JPWO2010005037A1 - 通信装置、通信システム、受信方法及び通信方法 - Google Patents

通信装置、通信システム、受信方法及び通信方法 Download PDF

Info

Publication number
JPWO2010005037A1
JPWO2010005037A1 JP2010519808A JP2010519808A JPWO2010005037A1 JP WO2010005037 A1 JPWO2010005037 A1 JP WO2010005037A1 JP 2010519808 A JP2010519808 A JP 2010519808A JP 2010519808 A JP2010519808 A JP 2010519808A JP WO2010005037 A1 JPWO2010005037 A1 JP WO2010005037A1
Authority
JP
Japan
Prior art keywords
signal
unit
retransmission
packet
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010519808A
Other languages
English (en)
Inventor
貴司 吉本
貴司 吉本
智造 野上
智造 野上
良太 山田
良太 山田
寿之 示沢
寿之 示沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Publication of JPWO2010005037A1 publication Critical patent/JPWO2010005037A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0026Interference mitigation or co-ordination of multi-user interference
    • H04J11/0036Interference mitigation or co-ordination of multi-user interference at the receiver
    • H04J11/004Interference mitigation or co-ordination of multi-user interference at the receiver using regenerative subtractive interference cancellation
    • H04J11/0043Interference mitigation or co-ordination of multi-user interference at the receiver using regenerative subtractive interference cancellation by grouping or ordering the users
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • H04L1/0048Decoding adapted to other signal detection operation in conjunction with detection of multiuser or interfering signals, e.g. iteration between CDMA or MIMO detector and FEC decoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0067Rate matching
    • H04L1/0068Rate matching by puncturing
    • H04L1/0069Puncturing patterns
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/004Orthogonal
    • H04J13/0044OVSF [orthogonal variable spreading factor]

Abstract

初送信号といずれかの信号に対する再送信号とを含む信号を受信する受信部と、初送信号と再送信号との再送回数に応じて、受信部が受信した信号から初送信号と再送信号とを検出する順番を決定する検出順決定部と、検出順決定部が決定した順番に従い、初送信号に関する検出済の信号および再送信号に関する検出済の信号を用いて、受信部が受信した信号から初送信号および再送信号を検出する信号検出部とを具備し、信号検出部は、検出した再送信号と、再送信号以前に受信した関連信号の少なくとも一つが含まれている既受信信号から検出した信号とを合成する合成部を具備することを特徴とする通信装置。

