal obtained by removing the replica of the packet P 1 from the received signal.
  • the terminal generates a signal including success / failure information (NACK 1 , NACK 2 ) for reporting to the base station that an error has occurred in packets P 1 and P 2 . Then, the terminal transmits success / failure information to the base station via the uplink (step S102).
  • the base station that has received the success / failure information signal generates a retransmission packet P 3 for the packet P 1 for which the NACK has been returned and transmits it to the terminal (step S103).
  • the base station according to the present embodiment generates retransmission packets for some of the plurality of packets for which NACK is returned, and transmits the retransmission packets to the terminal.
  • the following method can be used as a method of selecting some packets.
  • Transmission data included in each packet is sequentially transmitted from an upper layer. By retransmitting in the order sent from the higher layer, the average delay time can be shortened. (2) By preferentially retransmitting packets including information with high importance (short request delay), it is possible to shorten the delay time of packets with high importance. (3) In the case of incremental redundancy (IR), the larger the initial transmission coding rate, the greater the degree of decrease in the coding rate due to retransmission packet synthesis. Therefore, by preferentially retransmitting a packet with a large coding rate for initial transmission, the coding gain due to retransmission is increased, and efficient retransmission can be performed.
  • IR incremental redundancy
  • the average delay time can be shortened by preferentially retransmitting a packet with a small number of retransmissions.
  • the maximum delay time can be shortened by preferentially retransmitting a packet having a large number of retransmissions.
  • the terminal that has received the downlink signal demodulates the retransmission packet P 3, and uses the demodulation result of the packet P 3 and the received signal in which the stored packet P 1 and packet P 2 are multiplexed, to perform interference cancellation processing. And data detection processing.
  • detection accuracy is improved by removing replicas of other multiplexed packets.
  • better detection accuracy can be obtained by detecting data using a signal obtained by combining the initial transmission packet and the retransmission packet than when detecting data using only the initial transmission packet.
  • by synthesizing a retransmission packet improves the detection accuracy of the packet P 1 from the time of detection of the initial transmission, with the improvement of the replica accuracy packets P 1, also improved the detection accuracy of the packet P 2.
  • the terminal generates a signal including success or failure information (ACK 1, ACK 2) for reporting to the base station that there is no error in the packet of the packet P 1 and the packet P 2. Then, the terminal transmits the generated signal to the base station via the uplink (Step S104).
  • ACK 1, ACK 2 success or failure information
  • the base station that has received ACK 1 and ACK 2 does not need to perform retransmission corresponding to the packets P 1 and P 2 . Consequently, by retransmitting the packet P 3 corresponding to the packet P 1, it is possible to improve the error in both the packet P 1 and the packet P 2. Further, without performing retransmission corresponding to the packet P 2, the data can be detected in the packet P 1 and the packet P 2.
  • a plurality of initial transmission packets are multiplexed and transmitted from the transmission device to the reception device, and data is detected while removing interference (other multiplexed packets) at the reception device.
  • the transmitting apparatus transmits a retransmission packet to the receiving apparatus using the HARQ scheme.
  • the transmitting device transmits retransmission packets corresponding to some of the packets to the receiving device.
  • the receiving apparatus detects not only some packets but also other initial transmission packets that failed to be detected at the first time. Thereby, since the number of downlink retransmission packets can be suppressed, throughput can be improved.
  • FIG. 2 is a schematic block diagram showing the configuration of the transmission device 200 according to the second embodiment of the present invention.
  • 201-N (where N is the number of code multiplexes), code multiplex unit 202, interleaver unit 203, IFFT (Inverse Fast Fourier Transform: reverse high speed) Fourier transform) unit 204, pilot signal generation unit 205, multiplexing unit 206, GI (Guard Interval) insertion unit 207, radio transmission unit 208, antenna 209, radio reception unit 210, separation unit 211, retransmission control unit 212, A retransmission control signal generation unit 213 is provided.
  • Each of the code channel signal generation units 201-1,..., 201-N includes an encoding unit 214, a rate matching unit 215, a modulation unit 216, a spreading unit 217, and an encoded bit storage unit 218.
  • Each of the code channel signal generation units 201-1,..., 201-N (also referred to as a transmission signal generation unit) generates a data signal for each code channel from information bits (transmission data).
  • the encoding unit 214 performs channel encoding processing on the information bit sequence, and outputs the encoded bit sequence to the rate matching unit 215 and the encoded bit storage unit 218.
  • channel coding it is preferable to use coding having error correction capability such as convolution coding and Reed-Solomon coding. More preferably, encoding having high error correction capability such as turbo encoding or LDPC (Low Density Parity Check) encoding is used.
  • the rate matching unit 215 punctures the encoded bits output from the encoding unit 214 or the encoded bits output from the encoded bit storage unit 218 according to the number of retransmissions output from the retransmission control unit 212 ( Bit removal), bit padding (bit insertion) or bit repetition (bit repetition) processing is performed. Note that the rate matching unit 215 may further perform bit interleaving processing. An example of puncturing will be described later as an example of rate matching.
  • the coded bit storage unit 218 (also referred to as a transmission data storage unit) stores a coded bit sequence that is an output of the coding unit 214. Further, the stored encoded bit sequence is deleted based on the control of retransmission control section 212. Details of these processes will be described later. Note that the encoded bit storage unit 218 may store information bits themselves instead of the output of the encoding unit 214.
  • Modulation section 216 performs modulation processing on the coded bit (punctured coded bit) sequence output from rate matching section 215 and outputs the modulated symbol sequence to spreading section 217.
  • the modulation unit 216 can use a modulation scheme such as PSK (Phase Shift Keying) or QAM (Quadrature Amplitude Modulation). More preferably, the modulation unit 216 uses a modulation scheme according to the propagation path between the transmission device 200 and the reception device 300.
  • the code multiplexing unit 202 multiplexes the data signal for each code channel, which is the output of the code channel signal generation units 201-1,.
  • the interleaver unit 203 performs interleaving processing such as chip interleaving and symbol interleaving on the signal output from the code multiplexing unit 202.
  • the IFFT unit 204 performs IFFT processing on the signals arranged in the frequency direction, thereby converting the signals into a time domain signal and outputs the signals to the multiplexing unit 206.
  • Pilot signal generation section 205 generates a pilot signal for use in propagation path estimation in the receiving apparatus, and outputs the pilot signal to multiplexing section 206.
  • the retransmission control signal generation unit 213 generates a signal (retransmission control signal) for notifying the reception device of the number of retransmissions of the signal of each code channel notified from the retransmission control unit 212 and outputs the signal to the multiplexing unit 206.
  • Multiplexing section 206 multiplexes the data signal output from IFFT section 204, the pilot signal output from pilot signal generation section 205, and the retransmission control signal output from retransmission control signal generation section 214, and the GI insertion section It outputs to 207.
  • the signal output from the multiplexing unit 206 is added with a guard interval in the GI insertion unit 207, and is wirelessly transmitted from the wireless transmission unit 208 (also referred to as a transmission unit) to the reception device 300 via the antenna 209.
  • the rate matching unit 215 Based on the control of the retransmission control unit 212, the rate matching unit 215 performs puncture processing on the encoded bits that are output from the encoding unit 214 or the encoded bits that are output from the encoded bit storage unit 218. And the like are output to the modulation unit 216.
  • the rate matching unit 215 has a different puncture pattern applied to the encoded bits that are output from the encoding unit 215 and a puncture pattern that is applied to the encoded bits that are output from the encoded bit storage unit 218. Puncture like so. More preferably, a pattern that does not remove information bits is used as a puncture pattern that is applied to encoded bits that are output from the encoding unit 214.
  • the puncture pattern applied to the encoded bit that is output from the encoded bit storage unit 220 does not remove the bits removed in the puncture pattern applied to the encoded bit that is output from the encoding unit 215.
  • Use a pattern Here, the case where the bits are always removed has been described, but the bits need not necessarily be removed. That is, a puncture pattern that does not remove bits may be used.
  • FIG. 3 is a schematic block diagram showing the configuration of the receiving device 300 according to the second embodiment of the present invention.
  • the receiving apparatus 300 includes an antenna 301, a radio reception unit 302, a separation unit 303, a propagation channel estimation unit 304, a propagation channel estimation value storage unit 305, a GI removal unit 306, an FFT unit 307, a reception signal storage unit 308, and a reception packet management unit. 309, interference canceller section 310, code channel replica generation section 311-1, ..., 311-N, bit LLR (Log Likelihood Ratio) storage section 312, success / failure information signal generation section 313, multiplexing section 314
  • the wireless transmission unit 315 is provided.
  • the propagation path estimation unit 304,..., The bit LLR storage unit 312 are collectively referred to as a data signal detection unit.
  • the code channel replica generation units 311-1 to 311-N include a symbol replica generation unit 316 and a spreading unit 317, respectively.
  • a signal received by a radio reception unit 302 (also referred to as a reception unit) via an antenna 301 is separated into a pilot signal, a retransmission control information signal, and a data signal by a separation unit 303.
  • the propagation path estimation unit 304 estimates the propagation path characteristics between the transmission device 200 and the reception device 300 using the pilot signal separated in the separation unit 303, and transmits the propagation path estimation value to the propagation path estimation value storage unit 305. Output to the interference canceller 310.
  • the propagation path estimated value storage unit 305 stores the propagation path estimated value that is the output of the propagation path estimation unit 304.
  • the GI removal unit 306 removes the guard interval from the data signal separated by the separation unit 303 and outputs the guard interval to the FFT unit 307.
  • the FFT unit 307 converts the time domain signal into a frequency domain signal by performing FFT processing on the output signal of the GI removal unit 306, and outputs the signal to the reception signal storage unit 308 and the interference canceller 310.
  • the reception signal storage unit 308 stores a frequency domain signal that is an output of the FFT unit 307.
  • the reception packet management unit 309 includes an interference canceller unit 310, a bit LLR storage unit 312, and a reception signal storage unit.
  • Various instructions are output to the propagation path estimated value storage unit 305.
  • the received packet management unit 309 instructs the success / failure information signal generation unit 313 to generate a success / failure information signal. The detailed operation of the received packet management unit 309 will be described later.
  • the interference canceller unit 310 detects an information bit sequence from the signal output from the FFT unit 307 while referring to the channel estimation value output from the channel estimation unit 304 based on the instruction of the received packet management unit 309. Further, the interference canceller unit 310 outputs the encoded bit LLR and the success / failure information. When the bit LLR is output from the bit LLR storage unit 312, the interference canceller unit 310 outputs the bit LLR and the propagation path estimated value storage unit 305 from the reception signal output from the reception signal storage unit 308. Information bits are detected using the propagation path estimation value. A detailed example of the operation of the interference canceller unit 310 will be described later.
  • Code channel replica generation unit 311-1, ⁇ , 311-N (also referred to as data signal replica generation unit) generates a replica of the code channels corresponding to spreading codes C 1, ⁇ , C N.
  • the symbol replica generation unit 316 generates a symbol replica based on the coded bit LLR output from the interference canceller unit 310 and outputs the symbol replica to the spreading unit 317.
  • the symbol replica output from the symbol replica generation unit 316 is duplicated by the spreading unit 318 by the spreading factor, multiplied by spreading codes C 1 ,..., C N in each code channel, and the code channel replica (data signal) Replica) is generated.
  • the bit LLR storage unit 312 stores the bit LLR output from the interference canceller unit 310 based on an instruction from the received packet management unit 309. If the retransmission packet is multiplexed with the received signal, the stored bit LLR is output to the interference canceller unit 310, and the bit LLR output from the interference canceller unit 310 is stored again. That is, the bit LLR storage unit 312 replaces the stored bit LLR with the newly output bit LLR.
  • the success / failure information signal generation unit 313 generates a success / failure information signal based on an instruction from the received packet management unit (also referred to as a selection unit) 309 and outputs the success / failure information signal to the multiplexing unit 314.
  • the multiplexing unit 314 multiplexes the success / failure information signal output from the success / failure information signal generation unit 313 and the uplink data signal, and outputs the multiplexed data signal to the radio transmission unit 315.
  • the output signal is transmitted from the wireless transmission unit 315 (also referred to as a report transmission unit) to the transmission device 200 via the antenna 301.
  • FIG. 4 is a schematic block diagram illustrating a configuration of the interference canceller unit 310 of the reception device 300 according to the second embodiment of the present invention.
  • the interference canceller unit 310 includes a propagation path compensation unit 401, a deinterleaver unit 402, a code separation unit 403, an MCI replica generation unit 404, and a subtraction unit (also referred to as interference removal unit) 405.
  • the code separation unit 403 includes a despreading unit 406, a demodulating unit 407, a rate matching unit 408, a combining unit 409, and a decoding unit (also referred to as a determining unit) 410.
  • the MCI replica generation unit 404 (also referred to as an interference signal replica generation unit) includes code channel replicas S r1 ,..., S r output from the code channel replica generation units 311-1,. , N , and MCI replica (interference replica) based on code channel replicas other than Sr and k and the channel estimation value output from channel estimation unit 304 (or channel estimation value storage unit 305). ) And output to the subtraction unit 405.
  • FIG. 5 is a schematic block diagram showing the configuration of the MCI replica generation unit 404 of the interference canceller unit 310 according to the second embodiment of the present invention.
  • the code channel replica input to the MCI replica generation unit 404 is multiplexed by the code multiplexing unit 501 and interleaved by the interleaver unit 502.
  • the transfer function multiplication unit 503 multiplies the transfer function calculated from the propagation path estimated value by the interpolation method (or the propagation path estimated value itself) to generate an MCI replica.
  • the interleaver unit 502 performs the same processing as the interleaver unit 203 (FIG. 2), and thus can be realized by a similar circuit.
  • the MCI replica generation unit 404 does not need to generate an MCI replica.
  • the subtraction unit 405 subtracts the MCI replica from the output of the FFT unit 307 (or the received signal storage unit 308), and outputs the result to the propagation path compensation unit 401.
  • the propagation path compensation unit 401 performs propagation path compensation on the output of the subtraction unit 405 based on the propagation path estimation value that is the output of the propagation path estimation unit 304 (or the propagation path estimation value storage unit 305), and performs deinterlacing.
  • the data is output to the leaver unit 402. Specifically, the propagation path compensation unit 401 performs a process for returning the phase rotation caused by the influence of the propagation path.
  • the channel compensator 401 calculates an MRC (Maximum Ratio Combining) weight, an ORC (Orthogonal Restoring Combining) weight, or an MMSE (Minimum Mean Squared Error) from the channel estimation value. Error) Weight is calculated, and the calculated weight is multiplied by the output of the subtracting unit 405.
  • MRC Maximum Ratio Combining
  • ORC Orthogonal Restoring Combining
  • MMSE Minimum Mean Squared Error
  • the deinterleaver unit 402 performs deinterleave processing on the output from the propagation path compensation unit 401 and outputs the result to the despreading unit 406.
  • This deinterleaving process is preferably rearrangement that restores the order rearranged by the interleaving process in the interleaver unit 203.
  • the despreading unit 406 performs a despreading process using the spreading code C k , extracts a code channel signal corresponding to C k , and outputs the despread signal to the demodulation unit 407.
  • Demodulation section 407 performs demodulation processing on the despread modulation symbol sequence that is the output signal from despreading section 406, extracts a bit-by-bit signal, and outputs it to rate matching section 408.
  • the demodulator 407 preferably outputs a log likelihood ratio (LLR) for each bit. Therefore, a case where a bit LLR (LLR for each bit) is output as a demodulation result in the demodulation unit 407 will be described below.
  • the propagation path compensation unit 401, the demodulation unit 407, and the rate match unit 408 may be collectively referred to as a demodulation unit.
  • bit sequence when the received signal S ′ is transmitted is b 0 , b 1 (b 0 , b 1 is 1 or ⁇ 1)
  • the transmission signal S obtained by QPSK modulation of the bit sequences b 0 , b 1 is It can be expressed as equation (1).
  • Equation (2) a bit LLR of b 0 ⁇ 1 (b 0) becomes Equation (2).
  • the bit LLR of b 1 is obtained by exchanging the real part and the imaginary part of Equation (2).
  • Re (x) represents the real part of the complex number x
  • is a value serving as a reference for the equivalent amplitude of the received signal, that is, the amplitude of the received signal.
  • the symbol replica S r ′ may be calculated by Expression (3).
  • bit LLRs constituting the symbol replica S r ′ are ⁇ 2 (b 0 ) and ⁇ 2 (b 1 ).
  • ⁇ 2 () is the output of the demodulator 407.
  • the rate matching unit 408 performs processing reverse to the puncturing (bit removal), bit padding (bit insertion), or bit repetition (bit repetition) processing performed in the rate matching unit 215 in the transmission apparatus 200. That is, bit puncturing (bit LLR insertion) processing is performed on the punctured bits, bit removal processing is performed on bits padded (bit insertion), and bit repetition (bit repetition) is performed. Bit LLR synthesis is performed on the generated bits.
  • the synthesis unit 409 outputs the bit LLR that is the output of the rate matching unit 408 as it is.
  • the bit LLR stored in the bit LLR storage unit 312 (the bit LLR in the corresponding initial transmission packet) and the bit LLR output from the rate matching unit 408 are combined and output. To do.
  • the bit LLR output from the combining unit 409 is input to the decoding unit 410. If the packet is a retransmission packet, the output bit LLR is sent to the bit LLR storage unit 312 and overwritten.
  • the propagation path compensation unit 401, the demodulation unit 407, the rate matching unit 408, and the synthesis unit 409 are collectively referred to as a signal synthesis unit.
  • the decoding unit 410 performs a decoding process using the bit LLR output from the synthesis unit 409, information bit that is a decoding result, success / failure information indicating whether the information bit includes an error, encoded bit LLR, Is output. If an error is included, the encoded bit LLR may be output without outputting the information bit, and if there is no error, the information bit may be output without outputting the encoded bit LLR.
  • a CRC Cyclic Redundancy Check
  • error detection may be performed on the reception side.
  • a signal transmitted from receiving apparatus 300 is received by radio reception section 210 (also referred to as report reception section) via antenna 209 and output to separation section 211.
  • the separation unit 211 separates the uplink data multiplexed on the reception signal and the success / failure information.
  • the retransmission control unit 212 makes preparations to transmit a retransmission packet (retransmission data signal) based on the success / failure information separated from the uplink data by the separation unit 211.
  • the retransmission control unit 212 instructs the encoded bit storage unit 218 to output the encoded bit sequence corresponding to the packet for which the NACK is returned. To do. Further, the rate matching unit 215 is instructed to perform rate matching processing on the encoded bit sequence output from the encoded bit storage unit 218.
  • the rate matching process may be the same as that at the time of initial transmission, but it is preferable to change the rate matching process according to the number of retransmissions. Furthermore, the retransmission control unit 212 notifies the retransmission control signal generation unit 213 of information indicating the number of retransmissions of the packet to be multiplexed, and the retransmission control signal generation unit 213 generates a signal (retransmission control signal) indicating this information and multiplexes it. To the unit 206.
  • the information indicating the number of retransmissions of the multiplexed packet is preferably information indicating the number of times itself, but may be information obtained by processing the number of retransmissions such as information indicating whether the transmission is initial transmission or retransmission.
  • the success / failure information is information (ACK) indicating successful reception
  • the retransmission control unit 212 stores the encoded bit sequence corresponding to the packet for which the ACK is returned to the encoded bit storage unit 218. To release.
  • the retransmission control unit 212 instructs the coded bit storage unit 218 to output the coded bit sequence corresponding to the packet for which NACK is returned, but not all the packets for which NACK is returned. Instruct to select a part of the packets and perform retransmission. At this time, the following method can be used as a method of selecting some packets.
  • Transmission data included in each packet is sequentially transmitted from an upper layer. By retransmitting in the order sent from the higher layer, the average delay time can be shortened. In order to realize this, the retransmission control unit 212 stores the order in which transmission data included in each packet is transmitted from an upper layer. (2) By preferentially retransmitting packets including information with high importance (short request delay), it is possible to shorten the delay time of packets with high importance. In order to realize this, the retransmission control unit 212 acquires the importance (request delay) of each packet based on the control signal from the upper layer. (3) In the case of incremental redundancy (IR), the larger the initial transmission coding rate, the greater the degree of decrease in the coding rate due to retransmission packet synthesis.
  • IR incremental redundancy
  • the reception device 300 measures the reception quality of each packet, and reports the measurement result to the transmission device 200 via the uplink.
  • the bit LLR stored in the bit storage unit 312 as a demodulation result of the retransmission packet is used in a process of extracting information bits from the initial transmission packet included in the past reception signal including the initial transmission packet corresponding to the retransmission packet.
  • FIG. 6 is a flowchart showing a process of the reception device 300 according to the second embodiment of the present invention.
  • FIG. 6 shows an example of processing for extracting information bits from initial transmission packets included in past received signals including initial transmission packets corresponding to retransmission packets, and control performed by the reception packet management unit 309.
  • a past reception signal including an initial transmission packet corresponding to a retransmission packet is acquired from the reception signal storage unit 308 (step S601), and a propagation path estimation at the time of reception of the reception signal stored in the propagation path estimation value storage unit 305 is obtained.
  • the propagation path compensation unit 401 performs propagation path compensation (step S602). Note that a reception signal that has been subjected to propagation path compensation may be stored. In this case, the propagation path compensation here may not be performed.
  • processing related to the initial transmission packet corresponding to the retransmission packet (steps S603 to S607 in the loop L1) is executed.
  • the channel-compensated signal is processed by the deinterleaver unit 402 and the despreading unit 406, and then demodulated and rate-matched by the demodulating unit 407 and the rate matching unit 408.
  • the LLR is obtained (step S604).
  • the bit encoding LLR obtained in step S604 and the encoded bit LLR of the retransmission packet corresponding to the initial transmission packet are combined by the combining unit 409 (step S605).
  • the decoding unit 410 decodes using the encoded bit LLR obtained by the synthesis (step S606).
  • step S608 to S619 in the loop L2 using a past received signal is performed.
  • the code channel replica generation unit 311 encodes the encoded bit LLR (if it is combined in step S605) Code channel replica of each initial transmission packet is generated from the conversion bit LLR).
  • the second and subsequent detection processing (steps S612 to S618 in the loop L4) is performed for each initial transmission packet included in the past received signal. That is, the code channel replica in the code channel other than the self code channel generated in step S610 is canceled in the subtracting unit 405 (step S613). Then, the channel compensation unit 401 performs channel compensation on the remaining signal (step S614), and the demodulating unit 407 and the rate matching unit 408 perform demodulation and rate matching processing to calculate the encoded bit LLR (step S615).
  • step S616 the calculated encoded bit LLR and the encoded bit LLR of the retransmission packet are combined by the combining unit 409 (step S616).
  • decoding is performed by the decoding unit 410 using the combined encoded bit LLR (step S617), thereby extracting information bits from the initial transmission packet included in the past received signal.
  • the cancellation of the code channel replica in step S613 preferably cancels the replica of the retransmission packet included in the past received signal.
  • the present embodiment is not limited to this, and the present embodiment can also be applied to a system that performs retransmission a plurality of times.
  • FIG. 7 is a timing chart showing a series of processes of detection of received data, report of success / failure information, and retransmission and redetection of received data.
  • the base station transmitting device
  • the terminal receives the signal stores the received signal in which the packets P 1 to P N are multiplexed, and performs interference cancellation processing and data detection processing.
  • the terminal generates a signal including success / failure information (NACK 1 to NACK N ) for reporting to the base station that an error has occurred in the packets P 1 to P N and transmits the signal to the base station via the uplink.
  • NACK 1 to NACK N success / failure information
  • the base station receiving the success or failure information signal selects the packet P 1 from among the packets P 1 ⁇ P N returned an NACK, it generates a retransmission packet P N + 1 for the packet P 1, the other packets of the downlink Multiplex and transmit to the terminal (step S203).
  • the base station generates retransmission packets for some of the packets for which NACK has been returned, and transmits the retransmission packets to the terminal (step S203).
  • the terminal that has received the downlink signal stores the demodulation result of the retransmission packet P N + 1 and uses the demodulation result of the packet P N + 1 and the received signal in which the stored packets P 1 to P N are multiplexed, Interference cancellation processing and data detection processing are performed.
  • an error has occurred in all the packets P 1 to P N will be described.
  • the success / failure information for the initial transmission packet has already been reported from the terminal to the base station, the success / failure information for the second and subsequent times need not necessarily be transmitted.
  • the second and subsequent NACK information is not transmitted. The base station performs processing assuming that NACK is received unless ACK is returned.
  • the base station After a predetermined time has elapsed without receiving success / failure information, the base station generates a second retransmission packet P N + 2 for the packet P 1 , multiplexes it with other downlink packets, and transmits it to the terminal.
  • the terminal that has received the downlink signal combines the demodulation result of the retransmission packet P N + 2 and the stored demodulation result of the packet P N + 1 .
  • interference cancellation processing and data detection processing are performed using the combined result and the received signal in which the stored packets P 1 to P N are multiplexed.
  • a case where there is no error in all the packets P 1 to P N will be described.
  • the terminal generates a signal including success / failure information (ACK 1 to ACK N ) for reporting to the base station that there is no error in the packets P 1 to P N and transmits the signal to the base station via the uplink.
  • the base station that has received ACK 1 to ACK N does not need to perform retransmission corresponding to the packets P 1 to P N thereafter.
  • the error in the packets P 1 to P N is improved, and without performing the retransmission corresponding to the packets P 2 to P N , Data detection in the packets P 1 to P N becomes possible.
  • FIG. 8 is another timing chart showing a series of processes of detection of received data, report of success / failure information, and retransmission and redetection of received data.
  • the base station multiplexes packets P 1 to P N which are initial transmission packets via the downlink and transmits them to the terminal (step S301).
  • the terminal that has received the signal stores the received signal in which the packets P 1 to P N are multiplexed, and performs interference cancellation processing and data detection processing.
  • the terminal generates a signal including success / failure information (NACK 1 to NACK N ) for reporting to the base station that an error has occurred in the packets P 1 to P N and transmits the signal to the base station via the uplink.
  • NACK 1 to NACK N success / failure information
  • the base station receiving the success or failure information signal selects the packet P 1 from among the packets P 1 ⁇ P N returned an NACK, it generates a retransmission packet P N + 1 for the packet P 1, the other packets of the downlink Multiplex and transmit to the terminal (step S303). In this way, the base station generates retransmission packets for some of the packets for which NACK is returned, and transmits the retransmission packets to the terminal.
  • the terminal that has received the downlink signal stores the demodulation result of the retransmission packet P N + 1 and uses the demodulation result of the packet P N + 1 and the received signal in which the stored packets P 1 to P N are multiplexed, Interference cancellation processing and data detection processing are performed.
  • the base station After transmitting a retransmission packet P N + 1 to the terminal, the base station selects a packet P 2 from the packets P 1 to P N without receiving success / failure information, and retransmits the packet P 2 PN + 2 is generated, multiplexed with other downlink packets, and transmitted to the terminal (step S304).
  • the terminal that has received the downlink signal uses the demodulation result of the retransmission packet P N + 2 , the stored packet P N + 1, and the received signal in which the stored packets P 1 to P N are multiplexed to cancel interference. Processing and data detection processing are performed.
  • a case where there is no error in all the packets P 1 to P N will be described.
  • the terminal generates a signal including success / failure information (ACK 1 to ACK N ) for reporting to the base station that there is no error in packets P 1 to P N and transmits the signal to the base station via the uplink (step S305). ).
  • the base station that has received ACK 1 to ACK N does not need to perform retransmission corresponding to the packets P 1 to P N thereafter. Consequently, the packet P N + 1 corresponding to the packet P 1, and the packet P N + 2 corresponding to the packet P 2 by retransmitting the terminal, it is possible to improve the error in the packet P 1 ⁇ P N. Further, it is possible to detect data in the packets P 1 to P N without performing retransmission corresponding to the packets P 3 to P N.
  • a plurality of initial transmission packets are multiplexed and transmitted from the transmission device to the reception device, and data is detected while removing interference (other multiplexed packets) at the reception device.
  • the receiving device fails to detect data
  • the receiving device transmits a retransmission packet from the transmitting device to the receiving device.
  • the transmitting device transmits retransmission packets corresponding to some of the packets to the receiving device.
  • the receiving apparatus detects not only some packets but also other initial transmission packets that failed to be detected at the first time. If the detection is successful, the receiving device transmits information indicating the detection success to the base station. Thereby, since the number of downlink retransmission packets can be suppressed, throughput is improved.
  • FIG. 9 is a timing chart showing a communication method according to the third embodiment of the present invention.
  • the base station transmits a packet P 1 and the packet P 2 is an initial transmission packets over the downlink to the multiplex to the terminal (receiving apparatus) (step S401).
  • the terminal that has received the signal stores the received signal in which the packet P 1 and the packet P 2 are multiplexed, and performs interference cancellation processing and data detection processing.
  • the other multiplexed signal becomes an interference component. That is, the packet P 2 is an interference component for the packet P 1, the packet P 1 is an interference component for the packet P 2.
  • the interference cancellation process is a process of removing an interference component using a signal (replica) obtained by reproducing an interference signal from a received signal.
  • a signal obtained by removing the replica of the packet P 1 from the received signal.
  • the terminal generates a signal including success / failure information (NACK 1 , NACK 2 ) for reporting to the base station that an error has occurred in the packets P 1 and P 2 and transmits the signal to the base station via the uplink.
  • the terminal according to the present embodiment generates NACKs for some of the packets in which errors have occurred and reports them to the base station.
  • a signal including success / failure information (NACK 1 ) of the packet P 1 is generated and transmitted to the base station via the uplink (step S402).
  • the following method can be used as a method of selecting some packets.
  • the delay time of a high importance packet can be shortened.
  • the higher the initial transmission coding rate the greater the degree of decrease in the coding rate due to retransmission packet synthesis. For this reason, the NACK is preferentially returned with respect to a packet with a large coding rate for the initial transmission, so that the coding gain due to retransmission is increased and efficient retransmission can be performed.
  • the average delay time can be shortened by returning NACK preferentially for packets with a small number of retransmissions.
