JPWO2009016709A1 - 波長変換レーザ装置 - Google Patents

波長変換レーザ装置 Download PDF

Info

Publication number
JPWO2009016709A1
JPWO2009016709A1 JP2009525202A JP2009525202A JPWO2009016709A1 JP WO2009016709 A1 JPWO2009016709 A1 JP WO2009016709A1 JP 2009525202 A JP2009525202 A JP 2009525202A JP 2009525202 A JP2009525202 A JP 2009525202A JP WO2009016709 A1 JPWO2009016709 A1 JP WO2009016709A1
Authority
JP
Japan
Prior art keywords
wavelength conversion
laser
wavelength
fundamental wave
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009525202A
Other languages
English (en)
Other versions
JP5127830B2 (ja
Inventor
柳澤 隆行
隆行 柳澤
平野 嘉仁
嘉仁 平野
山本 修平
修平 山本
康晴 小矢田
康晴 小矢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2009016709A1 publication Critical patent/JPWO2009016709A1/ja
Application granted granted Critical
Publication of JP5127830B2 publication Critical patent/JP5127830B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/109Frequency multiplication, e.g. harmonic generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1611Solid materials characterised by an active (lasing) ion rare earth neodymium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/1671Solid materials characterised by a crystal matrix vanadate, niobate, tantalate
    • H01S3/1673YVO4 [YVO]

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Abstract

励起光の吸収により発生した利得を与えてレーザ光を増幅し、基本波を出力するレーザ媒質(121)を含む導波路構造を有する固体レーザ素子(12)と、固体レーザ素子(12)から出力される基本波の一部を第2高調波に変換する非線形光学材料(131)を含む導波路構造を有する波長変換素子(13)と、を備え、基本波を固体レーザ素子(12)と波長変換素子(13)とを含む光共振器構造で共振させるとともに、波長変換素子(13)から第2高調波を出力する波長変換レーザ装置(10)であって、固体レーザ素子(12)は、直線偏光の基本波を出力し、波長変換素子(13)内を通過して固体レーザ素子(12)に入射する基本波の偏光状態を、固体レーザ素子(12)から出力される直線偏光とは異ならせるようにして、利得帯域のピーク波長における波長変換素子による波長変換効率を低下させないようにする。