Description

本発明は、通信装置、通信システム、受信方法及び通信方法、特に、自動再送制御が適用された通信装置、通信システム、受信方法及び通信方法に関する。
本願は、2008年07月09日に、日本に出願された特願2008−179111号に基づき優先権を主張し、その内容をここに援用する。
通信システムにおける誤り制御技術として、例えば、非特許文献1、非特許文献2に記載の自動再送(ARQ:Automatic Repeat reQuest)とターボ符号化などの誤り訂正符号化とを組合せたハイブリッド自動再送HARQ(Hybrid−ARQ)がある。HARQは、受信機が、受信信号に誤りを検出すると送信機に対して再送を要求し、再度受信した信号とすでに受信した信号との合成信号に対して復号処理を行う技術である。ハイブリッド自動再送HARQとして、チェイス合成(CC;Chase Combining)と、増加冗長(IR;Incremental Redundancy)とがよく知られている。チェイス合成CCを用いるハイブリッド自動再送HARQでは、受信パケットに誤りが検出されると、同一のパケットの再送を要求する。これらの2つの受信パケットを合成することにより、受信品質を高めることができる。また、増加冗長IRを用いるハイブリッド自動再送HARQでは、冗長ビットを分割し、少しずつ順次再送するため、再送回数が増えるに従って符号化率を低下させることができ、誤り訂正能力を強くできる。
一方、OFDM(Orthogonal Frequency Division Multiplexing:直交周波数分割多重)などのマルチキャリア伝送方式と、CDM(Code Division Multiplexing:符号分割多重)方式を組み合わせた方式として、MC−CDM(Multi Carrier−Code Division Multiplexing:マルチキャリア符号分割多重)、Spread−OFDM(Orthogonal Frequency and Division Multiplexing:拡散直交周波数分割多重)などの方式がある。これらは、符号化及び拡散符号を乗算したデータをサブキャリアに渡って配置することにより周波数ダイバーシチ効果を獲得することで、マルチパスフェージング環境下で良好な特性が得られる一方、コード多重時において、拡散符号間の直交性の崩れに起因するコード間干渉(MCI:Multi−Code Interference)が生じ、特性劣化の原因となる。
このような問題を解決する手法として、例えば、非特許文献3、非特許文献4に記載のような逐次型干渉キャンセラSIC(Successive Interference Canceller)がある。非特許文献3、非特許文献4に開示されている逐次型干渉キャンセラSICは、コード多重されている受信信号の中で、各コードチャネルの受信信号電力、あるいは、受信信号電力対干渉電力及び雑音電力比(SINR:Signal to Interference plus Noise power Ratio、以下、「SINR」という)の大きいチャネル信号から順に、逆拡散、復調、復号することで信号検出し、情報シンボルの判定信号を得て、さらにその判定結果を用いて作成した干渉信号レプリカ(非所望信号レプリカ)を受信信号から差し引いていく手法である。このような手順を繰り返すことで、干渉信号となる所望のコードチャネル以外の信号を精度よく取り除くことができ、拡散符号系列間の直交性の崩れに起因する特性劣化を抑えることが可能となる。
D. Chase, "Code combining- A maximum likelihood decoding approach for combing and arbitrary number of noisy packets"IEEE Trans. Commun., vol. COM-33, pp. 385-393, May 1985. J. Hagenauer, "Rate-compatible punctured convolutional codes (RCPC codes) and their application", IEEE Trans. Commun., vol. 36, pp.389-400, April 1988. 石原、武田、安達著「DS−CDMA周波数領域MAIキャンセラ」、信学技報RCS2004−316、2005年1月 秋田、須山、府川、鈴木著「MC−CDMAの送信電力制御を用いた下り回線における干渉キャンセラ」、信学技報RCS2002−35、2002年4月
しかしながら、上述の自動再送制御を用いた通信システムにあっては、受信側で逐次型干渉キャンセラSICを用いた場合、各コードチャネルの受信信号電力、あるいは、受信信号SINRで、干渉信号となる所望のコードチャネル以外の信号を取り除く順を決定することが、最適とならない場合が生じる。つまり、上記の除去順決定が、誤りが少ないコードチャネル信号順と一致しない確率が増加する。その結果、再度受信した信号とすでに受信した信号との合成信号に対する復号処理の結果に対して誤りを検出して、再び再送を要求するというように、再送を繰り返してしまう回数が増加し、結果として遅延が大きくなってしまうことがあるという問題がある。
本発明は、このような事情に鑑みてなされたもので、その目的は、再送を繰り返して、遅延が大きくなることを防ぐ通信装置、通信システム、受信方法及び通信方法を提供することにある。
この発明は上述した課題を解決するためになされたもので、本発明の通信装置は、受信した信号に誤りを検出すると送信元に再送を要求するハイブリッド自動再送を行う通信装置において、初送信号といずれかの信号に対する再送信号とを含む信号であって、前記初送信号と前記再送信号とが多重化された信号を受信する受信部と、前記受信部が受信した信号に含まれる前記初送信号と前記再送信号との再送回数に応じて、前記受信部が受信した信号から、前記初送信号と前記再送信号とを検出する順番を決定する検出順決定部と、前記検出順決定部が決定した順番に従い、当該装置により検出済の信号であって、前記初送信号に関する検出済の信号および前記再送信号に関する検出済の信号を用いて、前記受信部が受信した信号から干渉成分を除去して、前記受信部が受信した信号から前記初送信号および前記再送信号を検出する信号検出部とを具備し、前記信号検出部は、検出した前記再送信号と、前記再送信号以前に受信した関連信号の少なくとも一つが含まれている既受信信号から検出した信号とを合成する合成部を具備することを特徴とする。
また、本発明の通信装置は、上述の通信装置であって、前記検出順決定部は、前記再送信号の順番が前記初送信号より先になるように検出順を決定することを特徴とする。
また、本発明の通信装置は、上述の通信装置であって、前記検出順決定部は、再送回数が多い信号から順番に検出するように検出する順番を決定することを特徴とする。
また、本発明の通信装置は、上述の通信装置であって、前記検出順決定部は、前記初送信号および前記再送信号のうち、受信信号電力、受信信号対干渉雑音電力比により代表される受信レベルを基準として順番を決定することを特徴とする。
また、本発明の通信装置は、上述の通信装置であって、前記初送信号および前記再送信号は、送信元において誤り訂正符号化された信号であり、前記信号検出部は、前記信号を検出する際に、当該装置により検出済の信号を前記誤り訂正符号により誤り訂正復号処理した信号を用いて検出対象としている信号に対する干渉成分のレプリカ信号を生成し、前記受信部が受信した信号から該レプリカ信号を除去することを特徴とする。
また、本発明の通信装置は、上述の通信装置であって、前記信号検出部は、前記受信部が受信した信号に再送信号が含まれているときは、該再送信号以前に受信した関連信号の少なくとも一つが含まれている既受信信号について前記検出順決定部が再度決定した検出順に従い、検出済の信号を用いて、前記既受信信号から干渉成分を除去して、前記既受信信号から信号を検出することを特徴とする。
また、本発明の通信装置は、上述の通信装置であって、前記受信部が受信する信号は、前記初送信号と前記再送信号とに各々に固有の拡散符号系列が乗算されたコード多重された信号であり、前記信号検出部は、前記受信部が受信した信号から干渉成分を除去した後、該干渉成分を除去した信号に、検出対象としている信号に固有の前記拡散符号を乗算して、前記検出対象としている信号を検出することを特徴とする。
また、本発明の通信装置は、上述の通信装置であって、前記受信部が受信する信号は、前記初送信号と前記再送信号とが各々異なるアンテナから送信されて空間多重された信号であり、前記信号検出部は、前記受信部が受信した信号から干渉成分を除去した後、前記アンテナ毎の伝搬路推定値に基づいて、該干渉成分を除去した信号から前記検出対象としている信号を検出することを特徴とする。
また、本発明の通信装置は、上述の通信装置であって、前記信号検出部は、前記検出順決定部が決定した順番に従った前記初送信号および前記再送信号の検出を、各信号について1回ずつ行うことを特徴とする。
また、本発明の通信装置は、上述の通信装置であって、前記信号検出部は、前記検出順決定部が決定した順番に従った前記初送信号および前記再送信号の検出を、複数回繰り返すことを特徴とする。
また、本発明の通信システムは、第1の通信装置と第2の通信装置とを具備し、前記第1の通信装置から受信した信号に誤りを検出すると、前記第2の通信装置が前記第1の通信装置に再送を要求するハイブリッド自動再送を行う通信システムにおいて、前記第2の通信装置は、初送信号といずれかの信号に対する再送信号とを含む信号であって、前記初送信号と前記再送信号とが多重化された信号を受信する受信部と、前記受信部が受信した信号に含まれる前記初送信号と前記再送信号との再送回数に応じて、前記受信部が受信した信号から、前記初送信号と前記再送信号とを検出する順番を決定する検出順決定部と、前記検出順決定部が決定した順番に従い、当該装置により検出済の信号であって、前記初送信号に関する検出済の信号および前記再送信号に関する検出済の信号を用いて、前記受信部が受信した信号から干渉成分を除去して、前記初送信号および前記再送信号を検出する信号検出部とを具備し、前記信号検出部は、検出した前記再送信号と、前記再送信号以前に受信した関連信号の少なくとも一つが含まれている既受信信号から検出した信号とを合成する合成部を具備することを特徴とする。
また、本発明の通信システムは、上述の通信システムであって、前記初送信号および前記再送信号は、誤り訂正符号化された信号であり、前記信号検出部は、前記信号を検出する際に、当該装置により検出済の信号を前記誤り訂正符号により誤り訂正復号処理した信号を用いて検出対象としている信号に対する干渉成分のレプリカ信号を生成し、前記受信部が受信した信号から該レプリカ信号を除去することを特徴とする。
また、本発明の通信システムは、上述の通信システムであって、前記第1の通信装置は、再送回数に基づいて、前記初送信号および再送信号を送信する送信電力を決定する再送制御部と、前記再送制御部が決定した送信電力で、前記初送信号および再送信号を送信するように制御する送信電力制御部とを具備することを特徴とする。
また、本発明の通信システムは、上述の通信システムであって、前記第1の通信装置は、再送回数に基づいて、前記初送信号および再送信号に乗算する拡散符号系列を決定する再送制御部と、前記初送信号および再送信号に、前記再送制御部が決定した拡散符号系列を乗算する拡散部とを具備し、前記第2の通信装置の信号検出部は、前記受信部が受信した信号から干渉成分を除去した後、該干渉成分を除去した信号に、検出対象としている信号に前記拡散部が乗算した前記拡散符号を乗算して、前記検出対象としている信号を検出することを特徴とする。
また、本発明の通信システムは、上述の通信システムであって、前記再送制御部は、再送回数が多い信号に乗算する拡散符号系列ほど、直交性の崩れに対して耐性がある拡散符号系列とすることを特徴とする。
また、本発明の通信システムは、上述の通信システムであって、前記拡散符号系列は、直交可変拡散率符号であることを特徴とする。
また、本発明の受信方法は、受信した信号に誤りを検出すると送信元に再送を要求するハイブリッド自動再送を行う通信装置における受信方法において、前記通信装置が、初送信号といずれかの信号に対する再送信号とを含む信号であって、前記初送信号と前記再送信号とが多重化された信号を受信する第1の過程と、前記通信装置が、前記第1の過程にて受信した信号に含まれる前記初送信号と前記再送信号との再送回数に応じて、前記第1の過程にて受信した信号から、前記初送信号と前記再送信号とを検出する順番を決定する第2の過程と、前記通信装置が、前記第2の過程にて決定した順番に従い、前記通信装置により検出済の信号であって、前記初送信号に関する検出済の信号および前記再送信号に関する検出済の信号を用いて、前記第1の過程にて受信した信号から干渉成分を除去して、前記初送信号および前記再送信号を検出する第3の過程とを有し、前記第3の過程において、前記通信装置は、検出した前記再送信号と、前記再送信号以前に受信した関連信号の少なくとも一つが含まれている既受信信号から検出した信号とを合成することを特徴とする。
また、本発明の通信方法は、第1の通信装置と第2の通信装置とを具備し、前記第1の通信装置から受信した信号に誤りを検出すると、前記第2の通信装置が前記第1の通信装置に再送を要求するハイブリッド自動再送を行う通信システムにおける通信方法において、前記第1の通信装置が、初送信号といずれかの信号に対する再送信号とを送信する第1の過程と、前記第2の通信装置が、初送信号といずれかの信号に対する再送信号とを含む信号であって、前記初送信号と前記再送信号とが多重化された信号を受信する第2の過程と、前記第2の通信装置が、前記第2の過程にて受信した信号に含まれる前記初送信号と前記再送信号との再送回数に応じて、前記第2の過程にて受信した信号から、前記初送信号と前記再送信号とを検出する順番を決定する第3の過程と、前記第2の通信装置が、前記第3の過程にて決定した順番に従い、前記第2の通信装置により検出済の信号であって、前記初送信号に関する検出済の信号および前記再送信号に関する検出済の信号を用いて、前記第2の過程にて受信した信号から干渉成分を除去して、前記初送信号および前記再送信号を検出する第4の過程とを有し、前記第4の過程において、前記第2の通信装置は、検出した前記再送信号と、前記再送信号以前に受信した関連信号の少なくとも一つが含まれている既受信信号から検出した信号とを合成することを特徴とする。
この発明によれば、検出順決定部は、互いに干渉し合う信号について、再送回数に応じて検出する順番を決定し、信号検出部は、該順番に従い、検出済の信号を用いて、受信部が受信した信号から干渉成分を除去して、初送信号および再送信号を検出する。このため、再送回数が大きいほど検出する順番を早くすることで、より高い確度で、誤りが少ないコードチャネル信号から順に信号除去順を決定できるので、高い精度で信号検出を行ない、再送回数を減らすことが可能となる。従って、信号の再送回数が多くなり、遅延が大きくなってしまうことを防ぐことができる。
この発明の第1の実施形態によるパケット送信装置100の構成を示す概略ブロック図である。 同実施形態における符号化部111の構成を示す概略ブロック図である。 同実施形態における誤り訂正符号化部122として、符号化率R=1/3のターボ符号化するターボ符号器を用いたときの構成例を示す概略ブロック図である。 同実施形態におけるパンクチャパターンの例を示す図である。 同実施形態におけるパケット受信装置200の構成を示す概略ブロック図である。 同実施形態におけるコードチャネルCH1〜CH4にてパケットP1”、P2’、P3、P4が送信されるときのコード多重した信号を説明する図である。 同実施形態における逐次型の繰り返し干渉キャンセルを行う干渉キャンセル部208の構成例を示す概略ブロック図である。 同実施形態におけるコードチャネルレプリカ生成部705−1の構成を示す概略ブロック図である。 同実施形態における合成部711による合成処理例を示す図である。 同実施形態におけるパケット受信装置200の動作を説明するフローチャートである。 この発明の第2の実施形態によるパケット送信装置300の構成を示す概略ブロック図である。 同実施形態におけるパケット受信装置400の構成を示す概略ブロック図である。 同実施形態におけるストリームを説明する図である。 同実施形態における干渉キャンセル部405の構成を示す概略ブロック図である。 同実施形態におけるシンボルレプリカ生成部1204−1の構成の示す概略ブロック図である。 同実施形態におけるパケット受信装置400の受信動作を説明するフローチャートである。 この発明の第3の実施形態によるパケット送信装置500の構成を示す概略ブロック図である。 拡散率4までの直交可変拡散率OVSF符号木を示す図である。 第3の実施形態における再送回数に対する電力レベルテーブルの内容例を示す図である。 同実施形態における電力制御部1602の出力をコード多重部102が多重したときの信号の電力を例示する図である。 同実施形態におけるパケット受信装置600の構成を示す概略ブロック図である。 同実施形態におけるパケット受信装置600の干渉キャンセル部1802の構成を示す概略ブロック図である。 同実施形態におけるパケット受信装置600の動作を説明する図である。
[第1の実施形態]
以下、図面を参照して、本発明の第1の実施形態について説明する。本実施形態では、パケット送信装置100(第1の通信装置)とパケット受信装置200(第2の通信装置)とを備え、MC−CDM(Multi Carrier−Code Division Multiplexing:マルチキャリア符号分割多重)方式、および、受信した信号に誤りを検出すると送信元に再送を要求するハイブリッド自動再送HARQを適用したパケット通信システム(通信システム)において、パケット送信装置100(第1の通信装置)が、初送パケットと該初送パケットより以前のいずれかの初送パケットに関する再送パケットとをコード多重した信号を送信し、繰り返し処理を用いた逐次型干渉キャンセラ(SIC:Successive Interference Canceller)を具備したパケット受信装置200(第2の通信装置)が、パケット送信装置100が送信した信号を受信し、コード多重されている信号のうち、再送パケットの信号を優先して、順に信号検出する。
ここでは、干渉信号とはコード間干渉による干渉の信号であり、コード多重された他の信号を意味する。すなわち、例えば、信号Pと信号Pがコード多重された場合、信号Pにとっては信号Pが干渉信号であり、信号Pにとっては信号Pが干渉信号である、すなわち信号Pと信号Pとはコード多重されることで互いに干渉し合う信号となっている。信号検出とは、検出する信号に対する干渉信号を再生し、該再生した信号(レプリカ)を受信信号から除去する干渉キャンセル処理した後に、伝搬路歪補正、逆拡散、復調の、情報ビットを得るために必要となる一連の処理を行うことでコード分離する処理であり、例えば信号Pを検出する際には、受信信号から信号Pのレプリカを除去した後に、信号Pをコード分離(逆拡散)して信号検出する。ただし、上述の再生した信号(レプリカ)を生成するには、該信号を検出している必要があるため、最初の信号検出については、干渉キャンセル処理を行わず、受信信号をコード分離(逆拡散)することで信号検出する。
図1は、本発明の実施形態によるパケット送信装置100の構成を示す概略ブロック図である。例えば、パケット送信装置100は、移動体無線通信システムによる下りリンクでの基地局、上りリンクでの移動局に具備される。また、中継局−移動局間の下りリンクでの中継局装置に具備される。パケット送信装置100は、コードチャネル信号生成部101−1〜101−N(Nはコード多重数)、コード多重部102、IFFT部103、多重部104、GI挿入部105、送信部106、パイロット信号生成部107、再送制御信号生成部108、復元部109、受信部110、アンテナ部120を具備する。コードチャネル信号生成部101−1〜101−Nは、入力された各コードチャネルのパケットを構成する情報ビット系列から、コード多重する信号を生成する機能を有し、符号化部111、インターリーブ部112、変調部113、拡散部114を具備する。
図2は、符号化部111の構成を示す概略ブロック図である。符号化部111は、パケット受信装置200において誤り検出および誤り訂正ができるように、入力されたパケットを構成する情報ビット系列に冗長ビットを付加する機能を有し、誤り検出符号化部121、誤り訂正符号化部122、符号化ビット記憶部123、パンクチャ部124を有する。誤り検出符号化部121は、パケットを受信したパケット受信装置200において誤りがあるか否かを検出できるようにCRC(Cyclic Redundancy Check:巡回冗長検査)などの誤り検出符号化を行う。誤り訂正符号化部122は、誤り検出符号化部121からの出力ビット系列に対して、ターボ符号、畳み込み符号、LDPC(Low Density Parity Check:低密度パリティ検査)符号などの誤り訂正符号化を行う。本実施形態では、パケットを構成する全てのビットは、同じコードチャネルにて送信され、誤り検出符号化部121および誤り訂正符号化部122は、パケット毎に処理を行う。
符号化ビット記憶部123は、誤り訂正符号化部122で生成した符号化ビット系列を記憶する。また、再送パケットを生成する場合に、記憶している符号化ビット系列をパンクチャ部124に出力する。パンクチャ部124は、復元部109が受けたパケット受信装置200の応答信号(受取り通知ACK/非受取り通知NACK)、および応答信号から算出したパケットの再送回数に基づき決まるパンクチャパターンに従って、誤り訂正符号化部122から出力される符号化ビット系列、あるいは符号化ビット記憶部123から出力される符号化ビット系列を、パンクチャ処理する。すなわち、パンクチャ部124は、初送パケットを生成する場合(前のパケットに対する応答信号として受取り通知ACKを受信した場合)は、誤り訂正符号化部122から出力される新規の符号化ビット系列に対してパンクチャ処理を行い、再送パケットを生成する場合(応答信号として、非受取り通知NACKを受信した場合)は、符号化ビット記憶部123で記憶している符号化ビット系列に対してパンクチャ処理を行う。なお、パンクチャ部124は、パンクチャ処理に加えて、ビットパディング(ビット挿入)あるいはビットリピティション(ビット繰り返し)などのレートマッチングを行うようにしてもよい。
図3は、誤り訂正符号化部122として、符号化率R=1/3のターボ符号化するターボ符号器を用いたときの構成例を示す概略ブロック図である。
誤り訂正符号化部122は、内部符号器3001、3002、内部インターリーブ部3003を具備し、誤り検出符号化部121からの誤り検出符号化された情報ビット系列が入力されると、誤り訂正符号化部122は、システマティックビットx、パリティビットz、パリティビットz’の3種類の情報ビット系列を出力する。ここで、システマティックビットxは、誤り検出符号化部121から入力されたビット系列そのものである。パリティビットzは誤り検出符号化部121からのビット系列を内部符号器3001が符号化処理を行った出力結果である。パリティビットz’は誤り検出符号化部121からのビット系列をまず内部インターリーブ部3003がインターリーブ処理し、このインターリーブ処理した結果を入力された内部符号器3002が符号化処理を行った出力結果である。ここで、内部符号器3001と内部符号器3002は同じ符号化方式の符号化を行う同様の符号器でもよいし、異なる符号器であっても良い。好ましくは、内部符号器3001、内部符号器3002ともに再帰的畳み込み符号器を用いる。以降では、誤り訂正符号化部122は、図3に示す構成でターボ符号を用いた場合で説明する。
図4は、誤り訂正符号化部122において符号化率R=1/3のターボ符号化し、符号化率R=3/4にパンクチャ処理を行う場合のパンクチャパターンの例を示す図である。図4において、xは誤り検出符号化部121が誤り訂正符号化部122に入力した情報ビット(誤り検出のために付加した冗長ビットも含む。)で、この情報ビットがそのまま出力されたものである(システマティックビットとも呼ぶ)。z、z’は、誤り訂正符号化部122が、前記情報ビットから生成した2種類の冗長ビット(パリティビット)を示す。パンクチャ部124は、誤り訂正符号化部122、あるいは符号化ビット記憶部123から出力されるx、z、z’のうち、図4に示すパンクチャパターンにて「1」となっているビット位置のビットを出力する。