  • the maximum delay time can be shortened by preferentially returning a NACK for a packet with a large number of retransmissions.
  • the base station that has received the success / failure information signal generates a retransmission packet P 3 for the packet P 1 for which the NACK has been returned and transmits it to the terminal (step S403).
  • the terminal that has received the downlink signal demodulates the retransmission packet P N + 1, and uses the demodulation result of the packet P 3 and the received signal in which the stored packets P 1 and P 2 are multiplexed to perform interference cancellation processing. And data detection processing.
  • detection accuracy is improved by removing replicas of other multiplexed packets.
  • the quality (for example, error rate) of the packet P 2 multiplexed on the packet P 1 is improved, and the success / failure result of the packet P 2 is the first.
  • the result of sending may be different.
  • a case where there is no error in both the packet P 1 and the packet P 2 will be described.
  • the terminal generates a signal including success / failure information (ACK 1 , ACK 2 ) for reporting to the base station that there are no errors in the packets P 1 and P 2 , and transmits the signal to the base station via the uplink. .
  • the base station that has received ACK 1 and ACK 2 does not need to perform retransmission corresponding to the packets P 1 and P 2 . Consequently, only returns the NACK corresponding to the packet P 1, by retransmitting the packet P N + 1, to improve the error in both the packet P 1 and the packet P 2, without performing retransmission corresponding to the packet P 2, Data detection in the packets P 1 and P 2 becomes possible.
  • a plurality of initial transmission packets are multiplexed and transmitted from the transmission device to the reception device, and data is detected while removing interference (other multiplexed packets) at the reception device.
  • the transmitting apparatus transmits a retransmission packet to the receiving apparatus using the HARQ scheme.
  • the receiving device fails to detect a plurality of multiplexed initial transmission packets, it reports information indicating detection failure corresponding to some of the packets to the base station.
  • the receiving apparatus detects not only some packets but also other initial transmission packets that failed to be detected at the first time. Thereby, since the number of downlink retransmission packets can be suppressed, throughput can be improved.
  • the receiving apparatus reports information indicating a detection failure corresponding to a part of the packets when the detection of a plurality of multiplexed initial transmission packets fails. If it demonstrates from another viewpoint, a receiving apparatus will select one information from three types as success / failure information regarding each packet, and will report to a base station. That is, the three types of information are ACK, NACK, and no transmission. When data detection is successful, ACK is selected and transmitted to the base station, and when data detection is unsuccessful, either NACK transmission or no transmission is selected. NACK is a signal for failing data detection and requesting retransmission. Non-transmission is a signal indicating a request for data detection failure and retransmission suspension. That is, in the present embodiment, a case has been described in which no data transmission is selected and no transmission is selected as indicating a request to hold retransmission.
  • a signal other than ACK / NACK may be transmitted instead of selecting no transmission as an indication of a request for data retransmission failure and suspension of retransmission.
  • the role of NACK and the role of no transmission in this embodiment may be interchanged. In other words, NACK may indicate that data detection has failed and retransmission is to be suspended, and no transmission may indicate that data detection has failed and retransmission is requested.
  • FIG. 10 is a schematic block diagram showing the configuration of the transmission apparatus 1000 according to the fourth embodiment of the present invention.
  • Transmitting apparatus 1000 includes code channel signal generation sections 1001-1,..., 1001-N (where N is the number of code multiplexing), code multiplexing section 1002, interleaver section 1003, IFFT section 1004, and pilot signal generation section 1005.
  • Each of the code channel signal generation units 1001-1,..., 1001-N includes a coding unit 1014, a rate matching unit 1015, a modulation unit 1016, a spreading unit 1017, and a coded bit storage unit 1018.
  • Each block shown in FIG. 10 can be realized with the same configuration as each block having the same name shown in FIG. 2 except for retransmission control section 1012.
  • FIG. 11 is a schematic block diagram illustrating a configuration of a reception device 1100 according to the fourth embodiment of the present invention.
  • a receiving apparatus 1100 includes an antenna 1101, a radio reception unit 1102, a separation unit 1103, a propagation path estimation unit 1104, a propagation path estimation value storage unit 1105, a GI removal unit 1106, an FFT unit 1107, a received signal storage unit 1108, and a received packet management unit. 1109, an interference canceller unit 1110, a code channel replica generation unit 1111-1,..., 1111-N, a bit LLR storage unit 1112, a success / failure information signal generation unit 1113, a multiplexing unit 1114, and a wireless transmission unit 1115.
  • the propagation path estimation unit 1104,..., The bit LLR storage unit 1112 are collectively referred to as a data signal detection unit.
  • Each of the code channel replica generation units 1111-1 to 1111 -N includes a symbol replica generation unit 1116 and a spreading unit 1117.
  • Each block shown in FIG. 11 can be realized with the same configuration as each block of the same name shown in FIG. 3 except for the received packet management unit 1109.
  • the received packet management unit 1109 and the retransmission control unit 1012 having functions different from those of the second embodiment will be described.
  • the received packet management unit 309 (FIG. 3) in the second embodiment uses the interference canceller unit 310 and the bit based on the retransmission control information signal separated by the separation unit 303 and the success / failure information output from the interference canceller unit 310.
  • Various instructions are given to the LLR storage unit 312, the received signal storage unit 308, and the propagation path estimated value storage unit 305.
  • the received packet management unit 309 in the second embodiment instructs the success / failure information signal generation unit 313 to generate a success / failure information signal.
  • the received packet management unit 1109 (FIG. 11) in the fourth embodiment is based on the retransmission control information signal separated in the separation unit 1103 and the success / failure information output from the interference canceller unit 1110.
  • the received packet management unit 1109 in the fourth embodiment selects a packet that returns NACK from the success / failure information, and instructs the success / failure information signal generation unit 1113 to generate a success / failure information signal based on the selection result.
  • the received packet management unit 1109 instructs the success / failure information signal generation unit 1113 to generate an ACK for a packet for which transmission data has been successfully detected.
  • the received packet management unit 1109 selects a part of the packets for which transmission data detection has failed, and instructs the success / failure information signal generation unit 1113 to generate a NACK for the selected packets. It is good to do so.
  • the following method can be used as a method of selecting some packets.
  • the delay time of a high importance packet can be shortened.
  • the received packet management unit 1109 acquires the importance (request delay) of each packet by a control signal from the upper layer.
  • IR incremental redundancy
  • the higher the initial transmission coding rate the greater the degree of decrease in the coding rate due to retransmission packet synthesis. For this reason, the NACK is preferentially returned with respect to a packet with a large coding rate for the initial transmission, so that the coding gain due to retransmission is increased and efficient retransmission can be performed.
  • the average delay time can be shortened by returning NACK preferentially for packets with a small number of retransmissions.
  • the maximum delay time can be shortened by preferentially returning a NACK for a packet with a large number of retransmissions.
  • the output of the propagation path estimation unit or the demodulation unit is input to the reception packet management unit 1109, and the reception packet management unit 1109 measures the reception power of each packet.
  • the retransmission control unit 212 (FIG. 2) in the second embodiment instructs the coded bit storage unit 218 to output the coded bit sequence corresponding to the packet for which NACK is returned. Then, the retransmission control unit 212 instructs to select some of the packets instead of all the packets that have returned NACK and perform retransmission. On the other hand, the retransmission control unit 1012 in the fourth embodiment instructs the coded bit storage unit 1018 to output the coded bit sequence corresponding to the packet for which NACK is returned. At this time, it may be instructed to retransmit all packets that have returned NACK, or may be instructed to select some of the packets and retransmit, as in the second embodiment. .
  • a plurality of initial transmission packets are multiplexed and transmitted from the transmission apparatus 1000 to the reception apparatus 1100, and interference (other multiplexed packets) is removed in the reception apparatus 1100.
  • Detect data when the receiving apparatus fails to detect data, the transmitting apparatus 1000 transmits a retransmission packet to the receiving apparatus 1100.
  • the receiving apparatus fails to detect a plurality of multiplexed initial transmission packets, information indicating a detection failure corresponding to a part of the packets is reported.
  • the receiving apparatus detects not only some packets but also other initial transmission packets that failed to be detected at the first time. If the detection is successful, the reception device transmits information indicating the detection success to the transmission device. Thereby, since the number of downlink retransmission packets can be suppressed, throughput is improved.
  • FIG. 12 is a schematic block diagram illustrating a configuration of a reception device 1200 according to the fifth embodiment of the present invention.
  • the receiving apparatus 1200 includes an antenna 1201, a radio reception unit 1202, a separation unit 1203, a propagation path estimation unit 1204, a propagation path estimation value storage unit 1205, a GI removal unit 1206, an FFT unit 1207, a received signal storage unit 1208, and a received packet management unit. 1209, an interference canceller unit 1210, a bit LLR storage unit 1212, a success / failure information signal generation unit 1213, a multiplexing unit 1214, and a wireless transmission unit 1215. Since each block other than the interference canceller unit 1210 can use the same block as the block having the same name shown in FIG. 3, processing performed by the interference canceller unit 1210 will be described below.
  • FIG. 13 is a schematic block diagram showing the configuration of the interference canceller unit 1210 of the reception apparatus 1200 according to the fifth embodiment of the present invention.
  • code channel signals corresponding to spreading codes C 1 to C N are sequentially detected in the order of C 1 , C 2 , C 3 ,..., C N.
  • a series of processing in the interference canceller unit 1210 is repeatedly executed. The number of repetitions is one or more.
  • Interference canceller section 1210 includes propagation path compensation sections 1301-1, ..., 1301-N, deinterleaver sections 1302-1, ..., 1302-N, code separation sections 1303-1, ..., 1303. -N, MCI replica generation unit 1304-1, ..., 1304-N, code channel replica generation units 1305-1, 1305-2, ..., 1305-N (not shown), subtraction unit 1306-1, 1306-2,..., 1306-N.
  • the code separation unit 1303-1 includes a despreading unit 1307-1, a demodulation unit 1308-1, a rate matching unit 1309-1, a combining unit 1310-1, and a decoding unit 1311-1.
  • the code separation units 1303-2, ..., 1303-N are also despreading units 1307-2, ..., 1307-N, demodulation units 1308-2, ..., 1308-N, rate matching units 1309-2,..., 1309-N, combining units 1310-2,..., 1310-N, decoding units 1311-2,. .
  • each block in the interference canceller unit 1210 performs the same processing as each block of the same name in the interference canceller unit 310 shown in FIG.
  • the code channel replica generation units 1305-1 to 1305-N perform the same processing as the code channel replica generation unit 311 in the reception apparatus 300. Therefore, here, the difference between the processing of the interference canceller unit 1210 and the processing of the interference canceller unit 310 will be described.
  • the interference canceller unit 310 detects the signal of each code channel corresponding to C 1 to C N and the code channel replica generation unit 311 generates each code channel replica corresponding to C 1 to C N. To do. The generated code channel replica is used for interference cancellation at the next iteration in the interference canceller unit 310.
  • the interference canceller unit 1210 in this embodiment includes a code channel replica generation unit 1305. Interference canceller section 1210 generates or updates a code channel replica in code channel replica generation section 1305 every time signal detection of any code channel corresponding to C 1 to C N is completed. Then, the interference canceller unit 1210 uses the generated or updated code channel replica to remove interference in the code channel to be detected next.
  • the code channel replica is updated after the signals of all the code channels C 1 to C N are detected.
  • the code channel replica is updated after the signal of one code channel is detected. Therefore, a highly accurate code channel replica can be generated.
  • a plurality of initial transmission packets are multiplexed and transmitted from the transmission device to the reception device 1200.
  • the receiving apparatus 1200 detects data while removing interference (other multiplexed packets).
  • data detection fails, a retransmission packet is transmitted from the transmission device to the reception device 1200.
  • the transmitting device transmits retransmission packets corresponding to some of the packets to the receiving device.
  • the receiving apparatus detects not only some packets but also other initial transmission packets that failed to be detected at the first time. If the detection is successful, the reception device transmits information indicating the detection success to the transmission device as the base station. Thereby, since the number of downlink retransmission packets can be suppressed, throughput is improved.
  • FIG. 14 is a schematic block diagram showing a configuration of a transmission device 1400 according to the sixth embodiment of the present invention.
  • Transmitter 1400 includes stream signal generators 1401-1,..., 1401-N (where N is the number of streams), antennas 1409-1,..., 1409-N, radio receiver 1410, and separator 1411.
  • the stream signal generation units 1401-1,..., 1401-N are respectively a coding unit 1414, a rate matching unit 1415, a modulation unit 1416, an interleaver unit 1403, an IFFT unit 1404, a pilot signal generation unit 1405, a multiplexing unit 1406, A GI insertion unit 1407, a wireless transmission unit 1408, and a coded bit storage unit 1418 are provided.
  • Stream signal generators 1401-1,..., 1401-N generate a transmission data signal for each stream from the information bits.
  • the encoding unit 1414 performs channel encoding processing on the information bit sequence, and outputs the encoded bit sequence to the rate matching unit 1415 and the encoded bit storage unit 1418.
  • channel coding it is preferable to use coding having error correction capability such as convolution coding and Reed-Solomon coding. More preferably, coding having high error correction capability such as turbo coding and LDPC coding is used.
  • the rate matching unit 1415 punctures the encoded bits output from the encoding unit 1414 or the encoded bits output from the encoded bit storage unit 1418 according to the number of retransmissions output from the retransmission control unit 1412 ( Bit removal), bit padding (bit insertion) or bit repetition (bit repetition) processing is performed.
  • the rate matching unit 1415 may further perform bit interleaving processing. An example of puncturing will be described later as an example of rate matching.
  • the coded bit storage unit 1418 stores a coded bit sequence that is an output of the coding unit 1414. Further, based on the control of retransmission control section 1412, the stored coded bit sequence is erased.
  • Modulation section 1416 performs modulation processing on the encoded bit (punctured encoded bit) sequence output from rate match section 1415 and outputs the modulated symbol sequence to interleaver section 1403. At this time, the modulation unit 1416 can use PSK, QAM, or the like as a modulation method. More preferably, the modulation unit 1416 may use a modulation scheme according to a propagation path between the transmission device 1400 and the reception device 1500.
  • Interleaver section 1403 performs interleaving processing such as symbol interleaving (frequency interleaving) on the signal output from modulation section 1416, and outputs the result to IFFT section 1404.
  • the IFFT unit 1404 performs IFFT processing on the signals arranged in the frequency direction, thereby converting the signals into a time domain signal and outputting the signals to the multiplexing unit 1406.
  • Pilot signal generation section 1405 generates a pilot signal for use in propagation path estimation in the receiving apparatus, and outputs the pilot signal to multiplexing section 1406.
  • the pilot signal generation unit 1405 preferably generates orthogonal pilot signals for each stream.
  • the retransmission control signal generation unit 1413 generates a signal (retransmission control signal) for notifying the reception device of the number of retransmissions of the data signal of each stream notified from the retransmission control unit 1412, and outputs the signal to the multiplexing unit 1406.
  • the retransmission control signal is multiplexed in the stream in the stream signal generation unit 1401-1, but the present invention is not limited to this. It may be multiplexed on any stream (s).
  • Multiplexing section 1406 multiplexes the data signal output from IFFT section 1404, the pilot signal output from pilot signal generation section 1405, and the retransmission control signal output from retransmission control signal generation section 1413, and the GI insertion section 1407 is output.
  • the signal output from multiplexing section 1406 is added with a guard interval in GI insertion section 1407 and transmitted from radio transmission section 1408 to receiving apparatus 300 via antenna 1409-1.
  • the other stream signal generation units 1401-2, ..., 1401-N and the antennas 1409-2, ..., 1409-N perform the same processing as the stream signal generation unit 1401-1 and the antenna 1409-1. Done.
  • FIG. 15 is a schematic block diagram showing a configuration of a receiving device 1500 according to the sixth embodiment of the present invention.
  • Receiving device 1500 includes antennas 1501-1,..., 1501-M (where M is the number of reception antennas), radio reception unit 1503, separation unit 1504, propagation path estimation unit 1505, propagation path estimation value storage unit 1506, GI removal section 1507, FFT section 1508, received signal storage section 1509, received packet management section 1510, interference canceller section 1511, bit LLR storage section 1512, success / failure information signal generation section 1513, multiplexing section 1514, and wireless transmission section 1515 are provided. Yes.
  • the bit LLR storage unit 1512 are collectively referred to as a data signal detection unit.
  • Signals received via the antennas 1501-1 to 1501-M are subjected to reception processing by the per-antenna reception processing units 1502-1, ..., 1502-M.
  • a signal received by radio reception section 1503 (also referred to as a reception section) is separated into pilot signal, retransmission control information signal, and data signal by separation section 1504.
  • Propagation path estimation section 1505 uses the pilot signal separated in demultiplexing section 1504 to propagate the propagation path between each antenna 1409-1, ..., 1409-N of transmission apparatus 1400 and antenna 1501 of reception apparatus 1500.
  • the characteristics are estimated, and the channel estimation value is output to the channel estimation value storage unit 1506 and the interference canceller unit 1511.
  • the propagation path estimated value storage unit 1506 stores the propagation path estimated value that is the output of the propagation path estimation unit 1505.
  • the GI removal unit 1507 removes the guard interval from the data signal separated by the separation unit 1504 and outputs it to the FFT unit 1508.
  • the FFT unit 1508 converts the output signal of the GI removal unit 1507 into a frequency domain signal by performing FFT processing, and outputs the signal to the reception signal storage unit 1509 and the interference canceller unit 1511.
  • the received signal storage unit 1509 stores a frequency domain signal that is an output of the FFT unit 1509.
  • the reception packet management unit 1510 Based on the retransmission control information signal separated by the separation unit 1504 and the success / failure information output from the interference canceller unit 1511, the reception packet management unit 1510 has an interference canceller unit 1511, a bit LLR storage unit 1512, and a reception signal storage unit. 1509, various instructions are output to the propagation path estimated value storage unit 1506.
  • Received packet management section 1510 instructs success / failure information signal generation section 1513 to generate a success / failure information signal. The detailed operation of received packet management unit 1510 will be described
  • the interference canceller unit 1511 receives reception processing units 1502-1,..., 1502 for each antenna while referring to the propagation path estimation value output from the propagation path estimation unit 1504 based on an instruction from the reception packet management unit 1510.
  • the information bit sequence is detected from the signal output from -M, and success / failure information is output. Further, when the bit LLR is output from the bit LLR storage unit 1512, the bit LLR from the reception signal output from the reception signal storage unit 1509 and the propagation path estimation value that is the output of the propagation path estimation value storage unit 1506 Is used to detect information bits.
  • a detailed example of the operation of the interference canceller unit 1511 will be described later.
  • the bit LLR storage unit 1512 stores the bit LLR output from the interference canceller unit 1511 based on an instruction from the received packet management unit 1510. If a retransmission packet is multiplexed on the received signal, the stored bit LLR is output to the interference canceller unit 1511, and the bit LLR output from the interference canceller unit 1511 is stored again. That is, the bit LLR storage unit 1512 replaces the stored bit LLR with the newly output bit LLR.
  • the success / failure information signal generation unit 1513 generates a success / failure information signal based on an instruction from the received packet management unit 1510 and outputs the success / failure information signal to the multiplexing unit 1514.
  • the multiplexing unit 1514 multiplexes the success / failure information signal that is the output of the success / failure information signal generation unit 1513 and the uplink data signal, and outputs the multiplexed data signal to the radio transmission unit 1515.
  • the output signal is transmitted from the wireless transmission unit 1515 (also referred to as a report transmission unit) to the transmission device 1400 via the antenna 1501. Note that, here, a case where an uplink signal is transmitted from only the antenna 1501-1 will be described, but the present invention is not limited to this, and transmission may be performed using a plurality of antennas.
  • FIG. 16 is a schematic block diagram showing the configuration of the interference canceller unit 1511 of the receiving apparatus 1500 according to the sixth embodiment of the present invention.
  • a series of processing in the interference canceller unit 1511 is repeatedly executed except when all information bits can be detected without error for the first time.
  • Interference canceller 1511 includes stream detectors 1601-1, 1601-2,..., 1601-N, received replica generators 1602-1, 1602-2, 1602-3,. , 1603-N and symbol replica generation units 1604-1, 1604-2,..., 1604-N (not shown).
  • the stream detection unit 1601-1 includes a MIMO separation unit 1605-1 (also referred to as a stream separation unit), a deinterleaver unit 1606-1, a demodulation unit 1607-1, a rate matching unit 1608-1, a synthesis unit 1609-1, a decoding unit Part 1610-1.
  • the stream detection units 1601-2, ..., 1601-N also have MIMO separation units 1605-2, ..., 1605-N, deinterleaver units 1606-2, ... 1606-N, demodulator 1607-2, ..., 1607-N, rate match 1608-2, ..., 1608-N, combiner 1609-2, ..., 1609-N, Decoding sections 1610-2,..., 1610-N are provided.
  • Reception replica generation unit 1602-1, ..., (also referred to as interference signal replica generation unit) 1602-N the symbol output from the symbol replica generation unit 1604-1, ... 1604-N channel replica S r, 1 ... a stream based on symbol replicas other than S r and k in S r and N and the propagation path estimation value output from propagation path estimation section 1505 (or propagation path estimation value storage section 1506) Replicas (interference replicas) are generated and output to the subtracting units 1603-1, ..., 1603-N. Note that at the first time, the reception replica generation units 1602-1 to 1602-N do not need to generate reception replicas. In addition, the symbol replica that is generated or updated last is used for each symbol replica during the repetition.
  • Subtractors 1603-1,..., 1603-N subtract the stream replica from the output of FFT unit 1508 (or received signal storage unit 1509).
  • MIMO separation units 1605-1,..., 1605-N based on the propagation path estimation value output from propagation path estimation unit 1505 (or propagation path estimation value storage unit 1506), subtraction units 1603-1,. .., 1603-N is subjected to MIMO stream separation and output to deinterleaver units 1601-1,..., 1601-N.
  • MIMO separation sections 1605-1, ..., 1605-N reproduce the stream data signal by maximum likelihood estimation.
  • the MIMO separation units 1605-1, ..., 1605-N calculate MMSE weights for the outputs of the subtraction units 1603-1, ..., 1603-N, and the calculated weights are subtracted by the subtraction units 1603-1, ..., a separation method such as multiplying the output of 1603-N is used.
  • the deinterleavers 1606-1,..., 1606-N perform deinterleave processing on the outputs from the MIMO demultiplexers 1605-1,. This deinterleaving process is preferably rearrangement that restores the order rearranged by the interleaving process in the interleaver unit 1403.
  • Demodulation units 1607-1,..., 1607-N perform demodulation processing on the modulation symbol sequence that is an output signal from deinterleaver units 1606-1,. The signal is extracted and output to rate matching sections 1608-1, ..., 1608-N.
  • the demodulating units 1607-1,..., 1607-N preferably output a log likelihood ratio (LLR) for each bit.
  • LLR log likelihood ratio
  • Rate matching units 1608-1,..., 1608-N perform puncturing (bit removal), bit padding (bit insertion), or bit repetition (bit repetition) performed in rate matching unit 1415 in transmission apparatus 1400.
  • the reverse process is performed. That is, the rate matching units 1608-1,..., 1608-N perform bit depuncturing (bit LLR insertion) processing on the punctured bits, and convert the bit padding (bit insertion) into bits. Bit removal processing is performed on the bit, and bit LLR synthesis is performed on the bit repeated (bit repetition).
  • the combining units 1609-1,..., 1609-N directly use the bit LLR output from the rate match units 1608-1,. Output.
  • the combining units 1609-1,..., 1609-N and the bit LLR stored in the bit LLR storage unit 1412 (the bit LLR in the corresponding initial transmission packet)
  • the bit LLR that is the output of the rate matching units 1608-1 are input to the decoding units 1610-1,.
  • the output bit LLR is sent to the bit LLR storage unit 1412.
  • the MIMO separation unit, deinterleaver unit, demodulation unit, rate matching unit, and synthesis unit are collectively referred to as a signal synthesis unit.
  • a signal transmitted from receiving apparatus 1500 is received by radio receiving section 1410 (also referred to as a report receiving section) via antennas 1409-1, ..., 1409-N.
  • radio receiving section 1410 also referred to as a report receiving section
  • antennas 1409-1, ..., 1409-N Note that although a configuration for receiving via only the antenna 1409-1 will be described here, the present invention is not limited to this. You may receive a signal via any antenna (s).
  • the separation unit 1411 separates the uplink data multiplexed on the received signal and the success / failure information.
  • the retransmission control unit 1412 prepares to transmit a retransmission packet (retransmission data signal) based on the success / failure information separated from the uplink data by the separation unit 1411.
  • the success / failure information is information (NACK) indicating reception failure
  • the retransmission control unit 1412 outputs to the encoded bit storage unit 1418 an encoded bit sequence corresponding to the packet for which NACK is returned. Instruct.
  • the following method can be used as a method of selecting some packets.
  • Transmission data included in each packet is sequentially transmitted from an upper layer. By retransmitting in the order sent from the higher layer, the average delay time can be shortened. (2) By preferentially retransmitting packets including information with high importance (short request delay), it is possible to shorten the delay time of packets with high importance. (3) In the case of incremental redundancy (IR), the larger the initial transmission coding rate, the greater the degree of decrease in the coding rate due to retransmission packet synthesis. Therefore, by preferentially retransmitting a packet with a large coding rate for initial transmission, the coding gain due to retransmission is increased, and efficient retransmission can be performed.
  • IR incremental redundancy
  • the average delay time can be shortened by preferentially retransmitting a packet with a small number of retransmissions.
  • the maximum delay time can be shortened by preferentially retransmitting a packet having a large number of retransmissions.
  • retransmission control section 1412 instructs rate matching section 1415 to perform rate matching processing on the encoded bit sequence output from encoded bit storage section 1418.
  • the rate matching process may be the same as that at the time of initial transmission, but it is preferable to change the rate matching process according to the number of retransmissions.
  • the retransmission control unit 1412 notifies the retransmission control signal generation unit 1413 of information indicating the number of retransmissions of the multiplexed packet. Then, retransmission control signal generation section 1413 generates a signal indicating this information (retransmission control signal) and outputs the signal to multiplexing section 1406.
  • the information indicating the number of retransmissions of the multiplexed packet is preferably information indicating the number of times itself, but may be information obtained by processing the number of retransmissions such as information indicating whether the transmission is the initial transmission or the retransmission.
  • the success / failure information is information (ACK) indicating successful reception
  • the retransmission control unit 1412 stores, in the encoded bit storage unit 1418, the encoded bit sequence corresponding to the packet for which ACK is returned. To release.
  • FIG. 17 is a flowchart showing processing of the receiving device 1500 according to the sixth embodiment of the present invention.
  • FIG. 17 illustrates an example of processing for extracting information bits from initial transmission packets included in past received signals including initial transmission packets corresponding to retransmission packets, and control performed by the reception packet management unit 1510.
  • a past reception signal including an initial transmission packet corresponding to a retransmission packet is acquired from the reception signal storage unit 1409 (step S1701).
  • steps S1702 to S1711) in a loop (loop L5) relating to the initial transmission packet corresponding to the retransmission packet are executed.
  • step S1703 to S1710 in the loop detection of transmission data and removal of interference in the data signal including the next transmission data are repeatedly performed (steps S1703 to S1710 in the loop (loop L6)).
  • the initial transmission packet is first subjected to MIMO stream separation by the MIMO separation unit 1704 using the propagation channel estimation value at the time of reception of the received signal stored in the propagation channel estimation value storage unit 1406 (step S1704).
  • the MIMO-separated signal is processed by the deinterleaver unit 1606, and then demodulated and rate-matched by the demodulating unit 1607 and the rate matching unit 1608 to obtain the coded bit LLR (step S1705).
  • the combining unit 1609 combines the bit encoded LLR obtained in step S1705 and the encoded bit LLR of the retransmission packet corresponding to the initial transmission packet (step S1706). Then, the decoding unit 1610 decodes using the encoded bit LLR obtained by the synthesis (step S1706). Furthermore, a stream replica is generated by the processing of the symbol replica generation unit 1604 and the reception replica generation unit 1602 using the encoded bit LLR that is the output of the decoding unit 1610 (step S1708). Then, the subtraction unit 1603 performs subtraction to remove interference (step S1709). However, it is preferable that the cancellation of the stream replica in step S1709 also cancels the replica of the retransmission packet included in the past received signal.
  • HARQ processing similar to that in the fourth embodiment can be performed.
  • the case of performing the process of the first embodiment has been described.
  • the process of the second embodiment may be performed as in the fourth embodiment.
  • a plurality of initial transmission packets are multiplexed and transmitted from the transmission device to the reception device, and data is detected while removing interference (other multiplexed packets) at the reception device.
  • the receiving device fails to detect data
  • the receiving device transmits a retransmission packet from the transmitting device to the receiving device.
  • the transmitting device transmits retransmission packets corresponding to some of the packets to the receiving device.
  • the receiving apparatus detects not only some packets but also other initial transmission packets that failed to be detected at the first time. If the detection is successful, the reception device transmits information indicating the detection success to the transmission device. Thereby, since the number of downlink retransmission packets can be suppressed, throughput is improved.
  • the encoded bit LLR which is the output of the decoding unit
  • a replica of the data signal that has been successfully detected for transmission data is generated using information bits that are output from the decoding unit. Thereby, the accuracy of replica generation can be improved.
  • the present embodiment can also be applied to ARQ (when the initial transmission packet and the retransmission packet are not combined).
  • a symbol replica is generated using the decoding result (or demodulation result) of the retransmission packet
  • the interference signal replica is generated using the symbol replica and the propagation path estimation result at the initial transmission. Should be generated.
  • the transmission packet detection accuracy of the retransmission packet is better than the initial transmission packet, such as better propagation path characteristics during retransmission packet transmission than the initial transmission packet, or retransmission packet being transmitted at a lower transmission rate. If it is better than that, an effect can be obtained.
  • a program for realizing the functions of each unit of the transmission device and each unit of the reception device is recorded on a computer-readable recording medium, and the program recorded on the recording medium is stored in the computer system. Control of the transmitting device and the receiving device may be performed by reading and executing.
  • the “computer system” includes an OS and hardware such as peripheral devices.
  • the “computer-readable recording medium” means a storage device such as a flexible disk, a magneto-optical disk, a portable medium such as a ROM and a CD-ROM, and a hard disk incorporated in a computer system.
  • the “computer-readable recording medium” is a medium that dynamically holds a program for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line, In this case, it also includes those that hold a program for a certain period of time, such as a volatile memory inside a computer system serving as a server or client.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
  • the present invention can be applied to a transmission apparatus, a reception apparatus, a communication system, a communication method, and the like that can suppress the number of downlink retransmission packets from the transmission apparatus to the reception apparatus and improve throughput.