Description

この発明は、レーザ媒質で発生させた基本波の波長変換を行って所定の波長のレーザ光を出力する波長変換レーザ装置に関するものである。
近年、たとえば光情報処理分野などの光源として、緑色や青色といった可視光レーザの研究開発が進められている。可視光レーザの一種として、波長変換技術を適用して近赤外レーザ光を短波長化する波長変換レーザ装置が知られている。一般に波長変換レーザ装置では、非線形光学材料からなる波長変換素子が半導体レーザまたは固体レーザの光共振器の内部または外部に設置され、光共振器によって発生したレーザ光(基本波)を波長変換素子に伝搬させることで、基本波に対して半分の波長(2倍の周波数)に波長変換された第2高調波を出力させる。
このとき、光共振器の発振波長帯域幅と波長変換素子の位相整合幅とを一致させる必要があるが、一般的に波長変換素子の位相整合幅は非常に狭く、また外部環境によって波長変換レーザ装置の出力変動が生じてしまう。そこで、波長変換素子で高効率に波長変換させるために、光源波長を波長変換素子の許容度内に固定させ、外部環境の変化の影響をあまり受けない構成の波長変換レーザ装置としてのコヒーレント光源が従来提案されている(たとえば、特許文献1参照)。この従来のコヒーレント光源は、レーザ媒質からの基本波を波長変換素子によって高調波に変換した後、反射体によって反射した基本波をレーザ媒質に帰還することで、レーザ媒質の発振波長を帰還光の波長に固定して、レーザ媒質の発振波長を波長変換素子の位相整合波長に自動的に固定するようにしている。
特開2006−19603号公報
ところで、一対の共振器ミラー内にレーザ媒質と波長変換素子とが備えられる内部波長変換型の波長変換レーザ装置において、波長変換素子の位相整合帯域(波長変換帯域)に比べて広い利得帯域を有するレーザ媒質を用いて内部波長変換を行うと、最初に利得帯域のピーク波長で基本波がレーザ発振し、その利得帯域のピーク波長で波長変換素子による波長変換が行われる。しかし、これによって、利得帯域のピーク波長の光共振器内での損失が増加してしまい、位相整合帯域外の利得帯域の波長でレーザ発振が生じる。その結果、位相整合帯域内の基本波が減少してしまい、波長変換素子による波長変換効率が低下してしまうという問題点があった。また、特許文献1では、レーザ媒質の発振波長を波長変換素子の位相整合波長に自動的に固定するようにしているが、上述したように、一般的に波長変換素子の位相整合帯域はレーザ媒質の発振波長帯域(利得帯域)に比べて狭いので、位相整合帯域外のレーザ発振を抑えることができなかった。
この発明は上記に鑑みてなされたもので、内部波長変換型の波長変換レーザ装置において、レーザ媒質の利得帯域のピーク波長でレーザ発振し、波長変換が行われても、利得帯域のピーク波長における波長変換素子による波長変換効率が低下しない波長変換レーザ装置を得ることを目的とする。また、光学部品を追加せずに、または大掛かりな光学部品を追加せずに、波長変換素子による利得帯域のピーク波長における波長変換効率が低下しない波長変換レーザ装置を得ることも目的とする。
上記目的を達成するため、この発明にかかる波長変換レーザ装置は、励起光の吸収により発生した利得を与えてレーザ光を増幅し、基本波を出力するレーザ媒質を含む導波路構造を有する固体レーザ素子と、前記固体レーザ素子から出力される基本波の一部を第2高調波に変換する非線形光学材料を含む導波路構造を有する波長変換素子と、を備え、基本波を前記固体レーザ素子と前記波長変換素子とを含む光共振器構造で共振させるとともに、前記波長変換素子から第2高調波を出力する波長変換レーザ装置であって、前記固体レーザ素子は、直線偏光の基本波を出力し、前記波長変換素子内を通過して前記固体レーザ素子に入射する基本波の偏光状態を、前記固体レーザ素子から出力される直線偏光とは異ならせるフィルタ手段を備えることを特徴とする。
この発明によれば、光学部品を追加せずに、レーザ媒質の利得帯域のピーク波長近辺で基本波の発振波長幅を、ほぼ基本波の発振波長幅となるように狭帯域化したので、レーザ媒質のピーク波長で波長変換素子による波長変換が行われて、そのピーク波長での光共振器内の損失が増加しても、波長変換帯域(ほぼ基本波の発振波長幅に等しい)外での基本波のレーザ発振が生じない。その結果、波長変換素子の波長変換帯域で、効率のよい基本波の波長変換を行うことができるという効果を有する。
図1は、この発明による波長変換レーザ装置の実施の形態1の構成を模式的に示す斜視図である。 図2は、c軸方向の直線偏光を有するレーザ光の非線形光学材料を往復したときの電界強度と軸方位の関係を示す図である。 図3−1は、MgO:PPLN通過後のレーザ光のc軸方向の偏光度のMgO:PPLN設置角度θ依存性を示す図である。 図3−2は、MgO:PPLN通過後のレーザ光のc軸方向の偏光度のMgO:PPLN設置角度θ依存性を示す図である。 図4−1は、MgO:PPLN通過後のレーザ光のa軸方向とc軸方向の偏光強度およびc軸方向の偏光度の波長依存性を示す図である。 図4−2は、MgO:PPLN通過後のレーザ光のa軸方向とc軸方向の偏光強度およびc軸方向の偏光度の波長依存性を示す図である。 図4−3は、MgO:PPLN通過後のレーザ光のa軸方向とc軸方向の偏光強度およびc軸方向の偏光度の波長依存性を示す図である。 図4−4は、MgO:PPLN通過後のレーザ光のa軸方向とc軸方向の偏光強度およびc軸方向の偏光度の波長依存性を示す図である。 図5−1は、基本波の波長に対する利得形状とレーザ媒質利得帯域との間の関係を模式的に示す図である。 図5−2は、基本波の波長に対する利得形状とレーザ媒質利得帯域との間の関係を模式的に示す図である。 図6は、非線形光学材料における波長変換帯域と基本波の温度によるシフトの様子を模式的に示す図である。 図7は、この発明による波長変換レーザ装置の実施の形態2の構成を模式的に示す斜視図である。 図8は、この発明による波長変換レーザ装置の実施の形態3の構成を模式的に示す斜視図である。 図9は、MgO:PPLNと1/4波長板を通過後のレーザ光のa軸方向の偏光強度およびc軸方向の偏光度の波長依存性を示す図である。
符号の説明
10,10A,10B 波長変換レーザ装置
11 半導体レーザ
12 固体レーザ素子
13 波長変換−フィルタ素子
13A 波長変換素子
14 1/2波長板
15 1/4波長板
111,123a,123b,133a,133b,151 端面
121 レーザ媒質
122,132 クラッド
131 非線形光学材料
以下に添付図面を参照して、この発明にかかる波長変換レーザ装置の好適な実施の形態を詳細に説明する。なお、これらの実施の形態によりこの発明が限定されるものではない。また、以下の実施の形態で用いられる波長変換レーザ装置の斜視図は模式的なものであり、層の厚みと幅との関係や各層の厚みの比率などは現実のものとは異なる。
実施の形態1.