例えば、ハイブリッド自動再送HARQとして増加冗長IR(Incremental Redundancy)を適用している場合は、初送パケットを構成する符号化ビットに対して、パンクチャ部124は、図4のパターン1にしたがってパンクチャ処理を行う。すなわち、パンクチャ部124は、システマティックビットについては図4のパターン1では「x=111111」であるので、全て出力し、1種類目のパリティビットについては、「z=100000」であるので、6ビット毎に最初の1ビットを出力し、2種類目のパリティビットについては、「z’=000100」であるので、6ビット毎に4ビット目の1ビットを出力する。
次に、1回目の再送パケットを構成する符号化ビットに対して、パンクチャ部124は、符号化ビット記憶部123から初送パケットのR=1/3の符号化ビットを呼び出し、パンクチャ部124は、図4のパターン2でパンクチャ処理を行った信号を出力する。すなわち、パンクチャ部124は、システマティックビットについては図4のパターン2では「x=000000」であるので、全て出力せず、1種類目のパリティビットについては、「z=011110」であるので、6ビット毎に2ビット目から5ビット目までの4ビットを出力し、2種類目のパリティビットについては、「z’=110011」であるので、6ビット毎に3ビット目と4ビット目とを除いた4ビットを出力する。
また、例えば、ハイブリッド自動再送HARQとしてチェイス合成CCを適用している場合は、初送パケットを構成する符号化ビットに対して、パンクチャ部124で図4のパターン1にしたがってパンクチャ処理を行なうと、再送パケットを構成する符号化ビットに対しても、符号化ビット記憶部123から初送パケットのR=1/3の符号化ビットを呼び出し、パンクチャ部124は、初送パケットと同様のパンクチャパターンである図3のパターン1でパンクチャ処理を行った信号を出力する。
図1に戻って、インターリーブ部112は、符号化部111からの出力である符号化ビット系列のビット配置を並び替える。変調部113は、インターリーブ部112からの出力に対してQPSK(Quadrature Phase Shift Keying:4値位相偏移変調)、16QAM(16 Quadrature Amplitude Modulation:16値直交振幅変調)などのデータ変調を行い、変調シンボルを生成する。拡散部114は、変調部113が生成した変調シンボルに各々のコードチャネル信号生成部101−1〜101−N各々に固有の拡散符号系列を乗算する。例えば、拡散符号系列として、Walsh−Hadamard符号などの直交符号を用いる。このように、コードチャネル信号生成部101−1〜101−Nは、上述の機能を有し、パケット受信装置200からの再送要求に従って、初送パケット、または再送パケットから構成されるコードチャネル信号を生成する。
コード多重部102は、各々のコードチャネル信号生成部101−1〜101−Nからの出力信号をコード多重する。つまり、アンテナ部120から送信されるべく、コード多重部102が出力する信号は、各コードチャネルで送信される初送信号と再送信号とに各々に固有の拡散符号系列が乗算されたコード多重された信号である。
IFFT部103への入力において、第k番目サブキャリアに割り当てるコード多重部102からの出力信号をS(k)とおくと、式(1)のように表すことができる。
Figure 2010005037
Nは、コード多重部102でのコード多重数を示し、SFは、拡散部114で乗算する拡散符号の拡散率を示す。cu,vは、u番目のコードチャネルの拡散符号系列のv番目の要素の値を示し、a mod bは、aをbで割った余りを示す。dは、変調部113によりデータ変調されたu番目のコードチャネルの変調シンボルを示す。kは、サブキャリアを周波数の低い方から数えた順番(第k番目のサブキャリア)を示し、k=0,1,2,・・・Nsub−1である。ここで、Nsubはサブキャリアの総数を示す。
IFFT部103は、コード多重部102によりコード多重された信号を逆高速フーリエ変換IFFT(Inverse Fast Fourier Transform)などにより周波数−時間変換を行い、時間領域の信号を生成する。多重部104は、IFFT部103から出力された時間領域の信号と、再送制御信号生成部108から出力される再送制御信号と、パイロット信号生成部107から出力されたパイロット信号とを多重する。多重部104における多重方法は、時間多重、周波数多重、コード多重などのいずれであってもよい。パイロット信号生成部107、伝搬路推定に用いるパイロット信号を生成する。再送制御信号生成部108は、各コードチャネルで送信するパケットの信号が何回目の再送であるかをパケット受信装置200に通知するための信号(再送制御信号)を生成する。なお、再送制御信号は、符号化率、変調多値数、拡散率、拡散符号、などの送信信号に関する情報を含んでもよい。
GI挿入部105は、多重部104から出力される信号に対して、ガード区間GI(Guard Interval)を挿入し、送信部106に入力する。送信部106は、GI挿入部105からの出力信号を、アナログ信号へ変換(Digital/Analogue変換)し、帯域制限を行うフィルタリング処理を行い、さらに送信可能な周波数帯域への変換を行い、出力する。アンテナ部120は、送信部106の出力信号をパケット受信装置200に送信する。あるいは、パケット受信装置200から送信された応答信号を含む信号を受信する。
受信部110は、アンテナ部120から受信したパケット受信装置200からの信号を復元処理(信号検出処理)可能な周波数帯への変換、帯域制限を行うフィルタリング処理、アナログ信号をデジタル信号に変換し(A/D変換)を行う。復元部109は、受信部110が出力したデジタル信号に対してデータ復調、誤り訂正復号などの受信信号復元処理を行い、パケット受信装置200からの信号に含まれる応答信号を取り出す。この取り出した応答信号を、復元部109は、再送制御信号生成部108および符号化部111に出力する。なお、復元部109は、受信信号の伝送方式に基づいて受信信号処理可能な機能を有する。また、応答信号は、伝送を確認する信号、再送要求するか否かの情報を含んだ信号である。例えば、受取り通知ACK(ACKnowledge)/非受取り通知NACK(Negative ACKnowledge))信号などがあり、送信側から送信されたパケットを受信側が正しく受信できなかった場合は、受信側は、送信側に非受取り通知NACKの信号を送り返し、正しく受信できた場合は、受信側は、受け取り通知ACKの信号を送り返す。なお、送信側がある所定の時間内に応答信号を受け取れなかった場合は、受信側が正しくパケットを受信できなかったと判断することも可能である。
図5は、本実施形態によるパケット受信装置200の構成を示す概略ブロック図である。例えば、パケット受信装置200は、移動体無線通信システムによる下りリンクでの移動局装置、上りリンクでの基地局装置に具備される。また、基地局―中継局間の下りリンクでの中継局装置に具備される。パケット受信装置200は、アンテナ部201、受信部202、伝搬路推定部203、GI除去部204、FFT部205、受信パケット管理部206、検出順決定部207、干渉キャンセル部208、受信信号記憶部209、応答信号生成部210、送信部211を有する。
受信部202は、アンテナ部201を介してパケット送信装置100からの信号を受信し、信号検出処理などの信号処理可能な周波数帯への変換および帯域制限するフィルタリング処理した後、アナログ信号からデジタル信号に変換(Analogue/Digital変換)する。なお、受信部202が受信する信号は、初送パケット(初送信号)と過去に送信されたパケットに対する再送パケット(再送信号)とを含む信号であって、これら初送パケットと再送パケットとが互いに干渉し合う信号である。伝搬路推定部203は、受信部202がデジタル信号に変換した受信信号に含まれるパイロット信号を用いて、受信信号が通ってきた伝搬路(インパルス応答、伝達関数など)を推定する。なお、パイロット信号ではなく、制御チャネル、プリアンブル、など伝搬路を推定できる他の信号を用いるようにしてもよい。
受信パケット管理部206は、受信部202がデジタル信号に変換した受信信号に含まれる再送制御信号から、受信信号に含まれる各コードチャネルの信号が何回目の再送パケットの信号か(初送パケットも含む)、を判定可能な情報、すなわち再送回数を示す情報を取り出す。ここで、再送回数が0回のパケットとは、初送パケットである。再送回数が1回のパケットとは、初送パケットの次に送出される再送パケットである。検出順決定部207は、この再送回数を示す情報に基づいて、干渉キャンセル部208で信号を検出するコードチャネルの順番を決定し、干渉キャンセル部208に通知する。すなわち、検出順決定部207は、受信部202が受信した信号に含まれる初送パケット(初送信号)と再送パケット(再送信号)との再送回数に応じて、受信部202が受信した信号から、初送パケットと再送パケットとを検出する順番を決定する。なお、検出順決定部207による順番決定の詳細は後述する。
GI除去部204は、受信部202がデジタル信号に変換した受信信号に含まれるデータ信号からガードインターバルGI(Guard Interval)を除去する。FFT部205は、GI除去部204の出力信号に高速フーリエ変換FFT処理を行うことにより、周波数領域の信号に変換する。干渉キャンセル部208(信号検出部)は、検出順決定部207が決定した検出順に従い、伝搬路推定部203から出力された伝搬路推定値を参照しながら、FFT部205から出力された信号から情報ビット系列の符号化ビットLLR(Log Likelihood Ratio:対数尤度比)を検出し、検出した符号化ビットLLRと符号化ビットLLRの硬判定結果である情報ビット系列とを出力し、さらに該符号化ビットLLRに対する誤り検出を行ない、誤り検出結果を出力する。干渉キャンセル部208の動作の詳細は後述する。ここで、符号化ビットLLRとは、符号化ビット各々についての該符号化ビットが「1」である確率と「0」である確率との比の対数である。
受信信号記憶部209は、干渉キャンセル部208において、受信信号に対する復調処理により得られる情報ビット系列に対する軟判定値を格納する。軟判定値としては、例えば、符号化ビットLLRがある。また、受信信号記憶部209は、干渉キャンセル部208が再送パケットの信号を検出処理するときは、この再送パケット以前に受信したパケットに対する軟判定値を少なくとも1つ、干渉キャンセル部208(より詳細には後述する合成部711)に出力する。受信信号記憶部209は、例えば、第p回目の再送パケットが受信されたときに、第1回目の受信パケット(初送パケット)の符号化ビットLLRを出力するようにしてもよいし、第1〜p−1回目の受信パケットの符号化ビットLLRを出力するようにしてもよい。
応答信号生成部210は、干渉キャンセル部208が出力した誤り検出結果を受けて、この誤り検出結果に従い、パケット誤りの有無を示す制御データを含むデータ系列を生成し、誤り訂正符号化、データ変調などの信号処理を行って応答信号を生成する。送信部211は、この応答信号をアナログ信号に変換し(D/A変換)、さらに送信可能な周波数帯域(無線周波数帯)に変換を行い、アンテナ部201から送信する。
なお、応答信号生成部210による応答信号の通信方式は、OFDM、シングルキャリア変調方式など、この応答信号を受信したパケット送信装置100において元の応答信号が復元可能(復調、復号可能)であればよい。なお、応答信号生成部210は、干渉キャンセル部208から誤り検出結果として「パケット誤りが無し」を示す信号が入力されると、パケット送信装置100に対して、正しく受信が完了したことを示す応答信号として受取り通知ACKを生成する。干渉キャンセル部208から誤り検出結果として「パケット誤りが有り」を示す信号が入力されると、パケット送信装置100に対して、パケットの再送要求する応答信号として非受取り通知NACKを生成する。
次に、パケット受信装置200の干渉キャンセル部208が、検出順決定部207により再送回数を示す情報に基づいて決定された順番に従い、各パケットに関する検出済の信号を用いて、受信部202が受信したコード多重された信号から干渉成分を除去して、各パケットを検出する動作を説明する。ここでは、コード多重数N=4とし、パケット送信装置100のコードチャネル信号生成部101−1〜101−4各々が、パケットP1”、P2’、P3、P4のうち、1つのパケットの信号を生成し、パケット送信装置100が、図6に示すように、これらの信号をコード多重した信号を送信したとして説明する。図6は、コードチャネルCH1〜CH4にてパケットP1”、P2’、P3、P4が送信されるときのコード多重した信号を説明する図である。このとき、パケット送信装置100は、これらパケットの信号とともにパケットP1”、P2’、P3、P4の再送回数を示す再送制御信号を送信する。
ここで、パケットP1”は、初送パケットP1の第2回目の再送パケット(q=2、qは再送回数)であり、コードチャネル信号生成部101−1で生成され、拡散符号C1が乗算されたコードチャネルCH1を用いて送信されたものである。パケットP2’は、初送パケットP2の第1回目の再送パケット(q=1)であり、コードチャネル信号生成部101−2で生成され、拡散符号C2が乗算されたコードチャネルCH2を用いて送信されたものである。パケットP3は、初送パケット(q=0)であり、コードチャネル信号生成部101−3で生成され、拡散符号C3が乗算されたコードチャネルCH3を用いて送信されたものである。パケットP4は、初送パケット(q=0)であり、コードチャネル信号生成部101−4で生成され、拡散符号C4が乗算されたコードチャネルCH4を用いて送信されたものである。
また、パケット送信装置100の各パンクチャ部124は、図4に示すパンクチャパターンのパターン1とパターン2とを交互に用いる。例えば、偶数回目の再送パケット送信(初送パケットも含む、q=0,2,・・・)では、パンクチャ部124は、図4のパターン1でパンクチャ処理し、奇数回目の再送パケット送信(q=1,3,・・・)では、図4のパターン2でパンクチャ処理する。
まず、パケット受信装置200の受信部202が、アンテナ部201を介して、上述のパケット送信装置100が送信した信号を受信する。受信パケット管理部206は、この受信した信号に含まれる再送制御信号から、コード多重されている各信号のパケットの再送回数を示す情報を取得する。ここでは、受信した信号は、上述のようにパケットP1”、P2’、P3、P4の信号が多重されているので、受信パケット管理部206は、パケットP3、P4は0回(初送パケット)、パケットP2’は1回(再送パケット)、パケットP1”は2回(再送パケット)を示す情報を再送制御信号より得る。
検出順決定部207は、これらの再送回数を示す情報に基づき、再送回数が多いパケットからなるコードチャネルの信号から順番に検出するように検出する順番(検出順)を決定する。図6の場合、再送パケットのうち再送回数が多い再送パケットP1”のコードチャネルCH1を最初に検出し、その後、次に再送回数の多い再送パケットP2’のコードチャネルCH2を検出し、最後に再送回数が0回の初送パケットP3のコードチャネルCH3、および初送パケットP4のコードチャネルCH4を検出するように順序を決定する。
上述のように、干渉キャンセル部208において、再送回数の多いパケットから優先的に信号検出処理を行い、この信号検出処理結果である再送パケットの検出信号から生成した干渉レプリカを受信信号から除去して、次に再送回数の多いパケットの信号検出処理を行う。再送回数の多いパケットは、この再送パケットに関連する既受信パケットを受信信号記憶部209に多く格納しているパケットであり、合成できる信号が多く、合成できる信号が多いパケットほど、干渉キャンセル部208での信号検出精度が良い。信号検出精度が良いパケットの信号から信号検出し、その検出したパケットの信号から生成した干渉レプリカを受信信号から除去した後に、信号検出精度の劣るパケット(再送回数の少ないパケット)の信号検出を行なうことで、信号検出精度の劣るパケットの信号の検出精度を向上させることが可能となる。
なお、再送回数が同じ再送パケット同士(例えば、上述のパケットP3とP4)については、どのような検出順としてもよい。例えば、まとめて同時に検出してもよいし、拡散符号系列、SINR(Signal to Interference plus Noise Ratio;信号対干渉雑音比)などの他の基準を用いて検出順を決定してもよい。
図7は、逐次型の繰り返し干渉キャンセルを行う干渉キャンセル部208の構成例を示す概略ブロック図である。この干渉キャンセル部208は、検出順決定部207で決定した順番にコードチャネルの信号を検出するように、拡散符号などのコードチャネルのパラメータを、干渉キャンセル部208を構成する各部に設定する。干渉キャンセル部208は、伝搬路補償部701−1〜701−N、コード分離部703−1〜703−N、MCIレプリカ生成部704−1〜704−N、コードチャネルレプリカ生成部705−1〜705−N、減算部706−1〜706−Nを有する。ただし、Nは、受信可能なコード多重数の最大値を示す。
コード分離部703−1〜703−N各々は、逆拡散部707、復調部708、デインターリーブ部709、デパンクチャ部710、合成部711、復号部712を有する。なお、干渉キャンセル部208における一連の処理は、予め決められた繰り返し数だけ繰り返し実行される。すなわち、コード多重数Nの信号を受信したときは、干渉キャンセル部208は、1番目からN番目のコードチャネル各々について減算部706−1〜706−Nのいずれかによる干渉キャンセルと、伝搬路補償部701−1〜701−Nのいずれかによる伝搬路補償と、コード分離部703−1〜703−Nのいずれかによるコードチャネル分離と、コードチャネルレプリカ生成部705−1〜705−Nのいずれかによるコードチャネルレプリカの生成と、MCIレプリカ生成部704−1〜704−Nによる干渉レプリカの生成とを行う一連の処理を、繰り返し数だけ繰り返す繰り返し処理を行う。
干渉キャンセル部208は、検出順決定部207で決定した順番に基づいて、構成する各部のパラメータを設定する。例えば、図7において、受信部202が上記図6に示す信号を受信した場合はN=4であり、上記図6で示した例に基づき検出順決定部207が決定したコードチャネルCH1、CH2、CH3、CH4の順(パケットP1”、P2’、P3、P4の順)でコードチャネル(パケット)の信号を検出、および干渉除去する。このときは、干渉キャンセル部208は、コード分離部703−1、コードチャネルレプリカ生成部705−1には、コードチャネルCH1の拡散符号系列であるCを設定し、コード分離部703−2、コードチャネルレプリカ生成部705−2には、コードチャネルCH2の拡散符号系列であるCを設定し、コード分離部703−3、コードチャネルレプリカ生成部705−3には、コードチャネルCH3の拡散符号系列であるCを設定し、コード分離部703−4、コードチャネルレプリカ生成部705−4には、コードチャネルCH4の拡散符号系列であるCを設定する。この他、パンクチャパターンなども、検出順に基づき、対応するコードチャネルのパンクチャパターンを設定する。なお、干渉キャンセル部208の各部の詳細については、後述する。
図8は、コードチャネルレプリカ生成部705−1の構成を示す概略ブロック図である。なお、コードチャネルレプリカ生成部705−2〜705−Nは、以下で述べるように、コードチャネルレプリカ生成部705−1と同様の構成を有する。コードチャネルレプリカ生成部705−1は、パンクチャ部721、インターリーブ部722、変調シンボルレプリカ生成部723、拡散部724を有し、検出順決定部207が決定した検出順に基づき、拡散符号C…Cのうち、拡散部724に入力される拡散符号に対応するコードチャネルのレプリカを生成する。
すなわち、コードチャネルレプリカ生成部705−1は、図7のコード分離部703−1が、拡散符号C〜Cのうち、逆拡散部707に入力される拡散符号に対応するコードチャネルの信号検出を行なうごとに出力する符号化ビットLLRに基づいて、コードチャネルレプリカを生成する。同様に、コードチャネルレプリカ生成部705−2〜705−Nは、それぞれコード分離部703−2〜703−Nが出力する符号化ビットLLRに基づいて、コードチャネルレプリカを生成する。ここで、符号化ビットLLRとは、符号化部111の誤り訂正符号により符号化された各ビットの対数尤度比LLRである。
パンクチャ部721は、復号部711からの出力信号である符号化ビットの対数尤度比LLRに対して、パケットの送信元であるパケット送信装置100のパンクチャ部124がコードチャネル(パケット)毎に施したパンクチャパターンと同じパターンを、検出順決定部207が決定した検出順に基づき用いてパンクチャ処理を行う。インターリーブ部722は、パンクチャ部721からの出力信号を、パケット送信装置100のインターリーブ部112がコードチャネル(パケット)毎に施したインターリーブパターンと同じパターンを用いてビット配置の並び替え処理を行う。
変調シンボルレプリカ生成部723は、インターリーブ部722からの出力信号を、QPSK変調、16QAM変調など変調部113と同じ変調方式にて変調し、変調シンボルレプリカを生成する。変調シンボルレプリカ生成部723の処理を、QPSK変調を例にして説明する。QPSK変調シンボルを構成するビットの対数尤度比LLRをλ(b)、λ(b)とすると、変調シンボルレプリカ生成部723は、QPSKの変調シンボルのレプリカを、式(2)で生成する。
Figure 2010005037
ただし、jは虚数単位を表す。なお、16QAMなどの他の変調においても、同一の原理でシンボルレプリカを生成することが可能である。
拡散部724は、変調シンボルレプリカ生成部723から出力された変調シンボルレプリカを、拡散符号C…Cの拡散率分だけ複製し、拡散符号C…Cのうち、当該拡散部724にて生成するコードチャネルレプリカのコードチャネルにおける拡散符号を乗算して、コードチャネルレプリカ(データ信号レプリカ)を生成する。
次に、図7を参照して、受信部202が図6に示す信号を受信し、検出順決定部207が決定した検出順に従い、コードチャネルCH1、CH2、CH3、CH4の順でのコードチャネルを検出、および干渉除去する場合のMCIレプリカ生成部704−1〜704−N、減算部706、伝搬路補償部701およびコード分離部703−1〜703−Nの動作を順に説明する。
まず、MCIレプリカ生成部(干渉レプリカ生成部)704−1は、干渉キャンセル部208における繰り返し処理の第i回目の繰り返しにおいて、最初に検出するコードチャネルCH1をコード分離部703−1において信号検出するので、第i−1回目の繰り返しにおいてコードチャネルレプリカ生成部705−2〜705−Nが生成したコードチャネルCH2〜CH4のレプリカ信号であるS^i−1,2〜S^i−1,4をコード多重し、さらに伝搬路推定部203が算出した伝搬路推定値を乗算することでコードチャネルCH1の信号に対して干渉となる成分のレプリカであるMCIレプリカを生成する。
ここで、レプリカ信号S^a,bは、繰り返し処理の第a回目の繰返しにおいて生成した検出順が第b番目のコードチャネルのレプリカ信号であること表す。また、繰り返し処理の第1回目、すなわちi=1のときは、第i−1回目の繰り返しが存在しないので、該当する値は無い(「0」とする)ものとして処理する。
次に、減算部706−1は、FFT部205からの出力信号から、MCIレプリカ生成部704−1が生成したコードチャネルCH1に対するMCIレプリカを減算する。
さらに、伝搬路補償部701−1は、伝搬路推定部203が算出した伝搬路推定値を用いて算出した伝搬路歪を補償する重み係数を、減算部706−1の減算結果に乗算する。ここで、重み係数としては、MMSE(Minimum Mean Square Error:最小2乗誤差)重み、ORC(Orthogonal Restoration Combi:直交性回復合成)重み、MRC(Maximum Ratio Combining:最大比合成)重みなどを用いることができる。