Abstract

 送信装置と通信する受信装置であって、複数のデータ信号が多重された信号を送信装置から受信する受信部と、受信部で受信した受信信号から、複数のデータ信号に含まれる送信データを検出し、検出した送信データと、各々のデータ信号毎の送信データ検出の成否を出力するデータ信号検出部と、多重された複数のデータ信号のうち送信データ検出に失敗したデータ信号の中から一部のデータ信号を選択する選択部と、送信データ検出に成功したデータ信号と選択したデータ信号とにおける成否情報を生成する成否情報信号生成部と、成否情報を送信装置に報告する報告送信部とを備える。

Description

送信装置、受信装置、通信システム及び通信方法
 本発明は、送信装置、受信装置、通信システム及び通信方法に関する。
 本願は、2008年2月21日に、日本に出願された特願2008-040229号に基づき優先権を主張し、その内容をここに援用する。
 マルチキャリア伝送では、送信装置においてガードインターバル(GI:Guard Interval)区間を付加することによって、マルチパス干渉の影響を低減する。マルチキャリア伝送方式としては、OFDM(Orthogonal Frequency Division Multiplexing:直交周波数分割多重)、OFDMA(Orthogonal Frequency Division Multiple Access:直交周波数分割多元接続)などがある。
 これらのアクセス方式において、ガードインターバル区間を越える到来波が存在すると、シンボル間干渉(ISI:Inter Symbol Interference)や、キャリア間干渉(ICI:Inter Carrier Interference)が生じる。シンボル間干渉(ISI)は、前のシンボルがFFT(Fast Fourier Transform:高速フーリエ変換)区間に入り込むことにより生じる。また、キャリア間干渉(ICI)は、高速フーリエ変換区間にシンボルの切れ目、つまり信号の不連続区間が入ることによって生じる。
 ガードインターバル(GI)を超える到来波が存在する場合において、シンボル間干渉(ISI)、キャリア間干渉(ICI)による特性劣化を改善するための一手法が以下の特許文献1で提案されている。この従来技術では、一度、復調動作を行った後、誤り訂正結果(MAP復号器の出力)を利用し、シンボル間干渉(ISI)成分や、キャリア間干渉(ICI)成分を含む所望以外のサブキャリアの複製信号(レプリカ信号)を作成する。そして、作成した複製信号を、受信信号から除去した信号に対し、再度、復調動作を行うことにより、シンボル間干渉(ISI)や、キャリア間干渉(ICI)により特性が低下することを防いでいる。
 マルチキャリア伝送方式と、CDM(Code Division Multiplexing:符号分割多重)方式を組み合わせた方式として、MC-CDM(Multi Carrier-Code Division Multiplexing:マルチキャリア符号分割多重)方式、MC-CDMA(Multi Carrier-Code Division Multiple Access:マルチキャリア符号分割多元接続)、Spread-OFCDM(Orthogonal Frequency and Code Division Multiplexing)などが提案されている。
 これらのアクセス方式では、例えば、Walsh-Hadamard符号等の直交符号を用いた周波数方向拡散によるコード多重が行われた信号が、マルチパス環境を経て受信される。この信号は、直交符号の周期内で周波数変動がある場合、直交符号間の直交性が保たれない。このため、コード間干渉(MCI:Multi Code Interference)が起こり、特性劣化の原因となる。
 符号間の直交性の崩れによる特性劣化を改善するための一手法が、特許文献2及び非特許文献1に記載されている。これらの従来技術では、下りリンクと上りリンクの違いはあるが、双方ともMC-CDM通信時のコード多重によるコード間干渉を取り除くため、誤り訂正後または逆拡散後のデータを用いて、所望コード以外の信号を除去している。そして、これにより、特性の改善を図っている。
 従来技術に共通しているのは、シンボル間干渉(ISI)、キャリア間干渉(ICI)、コード間干渉(MCI)等の干渉をキャンセルするため、受信装置において、受信した信号を復調した後に生成するレプリカ信号に基づいて、干渉信号を生成し、干渉キャンセルを行うことである。さらに、それらの処理を繰返し行うことにより、レプリカ信号の精度を向上させ、精度よく干渉をキャンセルする。
 しかしながら、干渉キャンセラを用いた繰返し処理を行ったとしても、シンボル間干渉(ISI)、キャリア間干渉(ICI)、コード間干渉(MCI)等の干渉が多い場合、干渉を除去しきれず、所望のデータを正常に復調することができず、誤りが生じる。
 一方、誤りに対する制御方法として、自動再送(ARQ:Automatic Repeat reQuest)と、ターボ符号化等の誤り訂正符号とを組み合わせたハイブリッドARQ(HARQ)がある。特に、HARQとして、チェース合成(CC:Chase Combining)と、インクリメンタルリダンダンシ(IR:Incremental Redundancy)とが知られている(非特許文献2、非特許文献3)。例えば、チェース合成を用いるHARQでは、受信パケットに誤りが検出されると、全く同一のパケットの再送を要求する。これらの2つの受信パケットを合成することにより、受信品質を高めることができる。また、インクリメンタルリダンダンシを用いるHARQでは、冗長ビットを分割し、少しずつ順次再送するため、再送回数が増えるにしたがって符号化率を低下させることができ、誤り訂正能力を強くできる。
 しかしながら、HARQを用いる場合、再送パケット数が増加すると、再送パケットによって、リンク容量のオーバヘッドが増加するという問題があった。さらに、再送回数が増加すると、エンドトゥエンドの遅延時間が大きくなるという問題もあった。
 このため、送信装置と受信装置とが通信する際のスループットが低下するという問題があった。
特開2004-221702号公報 特開2005-198223号公報 Y.Zhou、J.Wang、and M.Sawahashi、"Downlink Transmission of Broadband OFCDM Systems-Part I:Hybrid Detection、"IEEE Transaction on Communication、Vol.53、Issue 4、pp.718-729、April 2005. D.Chase、"Code combining-A maximum likelihood decoding approach for combing and arbitrary number of noisy packets、"IEEE Trans.Commun.、vol.COM-33、pp.385-393、May 1985. J.Hagenauer、"Rate-compatible punctured convolutional codes(RCPC codes) and their application、"IEEE Trans.Commun.、vol.36、pp.389-400、April 1988.
 本発明は、上記事情に鑑みてなされたものであり、その目的は、送信装置から受信装置への下りリンクの再送パケット数を抑制し、スループットを向上することができる送信装置、受信装置、通信システム及び通信方法を提供することにある。
(1) 本発明は、上記課題を解決するためになされたもので、本発明の一態様による送信装置は、受信装置と通信する送信装置であって、複数の送信データから複数のデータ信号が多重された信号を生成する送信信号生成部と、前記送信信号生成部で生成した信号を前記受信装置に送信する送信部と、前記受信装置から報告される前記データ信号毎の送信データ検出の成否を示す成否情報を受信する報告受信部とを備え、前記送信信号生成部はさらに、前記成否情報が送信データ検出失敗を示す前記データ信号のうちの一部のデータ信号を選択し、前記選択したデータ信号に対する再送信号を生成し、前記送信部はさらに、前記再送信号を前記受信装置に送信する。
(2) また、本発明の一態様による送信装置の前記送信信号生成部は、各々の前記データ信号に含まれる送信データの優先度を取得し、前記取得した優先度に基づいて、前記一部のデータ信号を選択する。
(3) また、本発明の一態様による送信装置の前記送信信号生成部は、各々の前記データ信号に含まれる送信データの再送回数を記憶し、前記再送回数に基づいて、前記一部のデータ信号を選択する。
(4) また、本発明の一態様による送信装置の前記送信信号生成部は、各々の前記データ信号の符号化率を記憶し、前記符号化率に基づいて、前記一部のデータ信号を選択する。
(5) また、本発明の一態様による送信装置は、前記複数の送信データを記憶する送信データ記憶部を備え、前記送信信号生成部は、前記送信データ記憶部に記憶された前記送信データから前記再送信号を生成する。
(6) また、本発明の一態様による送信装置の前記報告受信部はさらに、前記受信装置から報告される送信データ再検出の成否を示す成否情報を受信する。
(7) また、本発明の一態様による送信装置の前記送信データ記憶部は、前記送信データ再検出の成否を示す成否情報を報告された当該送信データを削除する。
(8) また、本発明の一態様による送信装置の前記送信信号生成部は、前記複数のデータ信号を符号拡散する拡散部を備える。
(9) また、本発明の一態様による送信装置の前記送信部は、前記複数のデータ信号を空間多重して送信する。
(10) また、本発明の一態様による受信装置は、送信装置と通信する受信装置であって、複数のデータ信号が多重された信号を前記送信装置から受信する受信部と、前記受信部で受信した受信信号から、前記複数のデータ信号に含まれる送信データを検出し、検出した送信データと、各々の前記データ信号毎の送信データ検出の成否を出力するデータ信号検出部と、前記多重された複数のデータ信号に対して、一つの成否情報を生成する成否情報信号生成部と、前記成否情報を前記送信装置に報告する報告送信部とを備える。
(11) また、本発明の一態様による受信装置は、送信装置と通信する受信装置であって、複数のデータ信号が多重された信号を前記送信装置から受信する受信部と、前記受信部で受信した受信信号から、前記複数のデータ信号に含まれる送信データを検出し、検出した送信データと、各々の前記データ信号毎の送信データ検出の成否を出力するデータ信号検出部と、前記多重された複数のデータ信号のうち送信データ検出に失敗したデータ信号の中から一部のデータ信号を選択する選択部と、送信データ検出に成功したデータ信号と前記選択したデータ信号とにおける成否情報を生成する成否情報信号生成部と、前記成否情報を前記送信装置に報告する報告送信部とを備える。
(12) また、本発明の一態様による受信装置の前記選択部は、各々の前記データ信号に含まれる送信データの優先度を取得し、前記取得した優先度に基づいて、前記一部のデータ信号を選択する。
(13) また、本発明の一態様による受信装置の前記選択部は、各々の前記データ信号に含まれる送信データの再送回数を取得し、前記再送回数に基づいて、前記一部のデータ信号を選択する。
(14) また、本発明の一態様による受信装置の前記選択部は、各々の前記データ信号の符号化率を取得し、前記符号化率に基づいて、前記一部のデータ信号を選択する。
(15) また、本発明の一態様による受信装置の前記選択部は、各々の前記データ信号の受信品質を取得し、前記受信品質に基づいて、前記一部のデータ信号を選択する。
(16) また、本発明の一態様による受信装置の前記受信部はさらに、前記多重された複数のデータ信号のいずれかに対応する再送データ信号を受信し、前記データ信号検出部は、前記受信信号と前記再送データ信号とから、前記多重された複数のデータ信号のうち前記再送データ信号に対応するデータ信号と少なくとも1つの前記再送データ信号に対応しないデータ信号とに含まれる送信データを再検出する。
(17) また、本発明の一態様による受信装置の前記データ信号検出部は、各データ信号のレプリカであるデータ信号レプリカを生成するデータ信号レプリカ生成部と、前記データ信号レプリカから干渉信号レプリカを生成する干渉信号レプリカ生成部と、前記干渉信号レプリカを受信信号から減算する干渉除去部と、前記干渉信号レプリカを除去した受信信号を合成する信号合成部と、前記信号合成部の出力から前記多重された複数のデータ信号に含まれる送信データの再検出を行う判定部とを備える。
(18) また、本発明の一態様による受信装置の前記信号合成部は、前記干渉信号レプリカを除去した受信信号と前記再送信号を復調する復調部と、前記干渉信号レプリカを除去した受信信号の復調結果と前記再送信号の復調結果とを合成する合成部とを備える。
(19) また、本発明の一態様による受信装置の前記復調部は、前記干渉信号レプリカを除去した受信信号と前記再送信号に含まれる送信データの尤度情報を出力する。
(20) また、本発明の一態様による受信装置の前記復調部は、前記干渉信号レプリカを除去した受信信号と前記再送信号に含まれる送信データの対数尤度比を出力し、前記合成部は、前記干渉信号レプリカを除去した受信信号に含まれる送信データの対数尤度比と前記再送信号に含まれる送信データの対数尤度比とを加算して合成する。
(21) また、本発明の一態様による受信装置の前記干渉信号レプリカ生成部は、検出するデータ信号の各々に対する干渉信号レプリカを生成する。
(22) また、本発明の一態様による受信装置の前記干渉信号レプリカ生成部は、検出する複数のデータ信号うち最初に検出するデータ信号以外のデータ信号に対する干渉信号レプリカを生成する。
(23) また、本発明の一態様による受信装置の前記報告送信部は、前記データ信号検出部から出力された前記送信データ再検出の成否に基づいて、前記送信データの再検出が成功であるデータ信号に関する成否情報を前記送信装置に報告する。
(24) また、本発明の一態様による受信装置の前記複数のデータ信号は、符号拡散多重されており、前記データ信号検出部は、受信信号に対して逆拡散処理を行う逆拡散部を備える。
(25) また、本発明の一態様による受信装置の前記複数のデータ信号は、空間多重されているストリームであり、前記データ信号検出部は、受信信号に対してストリーム分離を行うストリーム分離部を備える。
(26) また、本発明の一態様による通信システムは、送信装置と受信装置とを備える通信システムであって、前記送信装置は、複数のデータ信号が多重された信号を生成する送信信号生成部と、前記送信信号生成部で生成した信号を前記受信装置に送信する送信部と、前記受信装置から報告される成否情報を受信する報告受信部とを備え、前記送信信号生成部はさらに、前記成否情報が検出失敗を示す前記データ信号のうちの一部のデータ信号を選択し、前記選択したデータ信号に対する再送信号を生成し、前記送信部はさらに、前記再送信号を前記受信装置に送信し、前記受信装置は、前記送信装置から送信された信号を受信する受信部と、前記受信部で受信した受信信号から、前記複数のデータ信号を検出し、検出したデータ信号と、信号検出の成否を出力するデータ信号検出部と、前記信号検出の成否を示す成否情報を前記送信装置に報告する報告送信部とを備え、前記受信部はさらに、前記多重された複数のデータ信号のいずれかに対応する再送データ信号を受信し、前記データ信号検出部は、前記受信信号と前記再送データ信号とから、前記多重された複数のデータ信号のうち信号検出結果が失敗であるデータ信号を再検出する。
(27) また、本発明の一態様による通信システムは、送信装置と受信装置とを備える通信システムであって、前記送信装置は、複数のデータ信号が多重された信号を生成する送信信号生成部と、前記送信信号生成部で生成した信号を前記受信装置に送信する送信部と、前記受信装置から報告される成否情報を受信する報告受信部とを備え、前記送信信号生成部はさらに、前記成否情報が検出失敗を示す前記データ信号に対する再送信号を生成し、前記送信部はさらに、前記再送信号を前記受信装置に送信し、前記受信装置は、前記送信装置から送信された信号を受信する受信部と、前記受信部で受信した受信信号から、前記複数のデータ信号を検出し、検出したデータ信号と、各々の前記データ信号毎の送信データ検出の成否を出力するデータ信号検出部と、前記多重された複数のデータ信号のうち送信データ検出に失敗したデータ信号の中から一部のデータ信号を選択する選択部と、送信データ検出に成功したデータ信号と前記選択したデータ信号とにおける成否情報を生成する成否情報信号生成部と、前記成否情報を前記送信装置に報告する報告送信部とを備え、前記受信部はさらに、前記多重された複数のデータ信号のいずれかに対応する再送データ信号を受信し、前記データ信号検出部は、前記受信信号と前記再送データ信号とから、前記多重された複数のデータ信号のうち信号検出結果が失敗であるデータ信号を再検出する。
(28) また、本発明の一態様による通信方法は、受信装置と通信する送信装置を用いた通信方法であって、複数の送信データから複数のデータ信号が多重された信号を生成する送信信号生成過程と、前記送信信号生成過程で生成した信号を前記受信装置に送信する送信過程と、前記受信装置から報告される前記データ信号毎の送信データ検出の成否を示す成否情報を受信する報告受信過程とを有し、前記送信信号生成過程ではさらに、前記成否情報が送信データ検出失敗を示す前記データ信号のうちの一部のデータ信号を選択し、前記選択したデータ信号に対する再送信号を生成し、前記送信過程ではさらに、前記再送信号を前記受信装置に送信する。
(29) また、本発明の一態様による通信方法は、送信装置と通信する受信装置を用いた通信方法であって、複数のデータ信号が多重された信号を前記送信装置から受信する受信過程と、前記受信過程で受信した受信信号から、前記複数のデータ信号に含まれる送信データを検出し、検出した送信データと、各々の前記データ信号毎の送信データ検出の成否を出力するデータ信号検出過程と、前記多重された複数のデータ信号のうち送信データ検出に失敗したデータ信号の中から一部のデータ信号を選択する選択過程と、送信データ検出に成功したデータ信号と前記選択したデータ信号とにおける成否情報を生成する成否情報信号生成過程と、前記成否情報を前記送信装置に報告する報告送信過程とを有する。
 本発明の送信装置、受信装置、通信システム及び通信方法では、送信装置から受信装置への下りリンクの再送パケット数を抑制し、スループットを向上することができる。
本発明の第1の実施形態による通信方法を示すタイミングチャートである。 本発明の第2の実施形態による送信装置200の構成を示す概略ブロック図である。 本発明の第2の実施形態による受信装置300の構成を示す概略ブロック図である。 本発明の第2の実施形態による受信装置300の干渉キャンセラ部310の構成を示す概略ブロック図である。 本発明の第2の実施形態による干渉キャンセラ部310のMCIレプリカ生成部404の構成を示す概略ブロック図である。 本発明の第2の実施形態による受信装置300の処理を示すフローチャートである。 受信データの検出と成否情報の報告、および再送と受信データの再検出の一連の処理を示すタイミングチャートである。 受信データの検出と成否情報の報告、および再送と受信データの再検出の一連の処理を示す別のタイミングチャートである。 本発明の第3の実施形態による通信方法を示すタイミングチャートである。 本発明の第4の実施形態による送信装置1000の構成を示す概略ブロック図である。 本発明の第4の実施形態による受信装置1100の構成を示す概略ブロック図である。 本発明の第5の実施形態による受信装置1200の構成を示す概略ブロック図である。 本発明の第5の実施形態による受信装置1200の干渉キャンセラ部1210の構成を示す概略ブロック図である。 本発明の第6の実施形態による送信装置1400の構成を示す概略ブロック図である。 本発明の第6の実施形態による受信装置1500の構成を示す概略ブロック図である。 本発明の第6の実施形態による受信装置1500の干渉キャンセラ部1511の構成を示す概略ブロック図である。 本発明の第6の実施形態による受信装置1500の処理を示すフローチャートである。
符号の説明
200、1000、1400・・・送信装置、201-1~201-N、1001-1~1001-N、1401-1~1401-N・・・コードチャネル信号生成部、202、1002・・・コード多重部、203、1003、1403・・・インターリーバ部、204、1004、1404・・・IFFT部、205、1005、1405・・・パイロット信号生成部、206、1006、1406・・・多重部、207、1007、1407・・・GI挿入部、208、1008、1408・・・無線送信部、209、1009、1409-1~1409-N・・・アンテナ部、210、1010、1410・・・無線受信部、211、1011、1411・・・分離部、212、1012、1412・・・再送制御部、213、1013、1413・・・再送制御信号生成部、214、1014、1414・・・符号部、215、1015、1415・・・レートマッチ部、216、1016、1416・・・変調部、217、1017・・・拡散部、218、1018・・・符号化ビット記憶部、300、1100、1200、1500・・・受信装置、301、1101、1201、1501-1~1501-N・・・アンテナ部、302、1102、1202、1503・・・無線受信部、303、1103、1203、1504・・・分離部、304、1104、1204、1505・・・伝搬路推定部、305、1105、1205、1506・・・伝搬路推定値記憶部、306、1106、1206、1507・・・GI除去部、307、1107、1207、1508・・・FFT部、308、1108、1208、1509・・・受信信号記憶部、309、1109、1209、1510・・・受信パケット管理部、310、1110、1210、1511・・・干渉キャンセラ部、311-1~311-N、1111-1~1111-N・・・コードチャネルレプリカ生成部、312、1112、1212、1512・・・ビットLLR記憶部、313、1113、1213、1513・・・成否情報信号生成部、314、1114、1214、1514・・・多重部、315、1115、1215、1515・・・無線送信部、316、1116・・・シンボルレプリカ生成部、317、1117・・・拡散部、401・・・伝搬路補償部、402・・・デインターリーバ部、403・・・コード分離部、404、1304・・・MCIレプリカ生成部、405、1306、1603・・・減算部、406、1307-1~1307-N・・・逆拡散部、407、1308、1607・・・復調部、408、1309、1608・・・レートマッチ部、409、1310、1609・・・合成部、410、1311、1610・・・復号部、501・・・コード多重部、502・・・インターリーバ部、503・・・伝達関数乗算部、1301・・・伝搬路補償部、1302、1606・・・デインターリーバ部、1303-1~1303-N・・・コード分離部、1305-1~1305-N・・・コードチャネルレプリカ生成部、1502-1~1502-M・・・アンテナ毎受信処理部、1602・・・受信レプリカ生成部、1601-1~1601-N・・・ストリーム検出部、1604-1、1604-2・・・シンボルレプリカ生成部、1605・・・MIMO分離部
[第1の実施形態]
 図1は、本発明の第1の実施形態による通信方法を示すタイミングチャートである。まず、基地局(送信装置とも称する)が下りリンクを介して初送パケットであるパケットPとパケットPを多重して端末(受信装置とも称する)に送信する(ステップS101)。信号を受信した端末は、パケットPとパケットPが多重された受信信号を記憶し、干渉キャンセル処理とデータ検出処理を行う。
 なお、干渉とは、多重された他の信号を意味する。すなわち、パケットPにとってはパケットPが干渉成分であり、パケットPにとってはパケットPが干渉成分である。干渉キャンセル処理とは、受信信号から干渉信号を再生した信号(レプリカ)を用いて干渉を除去する処理である。干渉キャンセル処理では、例えばパケットPを検出する際には、受信信号からパケットPのレプリカを除去した信号を用いる。
 ここでは、パケットPとパケットPの両方のパケットにおいて誤りが生じた場合について説明する。端末はパケットPとパケットPのパケットにおいて誤りが生じたことを基地局に報告するための成否情報(NACK、NACK)を含む信号を生成する。そして、端末は、成否情報を上りリンクを介して基地局に送信する(ステップS102)。
 成否情報信号を受信した基地局は、NACKを返されたパケットPに対する再送パケットPを生成して端末に送信する(ステップS103)。ここで、本実施形態に係る基地局は、NACKを返された複数のパケットのうち、一部のパケットに対する再送パケットを生成して端末に送信する。
 このとき、一部のパケットの選び方として、下記のような方法を用いることができる。
(1) 各パケットの含まれる送信データは、上位レイヤから順次送られてくる。上位レイヤから送られた順に再送することにより、平均的な遅延時間を短くすることができる。
(2) 重要度の高い(要求遅延が短い)情報を含むパケットを優先的に再送することにより、重要度の高いパケットの遅延時間を短くすることができる。