図1は、この発明にかかる波長変換レーザ装置の実施の形態1の構成を模式的に示す斜視図である。この図1に示されるRの方向がレーザ光の発振方向を示す光軸であるとする。この波長変換レーザ装置10は、励起光源としての半導体レーザ11と、半導体レーザ11から出力されるレーザ光を励起光として基本波となるレーザ光の増幅とともに発振を行う固体レーザ素子12と、固体レーザ素子12から出力される基本波のレーザ光を1/2の波長の第2高調波に変換するとともに複屈折フィルタの機能を有する波長変換−フィルタ素子13と、を備える。
半導体レーザ11は、固体レーザ素子12を励起するための励起光を出力する。この半導体レーザ11のレーザ光の出射側端面111は、固体レーザ素子12のレーザ媒質121の端面123aと対向するように設けられる。ここでは、半導体レーザ11は、波長808nmのレーザ光を出力する化合物半導体材料によって構成されるものとする。
固体レーザ素子12は、形状的には、平板状を有し、光軸Rに垂直な端面123a,123bの形状がたとえば矩形状からなる。また、固体レーザ素子12は、光導波路構造を有し、半導体レーザ11からの励起光を吸収し、反転分布状態を形成して、誘導放出によって生成されるレーザ光を光軸Rの方向に伝搬し、端面123bから所定の方向に振動する直線偏光を出力する。具体的には、励起光を吸収して誘導放出を生じさせる平板状のレーザ媒質121と、このレーザ媒質121の上下両面のうち少なくとも一方の面に接合したクラッド122と、有する。ここで、レーザ媒質121は、複屈折材料(好ましくは、光学的一軸性結晶からなる材料)であり、そのc軸(結晶軸)は、図中の厚さ方向となるように配置され、a軸(結晶軸)のうちの1つは、光軸Rと同一の方向となるように配置され、他の1つは、光軸Rに垂直な面内となるように配置される。このc軸は、その材料内での光波の速さ(屈折率)が1つしかない方向である光学軸(optic axis)に一致する。
レーザ光の発振方向は、光軸Rの方向であり、光軸Rに垂直な面内にレーザ媒質121のa軸とc軸が存在するので、レーザ媒質121中を光軸R方向に進むレーザ光は、振動面がc軸と光軸Rの作る平面内に存在するTM(Transverse Magnetic)偏光(異常光ともいう)と、振動面がc軸と光軸Rの作る平面に垂直でかつ光軸Rを含む平面内に存在するTE(Transverse Electric)偏光(通常光ともいう)と、に分かれて進む。複屈折材料の場合、レーザ媒質121のTM偏光に対する屈折率neと、レーザ媒質121のTE偏光に対する屈折率noとは異なるので、neとnoの間の範囲に存在する屈折率ncを有する材料をクラッド122として用いることで、固体レーザ素子12から出力されるレーザ光を直線偏光とすることができる。
ここでは、固体レーザ素子12は、半導体レーザ11からの808nmの励起光を吸収し、914nmのレーザ光を出力するNd:YVO4(波長914nmにおける屈折率:ne〜2.17、no〜1.96)からなるレーザ媒質121と、このレーザ媒質121の上下両面のいずれか一方の面上に接合したTa25(波長914nmにおける屈折率:nc〜2.08)からなるクラッド122と、から構成されるものとする。
このような構造によって、レーザ媒質121で生じたクラッド122の屈折率ncよりも小さな屈折率noを感じるTE偏光は、レーザ媒質121とクラッド122との界面で全反射条件を満たさないので、クラッド122に光が漏れ出す放射モードとなって大きな損失が発生する。しかし、クラッド122の屈折率よりも大きな屈折率neをレーザ媒質121中で感じるTM偏光は、レーザ媒質121とクラッド122との界面で全反射条件を満たし、レーザ媒質121内に閉じ込められて光導波路内を光軸R方向に伝搬する。その結果、固体レーザ素子12から出力される光は、TMモードの直線偏光(基本波)となる。つまり、固体レーザ素子12からは、厚さ方向(c軸方向)に振動する基本波が出力されることになる。
波長変換−フィルタ素子13は、平板状を有し、光軸Rに垂直な端面133a,133bの形状がたとえば矩形状からなり、固体レーザ素子12から出力された基本波の一部を1/2の波長の第2高調波に波長変換するとともに、波長変換−フィルタ素子13内を往復して固体レーザ素子12に入射する残りの基本波に対してフィルタをかける複屈折フィルタの機能も有する。このような波長変換−フィルタ素子13として、MgO:PPLN(Periodically Poled Lithium Niobate)やPPLT(Periodically Poled Lithium Tantalate)などの周期分極反転構造を有する非線形光学材料を用いることができる。なお、この波長変換−フィルタ素子13も光導波路構造を有し、非線形光学材料131の上下両面またはいずれか一方の面上に、非線形光学材料131よりも屈折率の小さなクラッド132を接合してもよいし、空気をクラッドとする構造でもよい。
ここでは、非線形光学材料131として、六方晶系のMgO:PPLNを使用し、クラッド132として、一方の面にPPLNのTM偏光とTE偏光に対する屈折率よりも屈折率の低いTa25を使用し、他方の面に同じくSiO2を使用するものとする。これにより、波長変換−フィルタ素子13の非線形光学材料131に入射したTM偏光とTE偏光は、全反射条件を満たすので、波長変換−フィルタ素子13内を導波路モードで伝搬する。
また、波長変換−フィルタ素子13を構成する非線形光学材料(MgO:PPLN)131のc軸(結晶軸であり、光学軸でもある)を、以下では、レーザ媒質121のc軸と区別するために、z軸と表記する。さらに、光軸Rと平行な方向のa軸(結晶軸)をx軸と表記し、これらのz軸とx軸に垂直な方向をy軸と表記する。
この実施の形態1では、波長変換−フィルタ素子13に波長変換の機能だけでなく複屈折フィルタとしての機能も持たせるために、非線形光学材料131のz軸(結晶軸、光学軸)をレーザ媒質121のc軸に対して、光軸Rに垂直な平面内で角度θだけ傾けて配置することを特徴とする。なお、波長変換−フィルタ素子13は、z軸がレーザ媒質121のc軸に対して傾いた状態で、その外形が平板状(直方体状)に切断されている。つまり、波長変換−フィルタ素子13の光軸Rに垂直な方向の辺は、レーザ媒質121の光軸Rと平行でないa軸とc軸に平行となっており、これらの辺の方向と、非線形光学材料131のy軸とz軸の方向とは一致していない。
以上の構成で、固体レーザ素子12の半導体レーザ11側の端面123aには、励起光を透過し、基本波レーザ光を全反射する光学膜が形成され、固体レーザ素子12の波長変換−フィルタ素子13側の端面123bには、基本波レーザ光を透過する反射防止膜が形成される。また、波長変換−フィルタ素子13の固体レーザ素子12側の端面133aには、基本波レーザ光を透過し、第2高調波レーザ光を反射する光学膜が形成され、波長変換−フィルタ素子13の第2高調波出射側の端面133bには、基本波レーザ光を全反射し、第2高調波レーザ光を透過する光学膜が形成される。これらの全反射膜や光学膜は、たとえば誘電体薄膜を積層して構成される。