次に、コード分離部703−1の逆拡散部707は、伝搬路補償部701−1からの出力信号に、検出順決定部207が決定した検出順に基づきコードチャネルCH1に固有の拡散符号C1を乗算して逆拡散処理を行い、コードチャネルCH1の信号を検出する。その後、復調部708は、逆拡散部707からの出力信号に対してQPSK、16QAMなどの送信側と同じ変調方式での復調処理を行い、符号化ビットの軟判定結果、例えば、各符号化ビットの対数尤度比である符号化ビットLLRを算出する。
復調部708の復調処理を、変調方式はQPSKであり、軟判定結果として符号化ビットLLRを算出する場合を例として説明する。送信側で送信されたQPSKシンボル、すなわち図1の変調部113による変調結果をXとし、受信側における逆拡散後のシンボル、すなわち逆拡散部707による逆拡散の結果を変調結果の推定値Xcとして説明する。変調結果Xを構成しているビットをb、b(b、b=±1)とすると、変調結果Xは、式(3)で表せる。ただしjは虚数単位を表す。また、変調結果Xの受信側における推定値Xcから、各ビットb、bの対数尤度比LLRであるλ(b)、λ(b)を、式(4)のように求める。
Figure 2010005037
ただし、Re()は複素数の実部を表す。μは伝搬路補償後の等価振幅であり、例えば、第kサブキャリアにおける伝搬路推定値をH(k)、乗算したMMSE基準の伝搬路補償重みW(k)とすると、μは、W(k)H(k)である。またλ(b)は、λ(b)の実部と虚部を置き換えればよい(式(4)において、Re()をIm()に置き換える。ただし、Im()は複素数の虚部を表す)。なお、QPSKではなく、16QAMなどの他の変調方式の場合でも、同様の原理に基づいて算出可能である。また、復調部608は、軟判定結果ではなく、硬判定結果を算出するようにしてもよい。
次に、復調部708が出力した符号化ビットLLRについて、デインターリーブ部709は、送信元のパケット送信装置100のインターリーブ部112が施したインターリーブの逆操作となるように、ビット配置を並び替える。デパンクチャ部710は、検出順決定部207が決定した検出順に従い、コードチャネルCH1のパケットP1”の再送回数である第2回目の再送パケットに対するパンクチャパターンを用いて、デインターリーブ部709がビット配置を並び替えた符号化ビットLLRに対してデパンクチャ処理を行い、合成部711と受信信号記憶部209に出力する。
デパンクチャ部710の動作を、詳細に説明する。まず、パケット送信装置100の誤り訂正符号化部122が出力した符号化ビット系列を、「x1,z1,z1’,x2,z2,z2’,x3,z3,z3’,x4,z4,z4’,x5,z5,z5’,x6,z6,z6’」とし、パンクチャ部124は、図4のパターン1でビットを間引くパンクチャ処理をして、符号化ビット系列「x1,z1,x2,x3,x4,z4’,x5,x6」を出力したとする。そして、パケット送信装置100が送信した、このパンクチャ部124が出力した符号化ビット系列に対応するデインターリーブ部709の出力である符号化ビットLLRを「xr21,zr21,xr22,xr23,xr24,zr24’,xr25,xr26」とする。
このとき、デパンクチャ部710は、この符号化ビットLLR「xr21,zr21,xr22,xr23,xr24,zr24’,xr25,xr26」に、送信元のパンクチャ部124で間引かれたz1’、z2、z2’、z3、z3’、z4,z5,z5’,z6,z6’に対応するビット位置に仮想値を挿入する。仮想値として、対数尤度比の中間値である「0」を用いると、デパンクチャ部710が出力する符号化ビットLLRは、「xr21,zr21,0,xr22,0,0,xr23,0,0,xr24,0,zr24’,xr25,0,0,xr26,0,0」となる。
次に、合成部711は、デパンクチャ部710の出力信号と受信信号記憶部209からの既受信パケットとを合成する。ここでは、再送パケットP1”は第2回目の再送パケットであるので、合成部711は、デパンクチャ部710の出力信号、すなわち検出した再送パケットP1”の信号と、既に受信され、受信信号記憶部209に格納されているデパンクチャ部710からの出力信号(符号化ビットLLR)のうち、再送パケットP1”に対する初送パケットP1および第1回目の再送パケットP1’についての出力信号(再送パケットP1”以前に受信した関連パケットの少なくとも一つが含まれている既受信信号から検出した信号)とを合成して、復号部712に出力する。この復号部712に出力された信号は、干渉キャンセル部208による干渉成分の除去に用いる再送パケットP1”に関する検出済の信号となる。ここで、再送パケット(再送信号)の関連パケット(関連信号)とは、その再送パケットの初送パケット、あるいは、その再送パケット自身を除いた、その再送パケットの初送パケットの再送パケットのことである。
図9は、合成部711による合成処理例を示す図である。図9に示す例は、デパンクチャ部710から出力される再送パケットP1”のデパンクチャ出力(図9の上から3段目)と、受信信号記憶部209に格納されている再送パケットP1”の初送信号P1のデパンクチャ出力(上から1段目)および第1回目の再送信号P1’ のデパンクチャ出力(上から2段目)とが合成される場合の合成部711の演算を示す。
図9に示すように、初送信号P1のデパンクチャ出力である符号化ビットLLR「xr01、zr01、0、xr02、0、0、・・・」と、再送パケットP1’のデパンクチャ出力である符号化ビットLLR「0、0、z’r11、0、zr12、z’r12、・・・」と、再送パケットP1”のデパンクチャ出力である符号化ビットLLR「xr21、zr21、0、xr22、0、0、・・・」とを、合成部711は合成、すなわちビット各々について和をとり、その結果である符号化ビットLLR「xr01+x21、zr01+zr21、z’r11、xr02+xr22、zr12、z’r12、・・・」を出力する。
なお、ここで、初送パケットP1と再送パケットP1”については、デパンクチャ部710は、パターン1でデパンクチャし、再送パケットP1’についてはパターン2でデパンクチャしている。また、デパンクチャ部710が、初送パケットの符号化ビットLLRを出力したときは、合成部210は、その符号化ビットLLRをそのまま出力する。
図7に戻り、次に、復号部712は、送信元のパケット送信装置100の誤り訂正符号化部122が行ったターボ符号化、畳み込み符号化などの誤り訂正符号化に対応する誤り訂正復号処理を、合成部711の出力した符号化ビットLLRに対して行い、誤り訂正された符号化ビットLLRを出力する。ここで、コード分離部703−1は、コードチャネルCH1を分離しているので、コードチャネルレプリカ生成部705−1は、コード分離部703−1の復号部711からのコードチャネルCH1の符号化ビットLLRを用いてコードチャネルCH1のレプリカ信号を生成する。
さらに、復号部712は、送信元のパケット送信装置100の誤り検出符号化部121が各パケットに施したCRC(Cyclic Reduncancy Check:巡回冗長検査)などの誤り検出符号により、パケットに対する誤り検出処理を行い、この誤り検出結果を、応答信号生成部210に入力する。また、誤り検出結果は、最後のコードチャネルの信号検出を行うコード分離部703−Nの復号部712に入力される。これらの入力を受けたコード分離部703−Nの復号部712は、当該復号部712を含む全ての誤り検出処理結果が誤り無しとなるか、当該復号部712が計数している繰り返し処理の繰り返し回数が予め決められた繰り返し数(最大回数)に達したときは、繰り返し処理を終了(コードチャネルレプリカ生成部705−Nへの出力を中止)する。各復号部712のうち、誤り検出処理結果が誤り無しとなった復号部712は、当該復号部712による誤り訂正復号結果の符号化ビットLLRの硬判定結果であるパケットを生成したビット系列から誤り検出のための冗長ビットを除いた情報ビット系列を出力する。
以上のように、干渉キャンセル部208は、検出順決定部207が決定した順番に従い、コードチャネルCH1の信号検出を行った後に、コードチャネルCH2、CH3、CH4の順に、これらの信号検出を、先に信号検出したコードチャネルの信号(検出済の信号)から生成したレプリカを用いて行う。
以下に説明する、コードチャネルCH2、CH3、CH4に対するMCIレプリカの生成処理では、コードチャネルCH1に対するMCIレプリカの生成処理とは、MCIレプリカ生成部704に入力されるコードチャネルレプリカが異なる。
干渉キャンセル部208における繰り返し処理の第i回目の繰り返しにおいて、コードチャネルCH2をコード分離部703−2が信号検出する場合、MCIレプリカ生成部704−2は、第i回目の繰り返しにおいて生成したコードチャネルCH1のレプリカ信号S^i、1と第i−1回目の繰り返しにおいて生成したコードチャネルCH3、CH4のレプリカ信号であるS^i−1,3、S^i−1,4をコード多重し、さらに伝搬路推定値を乗算することでコードチャネルCH2に対して干渉となるMCIレプリカを生成する。
同様に、コードチャネルCH3をコード分離部703−3が信号検出する場合、MCIレプリカ生成部704−3は、第i回目の繰り返しにおいて生成したコードチャネルCH1およびCH2のレプリカ信号S i、1、S i、2と第i−1回目の繰り返しにおいて生成したコードチャネルCH4のレプリカ信号であるS i−1,4をコード多重し、さらに伝搬路推定値を乗算することでコードチャネルCH3に対して干渉となるMCIレプリカを生成する。コードチャネルCH4をコード分離部703−4が信号検出する場合、MCIレプリカ生成部704−4は、第i回目の繰り返しにおいて生成したコードチャネルCH1〜CH3のレプリカ信号S i、1〜S i、3をコード多重し、さらに伝搬路推定値を乗算することでコードチャネルCH4に対して干渉となるMCIレプリカを生成する。
以上のように、検出順決定部207による検出順に基づいて、コードチャネルCH1〜CH4に対応するいずれかのコードチャネルの信号検出が終わるごとに、信号検出したコードチャネルに対応するコードチャネルレプリカ生成部においてコードチャネルレプリカを生成(更新)し、MCIレプリカ生成部は、次に検出するコードチャネルにおける干渉キャンセル処理に用いるMCIレプリカを、この生成(更新)したコードチャネルレプリカを用いて生成する。第i回目の繰り返しにおいて、検出順決定部207による検出順がu番目の第uコードチャネルを検出する際の干渉キャンセル処理に用いるMCIレプリカR^i,uを、MCIレプリカ生成部704−uは、以下の式(5)により算出する。
Figure 2010005037
ただし、Hは伝搬路推定値であり、Nは多重されたコードチャネル数である。
なお、逐次型の繰り返し干渉キャンセラである上述の干渉キャンセル部208において、i=1の場合、第i−1回目コードチャネルレプリカS^i-1,n=S^0,nは生成できないため、MCIレプリカ生成部704−1〜704−Nは、生成可能なi=1のコードチャネルレプリカのみでMCIレプリカを生成する。
また、デインターリーブ部709、デパンクチャ部710は、検出順決定部207による検出順に従って設定された、各々のコードチャネルに対応したパターンに従って処理が行われる。逆拡散部707は、検出順決定部207による検出順に従って設定された、各々のコードチャネル固有の送信時に乗算された拡散符号系列を乗算する。
なお、本実施形態では、コードチャネルを構成するパケットの再送回数に基づいて、1コードチャネルずつ順に干渉キャンセルする(コードチャネルの信号検出)する場合を示したが、パケットの再送回数に基づいてコードチャネルをグループ分けし、グループ毎に順に干渉キャンセルしてもよい。例えば、コードチャネルが初送パケットか、再送パケットかでグループ分けする場合などがある。このようにグループ分けしたときは、初送パケットの信号検出をする際には、検出済の信号のうち、再送パケットの信号を用いて干渉レプリカを生成し、干渉成分を除去する。
図10は、パケット受信装置200の動作を説明するフローチャートである。パケット受信装置200が、コード多重信号を受信すると(S101)、パケット受信装置200の受信パケット管理部206は受信した信号に含まれる再送制御信号から各コードチャネルを構成するパケットの再送回数情報を取得する(S102)。検出順決定部207は、受信パケット管理部206が取得した再送回数情報より干渉をキャンセルして信号を検出するパケット(コードチャネル)の信号検出順(干渉信号の除去順)を決定する(S103)。
干渉キャンセル部208は、ステップS103にて決定した信号検出順に従い、MCIレプリカの減算、逆拡散、復調処理などのパケット(コードチャネル)のキャンセル処理および信号検出処理を行う(S104)。次に、合成部711は、信号検出しているパケットが何回目の再送パケットか、再送回数を判定し(S105)、初送パケット(再送回数q=0)ならば、合成処理を行なわず復号部712に入力する。再送パケットならば(q≧1)、受信信号記憶部209に格納している検出中の信号に対する既受信信号を呼び出し、合成処理を行なう(S106)。
復号部712は、合成部711からの出力信号に対して復号処理を行ない(S107)、さらに、信号検出したパケットに誤りが有るか否かを判定し(S108)、誤りが無いと判定したときは、応答信号生成部210は、誤りが無い旨の応答信号をパケット送信装置100に返信する(S110)。ステップS108にて、復号部712が、パケットに誤りが有ると判定したときは、干渉キャンセル部208の繰り返し処理を所定の繰り返し数まで繰り返しているか否かを判定し(S109)、繰り返し数まで繰り返していないと判定したときは、復号部712は、符号化ビットLLRを出力し、干渉キャンセル部208は、ステップS104に戻って、再度繰り返す。
一方、ステップS109にて、繰り返し数まで繰り返していると判定したときは、応答信号生成部210は、再送要求する旨の応答信号をパケット送信装置100に返信し(S111)、ステップS101に戻って、次の信号を受信する。
なお、上述の説明において、ステップS104〜S108は、干渉キャンセル部208による特定のパケットに対する処理のみを説明した。しかし、詳細には、干渉キャンセル部208は、検出順決定部207の決定した検出順に従い、各パケットについてステップS104〜S107を処理し、全てのパケットについて、ステップS108において復号部712が誤り無しと判定したときは、応答信号生成部210は、全てのパケットについて誤りが無い旨の応答信号をパケット送信装置100に返信する(S110)。
一方、ステップS108において復号部712がいずれかのパケットについて誤り有りと判定し、その結果、所定回数繰り返したときは(S109−Yes)、応答信号生成部210は、ステップS108において誤りが検出されなかったパケットについては、誤りが無い旨の応答信号をパケット送信装置100に返信し、誤りが検出されたパケットについては、再送要求する旨の応答信号をパケット送信装置100に返信する(S111)。
なお、本実施形態において、干渉キャンセル部208は、コード多重されたコードチャネルの信号検出を、各コードチャネルの信号について複数回繰り返し行なう繰り返し処理を行うとして説明したが、繰り返し行わずに、上記繰り返し処理における第1回目の処理のみ、すなわち各コードチャネルの信号の検出を、各コードチャネルについて1回ずつ行なうようにしてもよい。
このように、本実施形態では、パケット受信装置200の検出順決定部207は、コード多重されたパケットのうち、再送回数の大きいパケットから検出するように信号検出順を決定し、干渉キャンセル部208は、該信号検出順に従い、再送回数の大きいパケットから信号検出し、この信号検出したパケットの信号による干渉成分を受信した信号から除去してから、次に再送回数が大きいパケットの信号検出を順に行なう。このため、再送回数が多く、合成できる信号が多いパケット、すなわち干渉キャンセル部208での信号検出精度の良いパケットの信号から先に信号検出し、その検出したパケットの信号から生成した干渉レプリカを受信信号から除去した後に、再送回数の少ないパケットの信号検出を行なうことになるので、再送回数の少なく、合成する信号が少ないために信号検出精度の劣るパケットの信号の検出精度を向上させることが可能となる。従って、特定のパケットの再送回数が多くなり、遅延が大きくなってしまうことを防ぐことができる。
[第2の実施形態]
第1の実施形態では、ハイブリッド自動再送HARQの初送パケットと再送パケットとが拡散符号によってコード多重され、コード間干渉MCIを繰り返し遂次型干渉キャンセラ(SIC)によって除去する場合について説明した。第2の実施形態では、パケット送信装置300とパケット受信装置400とを備える通信システムであって、パケット送信装置300が送信した初送パケットと再送パケットとがMIMO(Multi Input Multi Output:マルチ入力マルチ出力)を用いて空間多重され、パケット受信装置400は、他ストリームの信号を繰り返し逐次型干渉キャンセラ(SIC)によって除去する通信システムについて説明する。本実施形態では、パケットの伝送方式として、OFDM方式(Orthogonal Frequency Division Multiplexing:直交周波数分割多重)方式を適用した場合で説明する。
ここで、干渉信号とは空間多重された他の信号を意味する。すなわち、例えば、信号Pと信号Pが空間多重された場合、信号Pにとっては信号Pが干渉であり、信号Pにとっては信号Pが干渉である。干渉キャンセル処理とは、干渉信号を再生した信号(レプリカ)を受信信号から除去する処理であり、例えば信号Pを検出する際には、受信信号から信号Pのレプリカを除去した信号を用いる。
図11は、本実施形態によるパケット送信装置300の構成を示す概略ブロック図である。例えば、パケット送信装置300は、無線通信システムによる下りリンクでの基地局、上りリンクでの移動局に具備される。また、中継局−移動局間の下りリンクでの中継局に具備される。
パケット送信装置300は、ストリーム信号生成部301−1〜301−Ns(ただし、Nsはストリーム数)、アンテナ部302−1〜302−Ns、再送制御信号生成部311、復元部312、受信部313を有し、各パケットを構成する異なる情報ビット系列から生成したNs個のストリーム信号を、各アンテナ部302−1〜302−Nsから1つずつ送信する。また、パケット送信装置300は、パケット受信装置400からの応答信号を含む信号を復元する。
受信部313は、アンテナ部302−1を介して受信したパケット受信装置400からの信号を復元処理(検出処理)可能な周波数帯へ変換し、フィルタリング処理により帯域制限を行い、アナログ信号からデジタル信号に変換(Analgue/Digital変換)する。復元部312は、受信部313が出力したデジタル信号に対してデータ復調、誤り訂正復号などの受信信号復元処理を行い、パケット受信装置400からの信号に含まれる応答信号を取り出し、該応答信号が示す各パケット受信の成否情報をストリーム生成部301−1〜301−Ns内の符号化部303、および再送制御信号生成部311に通知する。なお復元部312は受信信号の伝送方式に基づいて受信信号処理可能な機能を有する。ここでは、受信部313は、アンテナ部302−1を介して受信するように記載したが、アンテナ部302−2〜302−Nsのいずれかを介して受信するようにしても良いし、その他の専用のアンテナから受信するようにしてもよい。
ストリーム信号生成部301−1〜301−Nsは、各々入力されたパケットを構成する情報ビットからストリーム毎の送信データ信号を生成し、符号化部303、インターリーブ部304、変調部305、IFFT部306、パイロット信号生成部310、多重部307、GI挿入部308、送信部309を有する。
符号化部303は、パケット受信装置400において誤り検出、誤り訂正ができるように、入力されたパケットの情報ビット系列に冗長ビットを付加する機能を有し、図2に示す第1の実施形態の符号化部111と同様に誤り検出符号化部121、誤り訂正符号化部122、符号化ビット記憶部123、パンクチャ部124を有する。符号化部303は、各ストリーム信号生成部301−1〜301−Nsが出力する各ストリームの信号(パケットの信号)に対するパケット受信装置400からの応答信号に従い、初送パケットの符号化ビットまたは再送パケットの符号化ビットを出力する。なお、本実施形態では、ストリーム毎にパケットを生成し、パケット毎(ストリーム毎)に誤り検出符号化および誤り訂正符号化を行う。すなわち、あるパケットの信号は、複数のストリームに分散されて送信されることはなく、同一のストリームにて送信される。
インターリーブ部304は、符号化部303が出力した符号化ビットのビット配置を、予め決められたパターンに従い並び替える。変調部305は、インターリーブ部304がビット配置を並び替えた符号化ビットに対して、QPSK、16QAMなどの変調方式でデータ変調を行い、変調シンボルを生成する。なお、ストリーム毎にデータ変調の変調方式は異なっていてもよい。IFFT部306は、変調部305からの変調シンボルを各サブキャリアに割り当てて、IFFT(Inverse Fast Fourier Transform:逆高速フーリエ変換)などにより周波数−時間変換を行い、時間領域の信号を生成する。
多重部307は、IFFT部306が生成した時間領域の信号と、パイロット信号生成部310が生成したパイロット信号と、再送制御信号生成部311が生成した再送制御信号とを多重する。ただし、再送制御信号を多重するのは、ストリーム信号生成部301−1が具備する多重部306のみであり、その他のストリーム信号生成部301−2〜301−Nsが具備する多重部307は、前述の時間領域の信号と前述のパイロット信号とを多重する。パイロット信号生成部310は、受信側での各ストリーム信号の伝搬路推定に用いるパイロット信号を生成する。好ましくは、ストリーム毎に直交したパイロット信号を生成する。
再送制御信号生成部311は、復元部312からの各パケット受信の成否情報に基づき、各ストリームにて送信するパケットの再送回数を判定し、該判定した再送回数をパケット受信装置400に通知する再送制御信号を生成する。すなわち、再送制御信号生成部311は、パケット受信失敗を示す成否情報を受けると、該パケットの再送回数を1つ増やした再送制御信号を生成し、パケット受信成功を示す成否情報を受けると、受信成功の同じストリームを用いて送信する次のパケットの再送回数を「0」にして初送パケットであることを示す再送制御信号を生成する。ここでは、再送制御信号生成部311は、ストリーム信号生成部301−1が具備する多重部307に接続され、再送制御信号生成部311が生成した再送制御信号はストリーム信号生成部302−1が生成するストリームに多重される構成となっているが、これに限るものではない。その他のストリーム(複数も可能)に多重されるように、再送制御信号生成部311が、その他のストリーム信号生成部302−2〜302−Nのいずれかの多重分307に接続され、該ストリーム信号生成部が生成するストリームに多重される構成にしてもよい。なお、再送制御信号生成部311が、データ変調方式、符号化率、空間多重数(MIMOのランク情報)などの送信パラメータを含む再送制御信号を生成するようにしてもよい。ここで、MIMOのランク情報とは、送信アンテナおよび受信アンテナで規定されるMIMO多重情報である。
GI挿入部308は、多重部307の出力信号に対して、ガード区間GI(Guard Interval)を挿入し、送信部309は、GI挿入部308からの出力信号をアナログ信号への変換(D/A変換)を行い、フィルタリング処理により帯域制限を行い、さらに送信可能な周波数帯域への変換を行う。ストリーム信号生成部301−1以外のストリーム信号生成部302−2〜302−Nsにおいても同様の処理が行なわれ、各々のストリーム信号生成部302−1〜302−Nsからの出力信号は、それぞれ対応するアンテナ部301−2〜Nsで送信されることで送信装置300は初送パケットあるいは再送パケットが空間多重した信号を送信する。なお、アンテナ部302−1〜302−Ns各々から送信される信号を、ストリーム1〜ストリームNsと呼ぶ。