(3) インクリメンタルリダンダンシ(IR)の場合は、初送の符号化率が大きいパケットほど、再送パケット合成による符号化率の低下の度合いが大きい。そのため、初送の符号化率が大きいパケットを優先的に再送することにより、再送による符号化利得が大きくなり、効率的な再送を行うことができる。
(4) 再送回数に基づいて優先的に再送するパケットを選択する。例えば、再送回数の少ないパケットを優先的に再送することにより、平均的な遅延時間を短くすることができる。あるいは、再送回数の多いパケットを優先的に再送することにより、最大遅延時間を短くすることができる。
(5) パケット毎に受信品質が異なる場合、受信品質が悪い(受信電力が小さい)パケットを優先的に再送することにより、全体的に受信品質を向上することができる。
 下りリンク信号を受信した端末は、再送パケットPを復調し、パケットPの復調結果と、記憶してあるパケットPとパケットPが多重された受信信号とを用いて、干渉キャンセル処理とデータ検出処理を行う。ここで、前述したように、干渉キャンセル処理では、多重された他のパケットのレプリカを除去することにより、検出精度を向上させる。一般にHARQ方式による再送を行うと、初送パケットのみを用いてデータ検出するより、初送パケットと再送パケットを合成した信号を用いてデータ検出する方が良好な検出精度を得ることができる。すなわち、再送パケットを合成することによって、初送の検出時よりパケットPの検出精度が向上し、パケットPのレプリカの精度の向上に伴って、パケットPの検出精度も向上する。
 このように、再送したパケットPに対応する初送パケットPのみならず、パケットPに多重されたパケットPの品質(例えば誤り率)が改善し、パケットPの成否結果が初送の結果とは異なる可能性がある。ここでは、パケットPとパケットPの両方のパケットにおいて誤りが無い場合について説明する。端末はパケットPとパケットPのパケットにおいて誤りが無いことを基地局に報告するための成否情報(ACK、ACK)を含む信号を生成する。そして、端末は、生成した信号を、上りリンクを介して基地局に送信する(ステップS104)。ACK、ACKを受信した基地局は、それ以降、パケットPとパケットPに対応する再送を行う必要がなくなる。結果的に、パケットPに対応するパケットPを再送することにより、パケットPとパケットP両方における誤りを改善することができる。また、パケットPに対応する再送を行うことなく、パケットPとパケットPにおけるデータ検出が可能となる。
 このように、本実施形態の無線通信システムでは、送信装置から受信装置へ複数の初送パケットを多重して送信し、受信装置において干渉(多重された他のパケット)を除去しながらデータを検出する。また、受信装置が、データ検出に失敗した場合に、送信装置から受信装置へHARQ方式を用いて再送パケットを送信する。そして、多重された複数の初送パケットの検出に受信装置が失敗した場合に、その一部のパケットに対応する再送パケットを送信装置が受信装置に送信する。そして、受信装置は、一部のパケットのみでなく初回に検出に失敗した他の初送パケットにおいても再度検出する。これにより、下りリンクの再送パケット数を抑制することができるため、スループットを向上させることができる。
[第2の実施形態]
 第2の実施形態では、受信側で繰り返し並列型MCIキャンセラを用いて、第1の実施形態で説明した処理を実行する場合について説明する。繰り返しMCIキャンセラは、受信側でMCIレプリカを生成し、受信信号から減算することでコード間干渉(MCI)を抑圧する。
 図2は、本発明の第2の実施形態による送信装置200の構成を示す概略ブロック図である。送信装置200は、コードチャネル信号生成部201-1、・・・、201-N(ただし、Nはコード多重数)、コード多重部202、インターリーバ部203、IFFT(Inverse Fast Fourier Transform:逆高速フーリエ変換)部204、パイロット信号生成部205、多重部206、GI(Guard Interval:ガードインターバル)挿入部207、無線送信部208、アンテナ209、無線受信部210、分離部211、再送制御部212、再送制御信号生成部213を備えている。
 コードチャネル信号生成部201-1、・・・、201-Nはそれぞれ、符号部214、レートマッチ部215、変調部216、拡散部217、符号化ビット記憶部218を備えている。
 コードチャネル信号生成部201-1、・・・、201-N(送信信号生成部とも称する)はそれぞれ、情報ビット(送信データ)からコードチャネル毎のデータ信号を生成する。まず、符号部214は、情報ビット系列に対してチャネル符号化処理を行い、符号化ビット系列を、レートマッチ部215と符号化ビット記憶部218とに出力する。ここでチャネル符号化としては、畳み込み符号化、リードソロモン符号化などの誤り訂正能力を有する符号化を用いることが好ましい。より好ましくはターボ符号化、LDPC(Low Density Parity Check)符号化などの高い誤り訂正能力を有する符号化を用いる。
 レートマッチ部215は、符号部214から出力された符号化ビットあるいは符号化ビット記憶部218から出力された符号化ビットに対して、再送制御部212から出力される再送回数に応じたパンクチャリング(ビット除去)、ビットパディング(ビット挿入)あるいはビットリピティション(ビット繰り返し)処理を行う。なお、レートマッチ部215は、さらにビットインターリーブ処理を行っても良い。なお、レートマッチングの例としてパンクチャリングに関する一例を後述する。
 符号化ビット記憶部218(送信データ記憶部とも称する)は、符号部214の出力である符号化ビット系列を記憶する。また、再送制御部212の制御に基づいて、記憶している符号化ビット系列を削除する。これらの処理の詳細については後述する。なお、符号化ビット記憶部218は、符号部214の出力に代えて、情報ビット自体を記憶しても良い。
 変調部216は、レートマッチ部215から出力された符号化ビット(パンクチャド符号化ビット)系列に対して変調処理を行い、拡散部217に変調シンボル系列を出力する。変調部216は、PSK(Phase Shift Keying:位相偏移変調)、QAM(Quadrature Amplitude Modulation:直交振幅変調)などの変調方式を用いることができる。さらに好ましくは、変調部216は、送信装置200と受信装置300との間の伝搬路に応じた変調方式を用いる。
 拡散部217は、変調部216から出力されたシンボル系列を拡散率分だけ複製し、コードチャネル毎の拡散符号C(n=1、・・・、N)を乗算することにより、チップ系列(コードチャネル毎のデータ信号)を生成し、コード多重部202に出力する。
 コード多重部202は、コードチャネル信号生成部201-1、・・・、201-Nの出力であるコードチャネル毎のデータ信号を多重して、インターリーバ部203に出力する。インターリーバ部203は、コード多重部202から出力された信号に対して、チップインターリーブやシンボルインターリーブなどのインターリーブ処理を行う。
 IFFT部204は、周波数方向に並べられた信号に対して、IFFT処理を行うことにより、時間領域の信号に変換し、多重部206に出力する。
 パイロット信号生成部205は、受信装置において伝搬路推定に用いるためのパイロット信号を生成し、多重部206に出力する。
 再送制御信号生成部213は、再送制御部212から通知される各コードチャネルの信号の再送回数を受信装置に通知するための信号(再送制御信号)を生成し、多重部206に出力する。
 多重部206は、IFFT部204から出力されたデータ信号と、パイロット信号生成部205から出力されたパイロット信号と、再送制御信号生成部214から出力された再送制御信号とを多重し、GI挿入部207に出力する。
 多重部206から出力された信号は、GI挿入部207においてガードインターバルを付加され、無線送信部208(送信部とも称する)からアンテナ209を介して受信装置300に無線にて送信される。
 レートマッチ部215は、再送制御部212の制御に基づいて、符号部214からの出力である符号化ビットあるいは、符号化ビット記憶部218からの出力である符号化ビットに対して、パンクチャド処理などを行い、変調部216に出力する。好ましくは、レートマッチ部215は、符号化部215からの出力である符号化ビットに適用するパンクチャパターンと、符号化ビット記憶部218からの出力である符号化ビットに適用するパンクチャパターンとが異なるようにパンクチャリングする。
 さらに好ましくは、符号化部214からの出力である符号化ビットに適用するパンクチャパターンには、情報ビットを除去しないようなパターンを用いる。また、符号化ビット記憶部220からの出力である符号化ビットに適用するパンクチャパターンには、符号化部215からの出力である符号化ビットに適用するパンクチャパターンにおいて除去したビットを除去しないようなパターンを用いる。
 なお、ここでは、必ずビット除去する場合について説明したが、必ずしもビットを除去しなくても良い。すなわち、ビットを除去しないようなパンクチャパターンを用いても良い。
 図3は、本発明の第2の実施形態による受信装置300の構成を示す概略ブロック図である。受信装置300は、アンテナ301、無線受信部302、分離部303、伝搬路推定部304、伝搬路推定値記憶部305、GI除去部306、FFT部307、受信信号記憶部308、受信パケット管理部309、干渉キャンセラ部310、コードチャネルレプリカ生成部311-1、・・・、311-N、ビットLLR(Log Likelihood Ratio:対数尤度比)記憶部312、成否情報信号生成部313、多重部314、無線送信部315を備えている。なお、伝搬路推定部304、・・・、ビットLLR記憶部312を、まとめてデータ信号検出部とも称する。
 コードチャネルレプリカ生成部311-1、・・・、311-Nはそれぞれ、シンボルレプリカ生成部316、拡散部317を備えている。
 まず、アンテナ301を介して、無線受信部302(受信部とも称する)で受信された信号は、分離部303で、パイロット信号と再送制御情報信号とデータ信号とに分離される。
 伝搬路推定部304では、分離部303において分離されたパイロット信号を用いて、送信装置200と受信装置300の間の伝搬路特性を推定し、伝搬路推定値を伝搬路推定値記憶部305と干渉キャンセラ310とに出力する。
 伝搬路推定値記憶部305は、伝搬路推定部304の出力である伝搬路推定値を記憶する。
 GI除去部306は、分離部303で分離されたデータ信号からガードインターバルを除去し、FFT部307に出力する。
 FFT部307では、GI除去部306の出力信号に対して、FFT処理を行うことにより、時間領域の信号を周波数領域の信号に変換し、受信信号記憶部308と干渉キャンセラ310とに出力する。
 受信信号記憶部308は、FFT部307の出力である周波数領域の信号を記憶する。
 受信パケット管理部309は、分離部303において分離された再送制御情報信号と、干渉キャンセラ部310から出力される成否情報とに基づいて、干渉キャンセラ部310、ビットLLR記憶部312、受信信号記憶部308、伝搬路推定値記憶部305に対して各種指示を出力する。また、受信パケット管理部309は、成否情報信号生成部313に対して、成否情報信号の生成を指示する。なお、受信パケット管理部309の詳細な動作については後述する。
 干渉キャンセラ部310は、受信パケット管理部309の指示に基づき、伝搬路推定部304から出力された伝搬路推定値を参照しながら、FFT部307から出力される信号から情報ビット系列を検出する。また、干渉キャンセラ部310は、符号化ビットLLRと成否情報とを出力する。
 また、干渉キャンセラ部310は、ビットLLR記憶部312からビットLLRが出力された場合は、受信信号記憶部308から出力される受信信号から当該ビットLLRと伝搬路推定値記憶部305の出力である伝搬路推定値とを用いて、情報ビットの検出を行う。なお、干渉キャンセラ部310の動作の詳細な例については後述する。
 コードチャネルレプリカ生成部311-1、・・・、311-N(データ信号レプリカ生成部とも称する)は、拡散符号C、・・・、Cに対応するコードチャネルにおけるレプリカを生成する。詳しくは、シンボルレプリカ生成部316は、干渉キャンセラ部310から出力された符号化ビットLLRに基づいてシンボルレプリカを生成し、拡散部317に出力する。
 シンボルレプリカ生成部316から出力されたシンボルレプリカは、拡散部318において、拡散率分だけ複製され、各コードチャネルにおける拡散符号C、・・・、Cが乗算され、コードチャネルレプリカ(データ信号レプリカ)が生成される。
 ビットLLR記憶部312は、受信パケット管理部309の指示に基づいて、干渉キャンセラ部310から出力されるビットLLRを記憶する。また、受信信号に再送パケットが多重されていた場合は、記憶しておいたビットLLRを干渉キャンセラ部310に出力し、干渉キャンセラ部310から出力されるビットLLRを再び記憶する。つまり、ビットLLR記憶部312は、記憶しておいたビットLLRを新たに出力されたビットLLRに置き換える。
 成否情報信号生成部313は、受信パケット管理部(選択部とも称する)309の指示に基づいて、成否情報信号を生成し、多重部314に出力する。
 多重部314は、成否情報信号生成部313の出力である成否情報信号と、上りリンクデータ信号とを多重して無線送信部315に出力する。出力された信号は無線送信部315(報告送信部とも称する)からアンテナ301を介して送信装置200へと送信される。
 図4は、本発明の第2の実施形態による受信装置300の干渉キャンセラ部310の構成を示す概略ブロック図である。なお、ここでは、拡散符号Cに対応するコードチャネルの信号を検出する場合について説明する。干渉キャンセラ部310における一連の処理は、初回にすべての情報ビットを誤り無く検出できた場合を除いて繰り返し実行される。
 干渉キャンセラ部310は、伝搬路補償部401、デインターリーバ部402、コード分離部403、MCIレプリカ生成部404、減算部(干渉除去部とも称する)405を備えている。
 コード分離部403は、逆拡散部406、復調部407、レートマッチ部408、合成部409、復号部(判定部とも称する)410を備えている。
 MCIレプリカ生成部404(干渉信号レプリカ生成部とも称する)は、コードチャネルレプリカ生成部311-1、・・・、311-Nから出力されたコードチャネルレプリカSr、1、・・・、Sr、Nの中で、Sr、k以外のコードチャネルレプリカと、伝搬路推定部304(あるいは伝搬路推定値記憶部305)から出力された伝搬路推定値とに基づいて、MCIレプリカ(干渉レプリカ)を生成して減算部405に出力する。
 図5は、本発明の第2の実施形態による干渉キャンセラ部310のMCIレプリカ生成部404の構成を示す概略ブロック図である。MCIレプリカ生成部404に入力されたコードチャネルレプリカは、コード多重部501で多重され、インターリーバ部502でインターリーブ処理される。その後、伝達関数乗算部503において、伝搬路推定値から内挿法により算出される(あるいは伝搬路推定値そのものである)伝達関数が乗算され、MCIレプリカが生成される。
 なお、インターリーバ部502はインターリーバ部203(図2)と同様の処理を行うため、同様の回路で実現することができる。また、初回においては、MCIレプリカ生成部404はMCIレプリカを生成する必要はない。
 図4に戻り、減算部405は、FFT部307(あるいは受信信号記憶部308)の出力からMCIレプリカを減算し、伝搬路補償部401に出力する。
 伝搬路補償部401は、伝搬路推定部304(あるいは伝搬路推定値記憶部305)の出力である伝搬路推定値に基づいて、減算部405の出力に対して伝搬路補償を行い、デインターリーバ部402に出力する。具体的には、伝搬路補償部401は、伝搬路の影響で生じた位相回転を戻すような処理を行う。好ましくは、伝搬路補償部401は、伝搬路推定値からMRC(Maximum Ratio Combining:最大比合成)重みやORC(Orthogonal Restoring Combining:直交再生合成)重み、あるいはMMSE(Minimum Mean Squared Error:最小平均二乗誤差)重みを算出し、算出した重みを減算部405の出力に対して乗算する。
 デインターリーバ部402は、伝搬路補償部401からの出力に対して、デインターリーブ処理を行い、逆拡散部406に出力する。このデインターリーブ処理は、インターリーバ部203におけるインターリーブ処理により並べ替えられた順を、元に戻すような並べ替えであることが好ましい。
 逆拡散部406は、拡散符号Cを用いた逆拡散処理を行うことにより、Cに対応するコードチャネルの信号を抽出し、逆拡散された信号を復調部407に出力する。
 復調部407では、逆拡散部406からの出力信号である逆拡散された変調シンボル系列に対して復調処理を行い、ビット毎の信号を抽出し、レートマッチ部408に出力する。復調部407は、好ましくは、ビット毎の対数尤度比(LLR)を出力する。そのため、以下では復調部407における復調結果として、ビットLLR(ビット毎のLLR)が出力される場合について説明する。なお、伝搬路補償部401、復調部407、レートマッチ部408を、まとめて復調部と称することもある。
 ここで、ビットLLRを求める一例として、QPSK(Quadrature Phase Shift Keying:4値位相偏移変調)変調を用いる場合について説明する。受信信号S’が送信された際のビット系列をb、b(b、bは、1または-1)とすると、ビット系列b、bをQPSK変調した送信信号Sは、式(1)のように表せる。
Figure JPOXMLDOC01-appb-M000001
 ただし、jは虚数単位を表す。これよりbのビットLLRであるλ(b)は、式(2)となる。
Figure JPOXMLDOC01-appb-M000002
 またbのビットLLRは式(2)の実部と虚数部を入れ替えたものである。ただし、Re(x)は複素数xの実部を表し、μは受信信号の等価振幅、すなわち受信信号の振幅の基準となる値である。
 なお、この場合、シンボルレプリカ生成部316の処理としては、シンボルレプリカS’を式(3)にて算出すれば良い。
Figure JPOXMLDOC01-appb-M000003
 ただし、シンボルレプリカS’を構成するビットLLRはλ(b)、λ(b)である。ここで、λ()は復調部407の出力である。
 レートマッチ部408は、送信装置200内のレートマッチ部215において行われたパンクチャリング(ビット除去)、ビットパディング(ビット挿入)あるいはビットリピティション(ビット繰り返し)処理に対して逆の処理を行う。すなわち、パンクチャリングされたビットに対してはビットデパンクチャリング(ビットLLR挿入)処理を行い、ビットパディング(ビット挿入)されたビットに対してはビット除去処理を行い、ビットリピティション(ビット繰り返し)されたビットに対してはビットLLR合成を行う。
 合成部409は、初送パケットあるいは1度目の再送パケットである場合、レートマッチ部408の出力であるビットLLRをそのまま出力する。一方、2度目以降の再送パケットである場合、ビットLLR記憶部312に記憶してあるビットLLR(対応する初送パケットにおけるビットLLR)とレートマッチ部408の出力であるビットLLRを合成して出力する。合成部409から出力されたビットLLRは、復号部410に入力される。また、再送パケットである場合は、出力されたビットLLRがビットLLR記憶部312に送られて上書きされる。なお、伝搬路補償部401、復調部407、レートマッチ部408、合成部409をまとめて信号合成部とも称する。
 復号部410は、合成部409から出力されたビットLLRを用いて復号処理を行い、復号結果である情報ビットと、情報ビットに誤りが含まれるかどうかを示す成否情報と、符号化ビットLLRとを出力する。なお、誤りが含まれる場合は情報ビットを出力せずに符号化ビットLLRを出力し、誤りが無い場合は符号化ビットLLRを出力せずに情報ビットを出力するようにしても良い。
 なお、情報ビットの誤り検出は、例えば、送信側で情報ビットにCRC(Cyclic Redundancy Check:巡回冗長検査)を付加し、受信側で誤り検出を行えば良い。
 次に、図2を用いて、受信装置300から送信装置200への上りリンク信号の送信処理に関して説明する。
 受信装置300から送信された信号は、アンテナ209を介して無線受信部210(報告受信部とも称する)で受信され、分離部211に出力される。
 分離部211は、受信信号に多重された上りリンクデータと成否情報とを分離する。
 再送制御部212は、分離部211で上りリンクデータから分離された成否情報に基づいて、再送パケット(再送データ信号)を送信する準備を行う。成否情報が受信失敗を表す情報(NACK)であった場合、再送制御部212は符号化ビット記憶部218に対して、NACKを返されたパケットに対応する符号化ビット系列を出力するように指示する。また、レートマッチ部215に対して、符号化ビット記憶部218から出力された符号化ビット系列に対してレートマッチング処理を行うように指示する。
 なお、レートマッチ処理は初送時と同様の処理であっても良いが、再送回数に応じてレートマッチ処理を変更することが好ましい。さらに、再送制御部212は、多重するパケットの再送回数を示す情報を再送制御信号生成部213に通知し、再送制御信号生成部213はこの情報を示す信号(再送制御信号)を生成して多重部206に出力する。
 なお、多重するパケットの再送回数を示す情報としては、回数そのものを示す情報であることが好ましいが、単に初送か再送かを示す情報など、再送回数を加工した情報であっても良い。成否情報が受信成功を表す情報(ACK)であった場合、再送制御部212は、符号化ビット記憶部218に対して、ACKを返されたパケットに対応する符号化ビット系列を記憶した記憶領域を解放するように指示する。
 ここで、再送制御部212は符号化ビット記憶部218に対して、NACKを返されたパケットに対応する符号化ビット系列を出力するように指示するが、NACKを返されたすべてのパケットではなく、一部のパケットを選択して再送を行うように指示する。このとき、一部のパケットの選び方として、下記のような方法を用いることができる。
(1) 各パケットの含まれる送信データは、上位レイヤから順次送られてくる。上位レイヤから送られた順に再送することにより、平均的な遅延時間を短くすることができる。これを実現するために、再送制御部212は、各パケットの含まれる送信データが、上位レイヤから送られる順を記憶するようにする。
(2) 重要度の高い(要求遅延が短い)情報を含むパケットを優先的に再送することにより、重要度の高いパケットの遅延時間を短くすることができる。これを実現するために、再送制御部212は、上位レイヤからの制御信号により、各パケットの重要度(要求遅延)を取得するようにする。
(3) インクリメンタルリダンダンシ(IR)の場合は、初送の符号化率が大きいパケットほど、再送パケット合成による符号化率の低下の度合いが大きい。そのため、初送の符号化率が大きいパケットを優先的に再送することにより、再送による符号化利得が大きくなり、効率的な再送を行うことができる。
(4) 再送回数に基づいて優先的に再送するパケットを選択する。例えば、再送回数の少ないパケットを優先的に再送することにより、平均的な遅延時間を短くすることができる。あるいは、再送回数の多いパケットを優先的に再送することにより、最大遅延時間を短くすることができる。
(5) パケット毎に受信品質が異なる場合、受信品質が悪い(受信電力が小さい)パケットを優先的に再送することにより、全体的に受信品質を向上することができる。これを実現するために、受信装置300において、各パケットの受信品質を測定し、上りリンクを介して測定結果を送信装置200に報告するようにする。
 再送パケットの復調結果であるビット記憶部312に記憶されたビットLLRは、再送パケットに対応する初送パケットを含む過去の受信信号に含まれる初送パケットから情報ビットを抽出する処理において用いられる。
 図6は、本発明の第2の実施形態による受信装置300の処理を示すフローチャートである。図6は、再送パケットに対応する初送パケットを含む過去の受信信号に含まれる初送パケットから情報ビットを抽出する処理と、受信パケット管理部309が行う制御の一例を示している。
 まず、再送パケットに対応する初送パケットを含む過去の受信信号を受信信号記憶部308から取得し(ステップS601)、伝搬路推定値記憶部305に記憶された当該受信信号受信時の伝搬路推定値を用いて、伝搬路補償部401で伝搬路補償を行う(ステップS602)。なお、伝搬路補償された受信信号を記憶しておいても良い。その場合、ここでの伝搬路補償は行わなくても良い。
 次に、再送パケットに対応する初送パケットに関する処理(ループL1におけるステップS603~S607)が実行される。初送パケットについては、まず、伝搬路補償された信号はデインターリーバ部402・逆拡散部406での処理の後、復調部407およびレートマッチ部408において復調およびレートマッチング処理されて符号化ビットLLRが求められる(ステップS604)。次に、ステップS604で求めたビット符号化LLRと、この初送パケットに対応する再送パケットの符号化ビットLLRとを合成部409において合成する(ステップS605)。そして、合成して得られた符号化ビットLLRを用いて復号部410で復号する(ステップS606)。