以上のように波長変換−フィルタ素子13の非線形光学材料131のz軸を光軸Rに垂直な平面内でレーザ媒質121のc軸に対して角度θ傾けることによって、非線形光学材料131は波長変換−フィルタ素子13としての機能のほかに、複屈折フィルタとしての機能も有するようになる。
つぎに、この波長変換レーザ装置の動作について、非線形光学材料131による複屈折フィルタの機能を中心に説明する。まず、半導体レーザ11の端面111から波長808nmの励起光が出力され、固体レーザ素子12のレーザ媒質121の端面123aに入射する。この励起光によって、レーザ媒質121では、反転分布状態が形成され、光軸Rの方向に放出される自然放出光が共振するモードに入り、この光は誘導放出による増幅を受ける。この光は、レーザ媒質121の端面123aと、波長変換−フィルタ素子13の端面133bとの間(光共振器)で往復するが、この光共振器で1周する際の増幅による利得が、光共振器で1周する際に受ける損失が釣り合うと、波長914nmのレーザ光がレーザ発振する。
なお、レーザ発振したレーザ光のうち、TE偏光は、上述したように、固体レーザ素子12中では全反射条件を満たさないので、放射モードとして損失し、TM偏光のみがレーザ媒質121の端面から出力される。つまり、レーザ媒質121から出力されるレーザ光は、c軸方向に直線偏光したTM偏光となる。
レーザ媒質121から出力されたレーザ光は、c軸方向の直線偏光で、MgO:PPLN131に入射する。その際、MgO:PPLN131のz軸は、レーザ媒質121であるNd:YVO4のc軸に対して、光軸Rに垂直な面内で角度θ傾いているため、直線偏光は、z軸方向に振動するTM偏光(異常光)とy軸方向に振動するTE偏光(通常光)に分離して、異なる屈折率を感じながら、MgO:PPLN131中を伝搬する。MgO:PPLN131は、波長変換−フィルタ素子13であるので、基本波の一部を、基本波の半分の波長457nmの第2高調波に変換し、端面133bから出力される。また、第2高調波に変換されなかった基本波は、端面133bで全反射され、同じ経路を戻る。
MgO:PPLN131を往復し、MgO:PPLN131の端面133aから通過してNd:YVO4121に戻ってきた基本波のレーザ光は、c軸方向成分のみが選択されて、Nd:YVO4121に入射し、a軸方向の成分は損失となる。たとえば、MgO:PPLN131内では、レーザ光の損失がなく、z軸方向とy軸方向にそれぞれ振動して伝搬したレーザ光の位相差が0の場合には、MgO:PPLN131の端面133aを出射した光は合成されて元の直線偏光に戻る。一方、MgO:PPLN131内を往復する間に位相差が発生した場合や伝搬時にそれぞれの軸方向に異なる損失が発生した場合には、MgO:PPLN131の端面133aから出射した光は、円偏光や楕円偏光となる。この場合には、Nd:YVO4121で基本波の偏光(c軸方向の偏光)が選択されて、a軸方向に入射した成分が損失となる。
具体的には、MgO:PPLN131は高次の位相板となるため、MgO:PPLN131を往復したz軸方向とy軸方向にそれぞれ振動して伝播したレーザ光の位相差は、波長によって異なる。このとき、損失が最も少なくなる波長の間隔Δλは、レーザ媒質121で出力される基本波の波長をλとし、z軸方向とy軸方向にそれぞれ振動して伝播するレーザ光に対する屈折率差をΔnとし、MgO:PPLN131の光軸R方向の結晶長をLとすると、次式(1)で表される。
Δλ=λ2/2ΔnL ・・・(1)
たとえば、結晶長L=4.0mmのMgO:PPLN131において、基本波のレーザ光の波長λ=914nmとすると、MgO:PPLN131のΔn=ne−no=−0.083452であるので、(1)式からΔλ=1.25nmが得られる。つまり、損失が最も少なくなる波長は、1.25nmごとに周期的に現れる。
図2は、c軸方向の直線偏光を有するレーザ光の非線形光学材料を往復したときの電界強度と軸方位の関係を示す図である。ここでは、Nd:YVO4121から出力されたc軸方向に直線偏光しているレーザ光の電界E0が、MgO:PPLN131に入射して、1往復して端面から出力される際の(シングルパスの)電界強度と軸方位の関係を示している。なお、図中のa軸とc軸は、レーザ媒質(Nd:YVO4)121の結晶軸の方位を示しており、z軸とy軸は、非線形光学材料131の結晶軸(c軸)と光軸Rに垂直な平面内のc軸に垂直な軸の方位を示している。
MgO:PPLN131に入射するc軸方向に偏光した電界の強度はE0であるので、MgO:PPLN131に入射した直後のy軸方向とz軸方向の電界成分Ey,Ezは、Nd:YVO4のc軸とMgO:PPLN131のz軸のなす角度(以下、設置角度という)をθとすると、それぞれ次式(2)、(3)で表される。
y=E0cosθ ・・・(2)
z=E0sinθ ・・・(3)
また、レーザ光のy軸方向とz軸方向のシングルパスでの強度透過率をそれぞれηy,ηzとすると、MgO:PPLN131に入射した後一往復して出射される際のy軸方向とz軸方向の電界成分Ey’,Ez’は、(2)式、(3)式からそれぞれ次式(4)、(5)で表される。
y’=ηy0cosθ ・・・(4)
z’=ηz0sinθ ・・・(5)
損失や屈折率の波長依存性を考慮した詳細な偏光特性については、後述するようにJones行列を用いた計算が必要であるが、損失が最小(すなわち、位相差が0)または最大(すなわち、位相差がπ)となる条件における電界強度は、結晶の特性によらず、一意的に表すことができる。Nd:YVO4121からMgO:PPLN131を伝搬し、再びNd:YVO4121に入射するレーザ光の損失が最小(位相差が0)の場合の電界成分(Ec’,Ea’)と、損失が最大(位相差がπ)の場合の電界成分(Ec’,Ea’)は、(4)式と(5)式から、それぞれ次式(6)、(7)で表される。
Figure 2009016709
Figure 2009016709
(6)式の位相差が0の場合においても、(7)式の位相差がπの場合においても、y軸方向とz軸方向の強度透過率ηy,ηzの差が大きく、かつ設置角度θが45度に近いほど損失、すなわちNd:YVO4121のa軸に入射する成分Ez’が増加することがわかる。図3−1〜図3−2は、MgO:PPLN通過後のレーザ光のc軸方向の偏光度のMgO:PPLN設置角度θ依存性を示す図である。ここで、レーザ光のz軸方向とy軸方向のシングルパスでの強度透過率をηz=0.9(つまり、z軸方向におけるシングルパスの波長変換率を10%と想定している)、ηy=1.0として計算を行った。なお、c軸方向の偏光度は、c軸方向とa軸方向の偏光強度の和に対するc軸方向の偏光強度によって定義される。ここで、各軸方向の偏光強度は、その軸方向の電界強度の2乗に比例するものである。