なお、本実施形態では、再送パケットは初送パケットと同じストリーム、同じアンテナから送信する場合で説明したが、再送回数毎に異なるアンテナから送信してもよい。以下、パケット受信装置400の説明においても、再送パケットは初送パケットと同じストリーム、同じアンテナから送信されるとして説明する。
図12は、本実施形態によるパケット受信装置400の構成を示す概略ブロック図である。例えば、パケット受信装置400は、無線通信システムによる下りリンクでの移動局、上りリンクでの基地局に具備される。また、基地局―中継局間の下りリンクでの中継局に具備される。
パケット受信装置400は、アンテナ部401−1〜401−M(ただし、Mは受信アンテナ数)、アンテナ毎信号処理部402−1〜402−M、受信パケット管理部403、検出順決定部404、干渉キャンセル部405、受信信号記憶部406、応答信号生成部409、送信部410を有する。
アンテナ毎受信処理部402−1〜402−Mは、各々に対応するアンテナ部401−1〜401−Mを介して受信した信号を受信処理し、受信部411、GI除去部412、FFT部413、伝搬路推定部414を具備する。ここでは、アンテナ毎受信処理部402−1を説明するが、その他のアンテナ毎受信処理部402−2〜402−Mも、対応するアンテナ部がそれぞれアンテナ部401−2〜401−Mであることと、受信パケット管理部403に信号を出力しないことを除き、アンテナ毎受信処理部402−1と同様の構成である。受信部411は、アンテナ部401−1を介して受信したパケット送信装置300からの信号を信号検出処理などの信号処理可能な周波数帯へ変換し、フィルタリング処理により帯域制限し、アナログ信号をデジタル信号に変換(Analogue/Digital変換)する。
伝搬路推定部414は、受信部411が変換したデジタル信号に含まれるパイロット信号と当該部において既知の送信時のパイロット信号とを比較して、パケット送信装置300の各アンテナ部301−1〜301−Nsとパケット受信装置400のアンテナ部401−1との間の伝搬路特性を推定し、伝搬路推定値(伝達関数、インパルス応答など)を出力する。なお、制御チャネル、プリアンブル、など伝搬路を推定できる他の信号を用いるようにしてもよい。GI除去部412は、受信部411が変換したデジタル信号に含まれるガード区間GIを除去する。FFT部413は、GI除去部412がガード区間GIを除去した信号について高速フーリエ変換FFT処理を行うことにより、周波数領域の信号に変換する。その他のアンテナ毎受信処理部402−2〜402−Mにおいても同様の処理を行う。なお、再送制御信号は、アンテナ部402−1〜402−Mの何れのアンテナから受信し、受信パケット管理部403へ出力してもよい。
ここで、送信アンテナ数と受信アンテナ数がそれぞれN×MであるMIMOシステムでは、パケット受信装置400が受信した空間多重信号の第kサブキャリアにおける信号R(k)は、式(6)で表せる。ただし、H(k)は送信アンテナと受信アンテナ間のそれぞれの伝搬路特性であり、S(k)は送信アンテナ毎の送信信号である。すなわち、S(k)を構成するN個の要素S(k),・・・,S(k)は各々、パケット送信装置303のアンテナ302−1,・・・,302−Nから送信されたストリーム信号の第kサブキャリアの信号である。N(k)は受信アンテナ毎の雑音であり、は転置行列を表す。
Figure 2010005037
受信パケット管理部403は、受信信号に含まれる再送制御信号から送信装置300のアンテナ部301−1〜301−Nsから送信された各ストリームが、何回目の再送パケットの信号か(初送パケットも含む)の再送回数を示す情報、データ変調方式、符号化率、空間多重数(MIMOのランク情報)などの送信パラメータに関するデータを取り出す。検出順決定部404は、受信パケット管理部403が取り出した再送回数を示す情報に基づいて、干渉キャンセル部405で信号を検出する順番を決定し、干渉キャンセル部405に通知する。検出順決定部404の順番決定の詳細は後述する。
干渉キャンセル部405(信号検出部)は、検出順決定部404で決定した検出順に基づき、伝搬路推定部414から出力された伝搬路推定値、受信パケット管理部403から出力される各パケットの送信パラメータに関するデータに基づいて、各アンテナ毎受信処理部402−1〜402−MのFFT部413が出力する周波数領域のデータ信号からパケット送信装置300のアンテナ部301−1〜301−N各々から送信されたパケットの符号化ビットLLRと符号化ビットLLRの硬判定結果である情報ビット系列と誤り検出結果とを出力する。干渉キャンセル部405の動作の詳細については後述する。
受信信号記憶部406は、図5に示す第1の実施形態の受信信号記憶部209と同様の機能を有しており、ストリーム数Ns個の信号を記憶するが、第1の実施形態における受信信号記憶部209は、コードチャネル毎の信号を記憶するので、両実施形態はこの点が異なる。また、応答信号生成部409、送信部410も、第1の実施形態における応答信号生成部210、送信部211と同様の機能を有す。
次に、検出順決定部404が、再送回数を示す情報に基づいて、MIMOを用いて空間多重された信号を検出する順番を決定する一例を示す。パケット送信装置300がアンテナ部301−1〜301−N(N=4)の4本の送信アンテナを用いて信号送信する場合で説明する。なお、アンテナ部301−1〜301−N(N=4)の各々から出力される送信信号をストリームとよぶ。
例えば、パケット送信装置300は、図13に示すように、アンテナ部302−1から再送パケットP1”からなるストリーム1を、アンテナ部302−2から再送パケットP2’からなるストリーム2を、アンテナ部302−3から初送パケットP3からなるストリーム3を、アンテナ部302−4から初送パケットP4からなるストリーム4を、パケット受信装置400のアンテナ部402−1〜402−4へ同時に送信する。すなわち、式(6)においてN=4,M=4となり、ベクトルS(k)の要素S(k)は再送パケットP1”の第kサブキャリアの信号であり、要素S(k)は再送パケットP2’の第kサブキャリアの信号であり、要素S(k)は再送パケットP3の第kサブキャリアの信号であり、要素S(k)は再送パケットP4の第kサブキャリアの信号である。そして、パケット受信装置400は、これらストリーム1〜4が空間多重された信号を、アンテナ部402−1〜402−4で受信する。また送信装置300は、これらのパケットとともにパケットP1”、P2’、P3、P4の再送回数(再送回数q=2、1、0、0)を示す再送制御信号を送信する。
なお、パケットP1”、P2’は各々初送パケットP1、P2に対する2回目と1回目の再送パケットとする。また、パケット送信装置300は、再送回数に応じて、図4のパンクチャパターンを交互に用いるとする。例えば、偶数回目の再送パケット送信(初送パケットも含む、再送回数q=0,2,・・・)では図4のパターン1でパンクチャ処理し、奇数回目の再送パケット送信(初送パケットも含む、再送回数q=1,3,・・・)には、図4のパターン2でパンクチャ処理する。
パケット受信装置400の受信パケット管理部403は、アンテナ毎信号処理部402−1がアンテナ部401−1を介して受信した信号に含まれる再送制御信号から各ストリームが送信するパケットの再送回数を取得する。ここでは、例えば、図13に示すようにパケットP1”、P2’、P3、P4が、それぞれストリーム1〜4で送信されており、受信パケット管理部403は、パケットP3、P4は0回(初送パケット)、パケットP2’は1回(再送パケット)、パケットP1”は2回(再送パケット)であることを示す情報を再送制御信号から得る。
検出順決定部404は、受信パケット管理部403が取得した再送回数を示す情報に基づき、再送回数の大きいパケットが送信されているストリームから先に検出するように検出順を決定する。図13の場合、再送パケットのうち再送回数が多い再送パケットP1”が含まれるストリーム1を最初に検出し、その後、次に再送回数の多い再送パケットP2’が含まれるストリーム2を検出し、最後に再送回数が0回の初送パケットP1、P2が含まれるストリーム1、およびストリーム2を検出するように検出順を決定する。
干渉キャンセル部405は、検出順決定部404が決定した検出順に従い、再送回数の多いパケットを送信しているストリームから優先的に信号検出を行い、この再送回数の多いパケットの検出信号から生成した干渉レプリカを受信した信号から除去し、次に再送回数の多い再送パケットを送信しているストリームの信号検出を行う。再送回数の多いパケットは、この再送パケットに関連する既受信パケットを受信信号記憶部406に多く格納しているパケットであり、合成できる信号が多く、合成できる信号が多いパケットほど、干渉キャンセル部405での信号検出精度が良い。信号検出精度が良いパケットの信号から信号検出し、その検出したパケットの信号から生成した干渉レプリカを受信信号から除去した後に、信号検出精度の劣るパケット(再送回数の少ないパケット)の信号検出を行なうことで、信号検出精度の劣るパケットの信号の検出精度を向上させることが可能となる。
なお、検出順決定部404は、ストリームを構成するパケットの再送回数により検出順を決定するとともに、再送回数が同じパケット同士では、信号対干渉雑音電力比SINR(Signal to Interference plus Noise power Ratio)が大きい方を先に検出するなど、信号対干渉雑音電力比SINRなどの受信レベルを基準として検出順を決定してもよい。
なお、検出順決定部404は、各ストリームを構成するパケットの再送回数に基づいて、1ストリームずつ順に各ストリームのパケットを検出(ストリームの干渉キャンセルとMIMOの空間多重を分離)する順番を決定してもよいし、パケットの再送回数に基づいてストリームをグループ分けし、グループ毎に、順に各ストリームのパケットを検出するように順番を決定してもよい。グループ毎に決定する場合の例としては、ストリームを構成しているパケットが初送パケットか、再送パケットかでグループ分けするなどがある。
図14は、空間多重された信号に対して逐次型の繰り返し干渉キャンセルを行う干渉キャンセル部405の構成を示す概略ブロック図である。この干渉キャンセル部405は、図13に示すようなパケット送信装置300が、パケットP1”をアンテナ部302−1から送信したストリーム1と、パケットP2’をアンテナ部302−2から送信したストリーム2と、パケットP3をアンテナ部302−3から送信したストリーム3と、パケットP4をアンテナ部302−4から送信したストリーム4とからなる空間多重信号から、検出順決定部404が決定したストリーム1からストリーム4の検出順に基づいて、これらのストリームを順に逐次検出する。干渉キャンセル部405における一連の処理(ストリーム1からストリーム4の検出処理)は、途中ですべての情報ビットを誤り無く検出できた場合を除いて、予め決められた回数だけ繰り返し実行される。
干渉キャンセル部405は、ストリーム検出部1201−1〜1201−Ns、受信レプリカ生成部1202−1〜1202−Ns、シンボルレプリカ生成部1204−1〜1204―Nsを有し、アンテナ毎信号処理部402−1〜402−MのFFT部413が出力する周波数領域のデータ信号から、干渉信号のレプリカを除去し、空間多重されたストリームの分離、各ストリームの復調、合成、復号処理を行う。
ストリーム検出部1201−1は、検出する順番が1番目のストリーム1の信号を検出し、ストリーム検出部1201−2は、検出する順番が2番目のストリーム2の信号を検出し、ストリーム検出部1201−3は、検出する順番が3番目のストリーム3の信号を検出し、ストリーム検出部1201−Ns(Ns=4)は、検出する順番がNs番目のストリームNsの信号を検出する。また、シンボルレプリカ生成部1204−1はストリーム1を構成する信号のシンボルレプリカを生成し、シンボルレプリカ生成部1204−2はストリーム2を構成する信号のシンボルレプリカを生成し、シンボルレプリカ生成部1204−3はストリーム3を構成する信号のシンボルレプリカを生成し、シンボルレプリカ生成部1204−Ns(Ns=4)はストリームNsを構成する信号のシンボルレプリカを生成する。
ストリーム検出部1201−1〜1201−Ns各々は、減算部1203、MIMO分離部1205(ストリーム分離部)、復調部1207、デインターリーブ部1208、デパンクチャ部1209、合成部1210、復号部1211を有する。減算部1203は、受信レプリカ生成部1202が生成した干渉レプリカ(ストリームレプリカ)をアンテナ毎信号処理部402−1〜402−MのFFT部413の出力信号から減算する。第i回目の繰り返し処理時において、ストリーム検出部1201−nの減算部1203のアンテナ毎信号処理部402−Mに対する出力信号R n,i,M(k)は以下の式(7)となる。ただし、R(k)はアンテナ毎信号処理部402−MのFFT部413が出力する第kサブキャリアの周波数領域の信号、R^n,i,M(k)は受信レプリカ生成部1202−nが生成した第i回目の繰り返し処理におけるアンテナ部401−Mが受信したストリームnに対する第kサブキャリアの干渉レプリカ、kはサブキャリアインデックスを示す。
Figure 2010005037
受信レプリカ生成部1202−1〜1202−Nsは、シンボルレプリカ生成部1204−1〜1204−Nsが生成したシンボルレプリカと伝搬路推定部414が生成した伝搬路推定値とを用いて干渉レプリカ(受信信号のレプリカ)を生成する。例えば、ストリームn(n=1,2,・・・,Ns)の信号検出を行うストリーム検出部1201−nに干渉レプリカを入力する受信レプリカ生成部1202−nの場合、ストリーム1〜ストリーム(n−1)およびストリーム(n+1)〜ストリームNsのシンボルレプリカに伝搬路推定値を乗算して合成した干渉レプリカを生成する。
詳細には、第i回目の繰り返し処理時においては、第i回目の繰り返し処理に生成したストリーム1〜ストリーム(n−1)のシンボルレプリカと、第i−1回目の繰り返し処理に生成したストリーム(n+1)〜ストリームNsのシンボルレプリカと、伝搬路推定値とを用いて受信信号の干渉成分である干渉信号のレプリカを生成する。第i回目の繰り返し処理時におけるアンテナ部401−Mが受信したストリームnに対する受信レプリカ生成部1202−nの出力する干渉信号のレプリカR^n,i,M(k)は以下の式(8)となる。
Figure 2010005037
ただし、Hu、M(k)はアンテナ部401−Mが受信したストリームuの伝搬路推定値、S^u,i(k)は第i回目の繰り返し処理においてシンボルレプリカ生成部1204−uが生成したストリームuのシンボルレプリカを示す。なお、i=1の場合(繰り返し処理の初回)は、ストリームnの検出処理までに生成したストリーム1〜ストリーム(n−1)のシンボルレプリカのみと伝搬路推定値とから干渉信号のレプリカを生成する。ストリーム検出部1201−nの減算部1203は、すべてのアンテナ部401−1〜401−Mが受信した信号、すなわちアンテナ毎信号処理部402−1〜402−MのFFT部413の出力の各々に対して上述の干渉キャンセル処理を行い、MIMO分離部1205に出力する。
MIMO分離部1205は、伝搬路推定部414の出力である伝搬路推定値に基づいて、減算部1203の出力に対して空間多重(MIMO)された信号のストリーム分離および伝搬路補償を行い、該ストリームの変調シンボル系列を生成する。具体的には、最尤推定によりストリームの信号を再現する。あるいは、減算部1203の出力に対するZF(Zero Factor)重みまたはMMSE(Minimum Mean Square Error)重みを算出し、算出した重みを減算部1203の出力に対して乗算するなどの分離方法を用いる。
例えば、ストリーム検出部1201−nに属するMIMO分離部1205のZF基準、MMSE基準に基づいた重み係数WZF、n(k)、WMMSE、n(k)は以下の式(9)、(10)で表せる。ただし、は行列の複素共役転置、−1は逆行列、σは雑音電力、IはN×Nの単位行列を表す。また、繰り返し逐次型干渉キャンセラSICにおける初回処理(i=1)の場合のH(k)は、式(11)であり、繰り返し逐次型干渉キャンセラSICにおける繰り返し処理(i>1)の場合のH(k)は、式(12)である。
Figure 2010005037
復調部1207では、MIMO分離部1205からの出力信号である変調シンボル系列に対して復調処理を行い、符号化ビット毎の信号を抽出する。好ましくは、図7に示す第1の実施形態の復調部708と同様に、符号化ビット毎の対数尤度比(LLR)を出力する。デインターリーブ部1208は、復調部1207が出力する符号化ビット毎の信号に対して、デインターリーブ処理を行なう。このデインターリーブ処理は、パケット送信装置300のインタリーバ部304におけるインターリーブ処理により並べ替えられた順を、元に戻すような並べ替えである。
デパンクチャ部1209は、第1の実施形態のデパンクチャ部710と同様の動作により、パケット送信装置300内のパンクチャ部124において行われたパンクチャ(ビット除去)処理に対して逆の処理を行ない、該処理の結果を受信信号記憶部406および合成部1210に出力する。すなわち、パンクチャ処理により除去されたビットに対して、予め決められた仮想値を挿入するデパンクチャ処理を行う。デパンクチャ部1209は、パンクチャパターンとしてパケット送信装置300内のパンクチャ部124と同じパンクチャパターンを用いる、すなわち偶数回目の再送パケット(初送パケットも含む、q=0,2,・・・)では図4のパターン1でデパンクチャ処理し、奇数回目の再送パケット(q=1,3,・・・)には、図4のパターン2でデパンクチャ処理する。
合成部1210は、第1の実施形態の合成部711と同様の動作により、デパンクチャ部1209の出力信号と受信信号記憶部406からの既受信パケットとを合成する。
復号部1211は、合成部1210の出力信号に対して、パケット送信装置300の誤り訂正符号化部122が行ったターボ符号化、畳み込み符号化などの誤り訂正符号化に対する誤り訂正復号処理により、軟判定結果である符号化ビットの対数尤度比LLRを出力する。シンボルレプリカ生成部1204−1〜1204−Nsは、復号部1211が生成した符号化ビットの対数尤度比LLRを用いて各ストリームのシンボルレプリカを生成する。
さらに、復号部1211は、パケット送信装置300の誤り検出符号化部121が施した巡回冗長検査CRCなどの誤り検出によりパケットに対する誤り検出処理を行い、誤り検出情報を応答信号生成部409に対して出力する。また、復号部1211は、誤り検出情報において誤り無しを出力する場合、誤り訂正復号結果の符号化ビットLLRの硬判定結果であるパケットを生成したビット系列から誤り検出のための冗長ビットを除いた情報ビット系列を出力する。
図15は、シンボルレプリカ生成部1204−1の構成の示す概略ブロック図である。その他のシンボルレプリカ生成部1204−2〜1204−Nsも同様の構成である。シンボルレプリカ生成部1204−1は、ストリーム分離部1201−1がストリーム1に対応する信号の信号検出が終わるごとに出力する符号化ビットLLRに基づいて、シンボルレプリカを生成し、パンクチャ部1212とインターリーブ部1213と変調シンボルレプリカ生成部1214とを具備する。
パンクチャ部1212は、図8に示すパンクチャ部721と同様に、復号部1211の出力信号である符号化ビットのLLRをパケット送信装置300のパンクチャ部124がストリーム(パケット)毎に施したパターンと同じパターン(図4のパンクチャパターン)を用いてパンクチャ処理を行う。インターリーブ部1213は、図8に示すインターリーブ部722と同様に、パンクチャ部1212からの出力信号を、パケット送信装置300のインターリーブ部304がストリーム(パケット)毎に施したパターンと同じパターンを用いてビット配置の並び替え処理を行う。
変調シンボルレプリカ生成部1214は、図8に示す変調シンボルレプリカ生成部723と同様に、インターリーブ部1213の出力信号をQPSK変調、16QAM変調など図11に示すパケット送信装置300の変調部305と同じ変調方式にて変調し、変調シンボルレプリカを生成する。変調シンボルレプリカ生成部1213すなわちシンボルレプリカ生成部1204−1は、生成したシンボルレプリカを、ストリーム2〜ストリームNsに対する干渉信号のレプリカを生成する受信レプリカ生成部1202−2〜1202−Ns各々に入力する。
図16は、パケット受信装置400の受信動作を説明するフローチャートである。パケット受信装置400が、空間多重された信号を受信すると(S201)、受信パケット管理部403は受信した信号に含まれる再送制御信号から各ストリームを構成するパケットの再送回数情報を取得する(S202)。検出順決定部404は、ステップS202にて取得した再送回数情報よりパケットを検出する順番(ストリームを検出する順番)を決定する(S203)。干渉キャンセル部405は、ステップS203にて決定したパケットを検出する順番に従い、順に該当パケットのストリームの干渉キャンセル処理、MIMO分離、復調処理などの信号検出を行う(S204)。
次に、合成部1210は、信号検出しているパケットが何回目の再送パケットか、再送回数を判定し(S205)、初送パケット(再送回数q=0)ならば、合成処理を行なわず復号部1211に入力する。再送パケットならば(q≧1)、受信信号記憶部406に格納している検出中の信号に対する既受信信号を呼び出し、合成処理を行なう(S206)。復号部1211は、合成部からの出力信号に対して復号処理を行ない(S207)、さらに、信号検出したパケットに誤りが有るかどうかを判定し(S208)、パケットについて誤りがないと判定したときは、誤りがない旨の応答信号である受取り通知ACKをパケット送信装置300に返信し(S210)、処理を終了する。
一方、ステップS208にて、いずれかのパケットに誤りが有ると判定したときは、これら一連のストリームの干渉キャンセル処理、信号検出の繰り返し処理の回数が予め決められた繰り返し数に達しているか否かを判定し(S209)、達していないときはステップS204に戻って、ストリームの干渉キャンセル処理、信号検出を再度行う。ステップS209の判定にて、繰り返し数に達していると判定したときは、再送を要求する旨の応答信号である非受取り通知NACKをパケット送信装置300に返信し(S211)、ステップS201に戻って、次の信号を受信する。
なお、本実施形態では、信号検出部として、MIMOで空間多重された信号の検出に繰り返し遂次型干渉キャンセラSICである干渉キャンセル部405を用いたが、V−BLAST(Vertical-Bell Laboratories-Layered-Space-Time)などのストリームを順に検出するその他の分離方法によるものを用いるようにしてもよい。
また、本実施形態では、MIMOで空間多重された信号を受信した場合に、本発明を適用した実施形態を示しているが、コード多重および空間多重された信号を受信した場合においても、同様に適用可能で有り、その際には、第1の実施形態のコード多重された信号の検出と本実施形態の空間多重された信号の検出を組み合わせて適用する。
このように、本実施形態では、パケット受信装置400の検出順決定部404は、空間多重されたパケットのうち、再送回数の大きいパケットから検出するように信号検出順を決定し、干渉キャンセル部405は、該信号検出順に従い、再送回数の大きいパケットから信号検出し、この信号検出したパケットの信号による干渉成分を受信した信号から除去してから、次に再送回数が大きいパケットの信号検出を順に行なう。このため、再送回数が多く、合成できる信号が多いパケット、すなわち干渉キャンセル部405での信号検出精度の良いパケットの信号から先に信号検出し、その検出したパケットの信号から生成した干渉レプリカを受信信号から除去した後に、再送回数の少ないパケットの信号検出を行なうことになるので、再送回数の少なく、合成する信号が少ないために信号検出精度の劣るパケットの信号の検出精度を向上させることが可能となる。従って、本実施形態のように受信信号が空間多重されている場合であっても、特定のパケットの再送回数が多くなり、遅延が大きくなってしまうことを防ぐことができる。