 次に、過去の受信信号を用いた繰り返し干渉キャンセル処理(ループL2におけるステップS608~S619)が行われる。まず、過去の受信信号に含まれるそれぞれの初送パケットに対する処理(ループL3におけるステップS609~S611)において、コードチャネルレプリカ生成部311で符号化ビットLLR(ステップS605で合成された場合は、その符号化ビットLLR)からそれぞれの初送パケットのコードチャネルレプリカを生成する。
 次に、過去の受信信号に含まれるそれぞれの初送パケットに対する2回目以降の検出処理(ループL4におけるステップS612~S618)が行われる。すなわち、ステップS610で生成した自コードチャネル以外のコードチャネルにおけるコードチャネルレプリカを減算部405においてキャンセルする(ステップS613)。そして、残った信号に対して伝搬路補償部401で伝搬路補償し(ステップS614)、復調部407およびレートマッチ部408で復調およびレートマッチング処理して符号化ビットLLRを算出する(ステップS615)。
 次に、算出した符号化ビットLLRと再送パケットの符号化ビットLLRとを合成部409で合成する(ステップS616)。そして、合成した符号化ビットLLRを用いて復号部410で復号する(ステップS617)ことにより、過去の受信信号に含まれる初送パケットからの情報ビットの抽出を行う。ただし、ステップS613におけるコードチャネルレプリカのキャンセルは、過去の受信信号に含まれる再送パケットのレプリカもキャンセルすることが好ましい。
 以上、再送を1回行う場合について説明したが、これに限るものではなく、再送を複数回行うシステムにも本実施形態を適用することができる。
 図7は、受信データの検出と成否情報の報告、および再送と受信データの再検出の一連の処理を示すタイミングチャートである。
 まず、基地局(送信装置)が下りリンクを介して初送パケットであるパケットP~Pを多重して端末(受信装置)に送信する(ステップS201)。信号を受信した端末は、パケットP~Pが多重された受信信号を記憶し、干渉キャンセル処理とデータ検出処理を行う。
 ここでは、パケットP~Pのすべてのパケットにおいて誤りが生じた場合について説明する。端末はパケットP~Pのパケットにおいて誤りが生じたことを基地局に報告するための成否情報(NACK~NACK)を含む信号を生成し、上りリンクを介して基地局に送信する(ステップS202)。
 成否情報信号を受信した基地局は、NACKを返されたパケットP~Pの中からパケットPを選択し、パケットPに対する再送パケットPN+1を生成し、下りリンクの他のパケットと多重して端末に送信する(ステップS203)。このように、基地局は、NACKを返されたパケットのうち、一部のパケットに対する再送パケットを生成して端末に送信する(ステップS203)。
 下りリンク信号を受信した端末は、再送パケットPN+1の復調結果を記憶するとともに、パケットPN+1の復調結果と、記憶してあるパケットP~Pが多重された受信信号とを用いて、干渉キャンセル処理とデータ検出処理を行う。ここでは、パケットP~Pのすべてのパケットにおいて誤りが生じた場合について説明する。
 すでに初送パケットに対する成否情報を、端末から基地局に報告しているため、必ずしも2度目以降の成否情報を送信しなくても良い。ここでは、2度目以降のNACK情報を送信しない場合について説明する。基地局は、ACKが返されない限りNACKを受信したものとして処理を行う。
 基地局は、成否情報を受信しないまま所定時間が経過した後に、パケットPに対する2度目の再送パケットPN+2を生成し、下りリンクの他のパケットと多重して端末に送信する。
 下りリンク信号を受信した端末は、再送パケットPN+2の復調結果と、記憶してあるパケットPN+1の復調結果の結果とを合成する。その後、合成した結果と、記憶してあるパケットP~Pが多重された受信信号とを用いて、干渉キャンセル処理とデータ検出処理を行う。ここでは、パケットP~Pのすべてのパケットにおいて誤りが無い場合について説明する。端末はパケットP~Pのパケットにおいて誤りが無いことを基地局に報告するための成否情報(ACK~ACK)を含む信号を生成し、上りリンクを介して基地局に送信する。
 ACK~ACKを受信した基地局は、それ以降、パケットP~Pに対応する再送を行う必要がなくなる。結果的に、パケットPに対応するパケットPN+1およびパケットPN+2を再送することにより、パケットP~Pにおける誤りを改善し、パケットP~Pに対応する再送を行うことなく、パケットP~Pにおけるデータ検出が可能となる。
 図8は、受信データの検出と成否情報の報告、および再送と受信データの再検出の一連の処理を示す別のタイミングチャートである。
 まず、基地局が下りリンクを介して、初送パケットであるパケットP~Pを多重して端末に送信する(ステップS301)。信号を受信した端末は、パケットP~Pが多重された受信信号を記憶し、干渉キャンセル処理とデータ検出処理を行う。ここでは、パケットP~Pのすべてのパケットにおいて誤りが生じた場合について説明する。端末はパケットP~Pのパケットにおいて誤りが生じたことを基地局に報告するための成否情報(NACK~NACK)を含む信号を生成し、上りリンクを介して基地局に送信する(ステップS302)。
 成否情報信号を受信した基地局は、NACKを返されたパケットP~Pの中からパケットPを選択し、パケットPに対する再送パケットPN+1を生成し、下りリンクの他のパケットと多重して端末に送信する(ステップS303)。このように、基地局は、NACKを返されたパケットのうち、一部のパケットに対する再送パケットを生成して端末に送信する。
 下りリンク信号を受信した端末は、再送パケットPN+1の復調結果を記憶するとともに、パケットPN+1の復調結果と、記憶してあるパケットP~Pが多重された受信信号とを用いて、干渉キャンセル処理とデータ検出処理を行う。ここでは、パケットP~Pのすべてのパケットにおいて誤りが生じた場合について説明する。すでに初送パケットに対する成否情報を、端末から基地局に報告しているため、必ずしも2度目以降の成否情報を送信しなくても良い。ここでは、2度目以降のNACK情報を送信しない場合について説明する。
 基地局は、再送パケットPN+1を端末に送信した後、成否情報を受信しないまま所定時間が経過した後に、パケットP~Pの中からパケットPを選択し、パケットPに対する再送パケットPN+2を生成し、下りリンクの他のパケットと多重して端末に送信する(ステップS304)。
 下りリンク信号を受信した端末は、再送パケットPN+2の復調結果と、記憶してあるパケットPN+1と、記憶してあるパケットP~Pが多重された受信信号とを用いて、干渉キャンセル処理とデータ検出処理を行う。ここでは、パケットP~Pのすべてのパケットにおいて誤りが無い場合について説明する。
 端末はパケットP~Pにおいて誤りが無いことを基地局に報告するための成否情報(ACK~ACK)を含む信号を生成し、上りリンクを介して基地局に送信する(ステップS305)。ACK~ACKを受信した基地局は、それ以降、パケットP~Pに対応する再送を行う必要がなくなる。結果的に、パケットPに対応するパケットPN+1、および、パケットPに対応するパケットPN+2を端末に再送することにより、パケットP~Pにおける誤りを改善することができる。また、パケットP~Pに対応する再送を行うことなく、パケットP~Pにおけるデータ検出が可能となる。
 このように、本実施形態の無線通信システムでは、送信装置から受信装置へ複数の初送パケットを多重して送信し、受信装置において干渉(多重された他のパケット)を除去しながらデータを検出する。また、受信装置が、データ検出に失敗した場合に、送信装置から受信装置へ再送パケットを送信する。そして、多重された複数の初送パケットの検出に受信装置が失敗した場合に、その一部のパケットに対応する再送パケットを送信装置が受信装置に送信する。そして、受信装置は、一部のパケットのみでなく初回に検出に失敗した他の初送パケットにおいても再度検出する。そして、受信装置は、検出に成功すれば、検出成功を示す情報を基地局に送信する。
 これにより、下りリンクの再送パケット数を抑制することができるため、スループットが向上する。
[第3の実施形態]
 図9は、本発明の第3の実施形態による通信方法を示すタイミングチャートである。
 まず、基地局(送信装置)が下りリンクを介して初送パケットであるパケットPとパケットPを多重して端末(受信装置)に送信する(ステップS401)。信号を受信した端末は、パケットPとパケットPが多重された受信信号を記憶し、干渉キャンセル処理とデータ検出処理を行う。なお、多重された他の信号が干渉成分となる。すなわち、パケットPにとってはパケットPが干渉成分であり、パケットPにとってはパケットPが干渉成分である。干渉キャンセル処理とは、受信信号から干渉信号を再生した信号(レプリカ)を用いて干渉成分を除去する処理である。干渉キャンセル処理では、例えばパケットPを検出する際には、受信信号からパケットPのレプリカを除去した信号を用いる。
 ここでは、パケットPとパケットPの両方のパケットにおいて誤りが生じた場合について説明する。端末はパケットPとパケットPのパケットにおいて誤りが生じたことを基地局に報告するための成否情報(NACK、NACK)を含む信号を生成し、上りリンクを介して基地局に送信する。ここで、本実施形態に係る端末は、誤りが生じたパケットのうち、一部のパケットに対するNACKを生成して基地局に報告する。ここでは、パケットPの成否情報(NACK)を含む信号を生成して、上りリンクを介して基地局に送信する(ステップS402)。
 このとき、一部のパケットの選び方として、下記のような方法を用いることができる。
(1) 重要度の高い(要求遅延が短い)情報を含むパケットに関して優先的にNACKを返すことにより、重要度の高いパケットの遅延時間を短くすることができる。
(2) インクリメンタルリダンダンシ(IR)の場合は、初送の符号化率が大きいパケットほど、再送パケット合成による符号化率の低下の度合いが大きい。そのため、初送の符号化率が大きいパケットに関して優先的にNACKを返すことにより、再送による符号化利得が大きくなり、効率的な再送を行うことができる。
(3) 再送回数に基づいて優先的にNACKを返すパケットを選択する。例えば、再送回数の少ないパケットに関して優先的にNACKを返すことにより、平均的な遅延時間を短くすることができる。あるいは、再送回数の多いパケットに関して優先的にNACKを返すことにより、最大遅延時間を短くすることができる。
(4) パケット毎に受信品質が異なる場合、受信品質が悪い(受信電力が小さい)パケットに関して優先的にNACKを返すことにより、全体的に受信品質を向上することができる。
(5) 復号結果である符号化ビットLLRの値が小さいパケットに関して優先的にNACKを返すことにより、復号精度の劣悪なパケットの復号精度を向上することができる。
 成否情報信号を受信した基地局は、NACKを返されたパケットPに対する再送パケットPを生成して端末に送信する(ステップS403)。
 下りリンク信号を受信した端末は、再送パケットPN+1を復調し、パケットPの復調結果と、記憶してあるパケットPとパケットPが多重された受信信号とを用いて、干渉キャンセル処理とデータ検出処理を行う。ここで、前述したように、干渉キャンセル処理では、多重された他のパケットのレプリカを除去することにより、検出精度を向上させる。一般にHARQ方式による再送を行うと、初送パケットのみを用いてデータ検出するより、初送パケットと再送パケットを合成した信号を用いてデータ検出する方が良好な検出精度を得ることができる。すなわち、再送パケットを合成することによって、初送の検出時よりパケットPの検出精度が向上し、パケットPのレプリカの精度の向上に伴って、パケットPの検出精度も向上する。
 このように、再送したパケットPに対応する初送パケットPのみならず、パケットPに多重されたパケットPの品質(例えば誤り率)が改善し、パケットPの成否結果が初送の結果とは異なる可能性がある。ここでは、パケットPとパケットPの両方のパケットにおいて誤りが無い場合について説明する。
 端末はパケットPとパケットPのパケットにおいて誤りが無いことを基地局に報告するための成否情報(ACK、ACK)を含む信号を生成し、上りリンクを介して基地局に送信する。ACK、ACKを受信した基地局は、それ以降、パケットPとパケットPに対応する再送を行う必要がなくなる。結果的に、パケットPに対応するNACKのみを返し、パケットPN+1を再送することにより、パケットPとパケットP両方における誤りを改善し、パケットPに対応する再送を行うことなく、パケットPとパケットPにおけるデータ検出が可能となる。
 このように、本実施形態の無線通信システムでは、送信装置から受信装置へ複数の初送パケットを多重して送信し、受信装置において干渉(多重された他のパケット)を除去しながらデータを検出する。また、受信装置が、データ検出に失敗した場合に、送信装置から受信装置へHARQ方式を用いて再送パケットを送信する。そして、多重された複数の初送パケットの検出に受信装置が失敗した場合に、その一部のパケットに対応する検出失敗を示す情報を基地局に報告する。そして、受信装置は、一部のパケットのみでなく初回に検出に失敗した他の初送パケットにおいても再度検出する。これにより、下りリンクの再送パケット数を抑制することができるため、スループットが向上することができる。
 なお、本実施形態では、受信装置は、多重された複数の初送パケットの検出に失敗した際に、その一部のパケットに対応する検出失敗を示す情報を報告する場合について説明した。別の観点から説明すると、受信装置は、各パケットに関する成否情報として3種類の中からひとつの情報を選択して基地局に報告する。
 すなわち、3種類の情報は、ACKとNACKと無送信である。データ検出に成功した場合はACKを選択して基地局に送信し、データ検出に失敗した場合はNACK送信と無送信とのいずれかを選択する。NACKはデータ検出に失敗し、かつ再送を要求するための信号である。また、無送信はデータ検出に失敗し、かつ再送を保留する要求を示す信号である。つまり、本実施形態では、データ検出に失敗し、かつ再送を保留する要求を示すものとして無送信を選択する場合について説明した。
 この観点から、データ検出に失敗し、かつ再送を保留する要求を示すものとして無送信を選択する代わりに、ACK/NACK以外の信号を送信する構成としても良い。また、本実施形態におけるNACKの役割と無送信の役割を入れ替えても良い。すわなち、NACKはデータ検出に失敗し、かつ再送を保留することを示すようにし、無送信はデータ検出に失敗し、かつ再送を要求することを示すようにしても良い。
[第4の実施形態]
 第2の実施形態では、受信側で繰り返し並列型MCIキャンセラを用いて、第1の実施形態で説明した処理を行う場合について説明した。第4の実施形態では受信側で繰り返し並列型MCIキャンセラを用いて、第3の実施形態で説明した処理を行う場合について説明する。
 図10は、本発明の第4の実施形態による送信装置1000の構成を示す概略ブロック図である。送信装置1000は、コードチャネル信号生成部1001-1、・・・、1001-N(ただし、Nはコード多重数)、コード多重部1002、インターリーバ部1003、IFFT部1004、パイロット信号生成部1005、多重部1006、GI挿入部1007、無線送信部1008、アンテナ1009、無線受信部1010、分離部1011、再送制御部1012、再送制御信号生成部1013を備えている。
 コードチャネル信号生成部1001-1、・・・、1001-Nはそれぞれ、符号部1014、レートマッチ部1015、変調部1016、拡散部1017、符号化ビット記憶部1018を備えている。
 図10に示す各ブロックは、再送制御部1012を除いて、図2に示した同名の各ブロックと同様の構成で実現することができる。
 図11は、本発明の第4の実施形態による受信装置1100の構成を示す概略ブロック図である。受信装置1100は、アンテナ1101、無線受信部1102、分離部1103、伝搬路推定部1104、伝搬路推定値記憶部1105、GI除去部1106、FFT部1107、受信信号記憶部1108、受信パケット管理部1109、干渉キャンセラ部1110、コードチャネルレプリカ生成部1111-1、・・・、1111-N、ビットLLR記憶部1112、成否情報信号生成部1113、多重部1114、無線送信部1115を備えている。なお、伝搬路推定部1104、・・・、ビットLLR記憶部1112を、まとめてデータ信号検出部とも称する。
 コードチャネルレプリカ生成部1111-1、・・・、1111-Nはそれぞれ、シンボルレプリカ生成部1116、拡散部1117を備えている。
 図11に示す各ブロックは、受信パケット管理部1109を除いて、図3に示した同名の各ブロックと同様の構成で実現することができる。
 以下では、第2の実施形態とは異なる機能を有する受信パケット管理部1109と再送制御部1012について説明する。
 第2の実施形態における受信パケット管理部309(図3)は、分離部303において分離された再送制御情報信号と、干渉キャンセラ部310から出力される成否情報に基づいて、干渉キャンセラ部310、ビットLLR記憶部312、受信信号記憶部308、伝搬路推定値記憶部305に対して各種指示をする。また、第2の実施形態における受信パケット管理部309は、成否情報信号生成部313に対して、成否情報信号の生成を指示する。
 これに対し、第4の実施形態における受信パケット管理部1109(図11)は、分離部1103において分離された再送制御情報信号と、干渉キャンセラ部1110から出力される成否情報に基づいて、干渉キャンセラ部1110、ビットLLR記憶部1112、受信信号記憶部1108、伝搬路推定値記憶部1105に対して各種指示をする。また、第4の実施形態における受信パケット管理部1109は、成否情報からNACKを返すパケットを選択し、選択結果に基づいて、成否情報信号生成部1113に対して、成否情報信号の生成を指示する。
 好ましくは、受信パケット管理部1109は、送信データの検出に成功したパケットに関しては、ACKを生成するように成否情報信号生成部1113に対して指示するようにすると良い。また、受信パケット管理部1109は、送信データの検出に失敗したパケットに関しては、その一部のパケットを選択し、選択したパケットに対するNACKを生成するように成否情報信号生成部1113に対して指示するようにすると良い。
 このとき、一部のパケットの選び方として、下記のような方法を用いることができる。
(1) 重要度の高い(要求遅延が短い)情報を含むパケットに関して優先的にNACKを返すことにより、重要度の高いパケットの遅延時間を短くすることができる。これを実現するために、受信パケット管理部1109は、上位レイヤからの制御信号により、各パケットの重要度(要求遅延)を取得するようにする。
(2) インクリメンタルリダンダンシ(IR)の場合は、初送の符号化率が大きいパケットほど、再送パケット合成による符号化率の低下の度合いが大きい。そのため、初送の符号化率が大きいパケットに関して優先的にNACKを返すことにより、再送による符号化利得が大きくなり、効率的な再送を行うことができる。
(3) 再送回数に基づいて優先的にNACKを返すパケットを選択する。例えば、再送回数の少ないパケットに関して優先的にNACKを返すことにより、平均的な遅延時間を短くすることができる。あるいは、再送回数の多いパケットに関して優先的にNACKを返すことにより、最大遅延時間を短くすることができる。
(4) パケット毎に受信品質が異なる場合、受信品質が悪い(受信電力が小さい)パケットに関して優先的にNACKを返すことにより、全体的に受信品質を向上することができる。これを実現するために、伝搬路推定部あるいは復調部の出力を受信パケット管理部1109に入力し、受信パケット管理部1109において各パケットの受信電力を測定するようにする。
(5) 復号結果である符号化ビットLLRの値が小さいパケットに関して優先的にNACKを返すことにより、復号精度の劣悪なパケットの復号精度を向上することができる。これを実現するために、符号化ビットLLRも受信パケット管理部1109に入力するようにする。
 第2の実施形態における再送制御部212(図2)は、符号化ビット記憶部218に対して、NACKを返されたパケットに対応する符号化ビット系列を出力するように指示する。そして、再送制御部212は、NACKを返されたすべてのパケットではなく、一部のパケットを選択して再送を行うように指示した。
 これに対し、第4の実施形態における再送制御部1012は、符号化ビット記憶部1018に対して、NACKを返されたパケットに対応する符号化ビット系列を出力するように指示する。このとき、NACKを返された全てのパケットを再送するように指示しても良いし、第2の実施形態と同様に一部のパケットを選択して、再送を行うように指示しても良い。
 このように、本実施形態の無線通信システムでは、送信装置1000から受信装置1100へ複数の初送パケットを多重して送信し、受信装置1100において干渉(多重された他のパケット)を除去しながらデータを検出する。また、受信装置が、データ検出に失敗した場合に、送信装置1000から受信装置1100へ再送パケットを送信する。そして、多重された複数の初送パケットの検出に受信装置が失敗した場合に、その一部のパケットに対応する検出失敗を示す情報を報告する。そして、受信装置は、一部のパケットのみでなく初回に検出に失敗した他の初送パケットにおいても再度検出する。そして、受信装置は、検出に成功すれば、検出成功を示す情報を送信装置に送信する。これにより、下りリンクの再送パケット数を抑制することができるため、スループットが向上する。
[第5の実施形態]
 第2の実施形態では、受信側で繰り返し並列型MCIキャンセラを用いて、第1の実施形態で説明した処理を行う場合について説明した。第5の実施形態では、受信側で繰り返し逐次型MCIキャンセラを用いて、第1の実施形態で説明した処理を行う場合について説明する。なお、送信装置は、図2に示す送信装置200と同様の送信装置を用いることができるため、その説明を省略する。
 図12は、本発明の第5の実施形態による受信装置1200の構成を示す概略ブロック図である。受信装置1200は、アンテナ1201、無線受信部1202、分離部1203、伝搬路推定部1204、伝搬路推定値記憶部1205、GI除去部1206、FFT部1207、受信信号記憶部1208、受信パケット管理部1209、干渉キャンセラ部1210、ビットLLR記憶部1212、成否情報信号生成部1213、多重部1214、無線送信部1215を備えている。
 なお、干渉キャンセラ部1210以外の各ブロックは図3に示した同名のブロックと同様のブロックを用いることができるため、以下では干渉キャンセラ部1210で行われる処理に関して説明する。
 図13は、本発明の第5の実施形態による受信装置1200の干渉キャンセラ部1210の構成を示す概略ブロック図である。なお、ここでは、拡散符号C~Cに対応するコードチャネルの信号をC、C、C、・・・、Cの順に逐次検出する場合について説明する。干渉キャンセラ部1210における一連の処理は、繰り返し実行される。繰り返し数は1回以上である。
 干渉キャンセラ部1210は、伝搬路補償部1301-1、・・・、1301-N、デインターリーバ部1302-1、・・・、1302-N、コード分離部1303-1、・・・、1303-N、MCIレプリカ生成部1304-1、・・・、1304-N、コードチャネルレプリカ生成部1305-1、1305-2、・・・、1305-N(図示省略)、減算部1306-1、1306-2、・・・、1306-Nを備えている。
 コード分離部1303-1は、逆拡散部1307-1、復調部1308-1、レートマッチ部1309-1、合成部1310-1、復号部1311-1を備えている。コード分離部1303-2、・・・、1303-Nもコード分離部1303-2と同様に、逆拡散部1307-2、・・・、1307-N、復調部1308-2、・・・、1308-N、レートマッチ部1309-2、・・・、1309-N、合成部1310-2、・・・、1310-N、復号部1311-2、・・・、1311-Nを備えている。
 なお、説明の便宜上、同様の機能を持つ複数のブロックを重複して記載しているが、一つのブロックのみを備えるようにし、そのブロックの機能を複数回使用する構成にしても良い。
 干渉キャンセラ部1210内の各ブロックは、図3に示した干渉キャンセラ部310内の同名の各ブロックと同様の処理を行う。また、コードチャネルレプリカ生成部1305-1、・・・、1305-Nは、受信装置300内のコードチャネルレプリカ生成部311と同様の処理を行う。そのため、ここでは干渉キャンセラ部1210の処理で、干渉キャンセラ部310の処理と異なる点について説明する。