これらの図に示されるように、位相差が0の場合でも、位相差がπの場合でも、ともにMgO:PPLN131の設置角度θが45度付近で、c軸方向の偏光度が最小となる。図3−1に示されるように、MgO:PPLN131の設置角度が10度のとき、c軸方向偏光度は0.99964であり、MgO:PPLN121の設置角度が45度のとき、c軸方向偏光度は0.99724となる。また、図3−2に示されるように、位相差がπのときには、設置角度θが45度のときに、c軸方向の偏光度はほぼ0となる。
つぎに、レーザ光が複数の材料中を通過する際に損失が発生する場合のレーザ光の偏光度の波長依存性について、Jones行列を用いて求める。MgO:PPLN131のz軸を角度θ傾けたときのJones行列Jは、角度θの回転行列をR(θ)とし、MgO:PPLN131のy軸方向のレーザ光とz軸方向のレーザ光の位相差をα(=2π・ΔnL/λ)とすると、次式(8)で表される。
Figure 2009016709
この(8)式のJones行列Jを用いて、次式(9)に示されるように、非線形光学材料(MgO:PPLN)131を往復後、Nd:YVO4121に入射する際の電界成分(Ec’,Ea’)が求められる。
Figure 2009016709
図4−1〜図4−4は、MgO:PPLN通過後のレーザ光のa軸方向とc軸方向の偏光強度およびc軸方向の偏光度の波長依存性を示す図である。ここでは、レーザ光のz軸方向とy軸方向のシングルパスでの強度透過率をηz=0.9(つまり、z軸方向におけるシングルパスの波長変換率を10%と想定している)、ηy=1.0とし、Ez=1、Ex=0として(9)式を用いて計算を行う。図4−1は、MgO:PPLN131の設置角度が6度のときの図であり、図4−2は、MgO:PPLN131の設置角度が16度のときの図であり、図4−3は、MgO:PPLN131の設置角度が26度のときの図であり、図4−4は、MgO:PPLN131の設置角度が45度のときの図である。
これらの図のc軸方向偏光度に示されるように、MgO:PPLN131の設置角度θが大きくなるほど、(1)式で求められる損失が最も小さくなる波長と波長との間が、シャープに区切られるようになる。これは、設置角度θを大きくすると、a軸方向の偏光強度が、(1)式で求められる損失が最も小さくなる波長と波長との間の範囲で増大し、この部分が固体レーザ素子12に入射するときに損失となるからである。
ここで、c軸方向の最大偏光度は、設置角度が6度、16度、26度、45度のときに、それぞれ0.9999,0.9991,0.9982,0.9972である。また、Nd:YVO4121に入射するレーザ光のc軸方向の偏光度が90%(偏光損失が10%)における波長幅は、設置角度が16度、26度、45度のとき、それぞれ0.5nm,0.3nm,0.2nmである。
図5−1〜図5−2は、基本波の波長に対する利得形状とレーザ媒質利得帯域との間の関係を模式的に示す図である。複屈折フィルタを通過した基本波w1が図5−1に示されるような利得形状を有する場合には、たとえば、レーザ媒質121の利得帯域Gのピークと重なる基本波w1の波長位置(以下、ピーク重なり位置という)λ1でレーザ発振した場合に、波長変換−フィルタ素子13で第2高調波が生じることによって、そのピーク重なり位置λ1で損失が増加する。このとき、ピーク重なり位置λ1の外側の領域R1でも、基本波w1の利得が複屈折フィルタで発生する損失を上回るので、レーザ発振してしまい、波長変換帯域T外でのレーザ発振が生じてしまう。この波長変換帯域T外でレーザ発振されたレーザ光は、波長変換されないので、波長変換−フィルタ素子13による波長変換効率を低下させてしまう。
これに対して、複屈折フィルタを通過した基本波w2が図5−2に示されるような利得形状を有する場合には、ピーク重なり位置λ1外の近傍の領域R2では、基本波w2の利得が複屈折フィルタで発生する損失を下回っており、基本波w2の発振波長幅が狭帯域化されている。そのため、ピーク重なり位置λ1でレーザ発振し、波長変換−フィルタ素子13での波長変換によって第2高調波が生じて、ピーク重なり位置λ1で損失が増加しても、ピーク重なり位置λ1近傍の基本波w2の利得がレーザ媒質利得帯域Gよりも下回る領域R2の波長では、レーザ発振が起こらない。
つまり、レーザ媒質121の利得帯域Gと波長変換帯域Tとが重なる領域とその近傍の領域ではレーザ発振を起こし、その領域外の波長ではレーザ発振を起こさないような基本波w2の利得形状となるように、MgO:PPLN131の設置角度θを求めることが望ましい。より具体的には、波長変換帯域Tとレーザ媒質利得帯域Gとの交点の近傍で、基本波w2の利得がレーザ媒質利得帯域Gと交わる設置角度θのうち、なるべく小さい設置角度θとしたときの基本波w2の形状とすることが望ましい。なお、このような基本波の利得形状となる設置角度θは、使用する波長変換−フィルタ素子13の材質や長さによって異なるので、使用する波長変換−フィルタ素子13ごとに予め最適と思われる設置角度θを求めておく必要がある。以上のようにして、固体レーザ素子12に入射するレーザ光(基本波)の狭帯域化を実現することができる。
なお、図4−1〜図4−4では、損失が最小となるピーク位置が914.5nmとなっており、波長変換帯域幅の中心である914nmからずれている。これは、波長変換−フィルタ素子13の非線形光学材料131の光軸R方向の長さを4.0mmとして計算を行っているためである。基本波の発振波長を914nmにする場合には、非線形光学材料131の光軸R方向の長さを変えればよい。また、上述したように非線形光学材料131の光軸R方向の長さを4.0mmとして波長変換レーザ装置10を構成した場合には、MgO:PPLN131を通過した基本波のピーク位置や非線形光学材料131の波長変換帯域の位置は、温度の変化によって変化するので、温度調整によって両者のピーク位置を合わせることができる。
たとえば、図1に示される波長変換レーザ装置10は、図示していないが、ヒートシンク上に保持され、ヒートシンクに取り付けられたサーミスタや熱電対などの温度を検出する温度検出手段と、波長変換レーザ装置10を所定の温度に加熱または冷却するペルチェ素子やヒータなどの加熱・冷却手段と、温度検出手段で検出されたヒートシンク(波長変換レーザ装置)の温度が所定の温度となるように加熱・冷却手段を制御する温度制御手段と、をさらに備える構成となっている。