また、パケット送信装置300のストリーム信号生成部301−1〜301−Nにおいて、再送回数が小さいパケットが多いほどMIMO伝送におけるチャネル固有値が大きくなるアンテナから信号を送信するように割り当てることで、よりパケット受信装置400の干渉キャンセル部405は再送回数が小さいパケットおよび初送パケットの信号を精度良く検出することができる。チャネル固有値は、パケット送信装置300のアンテナ部302−1〜302−Nsから送信する各ストリームの伝搬路応答を要素とする行列を特異値分解することにより得られる、各ストリームの品質を表す指標のひとつで、大きいほど高品質で伝送可能なストリームであることを示す。よって、該初送パケットの信号に基づき行う再送パケットの信号に対する干渉成分の除去の精度も良くなり、再送パケットの信号検出を精度良くすることができる。また、再送パケットを検出する際には、検出する再送パケットより再送回数の小さい再送パケットによる干渉成分が除去された信号に対して検出処理を行うことになり、再送回数が大きい信号の検出精度を良くすることが可能となる。
[第3の実施形態]
第3の実施形態では、ハイブリッド自動再送HARQの初送パケットと再送パケットとが拡散符号系列によってコード多重され、コード間干渉MCIを繰り返し遂次型干渉キャンセラSICによって除去する場合について、本発明を適用した通信システムであって、第1の実施形態とは別のパケット送信装置500とパケット受信装置600を備える通信システムについて説明する。なお、本実施形態における拡散符号系列は、直交可変拡散率符号(Orthogonal Variable Spreading Factor;OVSF)である。
図17は、本実施形態によるパケット送信装置500の構成を示す概略ブロック図である。パケット送信装置500は、コードチャネル信号生成部501−1〜501−N、コード多重部102、IFFT部103、多重部104、GI挿入部105、送信部106、パイロット信号生成部107、再送制御信号生成部108、復元部109、受信部110、アンテナ部120、再送制御部1601を有する。コードチャネル信号生成部501−1〜501−Nの各々は、符号化部111、インターリーブ部112、変調部113、拡散部114、電力制御部1602を有する。
パケット送信装置500は、第1の実施形態のパケット送信装置100とは、再送制御部1601と電力制御部1602とが追加され、また、拡散部114は全記再送制御部1602から制御情報を得ている点が異なる。その他の各部(符号102〜114、120)においては、同等の機能を有するので、以下では、パケット送信装置100と異なる部位について説明する。
再送制御部1601は、復元部109から受けたパケット受信装置600の応答信号(受取り通知ACK/非受取り通知NACK)に基づいて各コードチャネルのパケットの再送回数を算出し、算出した再送回数に基づいて、各コードチャネル(各パケット)に対応する拡散部114で乗算する拡散符号系列を決定し、決定した拡散符号系列を、該当する拡散部114に通知する。拡散符号系列の選択方法の詳細については、後述する。また、再送制御部1601は、復元部109から受けたパケット受信装置600の応答信号(受取り通知ACK/非受取り通知NACK)に基づいて各コードチャネルのパケットの再送回数を算出し、算出した再送回数に基づいて、各コードチャネル(各パケット)を送信する送信電力を決定し、決定した送信電力を、該当する電力制御部1602に通知する。送信電力の決定方法の詳細については、後述する。
拡散部114は、再送制御部1601からの通知情報に従い、変調部113からの出力信号に拡散符号系列を乗算する。電力制御部1602は、再送制御部1601の通知情報に従い、拡散部114からの出力信号の電力を制御する、すなわち振幅を変えることで、再送制御部1601が決定した送信電力で、各コードチャネル(各パケット)を送信するように制御する。なお、電力制御部1602を備えず、拡散部114が再送制御部1601の通知情報に従い、その出力信号の振幅を変えるようにしてもよい。
再送制御部1601の各コードチャネル(各パケット)に対して拡散部114で乗算する拡散符号系列の選択方法を説明する。再送制御部1601は、復元部109が受けたパケット受信装置600の応答信号から各コードチャネルで送信するパケットの再送回数を算出し、再送回数が多いコードチャネルに乗算する拡散符号系列ほど、直交性の崩れに対して耐性がある拡散符号系列とする。
たとえば、3つのコードチャネルCH1、CH2、CH3がコード多重されて送信され、コードチャネルCH1、CH2が再送回数0回のパケット(初送パケット)を送信し、コードチャネルCH3が再送回数1回のパケット(再送パケット)を送信する場合、再送制御部1601は、コードチャネルCH3に直交性の崩れへの耐性がある、すなわち直交性が崩れ難い拡散符号系列を割り当てる。
図18は、拡散率4(SF=4)までの直交可変拡散率OVSF(Orthogonal Variable Spreading Factor)符号木を示す図である。上述のコードチャネルCH1、CH2、CH3が拡散率4で拡散される場合、再送回数が最も多いコードチャネルCH3には拡散符号系列C4.3を選択し、再送回数が0回のコードチャネルCH1とCH2とには、それぞれ拡散符号系列C4.1と拡散符号系列C4.2とを選択する。拡散符号系列C4.1およびC4.2は、拡散符号系列C2.1から生成された拡散符号系列(C2.1をC4.1およびC4.2の親符号と呼ぶ)に対して、拡散符号系列C4.3は、拡散符号系列C2.2から生成された拡散符号系列であり、使用される拡散符号系列の中に親符号C2.2が共通の拡散符号系列がなく、直交性の維持への耐性が高い。つまり、親符号が異なる拡散符号系列同士のほうが、言い換えると、使用される拡散符号系列の中に親符号が共通の拡散符号系列が少ないものほど、直交性の崩れへの耐性がある。
再送制御部1601が各コードチャネル(各パケット)に対して送信電力を決定し、電力制御を行う方法を説明する。再送制御部1602は、復元部109が受けたパケット受信装置600の応答信号から各コードチャネルの再送回数を算出し、再送回数が多いコードチャネルに、再送回数が少ないコードチャネルより大きな送信電力を与える。
たとえば、再送制御部1601は、図19に示す再送回数に対する電力レベルテーブルを保持しており、該電力レベルテーブルに従い、各コードチャネルの送信電力を決定する。電力レベルテーブルは、図19の例のように、電力レベルと再送回数と電力値とを対応させて格納したテーブルであり、再送回数が多いほど送信電力が大きくなるように、例えば、電力レベル「1」と再送回数「0」と電力値「0dB」とを対応させて格納し、電力レベル「2」と再送回数「1から3」と電力値「1.5dB」とを対応させて格納している。図19の電力値は、電力レベル「1」に対する送信電力の増分を示す。
たとえば、3つのコードチャネルCH1、CH2、CH3がコード多重されて送信され、コードチャネルCH1、CH2が再送回数0回のパケット(初送パケット)を送信し、コードチャネルCH3が再送回数1回のパケット(再送パケット)を送信する場合、再送制御部1601は、電力レベルテーブルを参照し、再送回数が多いコードチャネルCH3に電力レベル2(1.5dB)の送信電力を割り当て、初送パケットであるCH1、CH2に電力レベル1(0dB)の送信電力を割り当てる。図20は、コードチャネルCH1からCH3に図19に示す電力レベルテーブルに基づいて送信電力を割り当てた場合の、電力制御部1602の出力をコード多重部102が多重したときの信号の電力を例示する図であり、再送回数が多いコードチャネルCH3が「1.5dB」で、コードチャネルCH1、CH2の「0dB」より大きな電力値となる。
図21は、本実施形態によるパケット受信装置600の構成を示す概略ブロック図である。パケット受信装置600は、アンテナ部201、受信部202、伝搬路推定部203、GI除去部204、FFT部205、受信パケット管理部206、検出順決定部207、受信信号記憶部1801、干渉キャンセル部1802、受信号記憶部209、応答信号生成部210、送信部211を有する。
パケット受信装置600は、第1の実施形態のパケット受信装置200とは、受信信号記憶部1801が追加され、干渉キャンセル部1802が受信信号記憶部1801からの信号を入力信号とする点が異なる。その他の各部(符号201〜207、209〜211)においては、同等の機能を有するので、以下では、パケット受信装置200と異なる部位について説明する。
受信信号記憶部1801は、FFT部205および伝搬路推定部203からの出力信号とを対応付けて記憶する。また、受信信号記憶部1801は、FFT部205からの出力信号に再送パケットが含まれているときに、この再送パケット以前に受信した関連パケットの少なくとも1つが含まれているFFT部205の出力信号と、その関連パケットを受信したときの伝搬路推定値とを干渉キャンセル部1802に出力する。たとえば、2回目の再送パケットを受信した場合、受信信号記憶部1801は、格納している第2回目の再送パケットに対する初送パケットおよび1回目の再送パケットのうちの少なくとも1つが含まれているFFT部205の出力信号と、そのパケットを受信したときの伝搬路推定値とを干渉キャンセル部1802に出力する。
図22は、本実施形態によるパケット受信装置600の干渉キャンセル部1802の構成を示す概略ブロック図である。本実施形態における干渉キャンセル部1802は、減算部706−1〜706−Nへの入力が、FFT部205の出力および受信信号記憶部1801の出力であり、MCIレプリカ生成部704−1〜704−Nと伝搬路補償部701−1〜701−Nとへの入力が、伝搬路推定部203の出力および受信信号記憶部1801の出力である。
そして、干渉キャンセル部1802(信号検出部)は、第1の実施形態によるパケット受信装置200の干渉キャンセル部208と同様の機能に加えて、受信部202が受信した信号、すなわちFFT部205からの出力信号に再送パケットが含まれているときには、この再送パケット以前に受信した関連パケットの少なくとも1つが含まれているFFT部205の出力信号(既受信信号)と、その関連パケットを受信したときの伝搬路推定値とを受信信号記憶部1801から取得し、既受信信号について検出順決定部207が再度決定した検出順に従い、検出済のパケットを用いて既受信信号から干渉成分を除去して、既受信信号からもパケットを検出する。
ここで、再送パケット(再送信号、再送回数q1がq1>0)の関連パケット(関連信号)とは、その再送パケットの初送パケット、あるいは、その再送パケット自身を除いた、その再送パケットの初送パケットの再送パケット(再送回数q2がq1>q2>0)のことである。また、検出済のパケットとは、受信部202が受信した信号から検出したパケット、および既受信信号の受信時に既受信信号から検出したパケットのことである。なお、既受信信号から検出したパケットについては、受信信号記憶部209が記憶しているものを用いる。
図23は、本実施形態によるパケット受信装置600の動作を説明する図である。
たとえば、パケット3、パケット2、パケット4がコード多重された第2のフレームをパケット受信装置600が受信したとする。ここで、パケット3は2回目の再送パケットで過去のフレーム(不図示)で初送を送信し、第2のフレームの前に送信された第1のフレームで1回目の再送を行っている。パケット2は1回目の再送パケットで、第1のフレームで初送を送信している。パケット4は初送パケットである。
パケット受信装置600は、第2のフレームを受信すると、受信パケット管理部206は第2のフレームに対する再送制御信号から各パケットの再送回数の情報を取得し、検出順決定部207は、再送回数が多い順に検出順を決定する。パケット1の再送回数の情報は既に取得しているので、この場合、検出順決定部207が決定する検出順は、パケット1、パケット3、パケット2、パケット4の順となる。ここで、パケット1は、第2のフレーム受信時において、既に誤りなく正しい信号として取得できているため、再送回数に関係なく、最初に検出するように検出順を1番目とする。
次に、第2のフレーム、すなわちパケット2、パケット3、パケット4がコード多重された信号のFFT部205出力信号は受信信号記憶部1801に格納される。この時点において、パケット3の初送および1回目の再送信号ならびにパケット2の初送信号は受信信号記憶部1801に格納されている。
次に、干渉キャンセル部1802に第2のフレームの信号が入力され、減算部706によるMCIキャンセル処理、逆拡散部707による逆拡散処理、復調部708による復調処理、デインターリーブ部709によるデインターリーブ、デパンクチャ部710によるデパンクチャ処理を含む検出処理と、復号部712による復号処理とを所定回数繰り返し行い、所定回数後のデパンクチャ部710の出力を受信信号記憶部209に記憶する。
なお、受信信号記憶部209には、第2フレーム以前に既に受信したパケットのデパンクチャ部710出力も記憶されている。また、上述の第2のフレームの信号検出処理、復号処理において、検出処理、復号処理を行うパケットの順番は何れでもよい。また、上述の第2のフレームの信号検出処理、復号処理において、合成部711による合成処理は行わない。
次に、上述の第2のフレームの信号検出処理、復号処理を所定回数繰り返した後、干渉キャンセル部1802は、受信信号記憶部1801から第1のフレームのパケット1、パケット2、パケット3をコード多重した信号を取得し、第1のフレームの信号に対して信号検出処理、復号処理を行う。検出順は、再送回数の多いパケット1、パケット3、パケット2となる(ただし、パケット1については受信信号記憶部209が記憶する既検出の正しい信号を用いて、他のパケットに対する干渉キャンセル処理のみを行う)。
たとえば、パケット3に対する信号検出処理は、以下のようにして行う。まず、減算部706−2が、パケット1およびパケット2のコードチャネルレプリカと受信信号記憶部1801からの第1フレーム受信時の伝搬路推定値とからMCIレプリカ生成部704−2が生成したMCIレプリカ信号を、第1フレームの信号から減算した後、逆拡散部707が逆拡散処理、復調部708が復調処理、デインターリーブ部709がデインターリーブ処理、デパンクチャ部710がデパンクチャ処理を行い、デパンクチャ処理されたパケット3の1回目の再送信号を得る。さらに、このデパンクチャ処理後のパケット3の1回目の再送信号と受信信号記憶部209に記憶しているパケット3の2回目の再送信号および初送信号との合成を合成部711が行う。そして、復号部712は、合成部711の出力信号に対して復号処理を行った後、パケット3の符号化ビットLLRをコードチャネルレプリカ生成部705−2に出力し、コードチャネルレプリカ生成部705−2は、符号化ビットLLRからパケット3のコードチャネルレプリカを生成する。
次に、検出順決定部207の決定順に従い、パケット2に対してもパケット3と同様の信号検出処理を行い、合成部711において、受信信号記憶部209に記憶しているパケット2の1回目の再送信号と合成する。復号部712は、合成部711の出力信号に対して、復号処理を行った後、パケット2の符号化ビットLLRをコードチャネルレプリカ生成部705−3に出力する。以上の干渉キャンセル、信号検出処理、合成処理、復号処理を所定回数繰り返した後、誤り検出を行う。
以上のように、初送パケットと再送パケットがコード多重された第2のフレームの信号をパケット受信装置600が受信した場合、再送パケットとこの再送パケットの関連パケットであってパケット受信装置600が既受信している関連パケットとを合成したものを用いて、関連パケットを含んでいる第1のフレームの信号に対して、再度信号検出を第2のフレーム受信時に再送回数が多いパケットから順に行う。このため、干渉キャンセル部1802での信号検出精度の良い合成できる信号が多いパケットの信号から信号検出し、その検出したパケットの信号から生成した干渉レプリカを受信信号から除去した後に、信号検出精度の劣るパケット(再送回数の少ないパケット)の信号検出を行なうことになるので、信号検出精度の劣るパケットの信号の検出精度を向上させることが可能となる。従って、特定のパケットの再送回数が多くなり、遅延が大きくなってしまうことを防ぐことができる。
また、パケット送信装置500において、再送回数が多いパケットから優先的に、直交性の崩れへの耐性がある拡散符号系列を割り当てているので、再送回数が多いパケットの信号検出精度がさらに向上させることができる。その結果、パケット受信装置600において、再送回数が大きいパケットから優先的に信号検出を行うことで、信号検出精度の劣る再送回数の少ないパケットの信号の検出精度を向上させることが可能となる。
また、パケット送信装置500において、再送回数が多いパケットにより大きな送信電力を割り当てているので、再送回数が多いパケットの信号検出精度がさらに向上させることができる。その結果、パケット受信装置600において、再送回数が大きいパケットから優先的に信号検出を行うことで、信号検出精度の劣る再送回数の少ないパケットの信号の検出精度を向上させることが可能となる。
なお、本実施形態のパケット送信装置500が送信した信号を第1の実施形態のパケット受信装置200を用いて受信することも可能である。
また、パケット送信装置500は、前述のコードチャネルの再送回数に基づく拡散符号系列の割り当て、および電力制御のどちらか一方だけ備えていてもよい。
また、本実施形態では、上述の送信電力制御をコード多重されたコードチャネルに対して行っているが、第2の実施形態における空間多重など他の多重信号に対しても適用することが可能である。
なお、本実施形態のパケット受信装置600は、第1の実施形態のパケット送信装置100が送信した信号を受信することも可能である。
また、本実施形態において、拡散率が「4」の拡散符号系列を用いるとして説明したが、その他の拡散率であってもよい。また、直交可変拡散率OVSF符号を用いるとして説明したが、その他の符号を用いてもよい。直交可変拡散率OVSF符号以外の符号を用いる場合、用いる拡散符号系列同士は、逆拡散することで所望の信号を検出できる程度に相関が低ければよく、必ずしも直交していなくてもよい。この場合、直交性の崩れに対して耐性がある拡散符号系列として、他のコードチャネルに用いる拡散符号系列との相関が低い拡散符号系列を用いるようにしてもよい、すなわち再送回数が多いコードチャネルほど、他のコードチャネルに用いる拡散符号系列との相関が低い拡散符号系列を用いるようにしてもよい。
なお、第1の実施形態〜第3の実施形態では、OFDM、MC−CDMA(Multi Carrier−Code Division Multiple Accesなどのマルチキャリア伝送を行うシステムで説明したが、SC−FDMA(Single Carrier−Frequency Division Multiple Access),DS−CDMA(Direct Spread − Code Division Multiple Access)などのシングルキャリア伝送において、繰り返し処理を用いた逐次型干渉キャンセラ(SIC:Successive Interference Canceller)を用いた場合においても本発明は適用可能である。
また、図1におけるコードチャネル信号生成部101−1〜101−N、コード多重部102、IFFT部103、多重部104、GI挿入部105、パイロット信号生成部107、再送制御信号生成部108、および図5における伝搬路推定部203、GI除去部204、FFT部205、受信パケット管理部206、検出順決定部207、干渉キャンセル部208、応答信号生成部210、および図11におけるストリーム信号生成部301−1〜301−Ns、再送制御信号生成部311、復元部312、および図12におけるアンテナ毎信号処理部402−1〜402−MのGI除去部412とFFT部413と伝搬路推定部414、受信パケット管理部403、検出順決定部404、干渉キャンセル部405、応答信号生成部409、および図17におけるコードチャネル信号生成部501−1〜501−N、コード多重部102、IFFT部103、多重部104、GI挿入部105、パイロット信号生成部107、再送制御信号生成部108、復元部109、再送制御部1601、および図21における伝搬路推定部203、GI除去部204、FFT部205、受信パケット管理部206、検出順決定部207、干渉キャンセル部208、応答信号生成部210は専用のハードウェアにより実現されるものであってもよく、また、これら各部の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各部の処理を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含むものとする。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
以上、この発明の実施形態を図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。
本発明は、携帯電話端末から基地局装置にパケットを送信する携帯電話システムに用いて好適であるが、これに限定されない。
100…パケット送信装置
101−1〜101−N…コードチャネル信号生成部
102…コード多重部
103…IFFT部
104…多重部
105…GI挿入部
106…送信部
107…パイロット信号生成部
108…再送制御信号生成部
109…復元部
110…受信部
111…符号化部
112…インターリーブ部
113…変調部
114…拡散部
120…アンテナ部
121…誤り検出符号化部
122…誤り訂正符号化部
123…符号化ビット記憶部
124…パンクチャ部
200…パケット受信装置
201…アンテナ部
202…受信部
203…伝搬路推定部
204…GI除去部
205…FFT部
206…受信パケット管理部
207…検出順決定部
208…干渉キャンセル部
209…受信信号記憶部
210…応答信号生成部
211…送信部
701−1〜701−N…伝搬路補償部
703−1〜703−N…コード分離部
704−1〜704−N…MCIレプリカ生成部
705−1〜705−N…コードチャネルレプリカ生成部
706−1〜706−N…減算部
707…逆拡散部
708…復調部
709…デインターリーブ部
710…デパンクチャ部
711…合成部
712…復号部
721…パンクチャ部
722…インターリーブ部
723…変調シンボルレプリカ生成部
724…拡散部
300…パケット送信装置
301−1〜301−Ns…ストリーム信号生成部
302−1〜302−Ns…アンテナ部
303…符号化部
304…インターリーブ部
305…変調部
306…IFFT部
307…多重部
308…GI挿入部
309…送信部
310…パイロット信号生成部
311…再送制御信号生成部
312…復元部
313…受信部
400…パケット受信装置
401−1〜401−M…アンテナ部
402−1〜402−M…アンテナ毎信号処理部
403…受信パケット管理部
404…検出順決定部
405…干渉キャンセル部
406…受信信号記憶部
409…応答信号生成部
410…送信部
411…受信部
412…GI除去部
413…FFT部
414…伝搬路推定部
500…パケット送信装置
501−1〜501−N…コードチャネル信号生成部
600…パケット受信装置
1201−1〜1201−Ns…ストリーム検出部
1202−1〜1202−Ns…受信レプリカ生成部
1203…減算部
1204−1〜1204−Ns…シンボルレプリカ生成部
1205…MIMO分離部
1207…復調部
1208…デインターリーブ部
1209…デパンクチャ部
1210…合成部
1211…復号部
1212…パンクチャ部
1213…インターリーブ部
1214…変調シンボルレプリカ生成部
1601…再送制御部
1602…電力制御部
1801…受信信号記憶部
1802…干渉キャンセル部
3001、3002…内部符号器
3003…内部インターリーブ部