 第2の実施形態では、干渉キャンセラ部310でC~Cに対応する各コードチャネルの信号検出を行い、コードチャネルレプリカ生成部311においてC~Cに対応する各コードチャネルレプリカを生成する。生成されたコードチャネルレプリカは、干渉キャンセラ部310における次回繰り返し時の干渉キャンセルに用いられる。これに対して、本実施形態における干渉キャンセラ部1210は、コードチャネルレプリカ生成部1305を備える。そして、干渉キャンセラ部1210は、C~Cに対応するいずれかのコードチャネルの信号検出が終わるごとに、コードチャネルレプリカ生成部1305においてコードチャネルレプリカを生成又は更新する。そして、干渉キャンセラ部1210は、次に検出するコードチャネルにおける干渉除去に、この生成又は更新したコードチャネルレプリカを用いる。すなわち、第2の実施形態では、C~Cのすべてのコードチャネルの信号検出後にコードチャネルレプリカを更新する。これに対して、本実施形態では1つのコードチャネルの信号検出後にコードチャネルレプリカを更新する。よって、高精度のコードチャネルレプリカを生成することができる。
 受信装置1200において、このような干渉キャンセル処理を行うシステムであっても、第2の実施形態と同様のHARQ処理を行うことができる。
 なお、本実施形態では、第1の実施形態の処理を行う場合について説明したが、第4の実施形態のように、第2の実施形態の処理を行っても良い。
 このように、本実施形態の無線通信システムでは、送信装置から受信装置1200へ複数の初送パケットを多重して送信する。そして、受信装置1200は、干渉(多重された他のパケット)を除去しながらデータを検出する。また、データ検出に失敗した場合に、送信装置から受信装置1200へ再送パケットを送信する。そして、多重された複数の初送パケットの検出に受信装置が失敗した場合に、その一部のパケットに対応する再送パケットを送信装置が受信装置に送信する。そして、受信装置は、一部のパケットのみでなく初回に検出に失敗した他の初送パケットにおいても再度検出する。受信装置は、検出に成功すれば、検出成功を示す情報を基地局である送信装置に送信する。これにより、下りリンクの再送パケット数を抑制することができるため、スループットが向上する。
[第6の実施形態]
 第2および第4の実施形態では、パケットが拡散符号によって多重され、MCIをキャンセラによって干渉を除去する場合について説明した。本実施形態では、パケットがMIMO(Multiple Input Multiple Output:多入力多出力)を用いて空間多重され、他ストリームの信号を干渉キャンセラによって除去する場合に、第1の実施形態で説明した処理を行う場合ついて説明する。なお、干渉キャンセラとして、繰り返しSIC(Successive Interference Canceller:逐次型干渉キャンセラ)を用いる。
 図14は、本発明の第6の実施形態による送信装置1400の構成を示す概略ブロック図である。送信装置1400は、ストリーム信号生成部1401-1、・・・、1401-N(ただし、Nはストリーム数)、アンテナ1409-1、・・・、1409-N、無線受信部1410、分離部1411、再送制御部1412、再送制御信号生成部1413を備えている。
 ストリーム信号生成部1401-1、・・・、1401-Nはそれぞれ、符号部1414、レートマッチ部1415、変調部1416、インターリーバ部1403、IFFT部1404、パイロット信号生成部1405、多重部1406、GI挿入部1407、無線送信部1408、符号化ビット記憶部1418を備えている。
 ストリーム信号生成部1401-1、・・・、1401-Nは、情報ビットからストリーム毎の送信データ信号を生成する。まず、符号部1414は、情報ビット系列に対してチャネル符号化処理を行い、符号化ビット系列をレートマッチ部1415と符号化ビット記憶部1418に出力する。ここでチャネル符号化としては、畳み込み符号化、リードソロモン符号化などの誤り訂正能力を有する符号化を用いることが好ましい。より好ましくはターボ符号化、LDPC符号化などの高い誤り訂正能力を有する符号化を用いる。
 レートマッチ部1415は、符号部1414から出力された符号化ビットあるいは符号化ビット記憶部1418から出力された符号化ビットに対して、再送制御部1412から出力される再送回数に応じたパンクチャリング(ビット除去)、ビットパディング(ビット挿入)あるいはビットリピティション(ビット繰り返し)処理を行う。レートマッチ部1415は、さらにビットインターリーブ処理を行っても良い。なお、レートマッチングの例として、パンクチャリングに関する一例を後述する。
 符号化ビット記憶部1418は、符号部1414の出力である符号化ビット系列を記憶する。また、再送制御部1412の制御に基づいて、記憶している符号化ビット系列を消去する。
 変調部1416は、レートマッチ部1415から出力された符号化ビット(パンクチャド符号化ビット)系列に対して変調処理を行い、変調シンボル系列をインターリーバ部1403に出力する。このとき、変調部1416は、変調方式として、PSK、QAMなどを用いることができる。さらに好ましくは、変調部1416は、送信装置1400と受信装置1500との間の伝搬路に応じた変調方式を用いると良い。
 インターリーバ部1403は、変調部1416から出力された信号に、シンボルインターリーブ(周波数インターリーブ)などのインターリーブ処理を行い、IFFT部1404に出力する。
 IFFT部1404は、周波数方向に並べられた信号に対して、IFFT処理を行うことにより、時間領域の信号に変換し、多重部1406に出力する。
 パイロット信号生成部1405は、受信装置において伝搬路推定に用いるためのパイロット信号を生成し、多重部1406に出力する。パイロット信号生成部1405は、好ましくは、ストリーム毎に直交したパイロット信号を生成する。
 再送制御信号生成部1413は、再送制御部1412から通知される各ストリームのデータ信号の再送回数を受信装置に通知するための信号(再送制御信号)を生成し、多重部1406に出力する。なお、ここでは再送制御信号はストリーム信号生成部1401-1におけるストリームに多重されているが、これに限るものではない。いずれのストリーム(複数も可能)に多重されても良い。
 多重部1406は、IFFT部1404から出力されたデータ信号と、パイロット信号生成部1405から出力されたパイロット信号と、再送制御信号生成部1413から出力された再送制御信号とを多重し、GI挿入部1407に出力する。
 多重部1406から出力された信号は、GI挿入部1407においてガードインターバルを付加され、無線送信部1408からアンテナ1409-1を介して受信装置300に送信される。他のストリーム信号生成部1401-2、・・・、1401-Nおよびアンテナ1409-2、・・・、1409-Nにおいても、ストリーム信号生成部1401-1およびアンテナ1409-1と同様の処理が行われる。
 図15は、本発明の第6の実施形態による受信装置1500の構成を示す概略ブロック図である。受信装置1500は、アンテナ1501-1、・・・、1501-M(ただし、Mは受信アンテナ数)、無線受信部1503、分離部1504、伝搬路推定部1505、伝搬路推定値記憶部1506、GI除去部1507、FFT部1508、受信信号記憶部1509、受信パケット管理部1510、干渉キャンセラ部1511、ビットLLR記憶部1512、成否情報信号生成部1513、多重部1514、無線送信部1515を備えている。なお、伝搬路推定部1504、・・・、ビットLLR記憶部1512をまとめて、データ信号検出部とも称する。
 アンテナ1501-1~1501-Mを介して受信された信号は、アンテナ毎受信処理部1502-1、・・・、1502-Mにおいて受信処理が行われる。まず、無線受信部1503(受信部とも称する)で受信された信号は、分離部1504で、パイロット信号と再送制御情報信号とデータ信号とに分離される。
 伝搬路推定部1505では、分離部1504において分離されたパイロット信号を用いて、送信装置1400の各アンテナ1409-1、・・・、1409-Nと受信装置1500のアンテナ1501との間の伝搬路特性を推定し、伝搬路推定値記憶部1506と干渉キャンセラ部1511に、伝搬路推定値を出力する。
 伝搬路推定値記憶部1506は、伝搬路推定部1505の出力である伝搬路推定値を記憶する。
 GI除去部1507では、分離部1504で分離されたデータ信号からガードインターバルを除去し、FFT部1508に出力する。
 FFT部1508では、GI除去部1507の出力信号に対して、FFT処理を行うことにより、周波数領域の信号に変換し、受信信号記憶部1509と干渉キャンセラ部1511とに出力する。
 受信信号記憶部1509は、FFT部1509の出力である周波数領域の信号を記憶する。
 受信パケット管理部1510は、分離部1504において分離された再送制御情報信号と、干渉キャンセラ部1511から出力される成否情報とに基づいて、干渉キャンセラ部1511、ビットLLR記憶部1512、受信信号記憶部1509、伝搬路推定値記憶部1506に対して各種指示を出力する。また、受信パケット管理部1510は、成否情報信号生成部1513に対して、成否情報信号の生成を指示する。なお、受信パケット管理部1510の詳細な動作については後述する。
 干渉キャンセラ部1511は、受信パケット管理部1510の指示に基づき、伝搬路推定部1504から出力された伝搬路推定値を参照しながら、各アンテナごとに受信処理部1502-1、・・・、1502-Mから出力される信号から、情報ビット系列を検出するとともに、成否情報を出力する。
 また、ビットLLR記憶部1512からビットLLRが出力された場合は、受信信号記憶部1509から出力される受信信号から当該ビットLLRと、伝搬路推定値記憶部1506の出力である伝搬路推定値とを用いて、情報ビットの検出を行う。なお、干渉キャンセラ部1511の動作の詳細な例については後述する。
 ビットLLR記憶部1512は、受信パケット管理部1510の指示に基づいて、干渉キャンセラ部1511から出力されるビットLLRを記憶する。また、受信信号に再送パケットが多重されていた場合は、記憶しておいたビットLLRを干渉キャンセラ部1511に出力し、干渉キャンセラ部1511から出力されるビットLLRを再び記憶する。つまり、ビットLLR記憶部1512は、記憶しておいたビットLLRを、新たに出力されたビットLLRに置き換える。
 成否情報信号生成部1513は、受信パケット管理部1510の指示に基づいて、成否情報信号を生成し、多重部1514に出力する。
 多重部1514は、成否情報信号生成部1513の出力である成否情報信号と、上りリンクデータ信号とを多重して、無線送信部1515に出力する。出力された信号は、無線送信部1515(報告送信部とも称する)からアンテナ1501を介して送信装置1400へと送信される。
 なお、ここでは上りリンクの信号を、アンテナ1501-1のみから送信する場合について説明するが、これに限るものではなく、複数のアンテナを用いて送信するようにしても良い。
 図16は、本発明の第6の実施形態による受信装置1500の干渉キャンセラ部1511の構成を示す概略ブロック図である。なお、ここでは、1番目のストリームから逐次N番目のストリームまでを検出する場合について説明する。干渉キャンセラ部1511における一連の処理は、初回にすべての情報ビットを誤り無く検出できた場合を除いて繰り返し実行される。
 干渉キャンセラ部1511は、ストリーム検出部1601-1、1601-2、・・・、1601-N、受信レプリカ生成部1602-1、1602-2、1602-3、・・・、1602-N、減算部1603-1、1603-2、・・・、1603-N、シンボルレプリカ生成部1604-1、1604-2、・・・、1604-N(図示省略)を備えている。
 ストリーム検出部1601-1は、MIMO分離部1605-1(ストリーム分離部とも称する)、デインターリーバ部1606-1、復調部1607-1、レートマッチ部1608-1、合成部1609-1、復号部1610-1を備えている。ストリーム検出部1601-2、・・・、1601-Nも、ストリーム検出部1601-2と同様に、MIMO分離部1605-2、・・・、1605-N、デインターリーバ部1606-2、・・・、1606-N、復調部1607-2、・・・、1607-N、レートマッチ部1608-2、・・・、1608-N、合成部1609-2、・・・、1609-N、復号部1610-2、・・・、1610-Nを備えている。
 受信レプリカ生成部1602-1、・・・、1602-N(干渉信号レプリカ生成部とも称する)は、シンボルレプリカ生成部1604-1・・・1604-Nから出力されたシンボルチャネルレプリカSr、1・・・Sr、Nの中で、Sr、k以外のシンボルレプリカと、伝搬路推定部1505(あるいは伝搬路推定値記憶部1506)から出力された伝搬路推定値とに基づいて、ストリームレプリカ(干渉レプリカ)を生成して、減算部1603-1、・・・、1603-Nに出力する。
 なお、初回においては、受信レプリカ生成部1602-1、・・・、1602-Nは、受信レプリカを生成する必要はない。また、繰り返し中における各シンボルレプリカは、最後に生成又は更新されたものを用いる。
 減算部1603-1、・・・、1603-Nは、FFT部1508(あるいは受信信号記憶部1509)の出力からストリームレプリカを減算する。
 MIMO分離部1605-1、・・・、1605-Nは、伝搬路推定部1505(あるいは伝搬路推定値記憶部1506)の出力である伝搬路推定値に基づいて、減算部1603-1、・・・、1603-Nの出力に対してMIMOストリーム分離を行い、デインターリーバ部1601-1、・・・、1601-Nに出力する。具体的には、MIMO分離部1605-1、・・・、1605-Nは、最尤推定によりストリームのデータ信号を再現する。あるいは、MIMO分離部1605-1、・・・、1605-Nは、減算部1603-1、・・・、1603-Nの出力に対するMMSE重みを算出し、算出した重みを減算部1603-1、・・・、1603-Nの出力に対して乗算するなどの分離方法を用いる。
 デインターリーバ部1606-1、・・・、1606-Nは、MIMO分離部1605-1、・・・、1605-Nからの出力に対して、デインターリーブ処理を行う。このデインターリーブ処理は、インターリーバ部1403におけるインターリーブ処理により並べ替えられた順を、元に戻すような並べ替えであることが好ましい。
 復調部1607-1、・・・、1607-Nは、デインターリーバ部1606-1、・・・、1606-Nからの出力信号である変調シンボル系列に対して復調処理を行い、ビット毎の信号を抽出し、レートマッチ部1608-1、・・・、1608-Nに出力する。復調部1607-1、・・・、1607-Nは、好ましくは、ビット毎の対数尤度比(LLR)を出力する。なお、MIMO分離部、デインターリーバ部、復調部、レートマッチ部をまとめて復調部とも称する。
 レートマッチ部1608-1、・・・、1608-Nは、送信装置1400内のレートマッチ部1415において行われたパンクチャリング(ビット除去)、ビットパディング(ビット挿入)あるいはビットリピティション(ビット繰り返し)処理に対して逆の処理を行う。すなわち、レートマッチ部1608-1、・・・、1608-Nは、パンクチャリングされたビットに対してはビットデパンクチャリング(ビットLLR挿入)処理を行い、ビットパディング(ビット挿入)されたビットに対してはビット除去処理を行い、ビットリピティション(ビット繰り返し)されたビットに対してはビットLLR合成を行う。
 合成部1609-1、・・・、1609-Nは、初送パケットあるいは1度目の再送パケットである場合、レートマッチ部1608-1、・・・、1608-Nの出力であるビットLLRをそのまま出力する。一方、合成部1609-1、・・・、1609-Nは、2度目以降の再送パケットである場合、ビットLLR記憶部1412に記憶してあるビットLLR(対応する初送パケットにおけるビットLLR)と、レートマッチ部1608-1、・・・、1608-Nの出力であるビットLLRとを合成して出力する。
 合成部1609-1、・・・、1609-Nから出力されたビットLLRは、復号部1610-1、・・・、1610-Nに入力される。また、再送パケットである場合は、出力されたビットLLRがビットLLR記憶部1412に送られる。
 なお、MIMO分離部、デインターリーバ部、復調部、レートマッチ部、合成部をまとめて信号合成部とも称する。
 次に、図14を用いて、受信装置1500から送信装置1400への上りリンク信号の送信処理に関して説明する。
 受信装置1500から送信された信号は、アンテナ1409-1、・・・、1409-Nを介して、無線受信部1410(報告受信部とも称する)で受信される。なお、ここではアンテナ1409-1のみを介して受信する構成について説明するが、これに限るものではない。いずれのアンテナ(複数も可能)を介して信号を受信しても良い。
 分離部1411では、受信信号に多重された上りリンクデータと成否情報とを分離する。
 再送制御部1412は、分離部1411で上りリンクデータから分離された成否情報に基づいて、再送パケット(再送データ信号)を送信する準備を行う。成否情報が受信失敗を表す情報(NACK)であった場合、再送制御部1412は、符号化ビット記憶部1418に対して、NACKを返されたパケットに対応する符号化ビット系列を出力するように指示する。
 このとき、一部のパケットの選び方として、下記のような方法を用いることができる。
(1) 各パケットの含まれる送信データは、上位レイヤから順次送られてくる。上位レイヤから送られた順に再送することにより、平均的な遅延時間を短くすることができる。
(2) 重要度の高い(要求遅延が短い)情報を含むパケットを優先的に再送することにより、重要度の高いパケットの遅延時間を短くすることができる。
(3) インクリメンタルリダンダンシ(IR)の場合は、初送の符号化率が大きいパケットほど、再送パケット合成による符号化率の低下の度合いが大きい。そのため、初送の符号化率が大きいパケットを優先的に再送することにより、再送による符号化利得が大きくなり、効率的な再送を行うことができる。
(4) 再送回数に基づいて優先的に再送するパケットを選択する。例えば、再送回数の少ないパケットを優先的に再送することにより、平均的な遅延時間を短くすることができる。あるいは、再送回数の多いパケットを優先的に再送することにより、最大遅延時間を短くすることができる。
(5) パケット毎に受信品質が異なる場合、受信品質が悪い(受信電力が小さい)パケットを優先的に再送することにより、全体的に受信品質を向上することができる。
 また、再送制御部1412は、レートマッチ部1415に対して、符号化ビット記憶部1418から出力された符号化ビット系列に対してレートマッチング処理を行うように指示する。なお、レートマッチ処理は初送時と同様の処理であっても良いが、再送回数に応じてレートマッチ処理を変更することが好ましい。さらに、再送制御部1412は、多重するパケットの再送回数を示す情報を再送制御信号生成部1413に通知する。そして、再送制御信号生成部1413は、この情報を示す信号(再送制御信号)を生成して、多重部1406に出力する。
 なお、多重するパケットの再送回数を示す情報は、回数そのものを示す情報であることが好ましいが、単に初送か再送かを示す情報など、再送回数を加工した情報であっても良い。成否情報が受信成功を表す情報(ACK)であった場合、再送制御部1412は、符号化ビット記憶部1418に対して、ACKを返されたパケットに対応する符号化ビット系列を記憶した記憶領域を解放するように指示する。
 図17は、本発明の第6の実施形態による受信装置1500の処理を示すフローチャートである。図17は、再送パケットに対応する初送パケットを含む過去の受信信号に含まれる初送パケットから情報ビットを抽出する処理と、受信パケット管理部1510が行う制御の一例を示している。
 まず、再送パケットに対応する初送パケットを含む過去の受信信号を受信信号記憶部1409から取得する(ステップS1701)。次に、再送パケットに対応する初送パケットに関するループ(ループL5)におけるステップS1702~S1711)が実行される。さらにその繰り返し処理の中で、送信データの検出と、次の送信データを含むデータ信号における干渉の除去が繰り返し行われる(ループ(ループL6)におけるステップS1703~S1710))。初送パケットは、まず、伝搬路推定値記憶部1406に記憶された当該受信信号受信時の伝搬路推定値を用いて、MIMO分離部1704でMIMOストリーム分離が行われる(ステップS1704)。MIMO分離された信号は、デインターリーバ部1606での処理の後、復調部1607およびレートマッチ部1608において復調およびレートマッチング処理されて符号化ビットLLRが求められる(ステップS1705)。
 次に、ステップS1705で求めたビット符号化LLRと、この初送パケットに対応する再送パケットの符号化ビットLLRとを合成部1609において合成する(ステップS1706)。そして、合成して得られた符号化ビットLLRを用いて復号部1610で復号する(ステップS1706)。さらに、復号部1610の出力である符号化ビットLLRを用いて、シンボルレプリカ生成部1604および受信レプリカ生成部1602の処理によりストリームレプリカが生成される(ステップS1708)。そして、減算部1603において減算することにより干渉を除去する(ステップS1709)。
 ただし、ステップS1709におけるストリームレプリカのキャンセルは、過去の受信信号に含まれる再送パケットのレプリカもキャンセルすることが好ましい。
 MIMO通信を行う受信装置1500において、このようなストリーム間干渉キャンセル処理を行うシステムであっても、第4の実施形態と同様のHARQ処理を行うことができる。
 なお、本実施形態では、第1の実施形態の処理を行う場合について説明したが、第4の実施形態のように、第2の実施形態の処理を行っても良い。
 このように、本実施形態の無線通信システムでは、送信装置から受信装置へ複数の初送パケットを多重して送信し、受信装置において干渉(多重された他のパケット)を除去しながらデータを検出する。また、受信装置が、データ検出に失敗した場合に、送信装置から受信装置へ再送パケットを送信する。そして、多重された複数の初送パケットの検出に受信装置が失敗した場合に、その一部のパケットに対応する再送パケットを送信装置が受信装置に送信する。そして、受信装置は、一部のパケットのみでなく初回に検出に失敗した他の初送パケットにおいても再度検出する。そして、受信装置は、検出に成功すれば、検出成功を示す情報を送信装置に送信する。
 これにより、下りリンクの再送パケット数を抑制することができるため、スループットが向上する。
 なお、上記の各実施形態では、復調部の出力であるビットLLRを合成部において合成する場合について説明したが、送信装置において初送パケットと再送パケットに対して同様のレートマッチング処理を行う場合に限り、復調前の変調シンボル系列を合成しても良い。この場合、復調後のビットLLRを記憶する代わりに、変調シンボル系列を記憶すれば良い。
 なお、上記の各実施形態では、送信データ検出に成功するか否かに係らず、データ信号のレプリカを生成する際に、復号部の出力である符号化ビットLLRを用いる場合について説明したが、これに限るものではない。好ましくは、送信データ検出に成功したデータ信号のレプリカは、復号部の出力である情報ビットを用いて生成する。これにより、レプリカ生成の精度を向上することができる。
 なお、上記の各実施形態では、再送パケットを合成して、初送パケットに含まれる送信データを再検出した後、送信データ再検出に成功した場合はACKを送信装置に報告し、送信データ再検出に失敗した場合は何も報告しない場合について説明したが、これに限るものではない。例えば、送信データ再検出に成功した場合は、ACKを送信装置に報告し、送信データ再検出に失敗した場合は、NACKを送信装置に報告するようにしても良い。
 なお、上記の各実施形態では、HARQを用いる場合について説明したが、ARQ(初送パケットと再送パケットを合成しない場合)においても本実施形態を適用することが可能である。初送パケットと再送パケットを合成する代わりに、再送パケットの復号結果(あるいは復調結果)を用いてシンボルレプリカを生成し、このシンボルレプリカと初送時の伝搬路推定結果とを用いて干渉信号レプリカを生成すれば良い。
 この場合、初送パケットに比べて再送パケット送信時の伝搬路特性が良好であるか、あるいは再送パケットの方が低伝送レートで送信されるなど、再送パケットの送信データ検出精度が初送パケットに比べて良好であれば、効果が得られる。
 なお、以上説明した実施形態において、送信装置の各部や受信装置の各部の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより送信装置や受信装置の制御を行っても良い。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含む。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も特許請求の範囲に含まれる。
 本発明は、送信装置から受信装置への下りリンクの再送パケット数を抑制し、スループットを向上することができる送信装置、受信装置、通信システム及び通信方法などに適用できる。