図6は、非線形光学材料における波長変換帯域と基本波の温度によるシフトの様子を模式的に示す図である。ここでは、光軸R方向の長さが4.0mmであり、非線形光学材料131としてMgO:PPLN131を用いる場合を例に挙げる。波長変換帯域T(波長変換帯域幅W2)は、温度を上昇させると、+0.07nm/℃の割合で変化する。一方、MgO:PPLN131を往復する(複屈折フィルタから出力される)基本波w3のピーク位置は、−0.32nm/℃の割合で変化する。(1)式で計算したように、損失が最低となる波長間隔Δλは1.25nmであるので、1.25/(0.32−0.07)=5℃ごとに波長変換帯域Tのピークと、複屈折フィルタによって出力される基本波w3の利得のピーク波長とが一致する。また、5℃の温度変化によるMgO:PPLN131の波長変換帯域Tのシフトは0.35nm(=0.07nm/℃×5℃)であり、レーザ媒質121の利得帯域Gの発振波長帯域幅W1=約2nmに比べて小さい。そのため、温度調整によって、発振波長帯域幅W1内で複屈折フィルタによって出力される基本波w3の損失が最小となるピーク波長と波長変換帯域Tのピークとを一致させることが可能となる。なお、レーザ光出力中においては、所定の温度となるように、温度検出手段で検出された温度に基づいて、温度制御手段が加熱・冷却手段による加熱処理または冷却処理を制御する。
この実施の形態1によれば、波長変換素子として機能する非線形光学材料131を光学的一軸性結晶で構成し、その光学軸を光軸Rに垂直な面内でレーザ媒質121の結晶軸に対して所定の角度傾けるようにしたので、非線形光学材料131が複屈折フィルタとしても機能し、非線形光学材料131を通過して固体レーザ素子12に入射する基本波の発振波長帯域を制限することができる。その結果、波長変換−フィルタ素子13による波長変換効率を上げることができるという効果を有する。また、部品点数を増やすことなくレーザ光の発振波長帯域を制限することができるという効果も有する。
実施の形態2.
図7は、この発明にかかる波長変換レーザ装置の実施の形態2の構成を模式的に示す斜視図である。この波長変換レーザ装置10Aは、実施の形態1の構成において、波長変換−フィルタ素子13に代えて、z軸(結晶軸、光学軸)を固体レーザ素子12のc軸(偏光方向)に対して傾けずに配置した非線形光学材料131Aを有する波長変換素子13Aとし、固体レーザ素子12と波長変換素子13Aとの間に複屈折フィルタとして機能する1/2波長板14を挿入した構成を有するものである。この場合、実施の形態1と同様に、固体レーザ素子12に入射する基本波の波長帯域を制限するためには、1/2波長板14の光学軸pを、固体レーザ素子12の偏光方向(レーザ媒質121の結晶軸c)に対して光軸Rに垂直な面内で所定の角度傾ければよい。ただし、実施の形態1の場合でMgO:PPLN131を設置角度θだけ傾けた場合と同様の効果を得るためには、1/2波長板14をθ/2だけ傾ければよい。なお、図7において、実施の形態1と同一の構成要素には同一の符号を付してその説明を省略している。また、この実施の形態2における波長変換レーザ装置10Aの動作は、実施の形態1と同様であるので、その説明を省略する。
この実施の形態2によれば、1/2波長板14の光学軸pを光軸Rに垂直な面内でレーザ媒質121の結晶軸cに対して所定の角度傾けるようにしたので、固体レーザ素子12に入射するレーザ光の基本波の波長帯域を制限することができる。その結果、波長変換素子13Aによる波長変換効率を上げることができるという効果を有する。また、部品点数が増えてしまうが、1/2波長板14は、光軸方向のサイズが数十μmと小さく、mmオーダの部品を追加する場合に比して、部品を追加したことによる波長変換レーザ装置10の大きさの増加を抑制することができる。
実施の形態3.
図8は、この発明にかかる波長変換レーザ装置の実施の形態3の構成を模式的に示す斜視図である。この波長変換レーザ装置10Bは、実施の形態1の構成において、波長変換−フィルタ素子13の第2高調波出力側にさらに1/4波長板15を設けた構造を有する。この1/4波長板15は、その光学軸rが固体レーザ素子12のc軸(偏光方向)と同一の方向となるように配置される。ただし、波長変換−フィルタ素子13の第2高調波側の端面133bは、基本波と第2高調波ともに透過するように処理され、1/4波長板15の端面151には、基本波は全反射し、第2高調波は透過する光学膜が形成される。なお、実施の形態1と同一の構成要素には同一の符号を付してその説明を省略している。
図9は、MgO:PPLNと1/4波長板を通過後のレーザ光のa軸方向の偏光強度およびc軸方向の偏光度の波長依存性を示す図である。ここでは、図4−1〜図4−4の場合と同様に、レーザ光のz軸方向とy軸方向のシングルパスでの強度透過率をηz=0.9(つまり、z軸方向におけるシングルパスの波長変換率を10%と想定している)、ηy=1.0とし、MgO:PPLN131の設置角度θ=16度として計算を行った。なお、この比較対象として、1/4波長板15を設けない場合のMgO:PPLN131通過後のレーザ光のa軸方向とc軸方向の偏光強度およびc軸方向の偏光度の波長依存性を示す図は、図4−2に示されている。
この図9に示されるように、1/4波長板15を設けた場合には、図4−2の1/4波長板15を設けない場合に比して、複屈折フィルタ(波長変換−フィルタ素子13)から出力される基本波の波長に対する利得形状のピークの間隔が倍になるとともに、ピークが平滑化される。そのため、1/4波長板15を設けることで、波長変換帯域内で基本波の発振帯域を広げることができる。
この実施の形態3によれば、波長変換−フィルタ素子13のz軸(光学軸)を光軸Rに垂直な面内で、レーザ媒質121のc軸に対して傾けて配置するとともに、波長変換−フィルタ素子13の第2高調波出力側に1/4波長板15を設けるようにしたので、波長変換−フィルタ素子13から出力される基本波のピークを平滑化することができ、波長変換帯域内で基本波の波長帯域を広げることができるという効果を有する。その結果、効率的な波長変換を行うことができる。また、実施の形態2の図7において、波長変換素子13Aの第2高調波出力側に、同様に1/4波長板を設けても同様の効果を得ることができる。
なお、実施の形態2,3において、実施の形態1と同様に、波長変換レーザ装置の温度を制御することによって、発振波長帯域幅内で複屈折フィルタによって出力される基本波の損失が最小となるピーク波長と波長変換帯域のピークとを一致させてもよい。
さらに、上述した説明では、固体レーザ素子12のレーザ媒質121の光学軸(c軸)を平板状のレーザ媒質121の厚さ方向に設けた場合を例に挙げて説明したが、a軸が光軸Rに平行に配置され、光軸Rに垂直な面内にレーザ媒質121の光学軸(c軸)が存在すれば、レーザ媒質121の光学軸(c軸)はどのような方向に設けてもよい。なお、この場合にも、上述したように波長変換−フィルタ素子13または波長変換素子13Aの非線形光学材料131の光学軸(c軸)または1/2波長板の光学軸pは、レーザ媒質121の光学軸(c軸)に対して所定の角度傾けて配置すればよい。
以上のように、この発明にかかる波長変換レーザ装置は、所定の波長のレーザ光を効率よく第2高調波に変換する場合に有用である。