Claims (18)

  1. 受信した信号に誤りを検出すると送信元に再送を要求するハイブリッド自動再送を行う通信装置において、
    初送信号といずれかの信号に対する再送信号とを含む信号であって、前記初送信号と前記再送信号とが多重化された信号を受信する受信部と、
    前記受信部が受信した信号に含まれる前記初送信号と前記再送信号との再送回数に応じて、前記受信部が受信した信号から、前記初送信号と前記再送信号とを検出する順番を決定する検出順決定部と、
    前記検出順決定部が決定した順番に従い、当該装置により検出済の信号であって、前記初送信号に関する検出済の信号および前記再送信号に関する検出済の信号を用いて、前記受信部が受信した信号から干渉成分を除去して、前記受信部が受信した信号から前記初送信号および前記再送信号を検出する信号検出部と
    を具備し、
    前記信号検出部は、検出した前記再送信号と、前記再送信号以前に受信した関連信号の少なくとも一つが含まれている既受信信号から検出した信号とを合成する合成部を具備すること
    を特徴とする通信装置。
  2. 前記検出順決定部は、前記再送信号の順番が前記初送信号より先になるように検出順を決定することを特徴とする請求項1に記載の通信装置。
  3. 前記検出順決定部は、再送回数が多い信号から順番に検出するように検出する順番を決定することを特徴とする請求項1に記載の通信装置。
  4. 前記検出順決定部は、前記初送信号および前記再送信号のうち、受信信号電力、受信信号対干渉雑音電力比により代表される受信レベルを基準として順番を決定することを特徴とする請求項2または請求項3に記載の通信装置。
  5. 前記初送信号および前記再送信号は、送信元において誤り訂正符号化された信号であり、
    前記信号検出部は、前記信号を検出する際に、当該装置により検出済の信号を前記誤り訂正符号により誤り訂正復号処理した信号を用いて検出対象としている信号に対する干渉成分のレプリカ信号を生成し、前記受信部が受信した信号から該レプリカ信号を除去することを特徴とする請求項1に記載の通信装置。
  6. 前記信号検出部は、前記受信部が受信した信号に再送信号が含まれているときは、該再送信号以前に受信した関連信号の少なくとも一つが含まれている既受信信号について前記検出順決定部が再度決定した検出順に従い、検出済の信号を用いて、前記既受信信号から干渉成分を除去して、前記既受信信号から信号を検出すること
    を特徴とする請求項1に記載の通信装置。
  7. 前記受信部が受信する信号は、前記初送信号と前記再送信号とに各々に固有の拡散符号系列が乗算されたコード多重された信号であり、
    前記信号検出部は、前記受信部が受信した信号から干渉成分を除去した後、該干渉成分を除去した信号に、検出対象としている信号に固有の前記拡散符号を乗算して、前記検出対象としている信号を検出することを特徴とする請求項1に記載の通信装置。
  8. 前記受信部が受信する信号は、前記初送信号と前記再送信号とが各々異なるアンテナから送信されて空間多重された信号であり、
    前記信号検出部は、前記受信部が受信した信号から干渉成分を除去した後、前記アンテナ毎の伝搬路推定値に基づいて、該干渉成分を除去した信号から前記検出対象としている信号を検出することを特徴とする請求項1に記載の通信装置。
  9. 前記信号検出部は、前記検出順決定部が決定した順番に従った前記初送信号および前記再送信号の検出を、各信号について1回ずつ行うことを特徴とする請求項1に記載の通信装置。
  10. 前記信号検出部は、前記検出順決定部が決定した順番に従った前記初送信号および前記再送信号の検出を、複数回繰り返すことを特徴とする請求項1に記載の通信装置。
  11. 第1の通信装置と第2の通信装置とを具備し、前記第1の通信装置から受信した信号に誤りを検出すると、前記第2の通信装置が前記第1の通信装置に再送を要求するハイブリッド自動再送を行う通信システムにおいて、
    前記第2の通信装置は、
    初送信号といずれかの信号に対する再送信号とを含む信号であって、前記初送信号と前記再送信号とが多重化された信号を受信する受信部と、
    前記受信部が受信した信号に含まれる前記初送信号と前記再送信号との再送回数に応じて、前記受信部が受信した信号から、前記初送信号と前記再送信号とを検出する順番を決定する検出順決定部と、
    前記検出順決定部が決定した順番に従い、当該装置により検出済の信号であって、前記初送信号に関する検出済の信号および前記再送信号に関する検出済の信号を用いて、前記受信部が受信した信号から干渉成分を除去して、前記初送信号および前記再送信号を検出する信号検出部と
    を具備し、
    前記信号検出部は、検出した前記再送信号と、前記再送信号以前に受信した関連信号の少なくとも一つが含まれている既受信信号から検出した信号とを合成する合成部を具備すること
    を特徴とする通信システム。
  12. 前記初送信号および前記再送信号は、誤り訂正符号化された信号であり、
    前記信号検出部は、前記信号を検出する際に、当該装置により検出済の信号を前記誤り訂正符号により誤り訂正復号処理した信号を用いて検出対象としている信号に対する干渉成分のレプリカ信号を生成し、前記受信部が受信した信号から該レプリカ信号を除去すること
    を特徴とする請求項11に記載の通信システム。
  13. 前記第1の通信装置は、
    再送回数に基づいて、前記初送信号および再送信号を送信する送信電力を決定する再送制御部と、
    前記再送制御部が決定した送信電力で、前記初送信号および再送信号を送信するように制御する送信電力制御部と
    を具備することを特徴とする請求項11に記載の通信システム。
  14. 前記第1の通信装置は、
    再送回数に基づいて、前記初送信号および再送信号に乗算する拡散符号系列を決定する再送制御部と、
    前記初送信号および再送信号に、前記再送制御部が決定した拡散符号系列を乗算する拡散部と
    を具備し、
    前記第2の通信装置の信号検出部は、前記受信部が受信した信号から干渉成分を除去した後、該干渉成分を除去した信号に、検出対象としている信号に前記拡散部が乗算した前記拡散符号を乗算して、前記検出対象としている信号を検出すること
    を特徴とする請求項11に記載の通信システム。
  15. 前記再送制御部は、再送回数が多い信号に乗算する拡散符号系列ほど、直交性の崩れに対して耐性がある拡散符号系列とすることを特徴とする請求項14に記載の通信システム。
  16. 前記拡散符号系列は、直交可変拡散率符号であることを特徴とする請求項14に記載の通信システム。
  17. 受信した信号に誤りを検出すると送信元に再送を要求するハイブリッド自動再送を行う通信装置における受信方法において、
    前記通信装置が、初送信号といずれかの信号に対する再送信号とを含む信号であって、前記初送信号と前記再送信号とが多重化された信号を受信する第1の過程と、
    前記通信装置が、前記第1の過程にて受信した信号に含まれる前記初送信号と前記再送信号との再送回数に応じて、前記第1の過程にて受信した信号から、前記初送信号と前記再送信号とを検出する順番を決定する第2の過程と、
    前記通信装置が、前記第2の過程にて決定した順番に従い、前記通信装置により検出済の信号であって、前記初送信号に関する検出済の信号および前記再送信号に関する検出済の信号を用いて、前記第1の過程にて受信した信号から干渉成分を除去して、前記初送信号および前記再送信号を検出する第3の過程と
    を有し、
    前記第3の過程において、前記通信装置は、検出した前記再送信号と、前記再送信号以前に受信した関連信号の少なくとも一つが含まれている既受信信号から検出した信号とを合成すること
    を特徴とする受信方法。
  18. 第1の通信装置と第2の通信装置とを具備し、前記第1の通信装置から受信した信号に誤りを検出すると、前記第2の通信装置が前記第1の通信装置に再送を要求するハイブリッド自動再送を行う通信システムにおける通信方法において、
    前記第1の通信装置が、初送信号といずれかの信号に対する再送信号とを送信する第1の過程と、
    前記第2の通信装置が、初送信号といずれかの信号に対する再送信号とを含む信号であって、前記初送信号と前記再送信号とが多重化された信号を受信する第2の過程と、
    前記第2の通信装置が、前記第2の過程にて受信した信号に含まれる前記初送信号と前記再送信号との再送回数に応じて、前記第2の過程にて受信した信号から、前記初送信号と前記再送信号とを検出する順番を決定する第3の過程と、
    前記第2の通信装置が、前記第3の過程にて決定した順番に従い、前記第2の通信装置により検出済の信号であって、前記初送信号に関する検出済の信号および前記再送信号に関する検出済の信号を用いて、前記第2の過程にて受信した信号から干渉成分を除去して、前記初送信号および前記再送信号を検出する第4の過程と
    を有し、
    前記第4の過程において、前記第2の通信装置は、検出した前記再送信号と、前記再送信号以前に受信した関連信号の少なくとも一つが含まれている既受信信号から検出した信号とを合成すること
    を特徴とする通信方法。
JP2010519808A 2008-07-09 2009-07-08 通信装置、通信システム、受信方法及び通信方法 Pending JPWO2010005037A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008179111 2008-07-09
JP2008179111 2008-07-09
PCT/JP2009/062475 WO2010005037A1 (ja) 2008-07-09 2009-07-08 通信装置、通信システム、受信方法及び通信方法