Claims (29)

  1.  受信装置と通信する送信装置であって、
     複数の送信データから複数のデータ信号が多重された信号を生成する送信信号生成部と、
     前記送信信号生成部で生成した信号を前記受信装置に送信する送信部と、
     前記受信装置から報告される前記データ信号毎の送信データ検出の成否を示す成否情報を受信する報告受信部とを備え、
     前記送信信号生成部はさらに、前記成否情報が送信データ検出失敗を示す前記データ信号のうちの一部のデータ信号を選択し、前記選択したデータ信号に対する再送信号を生成し、
     前記送信部はさらに、前記再送信号を前記受信装置に送信することを特徴とする送信装置。
  2.  前記送信信号生成部は、各々の前記データ信号に含まれる送信データの優先度を取得し、前記取得した優先度に基づいて、前記一部のデータ信号を選択することを特徴とする請求項1に記載の送信装置。
  3.  前記送信信号生成部は、各々の前記データ信号に含まれる送信データの再送回数を記憶し、前記再送回数に基づいて、前記一部のデータ信号を選択することを特徴とする請求項1に記載の送信装置。
  4.  前記送信信号生成部は、各々の前記データ信号の符号化率を記憶し、前記符号化率に基づいて、前記一部のデータ信号を選択することを特徴とする請求項1に記載の送信装置。
  5.  前記複数の送信データを記憶する送信データ記憶部を備え、
     前記送信信号生成部は、前記送信データ記憶部に記憶された前記送信データから前記再送信号を生成することを特徴とする請求項1に記載の送信装置。
  6.  前記報告受信部はさらに、前記受信装置から報告される送信データ再検出の成否を示す成否情報を受信することを特徴とする請求項5に記載の送信装置。
  7.  前記送信データ記憶部は、前記送信データ再検出の成否を示す成否情報を報告された当該送信データを削除することを特徴とする請求項6に記載の送信装置。
  8.  前記送信信号生成部は、前記複数のデータ信号を符号拡散する拡散部を備えることを特徴とする請求項1に記載の送信装置。
  9.  前記送信部は、前記複数のデータ信号を空間多重して送信することを特徴とする請求項1に記載の送信装置。
  10.  送信装置と通信する受信装置であって、
     複数のデータ信号が多重された信号を前記送信装置から受信する受信部と、
     前記受信部で受信した受信信号から、前記複数のデータ信号に含まれる送信データを検出し、検出した送信データと、各々の前記データ信号毎の送信データ検出の成否を出力するデータ信号検出部と、
     前記多重された複数のデータ信号に対して、一つの成否情報を生成する成否情報信号生成部と、
     前記成否情報を前記送信装置に報告する報告送信部と、
     を備えることを特徴とする受信装置。
  11.  送信装置と通信する受信装置であって、
     複数のデータ信号が多重された信号を前記送信装置から受信する受信部と、
     前記受信部で受信した受信信号から、前記複数のデータ信号に含まれる送信データを検出し、検出した送信データと、各々の前記データ信号毎の送信データ検出の成否を出力するデータ信号検出部と、
     前記多重された複数のデータ信号のうち送信データ検出に失敗したデータ信号の中から一部のデータ信号を選択する選択部と、
     送信データ検出に成功したデータ信号と前記選択したデータ信号とにおける成否情報を生成する成否情報信号生成部と、
     前記成否情報を前記送信装置に報告する報告送信部と、
     を備えることを特徴とする受信装置。
  12.  前記選択部は、各々の前記データ信号に含まれる送信データの優先度を取得し、前記取得した優先度に基づいて、前記一部のデータ信号を選択することを特徴とする請求項11に記載の受信装置。
  13.  前記選択部は、各々の前記データ信号に含まれる送信データの再送回数を取得し、前記再送回数に基づいて、前記一部のデータ信号を選択することを特徴とする請求項11に記載の受信装置。
  14.  前記選択部は、各々の前記データ信号の符号化率を取得し、前記符号化率に基づいて、前記一部のデータ信号を選択することを特徴とする請求項11に記載の受信装置。
  15.  前記選択部は、各々の前記データ信号の受信品質を取得し、前記受信品質に基づいて、前記一部のデータ信号を選択することを特徴とする請求項11に記載の受信装置。
  16.  前記受信部はさらに、前記多重された複数のデータ信号のいずれかに対応する再送データ信号を受信し、
     前記データ信号検出部は、前記受信信号と前記再送データ信号とから、前記多重された複数のデータ信号のうち前記再送データ信号に対応するデータ信号と少なくとも1つの前記再送データ信号に対応しないデータ信号とに含まれる送信データを再検出することを特徴とする請求項11に記載の受信装置。
  17.  前記データ信号検出部は、
     各データ信号のレプリカであるデータ信号レプリカを生成するデータ信号レプリカ生成部と、
     前記データ信号レプリカから干渉信号レプリカを生成する干渉信号レプリカ生成部と、
     前記干渉信号レプリカを受信信号から減算する干渉除去部と、
     前記干渉信号レプリカを除去した受信信号を合成する信号合成部と、
     前記信号合成部の出力から前記多重された複数のデータ信号に含まれる送信データの再検出を行う判定部と、
     を備えることを特徴とする請求項16に記載の受信装置。
  18.  前記信号合成部は、
     前記干渉信号レプリカを除去した受信信号と前記再送信号を復調する復調部と、
     前記干渉信号レプリカを除去した受信信号の復調結果と前記再送信号の復調結果とを合成する合成部と、
     を備えることを特徴とする請求項17に記載の受信装置。
  19.  前記復調部は、前記干渉信号レプリカを除去した受信信号と前記再送信号に含まれる送信データの尤度情報を出力する請求項18に記載の受信装置。
  20.  前記復調部は、前記干渉信号レプリカを除去した受信信号と前記再送信号に含まれる送信データの対数尤度比を出力し、
     前記合成部は、前記干渉信号レプリカを除去した受信信号に含まれる送信データの対数尤度比と前記再送信号に含まれる送信データの対数尤度比とを加算して合成することを特徴とする請求項19に記載の受信装置。
  21.  前記干渉信号レプリカ生成部は、検出するデータ信号の各々に対する干渉信号レプリカを生成することを特徴とする請求項18に記載の受信装置。
  22.  前記干渉信号レプリカ生成部は、検出する複数のデータ信号うち最初に検出するデータ信号以外のデータ信号に対する干渉信号レプリカを生成することを特徴とする請求項18に記載の受信装置。
  23.  前記報告送信部は、前記データ信号検出部から出力された前記送信データ再検出の成否に基づいて、前記送信データの再検出が成功であるデータ信号に関する成否情報を前記送信装置に報告することを特徴とする請求項16に記載の受信装置。
  24.  前記複数のデータ信号は、符号拡散多重されており、
     前記データ信号検出部は、受信信号に対して逆拡散処理を行う逆拡散部を備えることを特徴とする請求項11に記載の受信装置。
  25.  前記複数のデータ信号は、空間多重されているストリームであり、
     前記データ信号検出部は、受信信号に対してストリーム分離を行うストリーム分離部を備えることを特徴とする請求項11に記載の受信装置。
  26.  送信装置と受信装置とを備える通信システムであって、
     前記送信装置は、
     複数のデータ信号が多重された信号を生成する送信信号生成部と、
     前記送信信号生成部で生成した信号を前記受信装置に送信する送信部と、
     前記受信装置から報告される成否情報を受信する報告受信部とを備え、
     前記送信信号生成部はさらに、前記成否情報が検出失敗を示す前記データ信号のうちの一部のデータ信号を選択し、前記選択したデータ信号に対する再送信号を生成し、
     前記送信部はさらに、前記再送信号を前記受信装置に送信し、
     前記受信装置は、
     前記送信装置から送信された信号を受信する受信部と、
     前記受信部で受信した受信信号から、前記複数のデータ信号を検出し、検出したデータ信号と、信号検出の成否を出力するデータ信号検出部と、
     前記信号検出の成否を示す成否情報を前記送信装置に報告する報告送信部とを備え、
     前記受信部はさらに、前記多重された複数のデータ信号のいずれかに対応する再送データ信号を受信し、
     前記データ信号検出部は、前記受信信号と前記再送データ信号とから、前記多重された複数のデータ信号のうち信号検出結果が失敗であるデータ信号を再検出することを特徴とする通信システム。
  27.  送信装置と受信装置とを備える通信システムであって、
     前記送信装置は、
     複数のデータ信号が多重された信号を生成する送信信号生成部と、
     前記送信信号生成部で生成した信号を前記受信装置に送信する送信部と、
     前記受信装置から報告される成否情報を受信する報告受信部とを備え、
     前記送信信号生成部はさらに、前記成否情報が検出失敗を示す前記データ信号に対する再送信号を生成し、
     前記送信部はさらに、前記再送信号を前記受信装置に送信し、
     前記受信装置は、
     前記送信装置から送信された信号を受信する受信部と、
     前記受信部で受信した受信信号から、前記複数のデータ信号を検出し、検出したデータ信号と、各々の前記データ信号毎の送信データ検出の成否を出力するデータ信号検出部と、
     前記多重された複数のデータ信号のうち送信データ検出に失敗したデータ信号の中から一部のデータ信号を選択する選択部と、
     送信データ検出に成功したデータ信号と前記選択したデータ信号とにおける成否情報を生成する成否情報信号生成部と、
     前記成否情報を前記送信装置に報告する報告送信部とを備え、
     前記受信部はさらに、前記多重された複数のデータ信号のいずれかに対応する再送データ信号を受信し、
     前記データ信号検出部は、前記受信信号と前記再送データ信号とから、前記多重された複数のデータ信号のうち信号検出結果が失敗であるデータ信号を再検出することを特徴とする通信システム。
  28.  受信装置と通信する送信装置を用いた通信方法であって、
     複数の送信データから複数のデータ信号が多重された信号を生成する送信信号生成過程と、
     前記送信信号生成過程で生成した信号を前記受信装置に送信する送信過程と、
     前記受信装置から報告される前記データ信号毎の送信データ検出の成否を示す成否情報を受信する報告受信過程とを有し、
     前記送信信号生成過程ではさらに、前記成否情報が送信データ検出失敗を示す前記データ信号のうちの一部のデータ信号を選択し、前記選択したデータ信号に対する再送信号を生成し、
     前記送信過程ではさらに、前記再送信号を前記受信装置に送信することを特徴とする通信方法。
  29.  送信装置と通信する受信装置を用いた通信方法であって、
     複数のデータ信号が多重された信号を前記送信装置から受信する受信過程と、
     前記受信過程で受信した受信信号から、前記複数のデータ信号に含まれる送信データを検出し、検出した送信データと、各々の前記データ信号毎の送信データ検出の成否を出力するデータ信号検出過程と、
     前記多重された複数のデータ信号のうち送信データ検出に失敗したデータ信号の中から一部のデータ信号を選択する選択過程と、
     送信データ検出に成功したデータ信号と前記選択したデータ信号とにおける成否情報を生成する成否情報信号生成過程と、
     前記成否情報を前記送信装置に報告する報告送信過程と、
     を有することを特徴とする通信方法。
PCT/JP2009/052632 2008-02-21 2009-02-17 送信装置、受信装置、通信システム及び通信方法 WO2009104574A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/918,254 US20100325510A1 (en) 2008-02-21 2009-02-17 Transmission device, reception device, communication system, and communication method
CN2009801054241A CN101946442A (zh) 2008-02-21 2009-02-17 发送装置、接收装置、通信系统和通信方法
JP2009554311A JPWO2009104574A1 (ja) 2008-02-21 2009-02-17 送信装置、受信装置、通信システム及び通信方法
EP09713026A EP2247017A1 (en) 2008-02-21 2009-02-17 Transmission device, reception device, communication system, and communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008040229 2008-02-21
JP2008-040229 2008-02-21