Claims (5)

  1. 励起光の吸収により発生した利得を与えてレーザ光を増幅し、基本波を出力するレーザ媒質を含む導波路構造を有する固体レーザ素子と、
    前記固体レーザ素子から出力される基本波の一部を第2高調波に変換する非線形光学材料を含む導波路構造を有する波長変換素子と、
    を備え、基本波を前記固体レーザ素子と前記波長変換素子とを含む光共振器構造で共振させるとともに、前記波長変換素子から第2高調波を出力する波長変換レーザ装置であって、
    前記固体レーザ素子は、直線偏光の基本波を出力し、
    前記波長変換素子内を通過して前記固体レーザ素子に入射する基本波の偏光状態を、前記固体レーザ素子から出力される直線偏光とは異ならせるフィルタ手段を備えることを特徴とする波長変換レーザ装置。
  2. 前記フィルタ手段は、前記レーザ光の光軸に垂直な面内で前記レーザ媒質の光学軸に対して所定の角度傾けて光学軸を配置した複屈折材料からなる前記非線形光学材料を有する前記波長変換素子であることを特徴とする請求項1に記載の波長変換レーザ装置。
  3. 前記波長変換素子の第2高調波出力側に、光学軸を前記レーザ媒質の光学軸と同じ方向に配置した1/4波長板をさらに備えることを特徴とする請求項2に記載の波長変換レーザ装置。
  4. 前記波長変換素子の前記非線形光学材料は、前記レーザ媒質の光学軸と同じ方向に光学軸を配置した複屈折材料からなり、
    前記フィルタ手段は、前記固体レーザ素子と前記波長変換素子との間に、前記レーザ光の光軸に垂直な面内で前記レーザ媒質の光学軸に対して光学軸を所定の角度傾けて配置した1/2波長板であることを特徴とする請求項1に記載の波長変換レーザ装置。
  5. 前記波長変換素子の第2高調波出力側に、光学軸を前記レーザ媒質の光学軸と同じ方向に配置した1/4波長板をさらに備えることを特徴とする請求項4に記載の波長変換レーザ装置。
JP2009525202A 2007-07-30 2007-07-30 波長変換レーザ装置 Expired - Fee Related JP5127830B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2007/064850 WO2009016709A1 (ja) 2007-07-30 2007-07-30 波長変換レーザ装置