Publications (1)

Publication Number Publication Date
JPWO2010005037A1 true JPWO2010005037A1 (ja) 2012-01-05

Family

ID=41507149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010519808A Pending JPWO2010005037A1 (ja) 2008-07-09 2009-07-08 通信装置、通信システム、受信方法及び通信方法

Country Status (6)

Country Link
US (1) US20110126072A1 (ja)
EP (1) EP2299602A1 (ja)
JP (1) JPWO2010005037A1 (ja)
CN (1) CN102084599A (ja)
EA (1) EA201071414A1 (ja)
WO (1) WO2010005037A1 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2247016A4 (en) * 2008-02-21 2011-02-23 Sharp Kk RECEIVING DEVICE, TRANSMITTING DEVICE, COMMUNICATION SYSTEM, AND COMMUNICATION METHOD
JP5678420B2 (ja) * 2009-09-01 2015-03-04 富士通株式会社 中継方法及び中継装置
EP2323326A2 (en) * 2009-11-06 2011-05-18 Electronics and Telecommunications Research Institute Terminal transmission apparatus for providing multimedia service via satellite communication link and method for providing multimedia service using the same
JP2012060407A (ja) * 2010-09-08 2012-03-22 Sharp Corp 受信装置、通信システム、受信装置の制御プログラムおよび集積回路
US8817924B2 (en) 2010-09-23 2014-08-26 Qualcomm Incorporated Iterative pilot tone cancellation for improved channel estimation and decoding
IN2014KN01348A (ja) 2011-12-28 2015-10-16 Ericsson Telefon Ab L M
US9002311B2 (en) * 2012-01-16 2015-04-07 Qualcomm Incorporated Frequency domain interference cancellation and equalization for downlink cellular systems
US9590768B2 (en) 2012-05-04 2017-03-07 Telefonaktiebolaget Lm Ericsson (Publ) Method, receiver device, network node and mobile communication terminal for decoding transmissions
US9954643B2 (en) * 2012-06-22 2018-04-24 Samsung Electronics Co., Ltd. Communication system with repeat-response combining mechanism and method of operation thereof
JP2015530012A (ja) * 2012-08-02 2015-10-08 華為技術有限公司Huawei Technologies Co.,Ltd. データ再送信方法、装置、及びシステム
US20140089763A1 (en) * 2012-09-26 2014-03-27 Asolid Technology Co., Ltd. Flash memory and accessing method thereof
CN103974446B (zh) * 2013-01-30 2018-07-31 华为技术有限公司 一种随机接入方法及用户设备
US8837515B1 (en) * 2013-06-06 2014-09-16 Futurewei Technologies, Inc. System and method for collision resolution
US10135582B1 (en) * 2013-12-26 2018-11-20 Marvell International Ltd. Systems and methods for introducing time diversity in WiFi transmissions
CN105515713B (zh) * 2014-09-25 2018-11-30 中兴通讯股份有限公司 一种多用户码分多址接入通信方法与相应发射机、接收机
KR102240745B1 (ko) * 2015-01-20 2021-04-16 한국전자통신연구원 길이가 64800이며, 부호율이 4/15인 ldpc 부호어 및 qpsk를 위한 비트 인터리버 및 이를 이용한 비트 인터리빙 방법
KR102240748B1 (ko) * 2015-01-20 2021-04-16 한국전자통신연구원 길이가 64800이며, 부호율이 3/15인 ldpc 부호어 및 qpsk를 위한 비트 인터리버 및 이를 이용한 비트 인터리빙 방법
JP6635050B2 (ja) * 2015-01-22 2020-01-22 株式会社ソシオネクスト 分割データの受信システム
US10784901B2 (en) 2015-11-12 2020-09-22 Qualcomm Incorporated Puncturing for structured low density parity check (LDPC) codes
US11043966B2 (en) 2016-05-11 2021-06-22 Qualcomm Incorporated Methods and apparatus for efficiently generating multiple lifted low-density parity-check (LDPC) codes
US10454499B2 (en) 2016-05-12 2019-10-22 Qualcomm Incorporated Enhanced puncturing and low-density parity-check (LDPC) code structure
US9917675B2 (en) 2016-06-01 2018-03-13 Qualcomm Incorporated Enhanced polar code constructions by strategic placement of CRC bits
US10469104B2 (en) 2016-06-14 2019-11-05 Qualcomm Incorporated Methods and apparatus for compactly describing lifted low-density parity-check (LDPC) codes
US20180367245A1 (en) * 2017-06-19 2018-12-20 Qualcomm Incorporated COMMUNICATION TECHNIQUES WITH SELF-DECODABLE REDUNDANCY VERSIONS (RVs) USING SYSTEMATIC CODES
CN111224752B (zh) * 2018-11-23 2021-09-24 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
US11949436B2 (en) * 2022-08-12 2024-04-02 Qualcomm Incorporated Low-density parity-check coding scheme with varying puncturing pattern

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006064857A1 (ja) * 2004-12-17 2006-06-22 Matsushita Electric Industrial Co., Ltd. マルチアンテナ伝送における再送方法及び送信方法
WO2007061016A1 (ja) * 2005-11-24 2007-05-31 Matsushita Electric Industrial Co., Ltd. 再送データ検出方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0624339B2 (ja) * 1986-04-08 1994-03-30 日本電気株式会社 干渉領域内発呼量計測方式
US5084900A (en) * 1989-12-21 1992-01-28 Gte Spacenet Corporation Spread spectrum system with random code retransmission
US6091757A (en) * 1998-12-03 2000-07-18 Motorola, Inc. Data transmission within a spread-spectrum communication system
JP4130264B2 (ja) * 1998-12-08 2008-08-06 松下電器産業株式会社 電力線搬送通信システム
JP4724928B2 (ja) * 2001-02-27 2011-07-13 ソニー株式会社 無線伝送装置及び無線伝送方法
JP3545726B2 (ja) * 2001-02-27 2004-07-21 松下電器産業株式会社 受信側装置
KR100493084B1 (ko) * 2001-05-04 2005-06-03 삼성전자주식회사 이동통신시스템에서 멀티미디어 서비스를 위한 초기전송및 재전송 장치 및 방법
US7573958B2 (en) * 2002-07-18 2009-08-11 Motorola, Inc. Receiver for and method of recovering transmitted symbols in a H-ARQ packet retransmission
US7231557B2 (en) * 2003-04-02 2007-06-12 Qualcomm Incorporated Methods and apparatus for interleaving in a block-coherent communication system
RU2409900C2 (ru) * 2005-01-05 2011-01-20 Нокиа Корпорейшн Использование заголовка кадрового протокола для сообщения контроллеру радиосети о том, что узел "в" не способен определить или точно определить число повторных передач
JP4832087B2 (ja) * 2005-01-26 2011-12-07 パナソニック株式会社 無線基地局装置及び端末装置
US7856071B2 (en) * 2005-07-26 2010-12-21 Alcatel-Lucent Usa Inc. Multi-path acquisition in the presence of very high data rate users
US7499434B2 (en) * 2005-08-24 2009-03-03 Alcatel-Lucent Usa Inc. Mapping uplink signaling channels
KR100966043B1 (ko) * 2005-10-31 2010-06-25 삼성전자주식회사 저밀도 패리티 검사 부호를 사용하는 통신 시스템에서 신호 송수신 장치 및 방법
EP1961145B1 (en) * 2005-12-16 2012-12-12 Telefonaktiebolaget L M Ericsson (Publ) A method and a transmitter / receiver for reduced signaling in a retransmission system using hybrid automatic repeat
MX2009004543A (es) * 2006-10-31 2009-05-28 Ericsson Telefon Ab L M Harq en sistema mimo de multiplexion espacial.
US7904034B2 (en) * 2006-12-18 2011-03-08 Samsung Electronics Co., Ltd. Method and system for providing an interference cancellation in a wireless communication system
JP2008179111A (ja) 2007-01-26 2008-08-07 Konica Minolta Business Technologies Inc 画像形成条件設定装置、画像形成装置、画像形成条件設定方法及びプログラム
EP2109243A1 (en) * 2007-01-29 2009-10-14 Panasonic Corporation Radio communication system, radio communication device, and retransmission control method
US20100238818A1 (en) * 2007-10-11 2010-09-23 Panasonic Corporation Wireless communication mobile station apparatus and communication quality information generating method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006064857A1 (ja) * 2004-12-17 2006-06-22 Matsushita Electric Industrial Co., Ltd. マルチアンテナ伝送における再送方法及び送信方法
WO2007061016A1 (ja) * 2005-11-24 2007-05-31 Matsushita Electric Industrial Co., Ltd. 再送データ検出方法

Also Published As

Publication number Publication date
EP2299602A1 (en) 2011-03-23
CN102084599A (zh) 2011-06-01
US20110126072A1 (en) 2011-05-26
WO2010005037A1 (ja) 2010-01-14
EA201071414A1 (ru) 2011-08-30

Similar Documents

Publication Publication Date Title
WO2010005037A1 (ja) 通信装置、通信システム、受信方法及び通信方法
JP5213271B2 (ja) 通信装置、通信システム、受信方法およびプログラム
WO2009139442A1 (ja) 通信装置、通信システム、受信方法及び通信方法
JP5376243B2 (ja) 通信装置、通信システム、受信方法および通信方法
TWI292271B (en) Iterative detection and decoding for a mimo-ofdm system
WO2009131094A1 (ja) 通信装置、通信システム、受信方法およびプログラム
WO2009104582A1 (ja) 受信装置、送信装置、通信システム及び通信方法
US20100325510A1 (en) Transmission device, reception device, communication system, and communication method
JP5013617B2 (ja) 通信装置、通信システムおよび受信方法
Bai et al. Hybrid-ARQ for layered space time MIMO systems with channel state information only at the receiver
JP5376244B2 (ja) 通信装置、通信システム、受信方法及び通信方法
JP4631053B2 (ja) 再送装置及び再送方法
JP5036062B2 (ja) 通信装置、通信システムおよび通信方法
JP2010050716A (ja) 通信装置、通信システム及び通信方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130625