Publications (1)

Publication Number Publication Date
WO2009104574A1 true WO2009104574A1 (ja) 2009-08-27

Family

ID=40985454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052632 WO2009104574A1 (ja) 2008-02-21 2009-02-17 送信装置、受信装置、通信システム及び通信方法

Country Status (5)

Country Link
US (1) US20100325510A1 (ja)
EP (1) EP2247017A1 (ja)
JP (1) JPWO2009104574A1 (ja)
CN (1) CN101946442A (ja)
WO (1) WO2009104574A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009104582A1 (ja) * 2008-02-21 2011-06-23 シャープ株式会社 受信装置、送信装置、通信システム及び通信方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8571547B2 (en) * 2010-03-17 2013-10-29 Denso International America, Inc. Prevention of overreach condition in cellular communication
US9781091B2 (en) 2011-03-14 2017-10-03 Verisign, Inc. Provisioning for smart navigation services
US9954708B2 (en) * 2013-11-15 2018-04-24 Intel Corporation Method and apparatus for frequency interleaving
WO2015109597A1 (zh) * 2014-01-27 2015-07-30 华为技术有限公司 信道资源的分配方法及通信设备
JP2015207816A (ja) * 2014-04-17 2015-11-19 富士通株式会社 受信装置、受信方法、及び、無線通信システム
US10827043B2 (en) * 2018-04-04 2020-11-03 Hall Labs Llc Normalization of communication between devices

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004221702A (ja) 2003-01-10 2004-08-05 Rikogaku Shinkokai Ofdm(直交周波数分割多重)適応等化受信方式及び受信機
JP2005198223A (ja) 2004-01-07 2005-07-21 Satoshi Suyama マルチキャリアにおけるパケット伝送用マルチユーザ検出受信機
WO2006064857A1 (ja) * 2004-12-17 2006-06-22 Matsushita Electric Industrial Co., Ltd. マルチアンテナ伝送における再送方法及び送信方法
JP2006238423A (ja) * 2005-01-26 2006-09-07 Matsushita Electric Ind Co Ltd 無線基地局装置及び端末装置
WO2007061016A1 (ja) * 2005-11-24 2007-05-31 Matsushita Electric Industrial Co., Ltd. 再送データ検出方法

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5768527A (en) * 1996-04-23 1998-06-16 Motorola, Inc. Device, system and method of real-time multimedia streaming
US6367045B1 (en) * 1999-07-01 2002-04-02 Telefonaktiebolaget Lm Ericsson (Publ) Bandwidth efficient acknowledgment/negative acknowledgment in a communication system using automatic repeat request (ARQ)
JP3638107B2 (ja) * 1999-12-09 2005-04-13 Kddi株式会社 スペクトル拡散信号復調装置
US6496520B1 (en) * 2000-01-21 2002-12-17 Broadcloud Communications, Inc. Wireless network system and method
JP3686809B2 (ja) * 2000-01-28 2005-08-24 株式会社日立コミュニケーションテクノロジー 通信システム
FI111888B (fi) * 2000-02-25 2003-09-30 Nokia Corp Mukautuva menetelmä ja järjestelmä vähittäisen redundanssin toteuttamiseksi vastaanotossa
EP1130839B1 (en) * 2000-03-02 2005-06-08 Matsushita Electric Industrial Co., Ltd. Method and apparatus for retransmitting video data frames with priority levels
US7106813B1 (en) * 2000-03-16 2006-09-12 Qualcomm, Incorporated Method and apparatus for combined soft-decision based interference cancellation and decoding
US6694469B1 (en) * 2000-04-14 2004-02-17 Qualcomm Incorporated Method and an apparatus for a quick retransmission of signals in a communication system
JP3793687B2 (ja) * 2000-05-12 2006-07-05 株式会社日立コミュニケーションテクノロジー 無線基地局及び移動通信システム
KR100644504B1 (ko) * 2001-08-24 2006-11-10 지멘스 악티엔게젤샤프트 무선통신시스템에서 데이터 패킷을 전송하기 위한 방법
US7447967B2 (en) * 2001-09-13 2008-11-04 Texas Instruments Incorporated MIMO hybrid-ARQ using basis hopping
JP3530177B2 (ja) * 2002-03-28 2004-05-24 松下電器産業株式会社 基地局装置及びパケット伝送方法
AU2003903826A0 (en) * 2003-07-24 2003-08-07 University Of South Australia An ofdm receiver structure
CN101267288A (zh) * 2002-05-10 2008-09-17 美商内数位科技公司 优先协议数据单元的再传输以协助无线电链路控制再传输的系统及方法
JP4412926B2 (ja) * 2002-09-27 2010-02-10 株式会社エヌ・ティ・ティ・ドコモ 適応等化装置及びそのプログラム
KR100524378B1 (ko) * 2002-11-20 2005-10-31 한국전자통신연구원 다중 빔 위성을 이용한 셀룰러 이동통신시스템에서의적응형 패킷 전송 방법
JP4133402B2 (ja) * 2003-02-12 2008-08-13 松下電器産業株式会社 送信装置および送信方法
US7508748B2 (en) * 2003-10-24 2009-03-24 Qualcomm Incorporated Rate selection for a multi-carrier MIMO system
US7864903B2 (en) * 2003-11-21 2011-01-04 Panasonic Corporation Multi-antenna reception apparatus, multi-antenna reception method, multi-antenna transmission apparatus and multi-antenna communication system
JP4433281B2 (ja) * 2004-01-07 2010-03-17 ソニー株式会社 受信装置および方法、記録媒体、並びにプログラム
JP4446338B2 (ja) * 2004-03-22 2010-04-07 ソニー・エリクソン・モバイルコミュニケーションズ株式会社 再送要求方法、無線通信システム、および受信機
US7225382B2 (en) * 2004-05-04 2007-05-29 Telefonakiebolaget Lm Ericsson (Publ) Incremental redundancy operation in a wireless communication network
JP2006131784A (ja) * 2004-11-08 2006-05-25 Idemitsu Kosan Co Ltd 架橋オレフィン重合体及びその製造方法
US8406695B2 (en) * 2004-12-23 2013-03-26 Qualcomm Incorporated Joint interference cancellation of pilot, overhead and traffic channels
WO2006070484A1 (ja) * 2004-12-28 2006-07-06 Hitachi Communication Technologies, Ltd. 通信制御方法、無線通信システム及び無線通信機
CN101129013A (zh) * 2005-02-28 2008-02-20 松下电器产业株式会社 重发控制方法以及无线通信装置
CN1832391A (zh) * 2005-03-11 2006-09-13 松下电器产业株式会社 多天线通信系统中的自适应重传方法和设备
US7526705B2 (en) * 2005-05-03 2009-04-28 Agere Systems Inc. Acknowledgement message modification in communication networks
US7702048B2 (en) * 2005-11-15 2010-04-20 Tensorcomm, Incorporated Iterative interference cancellation using mixed feedback weights and stabilizing step sizes
JP2007116637A (ja) * 2005-10-24 2007-05-10 Fujitsu Ltd 無線通信方法及び無線通信システム並びに受信装置及び送信装置
US8385388B2 (en) * 2005-12-06 2013-02-26 Qualcomm Incorporated Method and system for signal reconstruction from spatially and temporally correlated received samples
KR100908004B1 (ko) * 2006-02-24 2009-07-16 삼성전자주식회사 다중 송수신 안테나 시스템의 자동 반복 요청 장치 및 방법
US8174995B2 (en) * 2006-08-21 2012-05-08 Qualcom, Incorporated Method and apparatus for flexible pilot pattern
KR20100085978A (ko) * 2007-11-22 2010-07-29 파나소닉 주식회사 무선통신 장치, 무선통신 시스템 및 무선통신 방법
US8861423B2 (en) * 2008-01-18 2014-10-14 Intel Corporation Interference mitigation by overhearing
EP2247016A4 (en) * 2008-02-21 2011-02-23 Sharp Kk RECEIVING DEVICE, TRANSMITTING DEVICE, COMMUNICATION SYSTEM, AND COMMUNICATION METHOD

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004221702A (ja) 2003-01-10 2004-08-05 Rikogaku Shinkokai Ofdm(直交周波数分割多重)適応等化受信方式及び受信機
JP2005198223A (ja) 2004-01-07 2005-07-21 Satoshi Suyama マルチキャリアにおけるパケット伝送用マルチユーザ検出受信機
WO2006064857A1 (ja) * 2004-12-17 2006-06-22 Matsushita Electric Industrial Co., Ltd. マルチアンテナ伝送における再送方法及び送信方法
JP2006238423A (ja) * 2005-01-26 2006-09-07 Matsushita Electric Ind Co Ltd 無線基地局装置及び端末装置
WO2007061016A1 (ja) * 2005-11-24 2007-05-31 Matsushita Electric Industrial Co., Ltd. 再送データ検出方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
D. CHASE: "Code combining-A maximum likelihood decoding approach for combing and arbitrary number of noisy packets", IEEE TRANS. COMMUN., vol. COM-33, May 1985 (1985-05-01), pages 385 - 393
J. HAGENAUER: "Rate-compatible punctured convolutional codes (RCPC codes) and their application", IEEE TRANS. COMMUN., vol. 36, April 1988 (1988-04-01), pages 389 - 400
KOICHI ADACHI ET AL.: "Kurikaeshi Henkei QRD-M Shingo Bunriho o Mochiiru OFDM MIMO no HARQ Throughput Tokusei", IEICE TECHNICAL REPORT, THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, July 2007 (2007-07-01), pages 47 - 52, XP008139558 *
TATSUNORI YUI ET AL.: "ICI Canceller o Mochiiru Turbo Fugoka MC-CDMA ni Okeru Hantei Kikan Channel Suitei", IEICE TECHNICAL REPORT, THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, 11 October 2007 (2007-10-11), pages 7 - 12, XP008139557 *
Y. ZHOU; J. WANG; M. SAWAHASHI: "Downlink Transmission of Broadband OFCDM Systems-Part I: Hybrid Detection", IEEE TRANSACTION ON COMMUNICATION, vol. 53, no. 4, April 2005 (2005-04-01), pages 718 - 729

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009104582A1 (ja) * 2008-02-21 2011-06-23 シャープ株式会社 受信装置、送信装置、通信システム及び通信方法

Also Published As

Publication number Publication date
JPWO2009104574A1 (ja) 2011-06-23
CN101946442A (zh) 2011-01-12
US20100325510A1 (en) 2010-12-23
EP2247017A1 (en) 2010-11-03

Similar Documents

Publication Publication Date Title
JP5213271B2 (ja) 通信装置、通信システム、受信方法およびプログラム
US8381060B2 (en) Communication device, communication system, reception method, and communication method
US20110126072A1 (en) Communication device, communication system, reception method and communication method
JP5376243B2 (ja) 通信装置、通信システム、受信方法および通信方法
US20110007729A1 (en) Reception device, transmission device, communication system, and communication method
WO2009104574A1 (ja) 送信装置、受信装置、通信システム及び通信方法
US20110041023A1 (en) Communication device, communication system, reception method, and program
KR20090125080A (ko) 다중 코드 블록을 가지는 송신의 성능 향상과 빠른 복호를 가능하게 하는 방법 및 장치
JP2009253548A (ja) 送信装置、受信装置、通信システム、送信方法および受信方法
JP5013617B2 (ja) 通信装置、通信システムおよび受信方法
JP5376244B2 (ja) 通信装置、通信システム、受信方法及び通信方法
JP5036062B2 (ja) 通信装置、通信システムおよび通信方法
JP2007013863A (ja) 再送装置及び再送方法
JP2010219747A (ja) 送信装置、通信システム、通信装置、送信方法、受信方法、送信制御プログラム、及び受信制御プログラム
JP2010050716A (ja) 通信装置、通信システム及び通信方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980105424.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09713026

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009554311

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12918254

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009713026

Country of ref document: EP