Publications (2)

Publication Number Publication Date
JPWO2009016709A1 true JPWO2009016709A1 (ja) 2010-10-07
JP5127830B2 JP5127830B2 (ja) 2013-01-23

Family

ID=40303955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009525202A Expired - Fee Related JP5127830B2 (ja) 2007-07-30 2007-07-30 波長変換レーザ装置

Country Status (6)

Country Link
US (1) US8073024B2 (ja)
EP (1) EP2175534B1 (ja)
JP (1) JP5127830B2 (ja)
CN (1) CN101765950B (ja)
AT (1) ATE535971T1 (ja)
WO (1) WO2009016709A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011139011A (ja) * 2009-12-01 2011-07-14 Mitsubishi Electric Corp 平面導波路型レーザ装置および平面導波路型レーザ装置の製造方法
JP5793308B2 (ja) 2011-01-14 2015-10-14 株式会社Screenホールディングス 光学デバイス、レーザ装置および露光装置
JPWO2012124266A1 (ja) * 2011-03-17 2014-07-17 パナソニック株式会社 波長変換レーザ光源及び画像表示装置
JP6141192B2 (ja) * 2011-11-25 2017-06-07 シチズン時計株式会社 光学デバイス
JP2013115257A (ja) * 2011-11-29 2013-06-10 Mitsubishi Electric Corp 光モジュール
KR101944434B1 (ko) * 2012-10-17 2019-01-31 아이피지 포토닉스 코포레이션 공진으로 보강된 주파수 컨버터
WO2014080520A1 (ja) * 2012-11-26 2014-05-30 三菱電機株式会社 レーザ装置
EP2930798B1 (en) * 2012-12-10 2020-11-18 Mitsubishi Electric Corporation Plane waveguide-type laser device
WO2014097370A1 (ja) * 2012-12-17 2014-06-26 三菱電機株式会社 導波路型レーザ装置
JP2017107073A (ja) * 2015-12-10 2017-06-15 キヤノン株式会社 光源装置およびそれを用いた情報取得装置
US11097218B2 (en) 2016-11-23 2021-08-24 Institute Of Process Engineering, Chinese Academy Of Sciences Flue gas purification tower

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3066966B2 (ja) 1988-02-29 2000-07-17 ソニー株式会社 レーザ光源
DE3917902A1 (de) * 1989-06-01 1990-12-13 Adlas Gmbh & Co Kg Frequenzverdoppelter laser
US5377212A (en) * 1991-10-17 1994-12-27 Hitachi, Ltd. Solid-state laser device including uniaxial laser crystal emitting linearly polarized fundamental wave and nonlinear optical crystal emitting linearly polarized harmonic wave
JPH05243659A (ja) * 1992-02-28 1993-09-21 Hitachi Ltd レーザ装置
JPH05167165A (ja) 1991-12-17 1993-07-02 Hitachi Ltd 短波長レーザ光源
JPH06132596A (ja) * 1992-10-21 1994-05-13 Nippon Steel Corp 固体レーザ装置
JPH06209135A (ja) 1992-11-06 1994-07-26 Mitsui Petrochem Ind Ltd 固体レーザ装置
JPH06224508A (ja) * 1993-01-22 1994-08-12 Mitsui Petrochem Ind Ltd 固体レーザ装置
JPH07226561A (ja) * 1994-02-14 1995-08-22 Sumitomo Metal Mining Co Ltd レーザ装置
KR0174775B1 (ko) * 1994-03-28 1999-04-01 스기야마 가즈히꼬 파장변환 도파로형 레이저 장치
JPH088480A (ja) * 1994-06-16 1996-01-12 Hitachi Ltd レーザ装置
JPH09116219A (ja) * 1995-10-20 1997-05-02 Hitachi Metals Ltd レーザ光発生装置、およびレーザ応用装置
US6154472A (en) 1997-10-08 2000-11-28 Jds Uniphase Corporation High efficiency decoupled tuning configuration intracavity doubled laser and method
US6738396B2 (en) * 2001-07-24 2004-05-18 Gsi Lumonics Ltd. Laser based material processing methods and scalable architecture for material processing
JP2004281598A (ja) * 2003-03-14 2004-10-07 Nidek Co Ltd レーザ装置
WO2005033791A1 (ja) 2003-10-01 2005-04-14 Mitsubishi Denki Kabushiki Kaisha 波長変換レーザ装置および画像表示装置
JP2006019603A (ja) 2004-07-05 2006-01-19 Matsushita Electric Ind Co Ltd コヒーレント光源および光学装置

Also Published As

Publication number Publication date
EP2175534A4 (en) 2010-08-25
WO2009016709A1 (ja) 2009-02-05
US8073024B2 (en) 2011-12-06
JP5127830B2 (ja) 2013-01-23
EP2175534A1 (en) 2010-04-14
EP2175534B1 (en) 2011-11-30
US20100202477A1 (en) 2010-08-12
CN101765950A (zh) 2010-06-30
CN101765950B (zh) 2012-11-28
ATE535971T1 (de) 2011-12-15

Similar Documents

Publication Publication Date Title
JP5127830B2 (ja) 波長変換レーザ装置
JP2893862B2 (ja) 固体レーザー発振器
US5995523A (en) Single mode laser suitable for use in frequency multiplied applications and method
JP5654576B2 (ja) 波長変換レーザ光源
JP4202730B2 (ja) 固体レーザ装置
WO2007032402A1 (ja) レーザ光源、およびそれを用いたディスプレイ装置
KR100764424B1 (ko) 파장변환 레이저 장치 및 이에 사용되는 비선형 광학결정
JP2824884B2 (ja) 偏光制御素子および固体レーザー装置
JP3683360B2 (ja) 偏光制御素子および固体レーザー
WO1998048491A2 (en) Multi-element, single mode microchip lasers
JP4202729B2 (ja) 固体レーザ装置
JP5933754B2 (ja) 平面導波路型レーザ装置
JP2004172315A (ja) 固体レーザ装置
US20070041420A1 (en) Solid-state laser device
JPH04137775A (ja) 半導体レーザ励起固体レーザ
JP5855229B2 (ja) レーザ装置
JPH06265955A (ja) 波長変換素子
JPH03108785A (ja) レーザ光波長変換方式
WO2014097370A1 (ja) 導波路型レーザ装置
JPH1195271A (ja) 光パラメトリック発振装置
JPH06350173A (ja) 偏光および縦モード制御素子並びに固体レーザー装置
JPH06164045A (ja) レーザー装置及び第二高調波発生方法
JP2021132127A (ja) 半導体レーザ励起固体レーザ
JPH04335586A (ja) レーザーダイオードポンピング固体レーザー
JPH06342949A (ja) 固体レーザ装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121030

R150 Certificate of patent or registration of utility model

Ref document number: 5127830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees